#include #include #include #include "../testing/misc_tools.h" #include "../toxcore/crypto_core.h" #include "../toxcore/net_crypto.h" #include "check_compat.h" static void rand_bytes(const Random *rng, uint8_t *b, size_t blen) { for (size_t i = 0; i < blen; i++) { b[i] = random_u08(rng); } } // These test vectors are from libsodium's test suite static const uint8_t alicesk[32] = { 0x77, 0x07, 0x6d, 0x0a, 0x73, 0x18, 0xa5, 0x7d, 0x3c, 0x16, 0xc1, 0x72, 0x51, 0xb2, 0x66, 0x45, 0xdf, 0x4c, 0x2f, 0x87, 0xeb, 0xc0, 0x99, 0x2a, 0xb1, 0x77, 0xfb, 0xa5, 0x1d, 0xb9, 0x2c, 0x2a }; static const uint8_t bobpk[32] = { 0xde, 0x9e, 0xdb, 0x7d, 0x7b, 0x7d, 0xc1, 0xb4, 0xd3, 0x5b, 0x61, 0xc2, 0xec, 0xe4, 0x35, 0x37, 0x3f, 0x83, 0x43, 0xc8, 0x5b, 0x78, 0x67, 0x4d, 0xad, 0xfc, 0x7e, 0x14, 0x6f, 0x88, 0x2b, 0x4f }; static const uint8_t test_nonce[24] = { 0x69, 0x69, 0x6e, 0xe9, 0x55, 0xb6, 0x2b, 0x73, 0xcd, 0x62, 0xbd, 0xa8, 0x75, 0xfc, 0x73, 0xd6, 0x82, 0x19, 0xe0, 0x03, 0x6b, 0x7a, 0x0b, 0x37 }; static const uint8_t test_m[131] = { 0xbe, 0x07, 0x5f, 0xc5, 0x3c, 0x81, 0xf2, 0xd5, 0xcf, 0x14, 0x13, 0x16, 0xeb, 0xeb, 0x0c, 0x7b, 0x52, 0x28, 0xc5, 0x2a, 0x4c, 0x62, 0xcb, 0xd4, 0x4b, 0x66, 0x84, 0x9b, 0x64, 0x24, 0x4f, 0xfc, 0xe5, 0xec, 0xba, 0xaf, 0x33, 0xbd, 0x75, 0x1a, 0x1a, 0xc7, 0x28, 0xd4, 0x5e, 0x6c, 0x61, 0x29, 0x6c, 0xdc, 0x3c, 0x01, 0x23, 0x35, 0x61, 0xf4, 0x1d, 0xb6, 0x6c, 0xce, 0x31, 0x4a, 0xdb, 0x31, 0x0e, 0x3b, 0xe8, 0x25, 0x0c, 0x46, 0xf0, 0x6d, 0xce, 0xea, 0x3a, 0x7f, 0xa1, 0x34, 0x80, 0x57, 0xe2, 0xf6, 0x55, 0x6a, 0xd6, 0xb1, 0x31, 0x8a, 0x02, 0x4a, 0x83, 0x8f, 0x21, 0xaf, 0x1f, 0xde, 0x04, 0x89, 0x77, 0xeb, 0x48, 0xf5, 0x9f, 0xfd, 0x49, 0x24, 0xca, 0x1c, 0x60, 0x90, 0x2e, 0x52, 0xf0, 0xa0, 0x89, 0xbc, 0x76, 0x89, 0x70, 0x40, 0xe0, 0x82, 0xf9, 0x37, 0x76, 0x38, 0x48, 0x64, 0x5e, 0x07, 0x05 }; static const uint8_t test_c[147] = { 0xf3, 0xff, 0xc7, 0x70, 0x3f, 0x94, 0x00, 0xe5, 0x2a, 0x7d, 0xfb, 0x4b, 0x3d, 0x33, 0x05, 0xd9, 0x8e, 0x99, 0x3b, 0x9f, 0x48, 0x68, 0x12, 0x73, 0xc2, 0x96, 0x50, 0xba, 0x32, 0xfc, 0x76, 0xce, 0x48, 0x33, 0x2e, 0xa7, 0x16, 0x4d, 0x96, 0xa4, 0x47, 0x6f, 0xb8, 0xc5, 0x31, 0xa1, 0x18, 0x6a, 0xc0, 0xdf, 0xc1, 0x7c, 0x98, 0xdc, 0xe8, 0x7b, 0x4d, 0xa7, 0xf0, 0x11, 0xec, 0x48, 0xc9, 0x72, 0x71, 0xd2, 0xc2, 0x0f, 0x9b, 0x92, 0x8f, 0xe2, 0x27, 0x0d, 0x6f, 0xb8, 0x63, 0xd5, 0x17, 0x38, 0xb4, 0x8e, 0xee, 0xe3, 0x14, 0xa7, 0xcc, 0x8a, 0xb9, 0x32, 0x16, 0x45, 0x48, 0xe5, 0x26, 0xae, 0x90, 0x22, 0x43, 0x68, 0x51, 0x7a, 0xcf, 0xea, 0xbd, 0x6b, 0xb3, 0x73, 0x2b, 0xc0, 0xe9, 0xda, 0x99, 0x83, 0x2b, 0x61, 0xca, 0x01, 0xb6, 0xde, 0x56, 0x24, 0x4a, 0x9e, 0x88, 0xd5, 0xf9, 0xb3, 0x79, 0x73, 0xf6, 0x22, 0xa4, 0x3d, 0x14, 0xa6, 0x59, 0x9b, 0x1f, 0x65, 0x4c, 0xb4, 0x5a, 0x74, 0xe3, 0x55, 0xa5 }; static void test_known(void) { const Memory *mem = os_memory(); ck_assert(mem != nullptr); uint8_t c[147]; uint8_t m[131]; ck_assert_msg(sizeof(c) == sizeof(m) + CRYPTO_MAC_SIZE * sizeof(uint8_t), "cyphertext should be CRYPTO_MAC_SIZE bytes longer than plaintext"); ck_assert_msg(sizeof(test_c) == sizeof(c), "sanity check failed"); ck_assert_msg(sizeof(test_m) == sizeof(m), "sanity check failed"); const uint16_t clen = encrypt_data(mem, bobpk, alicesk, test_nonce, test_m, sizeof(test_m) / sizeof(uint8_t), c); ck_assert_msg(memcmp(test_c, c, sizeof(c)) == 0, "cyphertext doesn't match test vector"); ck_assert_msg(clen == sizeof(c) / sizeof(uint8_t), "wrong ciphertext length"); const uint16_t mlen = decrypt_data(mem, bobpk, alicesk, test_nonce, test_c, sizeof(test_c) / sizeof(uint8_t), m); ck_assert_msg(memcmp(test_m, m, sizeof(m)) == 0, "decrypted text doesn't match test vector"); ck_assert_msg(mlen == sizeof(m) / sizeof(uint8_t), "wrong plaintext length"); } static void test_fast_known(void) { const Memory *mem = os_memory(); ck_assert(mem != nullptr); uint8_t k[CRYPTO_SHARED_KEY_SIZE]; uint8_t c[147]; uint8_t m[131]; encrypt_precompute(bobpk, alicesk, k); ck_assert_msg(sizeof(c) == sizeof(m) + CRYPTO_MAC_SIZE * sizeof(uint8_t), "cyphertext should be CRYPTO_MAC_SIZE bytes longer than plaintext"); ck_assert_msg(sizeof(test_c) == sizeof(c), "sanity check failed"); ck_assert_msg(sizeof(test_m) == sizeof(m), "sanity check failed"); const uint16_t clen = encrypt_data_symmetric(mem, k, test_nonce, test_m, sizeof(test_m) / sizeof(uint8_t), c); ck_assert_msg(memcmp(test_c, c, sizeof(c)) == 0, "cyphertext doesn't match test vector"); ck_assert_msg(clen == sizeof(c) / sizeof(uint8_t), "wrong ciphertext length"); const uint16_t mlen = decrypt_data_symmetric(mem, k, test_nonce, test_c, sizeof(test_c) / sizeof(uint8_t), m); ck_assert_msg(memcmp(test_m, m, sizeof(m)) == 0, "decrypted text doesn't match test vector"); ck_assert_msg(mlen == sizeof(m) / sizeof(uint8_t), "wrong plaintext length"); } static void test_endtoend(void) { const Memory *mem = os_memory(); ck_assert(mem != nullptr); const Random *rng = os_random(); ck_assert(rng != nullptr); // Test 100 random messages and keypairs for (uint8_t testno = 0; testno < 100; testno++) { uint8_t pk1[CRYPTO_PUBLIC_KEY_SIZE]; uint8_t sk1[CRYPTO_SECRET_KEY_SIZE]; uint8_t pk2[CRYPTO_PUBLIC_KEY_SIZE]; uint8_t sk2[CRYPTO_SECRET_KEY_SIZE]; uint8_t k1[CRYPTO_SHARED_KEY_SIZE]; uint8_t k2[CRYPTO_SHARED_KEY_SIZE]; uint8_t n[CRYPTO_NONCE_SIZE]; enum { M_SIZE = 50 }; uint8_t m[M_SIZE]; uint8_t c1[sizeof(m) + CRYPTO_MAC_SIZE]; uint8_t c2[sizeof(m) + CRYPTO_MAC_SIZE]; uint8_t c3[sizeof(m) + CRYPTO_MAC_SIZE]; uint8_t c4[sizeof(m) + CRYPTO_MAC_SIZE]; uint8_t m1[sizeof(m)]; uint8_t m2[sizeof(m)]; uint8_t m3[sizeof(m)]; uint8_t m4[sizeof(m)]; //Generate random message (random length from 10 to 50) const uint16_t mlen = (random_u32(rng) % (M_SIZE - 10)) + 10; rand_bytes(rng, m, mlen); rand_bytes(rng, n, CRYPTO_NONCE_SIZE); //Generate keypairs crypto_new_keypair(rng, pk1, sk1); crypto_new_keypair(rng, pk2, sk2); //Precompute shared keys encrypt_precompute(pk2, sk1, k1); encrypt_precompute(pk1, sk2, k2); ck_assert_msg(memcmp(k1, k2, CRYPTO_SHARED_KEY_SIZE) == 0, "encrypt_precompute: bad"); //Encrypt all four ways const uint16_t c1len = encrypt_data(mem, pk2, sk1, n, m, mlen, c1); const uint16_t c2len = encrypt_data(mem, pk1, sk2, n, m, mlen, c2); const uint16_t c3len = encrypt_data_symmetric(mem, k1, n, m, mlen, c3); const uint16_t c4len = encrypt_data_symmetric(mem, k2, n, m, mlen, c4); ck_assert_msg(c1len == c2len && c1len == c3len && c1len == c4len, "cyphertext lengths differ"); ck_assert_msg(c1len == mlen + (uint16_t)CRYPTO_MAC_SIZE, "wrong cyphertext length"); ck_assert_msg(memcmp(c1, c2, c1len) == 0 && memcmp(c1, c3, c1len) == 0 && memcmp(c1, c4, c1len) == 0, "crypertexts differ"); //Decrypt all four ways const uint16_t m1len = decrypt_data(mem, pk2, sk1, n, c1, c1len, m1); const uint16_t m2len = decrypt_data(mem, pk1, sk2, n, c1, c1len, m2); const uint16_t m3len = decrypt_data_symmetric(mem, k1, n, c1, c1len, m3); const uint16_t m4len = decrypt_data_symmetric(mem, k2, n, c1, c1len, m4); ck_assert_msg(m1len == m2len && m1len == m3len && m1len == m4len, "decrypted text lengths differ"); ck_assert_msg(m1len == mlen, "wrong decrypted text length"); ck_assert_msg(memcmp(m1, m2, mlen) == 0 && memcmp(m1, m3, mlen) == 0 && memcmp(m1, m4, mlen) == 0, "decrypted texts differ"); ck_assert_msg(memcmp(m1, m, mlen) == 0, "wrong decrypted text"); } } static void test_large_data(void) { const Memory *mem = os_memory(); ck_assert(mem != nullptr); const Random *rng = os_random(); ck_assert(rng != nullptr); uint8_t k[CRYPTO_SHARED_KEY_SIZE]; uint8_t n[CRYPTO_NONCE_SIZE]; const size_t m1_size = MAX_CRYPTO_PACKET_SIZE - CRYPTO_MAC_SIZE; uint8_t *m1 = (uint8_t *)malloc(m1_size); uint8_t *c1 = (uint8_t *)malloc(m1_size + CRYPTO_MAC_SIZE); uint8_t *m1prime = (uint8_t *)malloc(m1_size); const size_t m2_size = MAX_CRYPTO_PACKET_SIZE - CRYPTO_MAC_SIZE; uint8_t *m2 = (uint8_t *)malloc(m2_size); uint8_t *c2 = (uint8_t *)malloc(m2_size + CRYPTO_MAC_SIZE); ck_assert(m1 != nullptr && c1 != nullptr && m1prime != nullptr && m2 != nullptr && c2 != nullptr); //Generate random messages rand_bytes(rng, m1, m1_size); rand_bytes(rng, m2, m2_size); rand_bytes(rng, n, CRYPTO_NONCE_SIZE); //Generate key rand_bytes(rng, k, CRYPTO_SHARED_KEY_SIZE); const uint16_t c1len = encrypt_data_symmetric(mem, k, n, m1, m1_size, c1); const uint16_t c2len = encrypt_data_symmetric(mem, k, n, m2, m2_size, c2); ck_assert_msg(c1len == m1_size + CRYPTO_MAC_SIZE, "could not encrypt"); ck_assert_msg(c2len == m2_size + CRYPTO_MAC_SIZE, "could not encrypt"); const uint16_t m1plen = decrypt_data_symmetric(mem, k, n, c1, c1len, m1prime); ck_assert_msg(m1plen == m1_size, "decrypted text lengths differ"); ck_assert_msg(memcmp(m1prime, m1, m1_size) == 0, "decrypted texts differ"); free(c2); free(m2); free(m1prime); free(c1); free(m1); } static void test_large_data_symmetric(void) { const Memory *mem = os_memory(); ck_assert(mem != nullptr); const Random *rng = os_random(); ck_assert(rng != nullptr); uint8_t k[CRYPTO_SYMMETRIC_KEY_SIZE]; uint8_t n[CRYPTO_NONCE_SIZE]; const size_t m1_size = 16 * 16 * 16; uint8_t *m1 = (uint8_t *)malloc(m1_size); uint8_t *c1 = (uint8_t *)malloc(m1_size + CRYPTO_MAC_SIZE); uint8_t *m1prime = (uint8_t *)malloc(m1_size); ck_assert(m1 != nullptr && c1 != nullptr && m1prime != nullptr); //Generate random messages rand_bytes(rng, m1, m1_size); rand_bytes(rng, n, CRYPTO_NONCE_SIZE); //Generate key new_symmetric_key(rng, k); const uint16_t c1len = encrypt_data_symmetric(mem, k, n, m1, m1_size, c1); ck_assert_msg(c1len == m1_size + CRYPTO_MAC_SIZE, "could not encrypt data"); const uint16_t m1plen = decrypt_data_symmetric(mem, k, n, c1, c1len, m1prime); ck_assert_msg(m1plen == m1_size, "decrypted text lengths differ"); ck_assert_msg(memcmp(m1prime, m1, m1_size) == 0, "decrypted texts differ"); free(m1prime); free(c1); free(m1); } static void test_very_large_data(void) { const Memory *mem = os_memory(); ck_assert(mem != nullptr); const Random *rng = os_random(); ck_assert(rng != nullptr); const uint8_t nonce[CRYPTO_NONCE_SIZE] = {0}; uint8_t pk[CRYPTO_PUBLIC_KEY_SIZE]; uint8_t sk[CRYPTO_SECRET_KEY_SIZE]; crypto_new_keypair(rng, pk, sk); // 100 MiB of data (all zeroes, doesn't matter what's inside). const uint32_t plain_size = 100 * 1024 * 1024; uint8_t *plain = (uint8_t *)malloc(plain_size); uint8_t *encrypted = (uint8_t *)malloc(plain_size + CRYPTO_MAC_SIZE); ck_assert(plain != nullptr); ck_assert(encrypted != nullptr); memset(plain, 0, plain_size); encrypt_data(mem, pk, sk, nonce, plain, plain_size, encrypted); free(encrypted); free(plain); } static void increment_nonce_number_cmp(uint8_t *nonce, uint32_t num) { uint32_t num1 = 0; memcpy(&num1, nonce + (CRYPTO_NONCE_SIZE - sizeof(num1)), sizeof(num1)); num1 = net_ntohl(num1); uint32_t num2 = num + num1; if (num2 < num1) { for (uint16_t i = CRYPTO_NONCE_SIZE - sizeof(num1); i != 0; --i) { ++nonce[i - 1]; if (nonce[i - 1] != 0) { break; } } } num2 = net_htonl(num2); memcpy(nonce + (CRYPTO_NONCE_SIZE - sizeof(num2)), &num2, sizeof(num2)); } static void test_increment_nonce(void) { const Random *rng = os_random(); ck_assert(rng != nullptr); uint8_t n[CRYPTO_NONCE_SIZE]; for (uint32_t i = 0; i < CRYPTO_NONCE_SIZE; ++i) { n[i] = random_u08(rng); } uint8_t n1[CRYPTO_NONCE_SIZE]; memcpy(n1, n, CRYPTO_NONCE_SIZE); for (uint32_t i = 0; i < (1 << 18); ++i) { increment_nonce_number_cmp(n, 1); increment_nonce(n1); ck_assert_msg(memcmp(n, n1, CRYPTO_NONCE_SIZE) == 0, "Bad increment_nonce function"); } for (uint32_t i = 0; i < (1 << 18); ++i) { const uint32_t r = random_u32(rng); increment_nonce_number_cmp(n, r); increment_nonce_number(n1, r); ck_assert_msg(memcmp(n, n1, CRYPTO_NONCE_SIZE) == 0, "Bad increment_nonce_number function"); } } static void test_memzero(void) { uint8_t src[sizeof(test_c)]; memcpy(src, test_c, sizeof(test_c)); crypto_memzero(src, sizeof(src)); for (size_t i = 0; i < sizeof(src); i++) { ck_assert_msg(src[i] == 0, "Memory is not zeroed"); } } int main(void) { setvbuf(stdout, nullptr, _IONBF, 0); test_known(); test_fast_known(); test_endtoend(); /* waiting up to 15 seconds */ test_large_data(); test_large_data_symmetric(); test_very_large_data(); test_increment_nonce(); test_memzero(); return 0; }