Squashed 'external/toxcore/c-toxcore/' changes from c9cdae001..9ed2fa80d

9ed2fa80d fix(toxav): remove extra copy of video frame on encode
de30cf3ad docs: Add new file kinds, that should be useful to all clients.
d5b5e879d fix(DHT): Correct node skipping logic timed out nodes.
30e71fe97 refactor: Generate event dispatch functions and add tox_events_dispatch.
8fdbb0b50 style: Format parameter lists in event handlers.
d00dee12b refactor: Add warning logs when losing chat invites.
b144e8db1 feat: Add a way to look up a file number by ID.
849281ea0 feat: Add a way to fetch groups by chat ID.
a2c177396 refactor: Harden event system and improve type safety.
8f5caa656 refactor: Add MessagePack string support to bin_pack.
34e8d5ad5 chore: Add GitHub CodeQL workflow and local Docker runner.
f7b068010 refactor: Add nullability annotations to event headers.
788abe651 refactor(toxav): Use system allocator for mutexes.
2e4b423eb refactor: Use specific typedefs for public API arrays.
2baf34775 docs(toxav): update idle iteration interval see 679444751876fa3882a717772918ebdc8f083354
2f87ac67b feat: Add Event Loop abstraction (Ev).
f8dfc38d8 test: Fix data race in ToxScenario virtual_clock.
38313921e test(TCP): Add regression test for TCP priority queue integrity.
f94a50d9a refactor(toxav): Replace mutable_mutex with dynamically allocated mutex.
ad054511e refactor: Internalize DHT structs and add debug helpers.
8b467cc96 fix: Prevent potential integer overflow in group chat handshake.
4962bdbb8 test: Improve TCP simulation and add tests
5f0227093 refactor: Allow nullable data in group chat handlers.
e97b18ea9 chore: Improve Windows Docker support.
b14943bbd refactor: Move Logger out of Messenger into Tox.
dd3136250 cleanup: Apply nullability qualifiers to C++ codebase.
1849f70fc refactor: Extract low-level networking code to net and os_network.
8fec75421 refactor: Delete tox_random, align on rng and os_random.
a03ae8051 refactor: Delete tox_memory, align on mem and os_memory.
4c88fed2c refactor: Use `std::` prefixes more consistently in C++ code.
72452f2ae test: Add some more tests for onion and shared key cache.
d5a51b09a cleanup: Use tox_attributes.h in tox_private.h and install it.
b6f5b9fc5 test: Add some benchmarks for various high level things.
8a8d02785 test(support): Introduce threaded Tox runner and simulation barrier
d68d1d095 perf(toxav): optimize audio and video intermediate buffers by keeping them around
REVERT: c9cdae001 fix(toxav): remove extra copy of video frame on encode

git-subtree-dir: external/toxcore/c-toxcore
git-subtree-split: 9ed2fa80d582c714d6bdde6a7648220a92cddff8
This commit is contained in:
Green Sky
2026-02-01 14:26:52 +01:00
parent 565efa4f39
commit 9b36dd9d99
274 changed files with 11891 additions and 4292 deletions

View File

@@ -4,6 +4,11 @@
#include <algorithm>
#include <cmath>
#include <cstddef>
#include <cstdint>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <vector>
#include "../toxcore/logger.h"
@@ -38,31 +43,31 @@ TEST_F(AudioTest, EncodeDecodeLoop)
nullptr, nullptr, nullptr, ac, RtpMock::audio_cb);
rtp_mock.recv_session = recv_rtp;
uint32_t sampling_rate = 48000;
uint8_t channels = 1;
size_t sample_count = 960; // 20ms at 48kHz
std::uint32_t sampling_rate = 48000;
std::uint8_t channels = 1;
std::size_t sample_count = 960; // 20ms at 48kHz
// Reconfigure to mono
ASSERT_EQ(ac_reconfigure_encoder(ac, 48000, sampling_rate, channels), 0);
std::vector<int16_t> pcm(sample_count * channels);
for (size_t i = 0; i < pcm.size(); ++i) {
pcm[i] = static_cast<int16_t>(i * 10);
std::vector<std::int16_t> pcm(sample_count * channels);
for (std::size_t i = 0; i < pcm.size(); ++i) {
pcm[i] = static_cast<std::int16_t>(i * 10);
}
std::vector<uint8_t> encoded(2000);
std::vector<std::uint8_t> encoded(2000);
int encoded_size = ac_encode(ac, pcm.data(), sample_count, encoded.data(), encoded.size());
ASSERT_GT(encoded_size, 0);
// Prepare payload: 4 bytes sampling rate + Opus data
std::vector<uint8_t> payload(4 + static_cast<size_t>(encoded_size));
uint32_t net_sr = net_htonl(sampling_rate);
memcpy(payload.data(), &net_sr, 4);
memcpy(payload.data() + 4, encoded.data(), static_cast<size_t>(encoded_size));
std::vector<std::uint8_t> payload(4 + static_cast<std::size_t>(encoded_size));
std::uint32_t net_sr = net_htonl(sampling_rate);
std::memcpy(payload.data(), &net_sr, 4);
std::memcpy(payload.data() + 4, encoded.data(), static_cast<std::size_t>(encoded_size));
// Send via RTP
int rc = rtp_send_data(
log, send_rtp, payload.data(), static_cast<uint32_t>(payload.size()), false);
log, send_rtp, payload.data(), static_cast<std::uint32_t>(payload.size()), false);
ASSERT_EQ(rc, 0);
// Decode
@@ -92,10 +97,10 @@ TEST_F(AudioTest, EncodeDecodeRealistic)
nullptr, nullptr, nullptr, ac, RtpMock::audio_cb);
rtp_mock.recv_session = recv_rtp;
uint32_t sampling_rate = 48000;
uint8_t channels = 1;
size_t sample_count = 960; // 20ms at 48kHz
uint32_t bitrate = 48000;
std::uint32_t sampling_rate = 48000;
std::uint8_t channels = 1;
std::size_t sample_count = 960; // 20ms at 48kHz
std::uint32_t bitrate = 48000;
ASSERT_EQ(ac_reconfigure_encoder(ac, bitrate, sampling_rate, channels), 0);
@@ -103,27 +108,28 @@ TEST_F(AudioTest, EncodeDecodeRealistic)
double amplitude = 10000.0;
const double pi = std::acos(-1.0);
std::vector<int16_t> all_sent;
std::vector<int16_t> all_recv;
std::vector<std::int16_t> all_sent;
std::vector<std::int16_t> all_recv;
for (int frame = 0; frame < 50; ++frame) {
std::vector<int16_t> pcm(sample_count * channels);
for (size_t i = 0; i < sample_count; ++i) {
std::vector<std::int16_t> pcm(sample_count * channels);
for (std::size_t i = 0; i < sample_count; ++i) {
double t = static_cast<double>(frame * sample_count + i) / sampling_rate;
pcm[i] = static_cast<int16_t>(std::sin(2.0 * pi * frequency * t) * amplitude);
pcm[i] = static_cast<std::int16_t>(std::sin(2.0 * pi * frequency * t) * amplitude);
}
all_sent.insert(all_sent.end(), pcm.begin(), pcm.end());
std::vector<uint8_t> encoded(2000);
std::vector<std::uint8_t> encoded(2000);
int encoded_size = ac_encode(ac, pcm.data(), sample_count, encoded.data(), encoded.size());
ASSERT_GT(encoded_size, 0);
std::vector<uint8_t> payload(4 + static_cast<size_t>(encoded_size));
uint32_t net_sr = net_htonl(sampling_rate);
memcpy(payload.data(), &net_sr, 4);
memcpy(payload.data() + 4, encoded.data(), static_cast<size_t>(encoded_size));
std::vector<std::uint8_t> payload(4 + static_cast<std::size_t>(encoded_size));
std::uint32_t net_sr = net_htonl(sampling_rate);
std::memcpy(payload.data(), &net_sr, 4);
std::memcpy(payload.data() + 4, encoded.data(), static_cast<std::size_t>(encoded_size));
rtp_send_data(log, send_rtp, payload.data(), static_cast<uint32_t>(payload.size()), false);
rtp_send_data(
log, send_rtp, payload.data(), static_cast<std::uint32_t>(payload.size()), false);
ac_iterate(ac);
@@ -143,7 +149,7 @@ TEST_F(AudioTest, EncodeDecodeRealistic)
for (int delay = 3000; delay < 3500; ++delay) {
double mse = 0;
int count = 0;
for (size_t i = 0; i < 2000; ++i) { // Compare a decent chunk
for (std::size_t i = 0; i < 2000; ++i) { // Compare a decent chunk
if (i + delay < all_sent.size() && i < all_recv.size()) {
int diff = all_sent[i + delay] - all_recv[i];
mse += static_cast<double>(diff) * diff;
@@ -159,7 +165,7 @@ TEST_F(AudioTest, EncodeDecodeRealistic)
}
}
printf("Best audio delay found: %d samples, Min MSE: %f\n", best_delay, min_mse);
std::printf("Best audio delay found: %d samples, Min MSE: %f\n", best_delay, min_mse);
// For 48kbps Opus, the MSE for a sine wave should be quite low once aligned.
// 10M is about 20% of the signal power (50M), which is a safe threshold for verification.
@@ -183,42 +189,43 @@ TEST_F(AudioTest, EncodeDecodeSiren)
nullptr, nullptr, nullptr, ac, RtpMock::audio_cb);
rtp_mock.recv_session = recv_rtp;
uint32_t sampling_rate = 48000;
uint8_t channels = 1;
size_t sample_count = 960; // 20ms at 48kHz
uint32_t bitrate = 64000;
std::uint32_t sampling_rate = 48000;
std::uint8_t channels = 1;
std::size_t sample_count = 960; // 20ms at 48kHz
std::uint32_t bitrate = 64000;
ASSERT_EQ(ac_reconfigure_encoder(ac, bitrate, sampling_rate, channels), 0);
double amplitude = 10000.0;
const double pi = std::acos(-1.0);
std::vector<int16_t> all_sent;
std::vector<int16_t> all_recv;
std::vector<std::int16_t> all_sent;
std::vector<std::int16_t> all_recv;
// 1 second of audio (50 frames) is enough for a siren test
for (int frame = 0; frame < 50; ++frame) {
std::vector<int16_t> pcm(sample_count * channels);
for (size_t i = 0; i < sample_count; ++i) {
std::vector<std::int16_t> pcm(sample_count * channels);
for (std::size_t i = 0; i < sample_count; ++i) {
double t = static_cast<double>(frame * sample_count + i) / sampling_rate;
// Linear frequency sweep from 50Hz to 440Hz over 1 second
// f(t) = 50 + (440-50)/1 * t = 50 + 390t
// phi(t) = 2*pi * integral(f(t)) = 2*pi * (50t + 195t^2)
double phi = 2.0 * pi * (50.0 * t + 195.0 * t * t);
pcm[i] = static_cast<int16_t>(std::sin(phi) * amplitude);
pcm[i] = static_cast<std::int16_t>(std::sin(phi) * amplitude);
}
all_sent.insert(all_sent.end(), pcm.begin(), pcm.end());
std::vector<uint8_t> encoded(2000);
std::vector<std::uint8_t> encoded(2000);
int encoded_size = ac_encode(ac, pcm.data(), sample_count, encoded.data(), encoded.size());
ASSERT_GT(encoded_size, 0);
std::vector<uint8_t> payload(4 + static_cast<size_t>(encoded_size));
uint32_t net_sr = net_htonl(sampling_rate);
memcpy(payload.data(), &net_sr, 4);
memcpy(payload.data() + 4, encoded.data(), static_cast<size_t>(encoded_size));
std::vector<std::uint8_t> payload(4 + static_cast<std::size_t>(encoded_size));
std::uint32_t net_sr = net_htonl(sampling_rate);
std::memcpy(payload.data(), &net_sr, 4);
std::memcpy(payload.data() + 4, encoded.data(), static_cast<std::size_t>(encoded_size));
rtp_send_data(log, send_rtp, payload.data(), static_cast<uint32_t>(payload.size()), false);
rtp_send_data(
log, send_rtp, payload.data(), static_cast<std::uint32_t>(payload.size()), false);
ac_iterate(ac);
@@ -229,14 +236,14 @@ TEST_F(AudioTest, EncodeDecodeSiren)
ASSERT_FALSE(all_recv.empty());
auto calculate_mse_at = [&](int delay, size_t window) {
auto calculate_mse_at = [&](int delay, std::size_t window) {
double mse = 0;
int count = 0;
for (size_t i = 0; i < window; ++i) {
for (std::size_t i = 0; i < window; ++i) {
int sent_idx = static_cast<int>(i) + delay;
if (sent_idx >= 0 && static_cast<size_t>(sent_idx) < all_sent.size()
if (sent_idx >= 0 && static_cast<std::size_t>(sent_idx) < all_sent.size()
&& i < all_recv.size()) {
int diff = all_sent[static_cast<size_t>(sent_idx)] - all_recv[i];
int diff = all_sent[static_cast<std::size_t>(sent_idx)] - all_recv[i];
mse += static_cast<double>(diff) * diff;
count++;
}
@@ -267,7 +274,7 @@ TEST_F(AudioTest, EncodeDecodeSiren)
}
}
printf("Best siren audio delay found: %d samples, Min MSE: %f\n", best_delay, min_mse);
std::printf("Best siren audio delay found: %d samples, Min MSE: %f\n", best_delay, min_mse);
// For 64kbps Opus, the MSE for a siren wave should be reasonably low once aligned.
EXPECT_LT(min_mse, 20000000.0);
@@ -287,11 +294,11 @@ TEST_F(AudioTest, ReconfigureEncoder)
int rc = ac_reconfigure_encoder(ac, 32000, 24000, 2);
ASSERT_EQ(rc, 0);
size_t sample_count = 480; // 20ms at 24kHz
uint8_t channels = 2;
std::vector<int16_t> pcm(sample_count * channels, 0);
std::size_t sample_count = 480; // 20ms at 24kHz
std::uint8_t channels = 2;
std::vector<std::int16_t> pcm(sample_count * channels, 0);
std::vector<uint8_t> encoded(1000);
std::vector<std::uint8_t> encoded(1000);
int encoded_size = ac_encode(ac, pcm.data(), sample_count, encoded.data(), encoded.size());
ASSERT_GT(encoded_size, 0);
@@ -324,9 +331,9 @@ TEST_F(AudioTest, QueueInvalidMessage)
&rtp_mock, nullptr, nullptr, nullptr, ac, RtpMock::audio_cb);
rtp_mock.recv_session = audio_recv_rtp;
std::vector<uint8_t> dummy_video(100, 0);
std::vector<std::uint8_t> dummy_video(100, 0);
int rc = rtp_send_data(
log, video_rtp, dummy_video.data(), static_cast<uint32_t>(dummy_video.size()), true);
log, video_rtp, dummy_video.data(), static_cast<std::uint32_t>(dummy_video.size()), true);
ASSERT_EQ(rc, 0);
// Iterate should NOT trigger callback because payload type was wrong
@@ -352,9 +359,9 @@ TEST_F(AudioTest, JitterBufferDuplicate)
nullptr, nullptr, nullptr, ac, RtpMock::audio_cb);
rtp_mock.recv_session = recv_rtp;
uint8_t dummy_data[100] = {0};
uint32_t net_sr = net_htonl(48000);
memcpy(dummy_data, &net_sr, 4);
std::uint8_t dummy_data[100] = {0};
std::uint32_t net_sr = net_htonl(48000);
std::memcpy(dummy_data, &net_sr, 4);
rtp_send_data(log, send_rtp, dummy_data, sizeof(dummy_data), false);
ASSERT_EQ(rtp_mock.captured_packets.size(), 1u);
@@ -393,9 +400,9 @@ TEST_F(AudioTest, JitterBufferOutOfOrder)
nullptr, nullptr, nullptr, ac, RtpMock::audio_cb);
rtp_mock.recv_session = recv_rtp;
uint8_t dummy_data[100] = {0};
uint32_t net_sr = net_htonl(48000);
memcpy(dummy_data, &net_sr, 4);
std::uint8_t dummy_data[100] = {0};
std::uint32_t net_sr = net_htonl(48000);
std::memcpy(dummy_data, &net_sr, 4);
// Capture 3 packets
rtp_send_data(log, send_rtp, dummy_data, sizeof(dummy_data), false);
@@ -440,9 +447,9 @@ TEST_F(AudioTest, PacketLossConcealment)
nullptr, nullptr, nullptr, ac, RtpMock::audio_cb);
rtp_mock.recv_session = recv_rtp;
uint8_t dummy_data[100] = {0};
uint32_t net_sr = net_htonl(48000);
memcpy(dummy_data, &net_sr, 4);
std::uint8_t dummy_data[100] = {0};
std::uint32_t net_sr = net_htonl(48000);
std::memcpy(dummy_data, &net_sr, 4);
// Send packet 0 and deliver it immediately.
rtp_send_data(log, send_rtp, dummy_data, sizeof(dummy_data), false);
@@ -486,9 +493,9 @@ TEST_F(AudioTest, JitterBufferReset)
nullptr, nullptr, nullptr, ac, RtpMock::audio_cb);
rtp_mock.recv_session = recv_rtp;
uint8_t dummy_data[100] = {0};
uint32_t net_sr = net_htonl(48000);
memcpy(dummy_data, &net_sr, 4);
std::uint8_t dummy_data[100] = {0};
std::uint32_t net_sr = net_htonl(48000);
std::memcpy(dummy_data, &net_sr, 4);
rtp_send_data(log, send_rtp, dummy_data, sizeof(dummy_data), false);
rtp_receive_packet(
@@ -531,12 +538,12 @@ TEST_F(AudioTest, DecoderReconfigureCooldown)
nullptr, nullptr, nullptr, ac, RtpMock::audio_cb);
rtp_mock.recv_session = recv_rtp;
uint8_t dummy_data[100] = {0};
uint32_t net_sr_48 = net_htonl(48000);
uint32_t net_sr_24 = net_htonl(24000);
std::uint8_t dummy_data[100] = {0};
std::uint32_t net_sr_48 = net_htonl(48000);
std::uint32_t net_sr_24 = net_htonl(24000);
// 1. Reconfigure to 24kHz. The initial sampling rate is 48kHz.
memcpy(dummy_data, &net_sr_24, 4);
std::memcpy(dummy_data, &net_sr_24, 4);
rtp_send_data(log, send_rtp, dummy_data, sizeof(dummy_data), false);
rtp_receive_packet(
recv_rtp, rtp_mock.captured_packets.back().data(), rtp_mock.captured_packets.back().size());
@@ -550,7 +557,7 @@ TEST_F(AudioTest, DecoderReconfigureCooldown)
mono_time_update(mono_time);
// 3. Attempt to reconfigure back to 48kHz.
memcpy(dummy_data, &net_sr_48, 4);
std::memcpy(dummy_data, &net_sr_48, 4);
rtp_send_data(log, send_rtp, dummy_data, sizeof(dummy_data), false);
rtp_receive_packet(
recv_rtp, rtp_mock.captured_packets.back().data(), rtp_mock.captured_packets.back().size());
@@ -592,9 +599,9 @@ TEST_F(AudioTest, QueueDummyMessage)
&rtp_mock, nullptr, nullptr, nullptr, ac, RtpMock::audio_cb);
rtp_mock.recv_session = audio_recv_rtp;
std::vector<uint8_t> dummy_payload(100, 0);
int rc = rtp_send_data(
log, dummy_rtp, dummy_payload.data(), static_cast<uint32_t>(dummy_payload.size()), false);
std::vector<std::uint8_t> dummy_payload(100, 0);
int rc = rtp_send_data(log, dummy_rtp, dummy_payload.data(),
static_cast<std::uint32_t>(dummy_payload.size()), false);
ASSERT_EQ(rc, 0);
// Iterate should NOT trigger callback because it was a dummy packet
@@ -620,9 +627,9 @@ TEST_F(AudioTest, LatePacketReset)
nullptr, nullptr, nullptr, ac, RtpMock::audio_cb);
rtp_mock.recv_session = recv_rtp;
uint8_t dummy_data[100] = {0};
uint32_t net_sr = net_htonl(48000);
memcpy(dummy_data, &net_sr, 4);
std::uint8_t dummy_data[100] = {0};
std::uint32_t net_sr = net_htonl(48000);
std::memcpy(dummy_data, &net_sr, 4);
// 1. Send and process the first packet.
rtp_send_data(log, send_rtp, dummy_data, sizeof(dummy_data), false); // seq 0
@@ -633,14 +640,14 @@ TEST_F(AudioTest, LatePacketReset)
data.sample_count = 0;
// 2. Buffer another packet with a different sampling rate (24kHz) but don't process it yet.
uint32_t net_sr_24 = net_htonl(24000);
memcpy(dummy_data, &net_sr_24, 4);
std::uint32_t net_sr_24 = net_htonl(24000);
std::memcpy(dummy_data, &net_sr_24, 4);
rtp_send_data(log, send_rtp, dummy_data, sizeof(dummy_data), false); // seq 1
rtp_receive_packet(
recv_rtp, rtp_mock.captured_packets[1].data(), rtp_mock.captured_packets[1].size());
// 3. Receive the late packet (seq 0) again.
// This triggers the bug: (uint32_t)(0 - 1) > 16, causing a full jitter buffer reset.
// This triggers the bug: (std::uint32_t)(0 - 1) > 16, causing a full jitter buffer reset.
rtp_receive_packet(
recv_rtp, rtp_mock.captured_packets[0].data(), rtp_mock.captured_packets[0].size());
@@ -672,9 +679,9 @@ TEST_F(AudioTest, InvalidSamplingRate)
rtp_mock.recv_session = recv_rtp;
// 1. Send a packet with an absurdly large sampling rate.
uint8_t malicious_data[100] = {0};
uint32_t net_sr = net_htonl(1000000000); // 1 GHz
memcpy(malicious_data, &net_sr, 4);
std::uint8_t malicious_data[100] = {0};
std::uint32_t net_sr = net_htonl(1000000000); // 1 GHz
std::memcpy(malicious_data, &net_sr, 4);
// Add some dummy Opus data so it's not too short
malicious_data[4] = 0x08;
@@ -720,7 +727,7 @@ TEST_F(AudioTest, ShortPacket)
// 1. Send a packet that is too short (only sampling rate, no Opus data).
// The protocol requires 4 bytes SR + at least 1 byte Opus data.
uint8_t short_data[4] = {0, 0, 0xBB, 0x80}; // 48000
std::uint8_t short_data[4] = {0, 0, 0xBB, 0x80}; // 48000
// rtp_send_data might not like 4 bytes if it expects more, but let's see.
rtp_send_data(log, send_rtp, short_data, sizeof(short_data), false);
@@ -750,16 +757,16 @@ TEST_F(AudioTest, JitterBufferWrapAround)
nullptr, nullptr, nullptr, ac, RtpMock::audio_cb);
rtp_mock.recv_session = recv_rtp;
uint8_t dummy_data[100] = {0};
uint32_t net_sr = net_htonl(48000);
memcpy(dummy_data, &net_sr, 4);
std::uint8_t dummy_data[100] = {0};
std::uint32_t net_sr = net_htonl(48000);
std::memcpy(dummy_data, &net_sr, 4);
// Send enough packets to reach the sequence number wrap-around point (0xFFFF -> 0x0000).
// We detect the current sequence number to minimize the number of iterations.
uint16_t seq = 0;
std::uint16_t seq = 0;
{
rtp_send_data(log, send_rtp, dummy_data, sizeof(dummy_data), false);
const uint8_t *pkt = rtp_mock.captured_packets.back().data();
const std::uint8_t *pkt = rtp_mock.captured_packets.back().data();
seq = (pkt[3] << 8) | pkt[4];
rtp_receive_packet(recv_rtp, pkt, rtp_mock.captured_packets.back().size());
rtp_mock.captured_packets.clear();
@@ -770,7 +777,7 @@ TEST_F(AudioTest, JitterBufferWrapAround)
int to_send = (65532 - seq + 65536) % 65536;
for (int i = 0; i < to_send; ++i) {
rtp_send_data(log, send_rtp, dummy_data, sizeof(dummy_data), false);
const uint8_t *pkt = rtp_mock.captured_packets.back().data();
const std::uint8_t *pkt = rtp_mock.captured_packets.back().data();
rtp_receive_packet(recv_rtp, pkt, rtp_mock.captured_packets.back().size());
rtp_mock.captured_packets.clear();
ac_iterate(ac);