#include "DHT.h" #include #include #include #include "crypto_core.h" namespace { using PublicKey = std::array; using SecretKey = std::array; struct KeyPair { PublicKey pk; SecretKey sk; explicit KeyPair(const Random *rng) { crypto_new_keypair(rng, pk.data(), sk.data()); } }; template std::array to_array(T const (&arr)[N]) { std::array stdarr; std::copy(arr, arr + N, stdarr.begin()); return stdarr; } PublicKey random_pk(const Random *rng) { PublicKey pk; random_bytes(rng, pk.data(), pk.size()); return pk; } TEST(IdClosest, IdenticalKeysAreSameDistance) { const Random *rng = system_random(); ASSERT_NE(rng, nullptr); PublicKey pk0 = random_pk(rng); PublicKey pk1 = random_pk(rng); PublicKey pk2 = pk1; EXPECT_EQ(id_closest(pk0.data(), pk1.data(), pk2.data()), 0); } TEST(IdClosest, DistanceIsCommutative) { const Random *rng = system_random(); ASSERT_NE(rng, nullptr); for (uint32_t i = 0; i < 100; ++i) { PublicKey pk0 = random_pk(rng); PublicKey pk1 = random_pk(rng); PublicKey pk2 = random_pk(rng); ASSERT_NE(pk1, pk2); // RNG can't produce the same random key twice // Two non-equal keys can't have the same distance from any given key. EXPECT_NE(id_closest(pk0.data(), pk1.data(), pk2.data()), 0); if (id_closest(pk0.data(), pk1.data(), pk2.data()) == 1) { EXPECT_EQ(id_closest(pk0.data(), pk2.data(), pk1.data()), 2); } if (id_closest(pk0.data(), pk1.data(), pk2.data()) == 2) { EXPECT_EQ(id_closest(pk0.data(), pk2.data(), pk1.data()), 1); } } } TEST(IdClosest, SmallXorDistanceIsCloser) { PublicKey const pk0 = {{0xaa}}; PublicKey const pk1 = {{0xa0}}; PublicKey const pk2 = {{0x0a}}; EXPECT_EQ(id_closest(pk0.data(), pk1.data(), pk2.data()), 1); } TEST(IdClosest, DistinctKeysCannotHaveTheSameDistance) { PublicKey const pk0 = {{0x06}}; PublicKey const pk1 = {{0x00}}; PublicKey pk2 = {{0x00}}; for (uint8_t i = 1; i < 0xff; ++i) { pk2[0] = i; EXPECT_NE(id_closest(pk0.data(), pk1.data(), pk2.data()), 0); } } TEST(AddToList, OverridesKeysWithCloserKeys) { PublicKey const self_pk = {{0xaa}}; PublicKey const keys[] = { {{0xa0}}, // closest {{0x0a}}, // {{0x0b}}, // {{0x0c}}, // {{0x0d}}, // {{0xa1}}, // closer than the 4 keys above }; std::array nodes{}; IP_Port ip_port = {0}; EXPECT_TRUE(add_to_list(nodes.data(), nodes.size(), keys[0].data(), &ip_port, self_pk.data())); EXPECT_TRUE(add_to_list(nodes.data(), nodes.size(), keys[1].data(), &ip_port, self_pk.data())); EXPECT_TRUE(add_to_list(nodes.data(), nodes.size(), keys[2].data(), &ip_port, self_pk.data())); EXPECT_TRUE(add_to_list(nodes.data(), nodes.size(), keys[3].data(), &ip_port, self_pk.data())); EXPECT_EQ(to_array(nodes[0].public_key), keys[0]); EXPECT_EQ(to_array(nodes[1].public_key), keys[1]); EXPECT_EQ(to_array(nodes[2].public_key), keys[2]); EXPECT_EQ(to_array(nodes[3].public_key), keys[3]); // key 4 is less close than keys 0-3 EXPECT_FALSE(add_to_list(nodes.data(), nodes.size(), keys[4].data(), &ip_port, self_pk.data())); // 5 is closer than all except key 0 EXPECT_TRUE(add_to_list(nodes.data(), nodes.size(), keys[5].data(), &ip_port, self_pk.data())); EXPECT_EQ(to_array(nodes[0].public_key), keys[0]); EXPECT_EQ(to_array(nodes[1].public_key), keys[5]); EXPECT_EQ(to_array(nodes[2].public_key), keys[1]); EXPECT_EQ(to_array(nodes[3].public_key), keys[2]); } TEST(Request, CreateAndParse) { const Random *rng = system_random(); ASSERT_NE(rng, nullptr); // Peers. const KeyPair sender(rng); const KeyPair receiver(rng); const uint8_t sent_pkt_id = CRYPTO_PACKET_FRIEND_REQ; // Encoded packet. std::array packet; // Received components. PublicKey pk; std::array incoming; uint8_t recvd_pkt_id; // Request data: maximum payload is 918 bytes, so create a payload 1 byte larger than max. std::vector outgoing(919); random_bytes(rng, outgoing.data(), outgoing.size()); EXPECT_LT(create_request(rng, sender.pk.data(), sender.sk.data(), packet.data(), receiver.pk.data(), outgoing.data(), outgoing.size(), sent_pkt_id), 0); // Pop one element so the payload is 918 bytes. Packing should now succeed. outgoing.pop_back(); const int max_sent_length = create_request(rng, sender.pk.data(), sender.sk.data(), packet.data(), receiver.pk.data(), outgoing.data(), outgoing.size(), sent_pkt_id); ASSERT_GT(max_sent_length, 0); // success. // Check that handle_request rejects packets larger than the maximum created packet size. EXPECT_LT(handle_request(receiver.pk.data(), receiver.sk.data(), pk.data(), incoming.data(), &recvd_pkt_id, packet.data(), max_sent_length + 1), 0); // Now try all possible packet sizes from max (918) to 0. while (!outgoing.empty()) { // Pack: const int sent_length = create_request(rng, sender.pk.data(), sender.sk.data(), packet.data(), receiver.pk.data(), outgoing.data(), outgoing.size(), sent_pkt_id); ASSERT_GT(sent_length, 0); // Unpack: const int recvd_length = handle_request(receiver.pk.data(), receiver.sk.data(), pk.data(), incoming.data(), &recvd_pkt_id, packet.data(), sent_length); ASSERT_GE(recvd_length, 0); EXPECT_EQ( std::vector(incoming.begin(), incoming.begin() + recvd_length), outgoing); outgoing.pop_back(); } } TEST(AnnounceNodes, SetAndTest) { const Random *rng = system_random(); const Network *ns = system_network(); const Memory *mem = system_memory(); Logger *log = logger_new(); ASSERT_NE(log, nullptr); Mono_Time *mono_time = mono_time_new(mem, nullptr, nullptr); ASSERT_NE(mono_time, nullptr); Networking_Core *net = new_networking_no_udp(log, mem, ns); ASSERT_NE(net, nullptr); DHT *dht = new_dht(log, mem, rng, ns, mono_time, net, true, true); ASSERT_NE(dht, nullptr); uint8_t pk_data[CRYPTO_PUBLIC_KEY_SIZE]; memcpy(pk_data, dht_get_self_public_key(dht), sizeof(pk_data)); PublicKey self_pk = to_array(pk_data); PublicKey pk1 = random_pk(rng); ASSERT_NE(pk1, self_pk); // Test with maximally close key to self pk_data[CRYPTO_PUBLIC_KEY_SIZE - 1] = ~pk_data[CRYPTO_PUBLIC_KEY_SIZE - 1]; PublicKey pk2 = to_array(pk_data); ASSERT_NE(pk2, pk1); IP_Port ip_port = {0}; ip_port.ip.family = net_family_ipv4(); set_announce_node(dht, pk1.data()); set_announce_node(dht, pk2.data()); EXPECT_TRUE(addto_lists(dht, &ip_port, pk1.data())); EXPECT_TRUE(addto_lists(dht, &ip_port, pk2.data())); Node_format nodes[MAX_SENT_NODES]; EXPECT_EQ(0, get_close_nodes(dht, self_pk.data(), nodes, net_family_unspec(), true, true)); set_announce_node(dht, pk1.data()); set_announce_node(dht, pk2.data()); EXPECT_EQ(2, get_close_nodes(dht, self_pk.data(), nodes, net_family_unspec(), true, true)); kill_dht(dht); kill_networking(net); mono_time_free(mem, mono_time); logger_kill(log); } } // namespace