solanaceae_object_store/test/test_file_zstd.cpp

394 lines
12 KiB
C++

#include <solanaceae/util/span.hpp>
#include <solanaceae/file/file2_mem.hpp>
#include <solanaceae/file/file2_std.hpp>
#include <solanaceae/file/file2_zstd.hpp>
#include <filesystem>
#include <iostream>
#include <variant>
#include <algorithm>
#include <vector>
#include <random>
#include <cassert>
const static std::string_view test_text1{"test1 1234 1234 :) 1234 5678 88888888\n"};
const static ByteSpan data_test_text1{
reinterpret_cast<const uint8_t*>(test_text1.data()),
test_text1.size()
};
const static std::string_view test_text2{"test2 1234 1234 :) 1234 5678 88888888\n"};
const static ByteSpan data_test_text2{
reinterpret_cast<const uint8_t*>(test_text2.data()),
test_text2.size()
};
const static std::string_view test_text3{
"00000000000000000000000000000000000000000000000000000 test 00000000000000000000000000000000000000\n"
"00000000000000000000000000000000000000000000000000000 test 00000000000000000000000000000000000000\n"
"00000000000000000000000000000000000000000000000000000 test 00000000000000000000000000000000000000\n"
"00000000000000000000000000000000000000000000000000000 test 00000000000000000000000000000000000000\n"
"00000000000000000000000000000000000000000000000000000 test 00000000000000000000000000000000000000\n"
"00000000000000000000000000000000000000000000000000000 test 00000000000000000000000000000000000000\n"
};
const static ByteSpan data_test_text3{
reinterpret_cast<const uint8_t*>(test_text3.data()),
test_text3.size()
};
int main(void) {
{ // first do a simple mem backed test
std::vector<uint8_t> buffer;
{ // write
File2MemW f_w_mem{buffer};
assert(f_w_mem.isGood());
File2ZSTDW f_w_zstd{f_w_mem};
assert(f_w_zstd.isGood());
bool res = f_w_zstd.write(data_test_text1);
assert(res);
assert(f_w_zstd.isGood());
// write another frame of the same data
res = f_w_zstd.write(data_test_text2);
assert(res);
assert(f_w_zstd.isGood());
// write larger frame
res = f_w_zstd.write(data_test_text3);
assert(res);
assert(f_w_zstd.isGood());
}
std::cout << "in mem size: " << buffer.size() << "\n";
{ // read
File2MemR f_r_mem{ByteSpan{buffer}};
assert(f_r_mem.isGood());
File2ZSTDR f_r_zstd{f_r_mem};
assert(f_r_zstd.isGood());
// reads return owning buffers
{ // readback data_test_text1
auto r_res_var = f_r_zstd.read(data_test_text1.size);
//assert(f_r_zstd.isGood());
//assert(f_r_file.isGood());
assert(std::holds_alternative<std::vector<uint8_t>>(r_res_var));
const auto& r_res_vec = std::get<std::vector<uint8_t>>(r_res_var);
//std::cout << "decomp: " << std::string_view{reinterpret_cast<const char*>(r_res_vec.data()), r_res_vec.size()};
assert(r_res_vec.size() == data_test_text1.size);
assert(std::equal(data_test_text1.cbegin(), data_test_text1.cend(), r_res_vec.cbegin()));
}
{ // readback data_test_text2
auto r_res_var = f_r_zstd.read(data_test_text2.size);
//assert(f_r_zstd.isGood());
//assert(f_r_file.isGood());
assert(std::holds_alternative<std::vector<uint8_t>>(r_res_var));
const auto& r_res_vec = std::get<std::vector<uint8_t>>(r_res_var);
//std::cout << "decomp: " << std::string_view{reinterpret_cast<const char*>(r_res_vec.data()), r_res_vec.size()};
assert(r_res_vec.size() == data_test_text2.size);
assert(std::equal(
data_test_text2.cbegin(),
data_test_text2.cend(),
r_res_vec.cbegin()
));
}
{ // readback data_test_text3
auto r_res_var = f_r_zstd.read(data_test_text3.size);
//assert(f_r_zstd.isGood());
//assert(f_r_file.isGood());
assert(std::holds_alternative<std::vector<uint8_t>>(r_res_var));
const auto& r_res_vec = std::get<std::vector<uint8_t>>(r_res_var);
//std::cout << "decomp: " << std::string_view{reinterpret_cast<const char*>(r_res_vec.data()), r_res_vec.size()};
assert(r_res_vec.size() == data_test_text3.size);
assert(std::equal(
data_test_text3.cbegin(),
data_test_text3.cend(),
r_res_vec.cbegin()
));
}
{ // assert eof somehow
// since its eof, reading a single byte should return a zero sized buffer
auto r_res_var = f_r_zstd.read(1);
if (std::holds_alternative<std::vector<uint8_t>>(r_res_var)) {
assert(std::get<std::vector<uint8_t>>(r_res_var).empty());
} else if (std::holds_alternative<ByteSpan>(r_res_var)) {
assert(std::get<ByteSpan>(r_res_var).empty());
} else {
assert(false);
}
}
}
}
const auto temp_dir = std::filesystem::temp_directory_path() / "file2_zstd_tests";
std::filesystem::create_directories(temp_dir); // making sure
assert(std::filesystem::exists(temp_dir));
std::cout << "test temp dir: " << temp_dir << "\n";
const auto test1_file_path = temp_dir / "testfile1.zstd";
{ // simple write test
File2WFile f_w_file{std::string_view{test1_file_path.u8string()}, true};
assert(f_w_file.isGood());
File2ZSTDW f_w_zstd{f_w_file};
assert(f_w_zstd.isGood());
assert(f_w_file.isGood());
//bool res = f_w_file.write(data_test_text1);
bool res = f_w_zstd.write(data_test_text1);
assert(res);
assert(f_w_zstd.isGood());
assert(f_w_file.isGood());
// write another frame of the same data
res = f_w_zstd.write(data_test_text2);
assert(res);
assert(f_w_zstd.isGood());
assert(f_w_file.isGood());
// write larger frame
res = f_w_zstd.write(data_test_text3);
assert(res);
assert(f_w_zstd.isGood());
assert(f_w_file.isGood());
}
// after flush
assert(std::filesystem::file_size(test1_file_path) != 0);
{ // simple read test (using write test created file)
File2RFile f_r_file{std::string_view{test1_file_path.u8string()}};
assert(f_r_file.isGood());
File2ZSTDR f_r_zstd{f_r_file};
assert(f_r_zstd.isGood());
assert(f_r_file.isGood());
// reads return owning buffers
{ // readback data_test_text1
auto r_res_var = f_r_zstd.read(data_test_text1.size);
//assert(f_r_zstd.isGood());
//assert(f_r_file.isGood());
assert(std::holds_alternative<std::vector<uint8_t>>(r_res_var));
const auto& r_res_vec = std::get<std::vector<uint8_t>>(r_res_var);
//std::cout << "decomp: " << std::string_view{reinterpret_cast<const char*>(r_res_vec.data()), r_res_vec.size()};
assert(r_res_vec.size() == data_test_text1.size);
assert(std::equal(data_test_text1.cbegin(), data_test_text1.cend(), r_res_vec.cbegin()));
}
{ // readback data_test_text2
auto r_res_var = f_r_zstd.read(data_test_text2.size);
//assert(f_r_zstd.isGood());
//assert(f_r_file.isGood());
assert(std::holds_alternative<std::vector<uint8_t>>(r_res_var));
const auto& r_res_vec = std::get<std::vector<uint8_t>>(r_res_var);
//std::cout << "decomp: " << std::string_view{reinterpret_cast<const char*>(r_res_vec.data()), r_res_vec.size()};
assert(r_res_vec.size() == data_test_text2.size);
assert(std::equal(
data_test_text2.cbegin(),
data_test_text2.cend(),
r_res_vec.cbegin()
));
}
{ // readback data_test_text3
auto r_res_var = f_r_zstd.read(data_test_text3.size);
//assert(f_r_zstd.isGood());
//assert(f_r_file.isGood());
assert(std::holds_alternative<std::vector<uint8_t>>(r_res_var));
const auto& r_res_vec = std::get<std::vector<uint8_t>>(r_res_var);
//std::cout << "decomp: " << std::string_view{reinterpret_cast<const char*>(r_res_vec.data()), r_res_vec.size()};
assert(r_res_vec.size() == data_test_text3.size);
assert(std::equal(
data_test_text3.cbegin(),
data_test_text3.cend(),
r_res_vec.cbegin()
));
}
{ // assert eof somehow
// since its eof, reading a single byte should return a zero sized buffer
auto r_res_var = f_r_zstd.read(1);
if (std::holds_alternative<std::vector<uint8_t>>(r_res_var)) {
assert(std::get<std::vector<uint8_t>>(r_res_var).empty());
} else if (std::holds_alternative<ByteSpan>(r_res_var)) {
assert(std::get<ByteSpan>(r_res_var).empty());
} else {
assert(false);
}
}
}
const auto test2_file_path = temp_dir / "testfile2.zstd";
{ // write and read a single frame with increasing size
for (size_t fslog = 1; fslog <= 25; fslog++) {
const size_t frame_size = 1<<fslog;
//std::cerr << "fs: " << frame_size << "\n";
{ // write
std::minstd_rand rng_data{11*1337};
File2WFile f_w_file{std::string_view{test2_file_path.u8string()}, true};
assert(f_w_file.isGood());
File2ZSTDW f_w_zstd{f_w_file};
assert(f_w_zstd.isGood());
assert(f_w_file.isGood());
std::vector<uint8_t> tmp_data(frame_size);
for (auto& e : tmp_data) {
e = uint8_t(rng_data() & 0xff); // cutoff bad but good enough
}
assert(tmp_data.size() == frame_size);
bool res = f_w_zstd.write(ByteSpan{tmp_data});
assert(res);
assert(f_w_zstd.isGood());
assert(f_w_file.isGood());
}
{ // read
std::minstd_rand rng_data{11*1337};
File2RFile f_r_file{std::string_view{test2_file_path.u8string()}};
assert(f_r_file.isGood());
File2ZSTDR f_r_zstd{f_r_file};
assert(f_r_zstd.isGood());
assert(f_r_file.isGood());
{ // read frame
auto r_res_var = f_r_zstd.read(frame_size);
assert(std::holds_alternative<std::vector<uint8_t>>(r_res_var));
const auto& r_res_vec = std::get<std::vector<uint8_t>>(r_res_var);
assert(r_res_vec.size() == frame_size);
// assert equal
for (auto& e : r_res_vec) {
assert(e == uint8_t(rng_data() & 0xff));
}
}
{ // eof test
auto r_res_var = f_r_zstd.read(1);
if (std::holds_alternative<std::vector<uint8_t>>(r_res_var)) {
assert(std::get<std::vector<uint8_t>>(r_res_var).empty());
} else if (std::holds_alternative<ByteSpan>(r_res_var)) {
assert(std::get<ByteSpan>(r_res_var).empty());
} else {
assert(false);
}
}
}
// since we spam file, we immediatly remove them
std::filesystem::remove(test2_file_path);
}
}
const auto test3_file_path = temp_dir / "testfile3.zstd";
{ // large file test write
File2WFile f_w_file{std::string_view{test3_file_path.u8string()}, true};
assert(f_w_file.isGood());
File2ZSTDW f_w_zstd{f_w_file};
assert(f_w_zstd.isGood());
assert(f_w_file.isGood());
std::minstd_rand rng{11*1337};
std::minstd_rand rng_data{11*1337}; // make investigating easier
size_t total_raw_size {0};
for (size_t i = 0; i < 2000; i++) {
const size_t frame_size = (rng() % ((2<<19) - 1)) + 1;
std::vector<uint8_t> tmp_data(frame_size);
for (auto& e : tmp_data) {
e = uint8_t(rng_data() & 0xff); // cutoff bad but good enough
}
bool res = f_w_zstd.write(ByteSpan{tmp_data});
assert(res);
assert(f_w_zstd.isGood());
assert(f_w_file.isGood());
total_raw_size += frame_size;
}
std::cout << "t3 total raw size: " << total_raw_size << "\n";
}
// after flush
std::cout << "t3 size on disk: " << std::filesystem::file_size(test3_file_path) << "\n";
{ // large file test read
File2RFile f_r_file{std::string_view{test3_file_path.u8string()}};
assert(f_r_file.isGood());
File2ZSTDR f_r_zstd{f_r_file};
assert(f_r_zstd.isGood());
assert(f_r_file.isGood());
// using same rng state as write to compare
std::minstd_rand rng{11*1337};
std::minstd_rand rng_data{11*1337};
for (size_t i = 0; i < 2000; i++) {
const size_t frame_size = (rng() % ((2<<19) - 1)) + 1;
//std::cerr << "f: " << i << " fs: " << frame_size << "\n";
auto r_res_var = f_r_zstd.read(frame_size);
assert(std::holds_alternative<std::vector<uint8_t>>(r_res_var));
const auto& r_res_vec = std::get<std::vector<uint8_t>>(r_res_var);
assert(r_res_vec.size() == frame_size);
// assert equal
for (auto& e : r_res_vec) {
assert(e == uint8_t(rng_data() & 0xff));
}
}
{ // eof test
auto r_res_var = f_r_zstd.read(1);
if (std::holds_alternative<std::vector<uint8_t>>(r_res_var)) {
assert(std::get<std::vector<uint8_t>>(r_res_var).empty());
} else if (std::holds_alternative<ByteSpan>(r_res_var)) {
assert(std::get<ByteSpan>(r_res_var).empty());
} else {
assert(false);
}
}
}
// cleanup
std::filesystem::remove_all(temp_dir);
}