/* QOI - The "Quite OK Image" format for fast, lossless image compression Dominic Szablewski - https://phoboslab.org -- LICENSE: The MIT License(MIT) Copyright(c) 2021 Dominic Szablewski Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files(the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and / or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions : The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. -- About QOI encodes and decodes images in a lossless format. An encoded QOI image is usually around 10--30% larger than a decently optimized PNG image. QOI outperforms simpler PNG encoders in compression ratio and performance. QOI images are typically 20% smaller than PNGs written with stbi_image. Encoding is 25-50x faster and decoding is 3-4x faster than stbi_image or libpng. -- Synopsis // Define `QOI_IMPLEMENTATION` in *one* C/C++ file before including this // library to create the implementation. #define QOI_IMPLEMENTATION #include "qoi.h" // Encode and store an RGBA buffer to the file system. The qoi_desc describes // the input pixel data. qoi_write("image_new.qoi", rgba_pixels, &(qoi_desc){ .width = 1920, .height = 1080, .channels = 4, .colorspace = QOI_SRGB }); // Load and decode a QOI image from the file system into a 32bbp RGBA buffer. // The qoi_desc struct will be filled with the width, height, number of channels // and colorspace read from the file header. qoi_desc desc; void *rgba_pixels = qoi_read("image.qoi", &desc, 4); -- Documentation This library provides the following functions; - qoi_read -- read and decode a QOI file - qoi_decode -- decode the raw bytes of a QOI image from memory - qoi_write -- encode and write a QOI file - qoi_encode -- encode an rgba buffer into a QOI image in memory See the function declaration below for the signature and more information. If you don't want/need the qoi_read and qoi_write functions, you can define QOI_NO_STDIO before including this library. This library uses malloc() and free(). To supply your own malloc implementation you can define QOI_MALLOC and QOI_FREE before including this library. -- Data Format A QOI file has a 14 byte header, followed by any number of data "chunks" and 8 zero bytes to mark the end of the data stream. struct qoi_header_t { char magic[4]; // magic bytes "qoif" uint32_t width; // image width in pixels (BE) uint32_t height; // image height in pixels (BE) uint8_t channels; // must be 3 (RGB) or 4 (RGBA) uint8_t colorspace; // 0 = sRGB with linear alpha, 1 = all channels linear }; The decoder and encoder start with {r: 0, g: 0, b: 0, a: 0} as the previous pixel value. Pixels are either encoded as - a run of the previous pixel - an index into a previously seen pixel - a difference to the previous pixel value in r,g,b - full r,g,b or r,g,b,a values A running array[64] of previously seen pixel values is maintained by the encoder and decoder. Each pixel that is seen by the encoder and decoder is put into this array at the position (r * 3 + g * 5 + b * 7 + a * 11) % 64. In the encoder, if the pixel value at this index matches the current pixel, this index position is written to the stream as QOI_OP_INDEX. Each chunk starts with a 2 or 8 bit tag, followed by a number of data bits. The bit length of chunks is divisible by 8 - i.e. all chunks are byte aligned. All values encoded in these data bits have the most significant bit on the left. The 8-bit tags have precedence over the 2-bit tags. A decoder must check for the presence of an 8-bit tag first. The possible chunks are: - QOI_OP_INDEX ---------- | Byte[0] | | 7 6 5 4 3 2 1 0 | |-------+-----------------| | 0 0 | index | 2-bit tag b00 6-bit index into the color index array: 0..63 - QOI_OP_DIFF ----------- | Byte[0] | | 7 6 5 4 3 2 1 0 | |-------+-----+-----+-----| | 0 1 | dr | dg | db | 2-bit tag b01 2-bit red channel difference from the previous pixel between -2..1 2-bit green channel difference from the previous pixel between -2..1 2-bit blue channel difference from the previous pixel between -2..1 The difference to the current channel values are using a wraparound operation, so "1 - 2" will result in 255, while "255 + 1" will result in 0. - QOI_OP_LUMA ------------------------------------- | Byte[0] | Byte[1] | | 7 6 5 4 3 2 1 0 | 7 6 5 4 3 2 1 0 | |-------+-----------------+-------------+-----------| | 1 0 | green diff | dr - dg | db - dg | 2-bit tag b10 6-bit green channel difference from the previous pixel -32..31 4-bit red channel difference minus green channel difference -8..7 4-bit blue channel difference minus green channel difference -8..7 The green channel is used to indicate the general direction of change and gets a few more bits. dr and db base their diffs off of the green channel diff. E.g. dr = (last_px.r - cur_px.r) - (last_px.g - cur_px.g) The difference to the current channel values are using a wraparound operation, so "10 - 13" will result in 253, while "250 + 7" will result in 1. - QOI_OP_RUN ------------ | Byte[0] | | 7 6 5 4 3 2 1 0 | |-------+-----------------| | 1 1 | run | 2-bit tag b11 6-bit run-length repeating the previous pixel: 1..62 Note that the run-lengths 63 and 64 (b111110 and b111111) are illegal as they are occupied by the QOI_OP_RGB and QOI_OP_RGBA tags. - QOI_OP_RGB ------------------------------------------ | Byte[0] | Byte[1] | Byte[2] | Byte[3] | | 7 6 5 4 3 2 1 0 | 7 .. 0 | 7 .. 0 | 7 .. 0 | |-------------------------+---------+---------+---------| | 1 1 1 1 1 1 1 0 | red | green | blue | 8-bit tag b11111110 8-bit red channel value 8-bit green channel value 8-bit blue channel value - QOI_OP_RGBA ---------------------------------------------------- | Byte[0] | Byte[1] | Byte[2] | Byte[3] | Byte[4] | | 7 6 5 4 3 2 1 0 | 7 .. 0 | 7 .. 0 | 7 .. 0 | 7 .. 0 | |-------------------------+---------+---------+---------+---------| | 1 1 1 1 1 1 1 1 | red | green | blue | alpha | 8-bit tag b11111111 8-bit red channel value 8-bit green channel value 8-bit blue channel value 8-bit alpha channel value The byte stream is padded at the end with 8 zero bytes. Since the longest legal chunk is 5 bytes (QOI_OP_RGBA), with this padding it is possible to check for an overrun only once per decode loop iteration. These 0x00 bytes also mark the end of the data stream, as an encoder should never produce 8 consecutive zero bytes within the stream. */ // ----------------------------------------------------------------------------- // Header - Public functions #ifndef QOI_H #define QOI_H #ifdef __cplusplus extern "C" { #endif // A pointer to a qoi_desc struct has to be supplied to all of qoi's functions. // It describes either the input format (for qoi_write and qoi_encode), or is // filled with the description read from the file header (for qoi_read and // qoi_decode). // The colorspace in this qoi_desc is an enum where // 0 = sRGB, i.e. gamma scaled RGB channels and a linear alpha channel // 1 = all channels are linear // You may use the constants QOI_SRGB or QOI_LINEAR. The colorspace is purely // informative. It will be saved to the file header, but does not affect // en-/decoding in any way. #define QOI_SRGB 0 #define QOI_LINEAR 1 typedef struct { unsigned int width; unsigned int height; unsigned char channels; unsigned char colorspace; } qoi_desc; #ifndef QOI_NO_STDIO // Encode raw RGB or RGBA pixels into a QOI image and write it to the file // system. The qoi_desc struct must be filled with the image width, height, // number of channels (3 = RGB, 4 = RGBA) and the colorspace. // The function returns 0 on failure (invalid parameters, or fopen or malloc // failed) or the number of bytes written on success. int qoi_write(const char *filename, const void *data, const qoi_desc *desc); // Read and decode a QOI image from the file system. If channels is 0, the // number of channels from the file header is used. If channels is 3 or 4 the // output format will be forced into this number of channels. // The function either returns NULL on failure (invalid data, or malloc or fopen // failed) or a pointer to the decoded pixels. On success, the qoi_desc struct // will be filled with the description from the file header. // The returned pixel data should be free()d after use. void *qoi_read(const char *filename, qoi_desc *desc, int channels); #endif // QOI_NO_STDIO // Encode raw RGB or RGBA pixels into a QOI image in memory. // The function either returns NULL on failure (invalid parameters or malloc // failed) or a pointer to the encoded data on success. On success the out_len // is set to the size in bytes of the encoded data. // The returned qoi data should be free()d after use. void *qoi_encode(const void *data, const qoi_desc *desc, int *out_len); // Decode a QOI image from memory. // The function either returns NULL on failure (invalid parameters or malloc // failed) or a pointer to the decoded pixels. On success, the qoi_desc struct // is filled with the description from the file header. // The returned pixel data should be free()d after use. void *qoi_decode(const void *data, int size, qoi_desc *desc, int channels); #ifdef __cplusplus } #endif #endif // QOI_H // ----------------------------------------------------------------------------- // Implementation #ifdef QOI_IMPLEMENTATION #include #ifndef QOI_MALLOC #define QOI_MALLOC(sz) malloc(sz) #define QOI_FREE(p) free(p) #endif #define QOI_OP_INDEX 0x00 // 00xxxxxx #define QOI_OP_DIFF 0x40 // 01xxxxxx #define QOI_OP_LUMA 0x80 // 10xxxxxx #define QOI_OP_RUN 0xc0 // 11xxxxxx #define QOI_OP_RGB 0xfe // 11111110 #define QOI_OP_RGBA 0xff // 11111111 #define QOI_MASK_2 0xc0 // 11000000 #define QOI_COLOR_HASH(C) (C.rgba.r*3 + C.rgba.g*5 + C.rgba.b*7 + C.rgba.a*11) #define QOI_MAGIC \ (((unsigned int)'q') << 24 | ((unsigned int)'o') << 16 | \ ((unsigned int)'i') << 8 | ((unsigned int)'f')) #define QOI_HEADER_SIZE 14 #define QOI_PADDING 8 typedef union { struct { unsigned char r, g, b, a; } rgba; unsigned int v; } qoi_rgba_t; void qoi_write_32(unsigned char *bytes, int *p, unsigned int v) { bytes[(*p)++] = (0xff000000 & v) >> 24; bytes[(*p)++] = (0x00ff0000 & v) >> 16; bytes[(*p)++] = (0x0000ff00 & v) >> 8; bytes[(*p)++] = (0x000000ff & v); } unsigned int qoi_read_32(const unsigned char *bytes, int *p) { unsigned int a = bytes[(*p)++]; unsigned int b = bytes[(*p)++]; unsigned int c = bytes[(*p)++]; unsigned int d = bytes[(*p)++]; return (a << 24) | (b << 16) | (c << 8) | d; } void *qoi_encode(const void *data, const qoi_desc *desc, int *out_len) { if ( data == NULL || out_len == NULL || desc == NULL || desc->width == 0 || desc->height == 0 || desc->channels < 3 || desc->channels > 4 || desc->colorspace > 2 ) { return NULL; } int max_size = desc->width * desc->height * (desc->channels + 1) + QOI_HEADER_SIZE + QOI_PADDING; int p = 0; unsigned char *bytes = QOI_MALLOC(max_size); if (!bytes) { return NULL; } qoi_write_32(bytes, &p, QOI_MAGIC); qoi_write_32(bytes, &p, desc->width); qoi_write_32(bytes, &p, desc->height); bytes[p++] = desc->channels; bytes[p++] = desc->colorspace; const unsigned char *pixels = (const unsigned char *)data; qoi_rgba_t index[64] = {0}; int run = 0; qoi_rgba_t px_prev = {.rgba = {.r = 0, .g = 0, .b = 0, .a = 0}}; qoi_rgba_t px = px_prev; int px_len = desc->width * desc->height * desc->channels; int px_end = px_len - desc->channels; int channels = desc->channels; for (int px_pos = 0; px_pos < px_len; px_pos += channels) { if (channels == 4) { px = *(qoi_rgba_t *)(pixels + px_pos); } else { px.rgba.r = pixels[px_pos + 0]; px.rgba.g = pixels[px_pos + 1]; px.rgba.b = pixels[px_pos + 2]; } if (px.v == px_prev.v) { run++; if (run == 62 || px_pos == px_end) { bytes[p++] = QOI_OP_RUN | (run - 1); run = 0; } } else { if (run > 0) { bytes[p++] = QOI_OP_RUN | (run - 1); run = 0; } int index_pos = QOI_COLOR_HASH(px) % 64; if (index[index_pos].v == px.v) { bytes[p++] = QOI_OP_INDEX | index_pos; } else { index[index_pos] = px; if (px.rgba.a == px_prev.rgba.a) { char vr = px.rgba.r - px_prev.rgba.r; char vg = px.rgba.g - px_prev.rgba.g; char vb = px.rgba.b - px_prev.rgba.b; char vg_r = vr - vg; char vg_b = vb - vg; if ( vr > -3 && vr < 2 && vg > -3 && vg < 2 && vb > -3 && vb < 2 ) { bytes[p++] = QOI_OP_DIFF | (vr + 2) << 4 | (vg + 2) << 2 | (vb + 2); } else if ( vg_r > -9 && vg_r < 8 && vg > -33 && vg < 32 && vg_b > -9 && vg_b < 8 ) { bytes[p++] = QOI_OP_LUMA | (vg + 32); bytes[p++] = (vg_r + 8) << 4 | (vg_b + 8); } else { bytes[p++] = QOI_OP_RGB; bytes[p++] = px.rgba.r; bytes[p++] = px.rgba.g; bytes[p++] = px.rgba.b; } } else { bytes[p++] = QOI_OP_RGBA; bytes[p++] = px.rgba.r; bytes[p++] = px.rgba.g; bytes[p++] = px.rgba.b; bytes[p++] = px.rgba.a; } } } px_prev = px; } for (int i = 0; i < QOI_PADDING; i++) { bytes[p++] = 0; } *out_len = p; return bytes; } void *qoi_decode(const void *data, int size, qoi_desc *desc, int channels) { if ( data == NULL || desc == NULL || (channels != 0 && channels != 3 && channels != 4) || size < QOI_HEADER_SIZE + QOI_PADDING ) { return NULL; } const unsigned char *bytes = (const unsigned char *)data; int p = 0; unsigned int header_magic = qoi_read_32(bytes, &p); desc->width = qoi_read_32(bytes, &p); desc->height = qoi_read_32(bytes, &p); desc->channels = bytes[p++]; desc->colorspace = bytes[p++]; if ( desc->width == 0 || desc->height == 0 || desc->channels < 3 || desc->channels > 4 || desc->colorspace > 2 || header_magic != QOI_MAGIC ) { return NULL; } if (channels == 0) { channels = desc->channels; } int px_len = desc->width * desc->height * channels; unsigned char *pixels = QOI_MALLOC(px_len); if (!pixels) { return NULL; } qoi_rgba_t px = {.rgba = {.r = 0, .g = 0, .b = 0, .a = 0}}; qoi_rgba_t index[64] = {0}; int run = 0; int chunks_len = size - QOI_PADDING; for (int px_pos = 0; px_pos < px_len; px_pos += channels) { if (run > 0) { run--; } else if (p < chunks_len) { int b1 = bytes[p++]; if (b1 == QOI_OP_RGB) { px.rgba.r = bytes[p++]; px.rgba.g = bytes[p++]; px.rgba.b = bytes[p++]; } else if (b1 == QOI_OP_RGBA) { px.rgba.r = bytes[p++]; px.rgba.g = bytes[p++]; px.rgba.b = bytes[p++]; px.rgba.a = bytes[p++]; } else if ((b1 & QOI_MASK_2) == QOI_OP_INDEX) { px = index[b1]; } else if ((b1 & QOI_MASK_2) == QOI_OP_DIFF) { px.rgba.r += ((b1 >> 4) & 0x03) - 2; px.rgba.g += ((b1 >> 2) & 0x03) - 2; px.rgba.b += ( b1 & 0x03) - 2; } else if ((b1 & QOI_MASK_2) == QOI_OP_LUMA) { int b2 = bytes[p++]; int vg = (b1 & 0x3f) - 32; px.rgba.r += vg - 8 + ((b2 >> 4) & 0x0f); px.rgba.g += vg; px.rgba.b += vg - 8 + (b2 & 0x0f); } else if ((b1 & QOI_MASK_2) == QOI_OP_RUN) { run = (b1 & 0x3f); } index[QOI_COLOR_HASH(px) % 64] = px; } if (channels == 4) { *(qoi_rgba_t*)(pixels + px_pos) = px; } else { pixels[px_pos + 0] = px.rgba.r; pixels[px_pos + 1] = px.rgba.g; pixels[px_pos + 2] = px.rgba.b; } } return pixels; } #ifndef QOI_NO_STDIO #include int qoi_write(const char *filename, const void *data, const qoi_desc *desc) { FILE *f = fopen(filename, "wb"); if (!f) { return 0; } int size; void *encoded = qoi_encode(data, desc, &size); if (!encoded) { fclose(f); return 0; } fwrite(encoded, 1, size, f); fclose(f); QOI_FREE(encoded); return size; } void *qoi_read(const char *filename, qoi_desc *desc, int channels) { FILE *f = fopen(filename, "rb"); if (!f) { return NULL; } fseek(f, 0, SEEK_END); int size = ftell(f); fseek(f, 0, SEEK_SET); void *data = QOI_MALLOC(size); if (!data) { fclose(f); return NULL; } int bytes_read = fread(data, 1, size, f); fclose(f); void *pixels = qoi_decode(data, bytes_read, desc, channels); QOI_FREE(data); return pixels; } #endif // QOI_NO_STDIO #endif // QOI_IMPLEMENTATION