/* SPDX-License-Identifier: GPL-3.0-or-later * Copyright © 2016-2018 The TokTok team. * Copyright © 2013 Tox project. */ /** * An implementation of the DHT as seen in docs/updates/DHT.md */ #include "DHT.h" #include #include #include #include #include "LAN_discovery.h" #include "bin_pack.h" #include "ccompat.h" #include "logger.h" #include "mono_time.h" #include "network.h" #include "ping.h" #include "shared_key_cache.h" #include "state.h" #include "util.h" /** The timeout after which a node is discarded completely. */ #define KILL_NODE_TIMEOUT (BAD_NODE_TIMEOUT + PING_INTERVAL) /** Ping interval in seconds for each random sending of a get nodes request. */ #define GET_NODE_INTERVAL 20 #define MAX_PUNCHING_PORTS 48 /** Interval in seconds between punching attempts*/ #define PUNCH_INTERVAL 3 /** Time in seconds after which punching parameters will be reset */ #define PUNCH_RESET_TIME 40 #define MAX_NORMAL_PUNCHING_TRIES 5 #define NAT_PING_REQUEST 0 #define NAT_PING_RESPONSE 1 /** Number of get node requests to send to quickly find close nodes. */ #define MAX_BOOTSTRAP_TIMES 5 // TODO(sudden6): find out why we need multiple callbacks and if we really need 32 #define DHT_FRIEND_MAX_LOCKS 32 /* Settings for the shared key cache */ #define MAX_KEYS_PER_SLOT 4 #define KEYS_TIMEOUT 600 typedef struct DHT_Friend_Callback { dht_ip_cb *ip_callback; void *data; int32_t number; } DHT_Friend_Callback; struct DHT_Friend { uint8_t public_key[CRYPTO_PUBLIC_KEY_SIZE]; Client_data client_list[MAX_FRIEND_CLIENTS]; /* Time at which the last get_nodes request was sent. */ uint64_t lastgetnode; /* number of times get_node packets were sent. */ uint32_t bootstrap_times; /* Symmetric NAT hole punching stuff. */ NAT nat; /* Each set bit represents one installed callback */ uint32_t lock_flags; DHT_Friend_Callback callbacks[DHT_FRIEND_MAX_LOCKS]; Node_format to_bootstrap[MAX_SENT_NODES]; unsigned int num_to_bootstrap; }; static const DHT_Friend empty_dht_friend = {{0}}; const Node_format empty_node_format = {{0}}; static_assert(sizeof (empty_dht_friend.lock_flags) * 8 == DHT_FRIEND_MAX_LOCKS, "Bitfield size and number of locks don't match"); typedef struct Cryptopacket_Handler { cryptopacket_handler_cb *function; void *object; } Cryptopacket_Handler; struct DHT { const Logger *log; const Network *ns; Mono_Time *mono_time; const Memory *mem; const Random *rng; Networking_Core *net; bool hole_punching_enabled; bool lan_discovery_enabled; Client_data close_clientlist[LCLIENT_LIST]; uint64_t close_lastgetnodes; uint32_t close_bootstrap_times; /* DHT keypair */ uint8_t self_public_key[CRYPTO_PUBLIC_KEY_SIZE]; uint8_t self_secret_key[CRYPTO_SECRET_KEY_SIZE]; DHT_Friend *friends_list; uint16_t num_friends; Node_format *loaded_nodes_list; uint32_t loaded_num_nodes; unsigned int loaded_nodes_index; Shared_Key_Cache *shared_keys_recv; Shared_Key_Cache *shared_keys_sent; struct Ping *ping; Ping_Array *dht_ping_array; uint64_t cur_time; Cryptopacket_Handler cryptopackethandlers[256]; Node_format to_bootstrap[MAX_CLOSE_TO_BOOTSTRAP_NODES]; unsigned int num_to_bootstrap; dht_get_nodes_response_cb *get_nodes_response; }; const uint8_t *dht_friend_public_key(const DHT_Friend *dht_friend) { return dht_friend->public_key; } const Client_data *dht_friend_client(const DHT_Friend *dht_friend, size_t index) { return &dht_friend->client_list[index]; } const uint8_t *dht_get_self_public_key(const DHT *dht) { return dht->self_public_key; } const uint8_t *dht_get_self_secret_key(const DHT *dht) { return dht->self_secret_key; } void dht_set_self_public_key(DHT *dht, const uint8_t *key) { memcpy(dht->self_public_key, key, CRYPTO_PUBLIC_KEY_SIZE); } void dht_set_self_secret_key(DHT *dht, const uint8_t *key) { memcpy(dht->self_secret_key, key, CRYPTO_SECRET_KEY_SIZE); } Networking_Core *dht_get_net(const DHT *dht) { return dht->net; } struct Ping *dht_get_ping(const DHT *dht) { return dht->ping; } const Client_data *dht_get_close_clientlist(const DHT *dht) { return dht->close_clientlist; } const Client_data *dht_get_close_client(const DHT *dht, uint32_t client_num) { assert(client_num < sizeof(dht->close_clientlist) / sizeof(dht->close_clientlist[0])); return &dht->close_clientlist[client_num]; } uint16_t dht_get_num_friends(const DHT *dht) { return dht->num_friends; } DHT_Friend *dht_get_friend(DHT *dht, uint32_t friend_num) { assert(friend_num < dht->num_friends); return &dht->friends_list[friend_num]; } const uint8_t *dht_get_friend_public_key(const DHT *dht, uint32_t friend_num) { assert(friend_num < dht->num_friends); return dht->friends_list[friend_num].public_key; } non_null() static bool assoc_timeout(uint64_t cur_time, const IPPTsPng *assoc) { return (assoc->timestamp + BAD_NODE_TIMEOUT) <= cur_time; } /** @brief Converts an IPv4-in-IPv6 to IPv4 and returns the new IP_Port. * * If the ip_port is already IPv4 this function returns a copy of the original ip_port. */ non_null() static IP_Port ip_port_normalize(const IP_Port *ip_port) { IP_Port res = *ip_port; if (net_family_is_ipv6(res.ip.family) && ipv6_ipv4_in_v6(&res.ip.ip.v6)) { res.ip.family = net_family_ipv4(); res.ip.ip.v4.uint32 = res.ip.ip.v6.uint32[3]; } return res; } int id_closest(const uint8_t *pk, const uint8_t *pk1, const uint8_t *pk2) { for (size_t i = 0; i < CRYPTO_PUBLIC_KEY_SIZE; ++i) { const uint8_t distance1 = pk[i] ^ pk1[i]; const uint8_t distance2 = pk[i] ^ pk2[i]; if (distance1 < distance2) { return 1; } if (distance1 > distance2) { return 2; } } return 0; } /** Return index of first unequal bit number between public keys pk1 and pk2. */ unsigned int bit_by_bit_cmp(const uint8_t *pk1, const uint8_t *pk2) { unsigned int i; unsigned int j = 0; for (i = 0; i < CRYPTO_PUBLIC_KEY_SIZE; ++i) { if (pk1[i] == pk2[i]) { continue; } for (j = 0; j < 8; ++j) { const uint8_t mask = 1 << (7 - j); if ((pk1[i] & mask) != (pk2[i] & mask)) { break; } } break; } return i * 8 + j; } /** * Copy shared_key to encrypt/decrypt DHT packet from public_key into shared_key * for packets that we receive. */ const uint8_t *dht_get_shared_key_recv(DHT *dht, const uint8_t *public_key) { return shared_key_cache_lookup(dht->shared_keys_recv, public_key); } /** * Copy shared_key to encrypt/decrypt DHT packet from public_key into shared_key * for packets that we send. */ const uint8_t *dht_get_shared_key_sent(DHT *dht, const uint8_t *public_key) { return shared_key_cache_lookup(dht->shared_keys_sent, public_key); } #define CRYPTO_SIZE (1 + CRYPTO_PUBLIC_KEY_SIZE * 2 + CRYPTO_NONCE_SIZE) int create_request(const Random *rng, const uint8_t *send_public_key, const uint8_t *send_secret_key, uint8_t *packet, const uint8_t *recv_public_key, const uint8_t *data, uint32_t data_length, uint8_t request_id) { if (send_public_key == nullptr || packet == nullptr || recv_public_key == nullptr || data == nullptr) { return -1; } if (MAX_CRYPTO_REQUEST_SIZE < data_length + CRYPTO_SIZE + 1 + CRYPTO_MAC_SIZE) { return -1; } uint8_t *const nonce = packet + 1 + CRYPTO_PUBLIC_KEY_SIZE * 2; random_nonce(rng, nonce); uint8_t temp[MAX_CRYPTO_REQUEST_SIZE] = {0}; temp[0] = request_id; memcpy(temp + 1, data, data_length); const int len = encrypt_data(recv_public_key, send_secret_key, nonce, temp, data_length + 1, packet + CRYPTO_SIZE); if (len == -1) { crypto_memzero(temp, MAX_CRYPTO_REQUEST_SIZE); return -1; } packet[0] = NET_PACKET_CRYPTO; memcpy(packet + 1, recv_public_key, CRYPTO_PUBLIC_KEY_SIZE); memcpy(packet + 1 + CRYPTO_PUBLIC_KEY_SIZE, send_public_key, CRYPTO_PUBLIC_KEY_SIZE); crypto_memzero(temp, MAX_CRYPTO_REQUEST_SIZE); return len + CRYPTO_SIZE; } int handle_request(const uint8_t *self_public_key, const uint8_t *self_secret_key, uint8_t *public_key, uint8_t *data, uint8_t *request_id, const uint8_t *packet, uint16_t packet_length) { if (self_public_key == nullptr || public_key == nullptr || data == nullptr || request_id == nullptr || packet == nullptr) { return -1; } if (packet_length <= CRYPTO_SIZE + CRYPTO_MAC_SIZE || packet_length > MAX_CRYPTO_REQUEST_SIZE) { return -1; } if (!pk_equal(packet + 1, self_public_key)) { return -1; } memcpy(public_key, packet + 1 + CRYPTO_PUBLIC_KEY_SIZE, CRYPTO_PUBLIC_KEY_SIZE); const uint8_t *const nonce = packet + 1 + CRYPTO_PUBLIC_KEY_SIZE * 2; uint8_t temp[MAX_CRYPTO_REQUEST_SIZE]; int32_t len1 = decrypt_data(public_key, self_secret_key, nonce, packet + CRYPTO_SIZE, packet_length - CRYPTO_SIZE, temp); if (len1 == -1 || len1 == 0) { crypto_memzero(temp, MAX_CRYPTO_REQUEST_SIZE); return -1; } assert(len1 == packet_length - CRYPTO_SIZE - CRYPTO_MAC_SIZE); // Because coverity can't figure out this equation: assert(len1 <= MAX_CRYPTO_REQUEST_SIZE - CRYPTO_SIZE - CRYPTO_MAC_SIZE); request_id[0] = temp[0]; --len1; memcpy(data, temp + 1, len1); crypto_memzero(temp, MAX_CRYPTO_REQUEST_SIZE); return len1; } int packed_node_size(Family ip_family) { if (net_family_is_ipv4(ip_family) || net_family_is_tcp_ipv4(ip_family)) { return PACKED_NODE_SIZE_IP4; } if (net_family_is_ipv6(ip_family) || net_family_is_tcp_ipv6(ip_family)) { return PACKED_NODE_SIZE_IP6; } return -1; } /** @brief Packs an IP structure. * * It's the caller's responsibility to make sure `is_ipv4` tells the truth. This * function is an implementation detail of @ref bin_pack_ip_port. * * @param is_ipv4 whether this IP is an IP4 or IP6. * * @retval true on success. */ non_null() static bool bin_pack_ip(Bin_Pack *bp, const IP *ip, bool is_ipv4) { if (is_ipv4) { return bin_pack_bin_b(bp, ip->ip.v4.uint8, SIZE_IP4); } else { return bin_pack_bin_b(bp, ip->ip.v6.uint8, SIZE_IP6); } } /** @brief Packs an IP_Port structure. * * @retval true on success. */ non_null() static bool bin_pack_ip_port(Bin_Pack *bp, const Logger *logger, const IP_Port *ip_port) { bool is_ipv4; uint8_t family; if (net_family_is_ipv4(ip_port->ip.family)) { // TODO(irungentoo): use functions to convert endianness is_ipv4 = true; family = TOX_AF_INET; } else if (net_family_is_tcp_ipv4(ip_port->ip.family)) { is_ipv4 = true; family = TOX_TCP_INET; } else if (net_family_is_ipv6(ip_port->ip.family)) { is_ipv4 = false; family = TOX_AF_INET6; } else if (net_family_is_tcp_ipv6(ip_port->ip.family)) { is_ipv4 = false; family = TOX_TCP_INET6; } else { Ip_Ntoa ip_str; // TODO(iphydf): Find out why we're trying to pack invalid IPs, stop // doing that, and turn this into an error. LOGGER_TRACE(logger, "cannot pack invalid IP: %s", net_ip_ntoa(&ip_port->ip, &ip_str)); return false; } return bin_pack_u08_b(bp, family) && bin_pack_ip(bp, &ip_port->ip, is_ipv4) && bin_pack_u16_b(bp, net_ntohs(ip_port->port)); } non_null() static bool bin_pack_ip_port_handler(Bin_Pack *bp, const Logger *logger, const void *obj) { return bin_pack_ip_port(bp, logger, (const IP_Port *)obj); } int pack_ip_port(const Logger *logger, uint8_t *data, uint16_t length, const IP_Port *ip_port) { const uint32_t size = bin_pack_obj_size(bin_pack_ip_port_handler, logger, ip_port); if (size > length) { return -1; } if (!bin_pack_obj(bin_pack_ip_port_handler, logger, ip_port, data, length)) { return -1; } assert(size < INT_MAX); return (int)size; } int dht_create_packet(const Memory *mem, const Random *rng, const uint8_t public_key[CRYPTO_PUBLIC_KEY_SIZE], const uint8_t *shared_key, const uint8_t type, const uint8_t *plain, size_t plain_length, uint8_t *packet, size_t length) { uint8_t *encrypted = (uint8_t *)mem_balloc(mem, plain_length + CRYPTO_MAC_SIZE); uint8_t nonce[CRYPTO_NONCE_SIZE]; if (encrypted == nullptr) { return -1; } random_nonce(rng, nonce); const int encrypted_length = encrypt_data_symmetric(shared_key, nonce, plain, plain_length, encrypted); if (encrypted_length == -1) { mem_delete(mem, encrypted); return -1; } if (length < 1 + CRYPTO_PUBLIC_KEY_SIZE + CRYPTO_NONCE_SIZE + encrypted_length) { mem_delete(mem, encrypted); return -1; } packet[0] = type; memcpy(packet + 1, public_key, CRYPTO_PUBLIC_KEY_SIZE); memcpy(packet + 1 + CRYPTO_PUBLIC_KEY_SIZE, nonce, CRYPTO_NONCE_SIZE); memcpy(packet + 1 + CRYPTO_PUBLIC_KEY_SIZE + CRYPTO_NONCE_SIZE, encrypted, encrypted_length); mem_delete(mem, encrypted); return 1 + CRYPTO_PUBLIC_KEY_SIZE + CRYPTO_NONCE_SIZE + encrypted_length; } int unpack_ip_port(IP_Port *ip_port, const uint8_t *data, uint16_t length, bool tcp_enabled) { if (data == nullptr) { return -1; } bool is_ipv4; Family host_family; if (data[0] == TOX_AF_INET) { is_ipv4 = true; host_family = net_family_ipv4(); } else if (data[0] == TOX_TCP_INET) { if (!tcp_enabled) { return -1; } is_ipv4 = true; host_family = net_family_tcp_ipv4(); } else if (data[0] == TOX_AF_INET6) { is_ipv4 = false; host_family = net_family_ipv6(); } else if (data[0] == TOX_TCP_INET6) { if (!tcp_enabled) { return -1; } is_ipv4 = false; host_family = net_family_tcp_ipv6(); } else { return -1; } *ip_port = empty_ip_port; if (is_ipv4) { const uint32_t size = 1 + SIZE_IP4 + sizeof(uint16_t); if (size > length) { return -1; } ip_port->ip.family = host_family; memcpy(&ip_port->ip.ip.v4, data + 1, SIZE_IP4); memcpy(&ip_port->port, data + 1 + SIZE_IP4, sizeof(uint16_t)); return size; } else { const uint32_t size = 1 + SIZE_IP6 + sizeof(uint16_t); if (size > length) { return -1; } ip_port->ip.family = host_family; memcpy(&ip_port->ip.ip.v6, data + 1, SIZE_IP6); memcpy(&ip_port->port, data + 1 + SIZE_IP6, sizeof(uint16_t)); return size; } } /** @brief Pack a single node from a node array. * * @retval true on success. */ non_null() static bool bin_pack_node_handler(Bin_Pack *bp, const Logger *logger, const void *arr, uint32_t index) { const Node_format *nodes = (const Node_format *)arr; return bin_pack_ip_port(bp, logger, &nodes[index].ip_port) && bin_pack_bin_b(bp, nodes[index].public_key, CRYPTO_PUBLIC_KEY_SIZE); } int pack_nodes(const Logger *logger, uint8_t *data, uint16_t length, const Node_format *nodes, uint16_t number) { const uint32_t size = bin_pack_obj_array_size(bin_pack_node_handler, logger, nodes, number); if (!bin_pack_obj_array(bin_pack_node_handler, logger, nodes, number, data, length)) { return -1; } return size; } int unpack_nodes(Node_format *nodes, uint16_t max_num_nodes, uint16_t *processed_data_len, const uint8_t *data, uint16_t length, bool tcp_enabled) { uint32_t num = 0; uint32_t len_processed = 0; while (num < max_num_nodes && len_processed < length) { const int ipp_size = unpack_ip_port(&nodes[num].ip_port, data + len_processed, length - len_processed, tcp_enabled); if (ipp_size == -1) { return -1; } len_processed += ipp_size; if (len_processed + CRYPTO_PUBLIC_KEY_SIZE > length) { return -1; } memcpy(nodes[num].public_key, data + len_processed, CRYPTO_PUBLIC_KEY_SIZE); len_processed += CRYPTO_PUBLIC_KEY_SIZE; ++num; #ifndef NDEBUG const uint32_t increment = ipp_size + CRYPTO_PUBLIC_KEY_SIZE; assert(increment == PACKED_NODE_SIZE_IP4 || increment == PACKED_NODE_SIZE_IP6); #endif } if (processed_data_len != nullptr) { *processed_data_len = len_processed; } return num; } /** @brief Find index in an array with public_key equal to pk. * * @return index or UINT32_MAX if not found. */ non_null(3) nullable(1) static uint32_t index_of_client_pk(const Client_data *array, uint32_t size, const uint8_t *pk) { assert(size == 0 || array != nullptr); for (uint32_t i = 0; i < size; ++i) { if (pk_equal(array[i].public_key, pk)) { return i; } } return UINT32_MAX; } non_null(3) nullable(1) static uint32_t index_of_friend_pk(const DHT_Friend *array, uint32_t size, const uint8_t *pk) { assert(size == 0 || array != nullptr); for (uint32_t i = 0; i < size; ++i) { if (pk_equal(array[i].public_key, pk)) { return i; } } return UINT32_MAX; } non_null(3) nullable(1) static uint32_t index_of_node_pk(const Node_format *array, uint32_t size, const uint8_t *pk) { assert(size == 0 || array != nullptr); for (uint32_t i = 0; i < size; ++i) { if (pk_equal(array[i].public_key, pk)) { return i; } } return UINT32_MAX; } /** @brief Find index of Client_data with ip_port equal to param ip_port. * * @return index or UINT32_MAX if not found. */ non_null(3) nullable(1) static uint32_t index_of_client_ip_port(const Client_data *array, uint32_t size, const IP_Port *ip_port) { assert(size == 0 || array != nullptr); for (uint32_t i = 0; i < size; ++i) { if ((net_family_is_ipv4(ip_port->ip.family) && ipport_equal(&array[i].assoc4.ip_port, ip_port)) || (net_family_is_ipv6(ip_port->ip.family) && ipport_equal(&array[i].assoc6.ip_port, ip_port))) { return i; } } return UINT32_MAX; } /** Update ip_port of client if it's needed. */ non_null() static void update_client(const Logger *log, const Mono_Time *mono_time, int index, Client_data *client, const IP_Port *ip_port) { IPPTsPng *assoc; int ip_version; if (net_family_is_ipv4(ip_port->ip.family)) { assoc = &client->assoc4; ip_version = 4; } else if (net_family_is_ipv6(ip_port->ip.family)) { assoc = &client->assoc6; ip_version = 6; } else { return; } if (!ipport_equal(&assoc->ip_port, ip_port)) { Ip_Ntoa ip_str_from; Ip_Ntoa ip_str_to; LOGGER_TRACE(log, "coipil[%u]: switching ipv%d from %s:%u to %s:%u", index, ip_version, net_ip_ntoa(&assoc->ip_port.ip, &ip_str_from), net_ntohs(assoc->ip_port.port), net_ip_ntoa(&ip_port->ip, &ip_str_to), net_ntohs(ip_port->port)); } if (!ip_is_lan(&assoc->ip_port.ip) && ip_is_lan(&ip_port->ip)) { return; } assoc->ip_port = *ip_port; assoc->timestamp = mono_time_get(mono_time); } /** @brief Check if client with public_key is already in list of length length. * * If it is then set its corresponding timestamp to current time. * If the id is already in the list with a different ip_port, update it. * TODO(irungentoo): Maybe optimize this. */ non_null() static bool client_or_ip_port_in_list(const Logger *log, const Mono_Time *mono_time, Client_data *list, uint16_t length, const uint8_t *public_key, const IP_Port *ip_port) { const uint64_t temp_time = mono_time_get(mono_time); uint32_t index = index_of_client_pk(list, length, public_key); /* if public_key is in list, find it and maybe overwrite ip_port */ if (index != UINT32_MAX) { update_client(log, mono_time, index, &list[index], ip_port); return true; } /* public_key not in list yet: see if we can find an identical ip_port, in * that case we kill the old public_key by overwriting it with the new one * TODO(irungentoo): maybe we SHOULDN'T do that if that public_key is in a friend_list * and the one who is the actual friend's public_key/address set? * MAYBE: check the other address, if valid, don't nuke? */ index = index_of_client_ip_port(list, length, ip_port); if (index == UINT32_MAX) { return false; } IPPTsPng *assoc; int ip_version; if (net_family_is_ipv4(ip_port->ip.family)) { assoc = &list[index].assoc4; ip_version = 4; } else { assoc = &list[index].assoc6; ip_version = 6; } /* Initialize client timestamp. */ assoc->timestamp = temp_time; memcpy(list[index].public_key, public_key, CRYPTO_PUBLIC_KEY_SIZE); LOGGER_DEBUG(log, "coipil[%u]: switching public_key (ipv%d)", index, ip_version); /* kill the other address, if it was set */ const IPPTsPng empty_ipptspng = {{{{0}}}}; *assoc = empty_ipptspng; return true; } bool add_to_list(Node_format *nodes_list, uint32_t length, const uint8_t *pk, const IP_Port *ip_port, const uint8_t *cmp_pk) { for (uint32_t i = 0; i < length; ++i) { if (id_closest(cmp_pk, nodes_list[i].public_key, pk) == 2) { uint8_t pk_bak[CRYPTO_PUBLIC_KEY_SIZE]; memcpy(pk_bak, nodes_list[i].public_key, CRYPTO_PUBLIC_KEY_SIZE); const IP_Port ip_port_bak = nodes_list[i].ip_port; memcpy(nodes_list[i].public_key, pk, CRYPTO_PUBLIC_KEY_SIZE); nodes_list[i].ip_port = *ip_port; if (i != length - 1) { add_to_list(nodes_list, length, pk_bak, &ip_port_bak, cmp_pk); } return true; } } return false; } /** * helper for `get_close_nodes()`. argument list is a monster :D */ non_null() static void get_close_nodes_inner(uint64_t cur_time, const uint8_t *public_key, Node_format *nodes_list, Family sa_family, const Client_data *client_list, uint32_t client_list_length, uint32_t *num_nodes_ptr, bool is_lan, bool want_announce) { if (!net_family_is_ipv4(sa_family) && !net_family_is_ipv6(sa_family) && !net_family_is_unspec(sa_family)) { return; } uint32_t num_nodes = *num_nodes_ptr; for (uint32_t i = 0; i < client_list_length; ++i) { const Client_data *const client = &client_list[i]; /* node already in list? */ if (index_of_node_pk(nodes_list, MAX_SENT_NODES, client->public_key) != UINT32_MAX) { continue; } const IPPTsPng *ipptp; if (net_family_is_ipv4(sa_family)) { ipptp = &client->assoc4; } else if (net_family_is_ipv6(sa_family)) { ipptp = &client->assoc6; } else if (client->assoc4.timestamp >= client->assoc6.timestamp) { ipptp = &client->assoc4; } else { ipptp = &client->assoc6; } /* node not in a good condition? */ if (assoc_timeout(cur_time, ipptp)) { continue; } /* don't send LAN ips to non LAN peers */ if (ip_is_lan(&ipptp->ip_port.ip) && !is_lan) { continue; } #ifdef CHECK_ANNOUNCE_NODE if (want_announce && !client->announce_node) { continue; } #endif if (num_nodes < MAX_SENT_NODES) { memcpy(nodes_list[num_nodes].public_key, client->public_key, CRYPTO_PUBLIC_KEY_SIZE); nodes_list[num_nodes].ip_port = ipptp->ip_port; ++num_nodes; } else { // TODO(zugz): this could be made significantly more efficient by // using a version of add_to_list which works with a sorted list. add_to_list(nodes_list, MAX_SENT_NODES, client->public_key, &ipptp->ip_port, public_key); } } *num_nodes_ptr = num_nodes; } /** * Find MAX_SENT_NODES nodes closest to the public_key for the send nodes request: * put them in the nodes_list and return how many were found. * * want_announce: return only nodes which implement the dht announcements protocol. */ non_null() static int get_somewhat_close_nodes(const DHT *dht, const uint8_t *public_key, Node_format *nodes_list, Family sa_family, bool is_lan, bool want_announce) { uint32_t num_nodes = 0; get_close_nodes_inner(dht->cur_time, public_key, nodes_list, sa_family, dht->close_clientlist, LCLIENT_LIST, &num_nodes, is_lan, want_announce); for (uint32_t i = 0; i < dht->num_friends; ++i) { get_close_nodes_inner(dht->cur_time, public_key, nodes_list, sa_family, dht->friends_list[i].client_list, MAX_FRIEND_CLIENTS, &num_nodes, is_lan, want_announce); } return num_nodes; } int get_close_nodes(const DHT *dht, const uint8_t *public_key, Node_format *nodes_list, Family sa_family, bool is_lan, bool want_announce) { memset(nodes_list, 0, MAX_SENT_NODES * sizeof(Node_format)); return get_somewhat_close_nodes(dht, public_key, nodes_list, sa_family, is_lan, want_announce); } typedef struct DHT_Cmp_Data { uint64_t cur_time; const uint8_t *base_public_key; Client_data entry; } DHT_Cmp_Data; non_null() static int dht_cmp_entry(const void *a, const void *b) { const DHT_Cmp_Data *cmp1 = (const DHT_Cmp_Data *)a; const DHT_Cmp_Data *cmp2 = (const DHT_Cmp_Data *)b; const Client_data entry1 = cmp1->entry; const Client_data entry2 = cmp2->entry; const uint8_t *cmp_public_key = cmp1->base_public_key; const bool t1 = assoc_timeout(cmp1->cur_time, &entry1.assoc4) && assoc_timeout(cmp1->cur_time, &entry1.assoc6); const bool t2 = assoc_timeout(cmp2->cur_time, &entry2.assoc4) && assoc_timeout(cmp2->cur_time, &entry2.assoc6); if (t1 && t2) { return 0; } if (t1) { return -1; } if (t2) { return 1; } const int closest = id_closest(cmp_public_key, entry1.public_key, entry2.public_key); if (closest == 1) { return 1; } if (closest == 2) { return -1; } return 0; } #ifdef CHECK_ANNOUNCE_NODE non_null() static void set_announce_node_in_list(Client_data *list, uint32_t list_len, const uint8_t *public_key) { const uint32_t index = index_of_client_pk(list, list_len, public_key); if (index != UINT32_MAX) { list[index].announce_node = true; } } void set_announce_node(DHT *dht, const uint8_t *public_key) { unsigned int index = bit_by_bit_cmp(public_key, dht->self_public_key); if (index >= LCLIENT_LENGTH) { index = LCLIENT_LENGTH - 1; } set_announce_node_in_list(dht->close_clientlist + index * LCLIENT_NODES, LCLIENT_NODES, public_key); for (int32_t i = 0; i < dht->num_friends; ++i) { set_announce_node_in_list(dht->friends_list[i].client_list, MAX_FRIEND_CLIENTS, public_key); } } /** @brief Send data search request, searching for a random key. */ non_null() static bool send_announce_ping(DHT *dht, const uint8_t *public_key, const IP_Port *ip_port) { uint8_t plain[CRYPTO_PUBLIC_KEY_SIZE + sizeof(uint64_t)]; uint8_t unused_secret_key[CRYPTO_SECRET_KEY_SIZE]; crypto_new_keypair(dht->rng, plain, unused_secret_key); const uint64_t ping_id = ping_array_add(dht->dht_ping_array, dht->mono_time, dht->rng, public_key, CRYPTO_PUBLIC_KEY_SIZE); memcpy(plain + CRYPTO_PUBLIC_KEY_SIZE, &ping_id, sizeof(ping_id)); const uint8_t *shared_key = dht_get_shared_key_sent(dht, public_key); uint8_t request[1 + CRYPTO_PUBLIC_KEY_SIZE + CRYPTO_NONCE_SIZE + sizeof(plain) + CRYPTO_MAC_SIZE]; if (dht_create_packet(dht->mem, dht->rng, dht->self_public_key, shared_key, NET_PACKET_DATA_SEARCH_REQUEST, plain, sizeof(plain), request, sizeof(request)) != sizeof(request)) { return false; } return sendpacket(dht->net, ip_port, request, sizeof(request)) == sizeof(request); } /** @brief If the response is valid, set the sender as an announce node. */ non_null(1, 2, 3) nullable(5) static int handle_data_search_response(void *object, const IP_Port *source, const uint8_t *packet, uint16_t length, void *userdata) { DHT *dht = (DHT *) object; const int32_t plain_len = (int32_t)length - (1 + CRYPTO_PUBLIC_KEY_SIZE + CRYPTO_NONCE_SIZE + CRYPTO_MAC_SIZE); if (plain_len < (int32_t)(CRYPTO_PUBLIC_KEY_SIZE + sizeof(uint64_t))) { return 1; } VLA(uint8_t, plain, plain_len); const uint8_t *public_key = packet + 1; const uint8_t *shared_key = dht_get_shared_key_recv(dht, public_key); if (decrypt_data_symmetric(shared_key, packet + 1 + CRYPTO_PUBLIC_KEY_SIZE, packet + 1 + CRYPTO_PUBLIC_KEY_SIZE + CRYPTO_NONCE_SIZE, plain_len + CRYPTO_MAC_SIZE, plain) != plain_len) { return 1; } uint64_t ping_id; memcpy(&ping_id, plain + (plain_len - sizeof(uint64_t)), sizeof(ping_id)); uint8_t ping_data[CRYPTO_PUBLIC_KEY_SIZE]; if (ping_array_check(dht->dht_ping_array, dht->mono_time, ping_data, sizeof(ping_data), ping_id) != sizeof(ping_data)) { return 1; } if (!pk_equal(ping_data, public_key)) { return 1; } set_announce_node(dht, public_key); return 0; } #endif /** @brief Is it ok to store node with public_key in client. * * return false if node can't be stored. * return true if it can. */ non_null() static bool store_node_ok(const Client_data *client, uint64_t cur_time, const uint8_t *public_key, const uint8_t *comp_public_key) { return (assoc_timeout(cur_time, &client->assoc4) && assoc_timeout(cur_time, &client->assoc6)) || id_closest(comp_public_key, client->public_key, public_key) == 2; } non_null() static void sort_client_list(const Memory *mem, Client_data *list, uint64_t cur_time, unsigned int length, const uint8_t *comp_public_key) { // Pass comp_public_key to qsort with each Client_data entry, so the // comparison function can use it as the base of comparison. DHT_Cmp_Data *cmp_list = (DHT_Cmp_Data *)mem_valloc(mem, length, sizeof(DHT_Cmp_Data)); if (cmp_list == nullptr) { return; } for (uint32_t i = 0; i < length; ++i) { cmp_list[i].cur_time = cur_time; cmp_list[i].base_public_key = comp_public_key; cmp_list[i].entry = list[i]; } qsort(cmp_list, length, sizeof(DHT_Cmp_Data), dht_cmp_entry); for (uint32_t i = 0; i < length; ++i) { list[i] = cmp_list[i].entry; } mem_delete(mem, cmp_list); } non_null() static void update_client_with_reset(const Mono_Time *mono_time, Client_data *client, const IP_Port *ip_port) { IPPTsPng *ipptp_write = nullptr; IPPTsPng *ipptp_clear = nullptr; if (net_family_is_ipv4(ip_port->ip.family)) { ipptp_write = &client->assoc4; ipptp_clear = &client->assoc6; } else { ipptp_write = &client->assoc6; ipptp_clear = &client->assoc4; } ipptp_write->ip_port = *ip_port; ipptp_write->timestamp = mono_time_get(mono_time); ip_reset(&ipptp_write->ret_ip_port.ip); ipptp_write->ret_ip_port.port = 0; ipptp_write->ret_timestamp = 0; ipptp_write->ret_ip_self = false; /* zero out other address */ memset(ipptp_clear, 0, sizeof(*ipptp_clear)); } /** * Replace a first bad (or empty) node with this one * or replace a possibly bad node (tests failed or not done yet) * that is further than any other in the list * from the comp_public_key * or replace a good node that is further * than any other in the list from the comp_public_key * and further than public_key. * * Do not replace any node if the list has no bad or possibly bad nodes * and all nodes in the list are closer to comp_public_key * than public_key. * * @return true when the item was stored, false otherwise */ non_null() static bool replace_all(const DHT *dht, Client_data *list, uint16_t length, const uint8_t *public_key, const IP_Port *ip_port, const uint8_t *comp_public_key) { if (!net_family_is_ipv4(ip_port->ip.family) && !net_family_is_ipv6(ip_port->ip.family)) { return false; } if (!store_node_ok(&list[1], dht->cur_time, public_key, comp_public_key) && !store_node_ok(&list[0], dht->cur_time, public_key, comp_public_key)) { return false; } sort_client_list(dht->mem, list, dht->cur_time, length, comp_public_key); Client_data *const client = &list[0]; pk_copy(client->public_key, public_key); update_client_with_reset(dht->mono_time, client, ip_port); return true; } /** @brief Add node to close list. * * simulate is set to 1 if we want to check if a node can be added to the list without adding it. * * return false on failure. * return true on success. */ non_null() static bool add_to_close(DHT *dht, const uint8_t *public_key, const IP_Port *ip_port, bool simulate) { unsigned int index = bit_by_bit_cmp(public_key, dht->self_public_key); if (index >= LCLIENT_LENGTH) { index = LCLIENT_LENGTH - 1; } for (uint32_t i = 0; i < LCLIENT_NODES; ++i) { /* TODO(iphydf): write bounds checking test to catch the case that * index is left as >= LCLIENT_LENGTH */ Client_data *const client = &dht->close_clientlist[(index * LCLIENT_NODES) + i]; if (!assoc_timeout(dht->cur_time, &client->assoc4) || !assoc_timeout(dht->cur_time, &client->assoc6)) { continue; } if (simulate) { return true; } pk_copy(client->public_key, public_key); update_client_with_reset(dht->mono_time, client, ip_port); #ifdef CHECK_ANNOUNCE_NODE client->announce_node = false; send_announce_ping(dht, public_key, ip_port); #endif return true; } return false; } /** Return 1 if node can be added to close list, 0 if it can't. */ bool node_addable_to_close_list(DHT *dht, const uint8_t *public_key, const IP_Port *ip_port) { return add_to_close(dht, public_key, ip_port, true); } non_null() static bool is_pk_in_client_list(const Client_data *list, unsigned int client_list_length, uint64_t cur_time, const uint8_t *public_key, const IP_Port *ip_port) { const uint32_t index = index_of_client_pk(list, client_list_length, public_key); if (index == UINT32_MAX) { return false; } const IPPTsPng *assoc = net_family_is_ipv4(ip_port->ip.family) ? &list[index].assoc4 : &list[index].assoc6; return !assoc_timeout(cur_time, assoc); } non_null() static bool is_pk_in_close_list(const DHT *dht, const uint8_t *public_key, const IP_Port *ip_port) { unsigned int index = bit_by_bit_cmp(public_key, dht->self_public_key); if (index >= LCLIENT_LENGTH) { index = LCLIENT_LENGTH - 1; } return is_pk_in_client_list(dht->close_clientlist + index * LCLIENT_NODES, LCLIENT_NODES, dht->cur_time, public_key, ip_port); } /** @brief Check if the node obtained with a get_nodes with public_key should be pinged. * * NOTE: for best results call it after addto_lists. * * return false if the node should not be pinged. * return true if it should. */ non_null() static bool ping_node_from_getnodes_ok(DHT *dht, const uint8_t *public_key, const IP_Port *ip_port) { bool ret = false; if (add_to_close(dht, public_key, ip_port, true)) { ret = true; } { unsigned int *const num = &dht->num_to_bootstrap; const uint32_t index = index_of_node_pk(dht->to_bootstrap, *num, public_key); const bool in_close_list = is_pk_in_close_list(dht, public_key, ip_port); if (ret && index == UINT32_MAX && !in_close_list) { if (*num < MAX_CLOSE_TO_BOOTSTRAP_NODES) { memcpy(dht->to_bootstrap[*num].public_key, public_key, CRYPTO_PUBLIC_KEY_SIZE); dht->to_bootstrap[*num].ip_port = *ip_port; ++*num; } else { // TODO(irungentoo): ipv6 vs v4 add_to_list(dht->to_bootstrap, MAX_CLOSE_TO_BOOTSTRAP_NODES, public_key, ip_port, dht->self_public_key); } } } for (uint32_t i = 0; i < dht->num_friends; ++i) { DHT_Friend *dht_friend = &dht->friends_list[i]; bool store_ok = false; if (store_node_ok(&dht_friend->client_list[1], dht->cur_time, public_key, dht_friend->public_key)) { store_ok = true; } if (store_node_ok(&dht_friend->client_list[0], dht->cur_time, public_key, dht_friend->public_key)) { store_ok = true; } unsigned int *const friend_num = &dht_friend->num_to_bootstrap; const uint32_t index = index_of_node_pk(dht_friend->to_bootstrap, *friend_num, public_key); const bool pk_in_list = is_pk_in_client_list(dht_friend->client_list, MAX_FRIEND_CLIENTS, dht->cur_time, public_key, ip_port); if (store_ok && index == UINT32_MAX && !pk_in_list) { if (*friend_num < MAX_SENT_NODES) { Node_format *const format = &dht_friend->to_bootstrap[*friend_num]; memcpy(format->public_key, public_key, CRYPTO_PUBLIC_KEY_SIZE); format->ip_port = *ip_port; ++*friend_num; } else { add_to_list(dht_friend->to_bootstrap, MAX_SENT_NODES, public_key, ip_port, dht_friend->public_key); } ret = true; } } return ret; } /** @brief Attempt to add client with ip_port and public_key to the friends client list * and close_clientlist. * * @return 1+ if the item is used in any list, 0 else */ uint32_t addto_lists(DHT *dht, const IP_Port *ip_port, const uint8_t *public_key) { IP_Port ipp_copy = ip_port_normalize(ip_port); uint32_t used = 0; /* NOTE: Current behavior if there are two clients with the same id is * to replace the first ip by the second. */ const bool in_close_list = client_or_ip_port_in_list(dht->log, dht->mono_time, dht->close_clientlist, LCLIENT_LIST, public_key, &ipp_copy); /* add_to_close should be called only if !in_list (don't extract to variable) */ if (in_close_list || !add_to_close(dht, public_key, &ipp_copy, false)) { ++used; } const DHT_Friend *friend_foundip = nullptr; for (uint32_t i = 0; i < dht->num_friends; ++i) { const bool in_list = client_or_ip_port_in_list(dht->log, dht->mono_time, dht->friends_list[i].client_list, MAX_FRIEND_CLIENTS, public_key, &ipp_copy); /* replace_all should be called only if !in_list (don't extract to variable) */ if (in_list || replace_all(dht, dht->friends_list[i].client_list, MAX_FRIEND_CLIENTS, public_key, &ipp_copy, dht->friends_list[i].public_key)) { const DHT_Friend *dht_friend = &dht->friends_list[i]; if (pk_equal(public_key, dht_friend->public_key)) { friend_foundip = dht_friend; } ++used; } } if (friend_foundip == nullptr) { return used; } for (uint32_t i = 0; i < DHT_FRIEND_MAX_LOCKS; ++i) { const bool has_lock = (friend_foundip->lock_flags & (UINT32_C(1) << i)) > 0; if (has_lock && friend_foundip->callbacks[i].ip_callback != nullptr) { friend_foundip->callbacks[i].ip_callback(friend_foundip->callbacks[i].data, friend_foundip->callbacks[i].number, &ipp_copy); } } return used; } non_null() static bool update_client_data(const Mono_Time *mono_time, Client_data *array, size_t size, const IP_Port *ip_port, const uint8_t *pk, bool node_is_self) { const uint64_t temp_time = mono_time_get(mono_time); const uint32_t index = index_of_client_pk(array, size, pk); if (index == UINT32_MAX) { return false; } Client_data *const data = &array[index]; IPPTsPng *assoc; if (net_family_is_ipv4(ip_port->ip.family)) { assoc = &data->assoc4; } else if (net_family_is_ipv6(ip_port->ip.family)) { assoc = &data->assoc6; } else { return true; } assoc->ret_ip_port = *ip_port; assoc->ret_timestamp = temp_time; assoc->ret_ip_self = node_is_self; return true; } /** * If public_key is a friend or us, update ret_ip_port * nodepublic_key is the id of the node that sent us this info. */ non_null() static void returnedip_ports(DHT *dht, const IP_Port *ip_port, const uint8_t *public_key, const uint8_t *nodepublic_key) { IP_Port ipp_copy = ip_port_normalize(ip_port); if (pk_equal(public_key, dht->self_public_key)) { update_client_data(dht->mono_time, dht->close_clientlist, LCLIENT_LIST, &ipp_copy, nodepublic_key, true); return; } for (uint32_t i = 0; i < dht->num_friends; ++i) { if (pk_equal(public_key, dht->friends_list[i].public_key)) { Client_data *const client_list = dht->friends_list[i].client_list; if (update_client_data(dht->mono_time, client_list, MAX_FRIEND_CLIENTS, &ipp_copy, nodepublic_key, false)) { return; } } } } bool dht_getnodes(DHT *dht, const IP_Port *ip_port, const uint8_t *public_key, const uint8_t *client_id) { /* Check if packet is going to be sent to ourself. */ if (pk_equal(public_key, dht->self_public_key)) { return false; } uint8_t plain_message[sizeof(Node_format) * 2] = {0}; Node_format receiver; memcpy(receiver.public_key, public_key, CRYPTO_PUBLIC_KEY_SIZE); receiver.ip_port = *ip_port; if (pack_nodes(dht->log, plain_message, sizeof(plain_message), &receiver, 1) == -1) { return false; } uint64_t ping_id = 0; ping_id = ping_array_add(dht->dht_ping_array, dht->mono_time, dht->rng, plain_message, sizeof(receiver)); if (ping_id == 0) { LOGGER_ERROR(dht->log, "adding ping id failed"); return false; } uint8_t plain[CRYPTO_PUBLIC_KEY_SIZE + sizeof(ping_id)]; uint8_t data[1 + CRYPTO_PUBLIC_KEY_SIZE + CRYPTO_NONCE_SIZE + sizeof(plain) + CRYPTO_MAC_SIZE]; memcpy(plain, client_id, CRYPTO_PUBLIC_KEY_SIZE); memcpy(plain + CRYPTO_PUBLIC_KEY_SIZE, &ping_id, sizeof(ping_id)); const uint8_t *shared_key = dht_get_shared_key_sent(dht, public_key); const int len = dht_create_packet(dht->mem, dht->rng, dht->self_public_key, shared_key, NET_PACKET_GET_NODES, plain, sizeof(plain), data, sizeof(data)); if (len != sizeof(data)) { LOGGER_ERROR(dht->log, "getnodes packet encryption failed"); return false; } return sendpacket(dht->net, ip_port, data, len) > 0; } /** Send a send nodes response: message for IPv6 nodes */ non_null() static int sendnodes_ipv6(const DHT *dht, const IP_Port *ip_port, const uint8_t *public_key, const uint8_t *client_id, const uint8_t *sendback_data, uint16_t length, const uint8_t *shared_encryption_key) { /* Check if packet is going to be sent to ourself. */ if (pk_equal(public_key, dht->self_public_key)) { return -1; } if (length != sizeof(uint64_t)) { return -1; } const size_t node_format_size = sizeof(Node_format); Node_format nodes_list[MAX_SENT_NODES]; const uint32_t num_nodes = get_close_nodes(dht, client_id, nodes_list, net_family_unspec(), ip_is_lan(&ip_port->ip), false); VLA(uint8_t, plain, 1 + node_format_size * MAX_SENT_NODES + length); int nodes_length = 0; if (num_nodes > 0) { nodes_length = pack_nodes(dht->log, plain + 1, node_format_size * MAX_SENT_NODES, nodes_list, num_nodes); if (nodes_length <= 0) { return -1; } } plain[0] = num_nodes; memcpy(plain + 1 + nodes_length, sendback_data, length); const uint32_t crypto_size = 1 + CRYPTO_PUBLIC_KEY_SIZE + CRYPTO_NONCE_SIZE + CRYPTO_MAC_SIZE; VLA(uint8_t, data, 1 + nodes_length + length + crypto_size); const int len = dht_create_packet(dht->mem, dht->rng, dht->self_public_key, shared_encryption_key, NET_PACKET_SEND_NODES_IPV6, plain, 1 + nodes_length + length, data, SIZEOF_VLA(data)); if (len != SIZEOF_VLA(data)) { return -1; } return sendpacket(dht->net, ip_port, data, len); } #define CRYPTO_NODE_SIZE (CRYPTO_PUBLIC_KEY_SIZE + sizeof(uint64_t)) non_null() static int handle_getnodes(void *object, const IP_Port *source, const uint8_t *packet, uint16_t length, void *userdata) { if (length != (CRYPTO_SIZE + CRYPTO_MAC_SIZE + sizeof(uint64_t))) { return 1; } DHT *const dht = (DHT *)object; /* Check if packet is from ourself. */ if (pk_equal(packet + 1, dht->self_public_key)) { return 1; } uint8_t plain[CRYPTO_NODE_SIZE]; const uint8_t *shared_key = dht_get_shared_key_recv(dht, packet + 1); const int len = decrypt_data_symmetric( shared_key, packet + 1 + CRYPTO_PUBLIC_KEY_SIZE, packet + 1 + CRYPTO_PUBLIC_KEY_SIZE + CRYPTO_NONCE_SIZE, CRYPTO_NODE_SIZE + CRYPTO_MAC_SIZE, plain); if (len != CRYPTO_NODE_SIZE) { return 1; } sendnodes_ipv6(dht, source, packet + 1, plain, plain + CRYPTO_PUBLIC_KEY_SIZE, sizeof(uint64_t), shared_key); ping_add(dht->ping, packet + 1, source); return 0; } /** Return true if we sent a getnode packet to the peer associated with the supplied info. */ non_null() static bool sent_getnode_to_node(DHT *dht, const uint8_t *public_key, const IP_Port *node_ip_port, uint64_t ping_id) { uint8_t data[sizeof(Node_format) * 2]; if (ping_array_check(dht->dht_ping_array, dht->mono_time, data, sizeof(data), ping_id) != sizeof(Node_format)) { return false; } Node_format test; if (unpack_nodes(&test, 1, nullptr, data, sizeof(data), false) != 1) { return false; } return ipport_equal(&test.ip_port, node_ip_port) && pk_equal(test.public_key, public_key); } non_null() static bool handle_sendnodes_core(void *object, const IP_Port *source, const uint8_t *packet, uint16_t length, Node_format *plain_nodes, uint16_t size_plain_nodes, uint32_t *num_nodes_out) { DHT *const dht = (DHT *)object; const uint32_t cid_size = 1 + CRYPTO_PUBLIC_KEY_SIZE + CRYPTO_NONCE_SIZE + 1 + sizeof(uint64_t) + CRYPTO_MAC_SIZE; if (length < cid_size) { /* too short */ return false; } const uint32_t data_size = length - cid_size; if (data_size == 0) { return false; } if (data_size > sizeof(Node_format) * MAX_SENT_NODES) { /* invalid length */ return false; } VLA(uint8_t, plain, 1 + data_size + sizeof(uint64_t)); const uint8_t *shared_key = dht_get_shared_key_sent(dht, packet + 1); const int len = decrypt_data_symmetric( shared_key, packet + 1 + CRYPTO_PUBLIC_KEY_SIZE, packet + 1 + CRYPTO_PUBLIC_KEY_SIZE + CRYPTO_NONCE_SIZE, 1 + data_size + sizeof(uint64_t) + CRYPTO_MAC_SIZE, plain); if ((unsigned int)len != SIZEOF_VLA(plain)) { return false; } if (plain[0] > size_plain_nodes) { return false; } uint64_t ping_id; memcpy(&ping_id, plain + 1 + data_size, sizeof(ping_id)); if (!sent_getnode_to_node(dht, packet + 1, source, ping_id)) { return false; } uint16_t length_nodes = 0; const int num_nodes = unpack_nodes(plain_nodes, plain[0], &length_nodes, plain + 1, data_size, false); if (length_nodes != data_size) { return false; } if (num_nodes != plain[0]) { return false; } if (num_nodes < 0) { return false; } /* store the address the *request* was sent to */ addto_lists(dht, source, packet + 1); *num_nodes_out = num_nodes; return true; } non_null() static int handle_sendnodes_ipv6(void *object, const IP_Port *source, const uint8_t *packet, uint16_t length, void *userdata) { DHT *const dht = (DHT *)object; Node_format plain_nodes[MAX_SENT_NODES]; uint32_t num_nodes; if (!handle_sendnodes_core(object, source, packet, length, plain_nodes, MAX_SENT_NODES, &num_nodes)) { return 1; } if (num_nodes == 0) { return 0; } for (uint32_t i = 0; i < num_nodes; ++i) { if (ipport_isset(&plain_nodes[i].ip_port)) { ping_node_from_getnodes_ok(dht, plain_nodes[i].public_key, &plain_nodes[i].ip_port); returnedip_ports(dht, &plain_nodes[i].ip_port, plain_nodes[i].public_key, packet + 1); if (dht->get_nodes_response != nullptr) { dht->get_nodes_response(dht, &plain_nodes[i], userdata); } } } return 0; } /*----------------------------------------------------------------------------------*/ /*------------------------END of packet handling functions--------------------------*/ non_null(1) nullable(2, 3) static uint32_t dht_friend_lock(DHT_Friend *const dht_friend, dht_ip_cb *ip_callback, void *data, int32_t number) { // find first free slot uint8_t lock_num; uint32_t lock_token = 0; for (lock_num = 0; lock_num < DHT_FRIEND_MAX_LOCKS; ++lock_num) { lock_token = UINT32_C(1) << lock_num; if ((dht_friend->lock_flags & lock_token) == 0) { break; } } // One of the conditions would be enough, but static analyzers don't get that if (lock_token == 0 || lock_num == DHT_FRIEND_MAX_LOCKS) { return 0; } // Claim that slot dht_friend->lock_flags |= lock_token; dht_friend->callbacks[lock_num].ip_callback = ip_callback; dht_friend->callbacks[lock_num].data = data; dht_friend->callbacks[lock_num].number = number; return lock_token; } non_null() static void dht_friend_unlock(DHT_Friend *const dht_friend, uint32_t lock_token) { // If this triggers, there was a double free assert((lock_token & dht_friend->lock_flags) > 0); // find used slot uint8_t lock_num; for (lock_num = 0; lock_num < DHT_FRIEND_MAX_LOCKS; ++lock_num) { if (((UINT32_C(1) << lock_num) & lock_token) > 0) { break; } } if (lock_num == DHT_FRIEND_MAX_LOCKS) { // Gracefully handle double unlock return; } // Clear the slot dht_friend->lock_flags &= ~lock_token; dht_friend->callbacks[lock_num].ip_callback = nullptr; dht_friend->callbacks[lock_num].data = nullptr; dht_friend->callbacks[lock_num].number = 0; } int dht_addfriend(DHT *dht, const uint8_t *public_key, dht_ip_cb *ip_callback, void *data, int32_t number, uint32_t *lock_token) { const uint32_t friend_num = index_of_friend_pk(dht->friends_list, dht->num_friends, public_key); if (friend_num != UINT32_MAX) { /* Is friend already in DHT? */ DHT_Friend *const dht_friend = &dht->friends_list[friend_num]; const uint32_t tmp_lock_token = dht_friend_lock(dht_friend, ip_callback, data, number); if (tmp_lock_token == 0) { return -1; } return 0; } DHT_Friend *const temp = (DHT_Friend *)mem_vrealloc(dht->mem, dht->friends_list, dht->num_friends + 1, sizeof(DHT_Friend)); if (temp == nullptr) { return -1; } dht->friends_list = temp; DHT_Friend *const dht_friend = &dht->friends_list[dht->num_friends]; *dht_friend = empty_dht_friend; memcpy(dht_friend->public_key, public_key, CRYPTO_PUBLIC_KEY_SIZE); dht_friend->nat.nat_ping_id = random_u64(dht->rng); ++dht->num_friends; *lock_token = dht_friend_lock(dht_friend, ip_callback, data, number); assert(*lock_token != 0); // Friend was newly allocated dht_friend->num_to_bootstrap = get_close_nodes(dht, dht_friend->public_key, dht_friend->to_bootstrap, net_family_unspec(), true, false); return 0; } int dht_delfriend(DHT *dht, const uint8_t *public_key, uint32_t lock_token) { const uint32_t friend_num = index_of_friend_pk(dht->friends_list, dht->num_friends, public_key); if (friend_num == UINT32_MAX) { return -1; } DHT_Friend *const dht_friend = &dht->friends_list[friend_num]; dht_friend_unlock(dht_friend, lock_token); if (dht_friend->lock_flags > 0) { /* DHT friend is still in use.*/ return 0; } --dht->num_friends; if (dht->num_friends != friend_num) { dht->friends_list[friend_num] = dht->friends_list[dht->num_friends]; } if (dht->num_friends == 0) { mem_delete(dht->mem, dht->friends_list); dht->friends_list = nullptr; return 0; } DHT_Friend *const temp = (DHT_Friend *)mem_vrealloc(dht->mem, dht->friends_list, dht->num_friends, sizeof(DHT_Friend)); if (temp == nullptr) { return -1; } dht->friends_list = temp; return 0; } /* TODO(irungentoo): Optimize this. */ int dht_getfriendip(const DHT *dht, const uint8_t *public_key, IP_Port *ip_port) { ip_reset(&ip_port->ip); ip_port->port = 0; const uint32_t friend_index = index_of_friend_pk(dht->friends_list, dht->num_friends, public_key); if (friend_index == UINT32_MAX) { return -1; } const DHT_Friend *const frnd = &dht->friends_list[friend_index]; const uint32_t client_index = index_of_client_pk(frnd->client_list, MAX_FRIEND_CLIENTS, public_key); if (client_index == UINT32_MAX) { return 0; } const Client_data *const client = &frnd->client_list[client_index]; const IPPTsPng *const assocs[] = { &client->assoc6, &client->assoc4, nullptr }; for (const IPPTsPng * const *it = assocs; *it != nullptr; ++it) { const IPPTsPng *const assoc = *it; if (!assoc_timeout(dht->cur_time, assoc)) { *ip_port = assoc->ip_port; return 1; } } return -1; } /** returns number of nodes not in kill-timeout */ non_null() static uint8_t do_ping_and_sendnode_requests(DHT *dht, uint64_t *lastgetnode, const uint8_t *public_key, Client_data *list, uint32_t list_count, uint32_t *bootstrap_times, bool sortable) { uint8_t not_kill = 0; const uint64_t temp_time = mono_time_get(dht->mono_time); uint32_t num_nodes = 0; Client_data **client_list = (Client_data **)mem_valloc(dht->mem, list_count * 2, sizeof(Client_data *)); IPPTsPng **assoc_list = (IPPTsPng **)mem_valloc(dht->mem, list_count * 2, sizeof(IPPTsPng *)); unsigned int sort = 0; bool sort_ok = false; if (client_list == nullptr || assoc_list == nullptr) { mem_delete(dht->mem, assoc_list); mem_delete(dht->mem, client_list); return 0; } for (uint32_t i = 0; i < list_count; ++i) { /* If node is not dead. */ Client_data *client = &list[i]; IPPTsPng *const assocs[] = { &client->assoc6, &client->assoc4 }; for (uint32_t j = 0; j < sizeof(assocs) / sizeof(assocs[0]); ++j) { IPPTsPng *const assoc = assocs[j]; if (!mono_time_is_timeout(dht->mono_time, assoc->timestamp, KILL_NODE_TIMEOUT)) { sort = 0; ++not_kill; if (mono_time_is_timeout(dht->mono_time, assoc->last_pinged, PING_INTERVAL)) { dht_getnodes(dht, &assoc->ip_port, client->public_key, public_key); assoc->last_pinged = temp_time; } /* If node is good. */ if (!assoc_timeout(dht->cur_time, assoc)) { client_list[num_nodes] = client; assoc_list[num_nodes] = assoc; ++num_nodes; } } else { ++sort; /* Timed out should be at beginning, if they are not, sort the list. */ if (sort > 1 && sort < (((j + 1) * 2) - 1)) { sort_ok = true; } } } } if (sortable && sort_ok) { sort_client_list(dht->mem, list, dht->cur_time, list_count, public_key); } if (num_nodes > 0 && (mono_time_is_timeout(dht->mono_time, *lastgetnode, GET_NODE_INTERVAL) || *bootstrap_times < MAX_BOOTSTRAP_TIMES)) { uint32_t rand_node = random_range_u32(dht->rng, num_nodes); if ((num_nodes - 1) != rand_node) { rand_node += random_range_u32(dht->rng, num_nodes - (rand_node + 1)); } dht_getnodes(dht, &assoc_list[rand_node]->ip_port, client_list[rand_node]->public_key, public_key); *lastgetnode = temp_time; ++*bootstrap_times; } mem_delete(dht->mem, assoc_list); mem_delete(dht->mem, client_list); return not_kill; } /** @brief Ping each client in the "friends" list every PING_INTERVAL seconds. * * Send a get nodes request every GET_NODE_INTERVAL seconds to a random good * node for each "friend" in our "friends" list. */ non_null() static void do_dht_friends(DHT *dht) { for (size_t i = 0; i < dht->num_friends; ++i) { DHT_Friend *const dht_friend = &dht->friends_list[i]; for (size_t j = 0; j < dht_friend->num_to_bootstrap; ++j) { dht_getnodes(dht, &dht_friend->to_bootstrap[j].ip_port, dht_friend->to_bootstrap[j].public_key, dht_friend->public_key); } dht_friend->num_to_bootstrap = 0; do_ping_and_sendnode_requests(dht, &dht_friend->lastgetnode, dht_friend->public_key, dht_friend->client_list, MAX_FRIEND_CLIENTS, &dht_friend->bootstrap_times, true); } } /** @brief Ping each client in the close nodes list every PING_INTERVAL seconds. * * Send a get nodes request every GET_NODE_INTERVAL seconds to a random good node in the list. */ non_null() static void do_close(DHT *dht) { for (size_t i = 0; i < dht->num_to_bootstrap; ++i) { dht_getnodes(dht, &dht->to_bootstrap[i].ip_port, dht->to_bootstrap[i].public_key, dht->self_public_key); } dht->num_to_bootstrap = 0; const uint8_t not_killed = do_ping_and_sendnode_requests( dht, &dht->close_lastgetnodes, dht->self_public_key, dht->close_clientlist, LCLIENT_LIST, &dht->close_bootstrap_times, false); if (not_killed != 0) { return; } /* all existing nodes are at least KILL_NODE_TIMEOUT, * which means we are mute, as we only send packets to * nodes NOT in KILL_NODE_TIMEOUT * * so: reset all nodes to be BAD_NODE_TIMEOUT, but not * KILL_NODE_TIMEOUT, so we at least keep trying pings */ const uint64_t badonly = mono_time_get(dht->mono_time) - BAD_NODE_TIMEOUT; for (size_t i = 0; i < LCLIENT_LIST; ++i) { Client_data *const client = &dht->close_clientlist[i]; IPPTsPng *const assocs[] = { &client->assoc6, &client->assoc4, nullptr }; for (IPPTsPng * const *it = assocs; *it != nullptr; ++it) { IPPTsPng *const assoc = *it; if (assoc->timestamp != 0) { assoc->timestamp = badonly; } } } } bool dht_bootstrap(DHT *dht, const IP_Port *ip_port, const uint8_t *public_key) { if (pk_equal(public_key, dht->self_public_key)) { // Bootstrapping off ourselves is ok (onion paths are still set up). return true; } return dht_getnodes(dht, ip_port, public_key, dht->self_public_key); } int dht_bootstrap_from_address(DHT *dht, const char *address, bool ipv6enabled, uint16_t port, const uint8_t *public_key) { IP_Port ip_port_v64; IP *ip_extra = nullptr; IP_Port ip_port_v4; ip_init(&ip_port_v64.ip, ipv6enabled); if (ipv6enabled) { /* setup for getting BOTH: an IPv6 AND an IPv4 address */ ip_port_v64.ip.family = net_family_unspec(); ip_reset(&ip_port_v4.ip); ip_extra = &ip_port_v4.ip; } if (addr_resolve_or_parse_ip(dht->ns, address, &ip_port_v64.ip, ip_extra)) { ip_port_v64.port = port; dht_bootstrap(dht, &ip_port_v64, public_key); if ((ip_extra != nullptr) && ip_isset(ip_extra)) { ip_port_v4.port = port; dht_bootstrap(dht, &ip_port_v4, public_key); } return 1; } return 0; } int route_packet(const DHT *dht, const uint8_t *public_key, const uint8_t *packet, uint16_t length) { for (uint32_t i = 0; i < LCLIENT_LIST; ++i) { if (pk_equal(public_key, dht->close_clientlist[i].public_key)) { const Client_data *const client = &dht->close_clientlist[i]; const IPPTsPng *const assocs[] = { &client->assoc6, &client->assoc4, nullptr }; for (const IPPTsPng * const *it = assocs; *it != nullptr; ++it) { const IPPTsPng *const assoc = *it; if (ip_isset(&assoc->ip_port.ip)) { return sendpacket(dht->net, &assoc->ip_port, packet, length); } } break; } } return -1; } /** @brief Puts all the different ips returned by the nodes for a friend_num into array ip_portlist. * * ip_portlist must be at least MAX_FRIEND_CLIENTS big. * * @return the number of ips returned. * @retval 0 if we are connected to friend or if no ips were found. * @retval -1 if no such friend. */ non_null() static int friend_iplist(const DHT *dht, IP_Port *ip_portlist, uint16_t friend_num) { if (friend_num >= dht->num_friends) { return -1; } const DHT_Friend *const dht_friend = &dht->friends_list[friend_num]; IP_Port ipv4s[MAX_FRIEND_CLIENTS]; int num_ipv4s = 0; IP_Port ipv6s[MAX_FRIEND_CLIENTS]; int num_ipv6s = 0; for (size_t i = 0; i < MAX_FRIEND_CLIENTS; ++i) { const Client_data *const client = &dht_friend->client_list[i]; /* If ip is not zero and node is good. */ if (ip_isset(&client->assoc4.ret_ip_port.ip) && !mono_time_is_timeout(dht->mono_time, client->assoc4.ret_timestamp, BAD_NODE_TIMEOUT)) { ipv4s[num_ipv4s] = client->assoc4.ret_ip_port; ++num_ipv4s; } if (ip_isset(&client->assoc6.ret_ip_port.ip) && !mono_time_is_timeout(dht->mono_time, client->assoc6.ret_timestamp, BAD_NODE_TIMEOUT)) { ipv6s[num_ipv6s] = client->assoc6.ret_ip_port; ++num_ipv6s; } if (pk_equal(client->public_key, dht_friend->public_key)) { if (!assoc_timeout(dht->cur_time, &client->assoc6) || !assoc_timeout(dht->cur_time, &client->assoc4)) { return 0; /* direct connectivity */ } } } #ifdef FRIEND_IPLIST_PAD memcpy(ip_portlist, ipv6s, num_ipv6s * sizeof(IP_Port)); if (num_ipv6s == MAX_FRIEND_CLIENTS) { return MAX_FRIEND_CLIENTS; } int num_ipv4s_used = MAX_FRIEND_CLIENTS - num_ipv6s; if (num_ipv4s_used > num_ipv4s) { num_ipv4s_used = num_ipv4s; } memcpy(&ip_portlist[num_ipv6s], ipv4s, num_ipv4s_used * sizeof(IP_Port)); return num_ipv6s + num_ipv4s_used; #else /* !FRIEND_IPLIST_PAD */ /* there must be some secret reason why we can't pad the longer list * with the shorter one... */ if (num_ipv6s >= num_ipv4s) { memcpy(ip_portlist, ipv6s, num_ipv6s * sizeof(IP_Port)); return num_ipv6s; } memcpy(ip_portlist, ipv4s, num_ipv4s * sizeof(IP_Port)); return num_ipv4s; #endif /* !FRIEND_IPLIST_PAD */ } /** * Callback invoked for each IP/port of each client of a friend. * * For each client, the callback is invoked twice: once for IPv4 and once for * IPv6. If the callback returns `false` after the IPv4 invocation, it will not * be invoked for IPv6. * * @param dht The main DHT instance. * @param ip_port The currently processed IP/port. * @param n A pointer to the number that will be returned from `foreach_ip_port`. * @param userdata The `userdata` pointer passed to `foreach_ip_port`. */ typedef bool foreach_ip_port_cb(const DHT *dht, const IP_Port *ip_port, uint32_t *n, void *userdata); /** * Runs a callback on every active connection for a given DHT friend. * * This iterates over the client list of a DHT friend and invokes a callback for * every non-zero IP/port (IPv4 and IPv6) that's not timed out. * * @param dht The main DHT instance, passed to the callback. * @param dht_friend The friend over whose connections we should iterate. * @param callback The callback to invoke for each IP/port. * @param userdata Extra pointer passed to the callback. */ non_null() static uint32_t foreach_ip_port(const DHT *dht, const DHT_Friend *dht_friend, foreach_ip_port_cb *callback, void *userdata) { uint32_t n = 0; /* extra legwork, because having the outside allocating the space for us * is *usually* good(tm) (bites us in the behind in this case though) */ for (uint32_t i = 0; i < MAX_FRIEND_CLIENTS; ++i) { const Client_data *const client = &dht_friend->client_list[i]; const IPPTsPng *const assocs[] = { &client->assoc4, &client->assoc6, nullptr }; for (const IPPTsPng * const *it = assocs; *it != nullptr; ++it) { const IPPTsPng *const assoc = *it; /* If ip is not zero and node is good. */ if (!ip_isset(&assoc->ret_ip_port.ip) && !mono_time_is_timeout(dht->mono_time, assoc->ret_timestamp, BAD_NODE_TIMEOUT)) { continue; } if (!callback(dht, &assoc->ip_port, &n, userdata)) { /* If the callback is happy with just one of the assocs, we * don't give it the second one. */ break; } } } return n; } non_null() static bool send_packet_to_friend(const DHT *dht, const IP_Port *ip_port, uint32_t *n, void *userdata) { const Packet *packet = (const Packet *)userdata; const int retval = send_packet(dht->net, ip_port, *packet); if ((uint32_t)retval == packet->length) { ++*n; /* Send one packet per friend: stop the foreach on the first success. */ return false; } return true; } /** * Send the following packet to everyone who tells us they are connected to friend_id. * * @return ip for friend. * @return number of nodes the packet was sent to. (Only works if more than (MAX_FRIEND_CLIENTS / 4). */ uint32_t route_to_friend(const DHT *dht, const uint8_t *friend_id, const Packet *packet) { const uint32_t num = index_of_friend_pk(dht->friends_list, dht->num_friends, friend_id); if (num == UINT32_MAX) { return 0; } IP_Port ip_list[MAX_FRIEND_CLIENTS]; const int ip_num = friend_iplist(dht, ip_list, num); if (ip_num < MAX_FRIEND_CLIENTS / 4) { return 0; /* Reason for that? */ } const DHT_Friend *const dht_friend = &dht->friends_list[num]; Packet packet_userdata = *packet; // Copy because it needs to be non-const. return foreach_ip_port(dht, dht_friend, send_packet_to_friend, &packet_userdata); } non_null() static bool get_ip_port(const DHT *dht, const IP_Port *ip_port, uint32_t *n, void *userdata) { IP_Port *ip_list = (IP_Port *)userdata; ip_list[*n] = *ip_port; ++*n; return true; } /** @brief Send the following packet to one random person who tells us they are connected to friend_id. * * @return number of nodes the packet was sent to. */ non_null() static uint32_t routeone_to_friend(const DHT *dht, const uint8_t *friend_id, const Packet *packet) { const uint32_t num = index_of_friend_pk(dht->friends_list, dht->num_friends, friend_id); if (num == UINT32_MAX) { return 0; } const DHT_Friend *const dht_friend = &dht->friends_list[num]; IP_Port ip_list[MAX_FRIEND_CLIENTS * 2]; const int n = foreach_ip_port(dht, dht_friend, get_ip_port, ip_list); if (n < 1) { return 0; } const uint32_t rand_idx = random_range_u32(dht->rng, n); const int retval = send_packet(dht->net, &ip_list[rand_idx], *packet); if ((unsigned int)retval == packet->length) { return 1; } return 0; } /*----------------------------------------------------------------------------------*/ /*---------------------BEGINNING OF NAT PUNCHING FUNCTIONS--------------------------*/ non_null() static int send_nat_ping(const DHT *dht, const uint8_t *public_key, uint64_t ping_id, uint8_t type) { uint8_t data[sizeof(uint64_t) + 1]; uint8_t packet_data[MAX_CRYPTO_REQUEST_SIZE]; data[0] = type; memcpy(data + 1, &ping_id, sizeof(uint64_t)); /* 254 is NAT ping request packet id */ const int len = create_request( dht->rng, dht->self_public_key, dht->self_secret_key, packet_data, public_key, data, sizeof(uint64_t) + 1, CRYPTO_PACKET_NAT_PING); if (len == -1) { return -1; } assert(len <= UINT16_MAX); uint32_t num = 0; const Packet packet = {packet_data, (uint16_t)len}; if (type == 0) { /* If packet is request use many people to route it. */ num = route_to_friend(dht, public_key, &packet); } else if (type == 1) { /* If packet is response use only one person to route it */ num = routeone_to_friend(dht, public_key, &packet); } if (num == 0) { return -1; } return num; } /** Handle a received ping request for. */ non_null() static int handle_nat_ping(void *object, const IP_Port *source, const uint8_t *source_pubkey, const uint8_t *packet, uint16_t length, void *userdata) { if (length != sizeof(uint64_t) + 1) { return 1; } DHT *const dht = (DHT *)object; uint64_t ping_id; memcpy(&ping_id, packet + 1, sizeof(uint64_t)); const uint32_t friendnumber = index_of_friend_pk(dht->friends_list, dht->num_friends, source_pubkey); if (friendnumber == UINT32_MAX) { return 1; } DHT_Friend *const dht_friend = &dht->friends_list[friendnumber]; if (packet[0] == NAT_PING_REQUEST) { /* 1 is reply */ send_nat_ping(dht, source_pubkey, ping_id, NAT_PING_RESPONSE); dht_friend->nat.recv_nat_ping_timestamp = mono_time_get(dht->mono_time); return 0; } if (packet[0] == NAT_PING_RESPONSE) { if (dht_friend->nat.nat_ping_id == ping_id) { dht_friend->nat.nat_ping_id = random_u64(dht->rng); dht_friend->nat.hole_punching = true; return 0; } } return 1; } /** @brief Get the most common ip in the ip_portlist. * Only return ip if it appears in list min_num or more. * len must not be bigger than MAX_FRIEND_CLIENTS. * * @return ip of 0 if failure. */ non_null() static IP nat_commonip(const IP_Port *ip_portlist, uint16_t len, uint16_t min_num) { IP zero; ip_reset(&zero); if (len > MAX_FRIEND_CLIENTS) { return zero; } uint16_t numbers[MAX_FRIEND_CLIENTS] = {0}; for (uint32_t i = 0; i < len; ++i) { for (uint32_t j = 0; j < len; ++j) { if (ip_equal(&ip_portlist[i].ip, &ip_portlist[j].ip)) { ++numbers[i]; } } if (numbers[i] >= min_num) { return ip_portlist[i].ip; } } return zero; } /** @brief Return all the ports for one ip in a list. * portlist must be at least len long, * where len is the length of ip_portlist. * * @return number of ports and puts the list of ports in portlist. */ non_null() static uint16_t nat_getports(uint16_t *portlist, const IP_Port *ip_portlist, uint16_t len, const IP *ip) { uint16_t num = 0; for (uint32_t i = 0; i < len; ++i) { if (ip_equal(&ip_portlist[i].ip, ip)) { portlist[num] = net_ntohs(ip_portlist[i].port); ++num; } } return num; } non_null() static void punch_holes(DHT *dht, const IP *ip, const uint16_t *port_list, uint16_t numports, uint16_t friend_num) { if (!dht->hole_punching_enabled) { return; } if (numports > MAX_FRIEND_CLIENTS || numports == 0) { return; } const uint16_t first_port = port_list[0]; uint16_t port_candidate; for (port_candidate = 0; port_candidate < numports; ++port_candidate) { if (first_port != port_list[port_candidate]) { break; } } if (port_candidate == numports) { /* If all ports are the same, only try that one port. */ IP_Port pinging; ip_copy(&pinging.ip, ip); pinging.port = net_htons(first_port); ping_send_request(dht->ping, &pinging, dht->friends_list[friend_num].public_key); } else { uint16_t i; for (i = 0; i < MAX_PUNCHING_PORTS; ++i) { /* TODO(irungentoo): Improve port guessing algorithm. */ const uint32_t it = i + dht->friends_list[friend_num].nat.punching_index; const int8_t sign = (it % 2 != 0) ? -1 : 1; const uint32_t delta = sign * (it / (2 * numports)); const uint32_t index = (it / 2) % numports; const uint16_t port = port_list[index] + delta; IP_Port pinging; ip_copy(&pinging.ip, ip); pinging.port = net_htons(port); ping_send_request(dht->ping, &pinging, dht->friends_list[friend_num].public_key); } dht->friends_list[friend_num].nat.punching_index += i; } if (dht->friends_list[friend_num].nat.tries > MAX_NORMAL_PUNCHING_TRIES) { IP_Port pinging; ip_copy(&pinging.ip, ip); uint16_t i; for (i = 0; i < MAX_PUNCHING_PORTS; ++i) { uint32_t it = i + dht->friends_list[friend_num].nat.punching_index2; const uint16_t port = 1024; pinging.port = net_htons(port + it); ping_send_request(dht->ping, &pinging, dht->friends_list[friend_num].public_key); } dht->friends_list[friend_num].nat.punching_index2 += i - (MAX_PUNCHING_PORTS / 2); } ++dht->friends_list[friend_num].nat.tries; } non_null() static void do_nat(DHT *dht) { const uint64_t temp_time = mono_time_get(dht->mono_time); for (uint32_t i = 0; i < dht->num_friends; ++i) { IP_Port ip_list[MAX_FRIEND_CLIENTS]; const int num = friend_iplist(dht, ip_list, i); /* If already connected or friend is not online don't try to hole punch. */ if (num < MAX_FRIEND_CLIENTS / 2) { continue; } if (dht->friends_list[i].nat.nat_ping_timestamp + PUNCH_INTERVAL < temp_time) { send_nat_ping(dht, dht->friends_list[i].public_key, dht->friends_list[i].nat.nat_ping_id, NAT_PING_REQUEST); dht->friends_list[i].nat.nat_ping_timestamp = temp_time; } if (dht->friends_list[i].nat.hole_punching && dht->friends_list[i].nat.punching_timestamp + PUNCH_INTERVAL < temp_time && dht->friends_list[i].nat.recv_nat_ping_timestamp + PUNCH_INTERVAL * 2 >= temp_time) { const IP ip = nat_commonip(ip_list, num, MAX_FRIEND_CLIENTS / 2); if (!ip_isset(&ip)) { continue; } if (dht->friends_list[i].nat.punching_timestamp + PUNCH_RESET_TIME < temp_time) { dht->friends_list[i].nat.tries = 0; dht->friends_list[i].nat.punching_index = 0; dht->friends_list[i].nat.punching_index2 = 0; } uint16_t port_list[MAX_FRIEND_CLIENTS]; const uint16_t numports = nat_getports(port_list, ip_list, num, &ip); punch_holes(dht, &ip, port_list, numports, i); dht->friends_list[i].nat.punching_timestamp = temp_time; dht->friends_list[i].nat.hole_punching = false; } } } /*----------------------------------------------------------------------------------*/ /*-----------------------END OF NAT PUNCHING FUNCTIONS------------------------------*/ /** @brief Put up to max_num nodes in nodes from the closelist. * * @return the number of nodes. */ non_null() static uint16_t list_nodes(const Random *rng, const Client_data *list, size_t length, uint64_t cur_time, Node_format *nodes, uint16_t max_num) { if (max_num == 0) { return 0; } uint16_t count = 0; for (size_t i = length; i != 0; --i) { const IPPTsPng *assoc = nullptr; if (!assoc_timeout(cur_time, &list[i - 1].assoc4)) { assoc = &list[i - 1].assoc4; } if (!assoc_timeout(cur_time, &list[i - 1].assoc6)) { if (assoc == nullptr || (random_u08(rng) % 2) != 0) { assoc = &list[i - 1].assoc6; } } if (assoc != nullptr) { memcpy(nodes[count].public_key, list[i - 1].public_key, CRYPTO_PUBLIC_KEY_SIZE); nodes[count].ip_port = assoc->ip_port; ++count; if (count >= max_num) { return count; } } } return count; } /** @brief Put up to max_num nodes in nodes from the random friends. * * Important: this function relies on the first two DHT friends *not* being real * friends to avoid leaking information about real friends into the onion paths. * * @return the number of nodes. */ uint16_t randfriends_nodes(const DHT *dht, Node_format *nodes, uint16_t max_num) { if (max_num == 0) { return 0; } uint16_t count = 0; const uint32_t r = random_u32(dht->rng); assert(DHT_FAKE_FRIEND_NUMBER <= dht->num_friends); // Only gather nodes from the initial 2 fake friends. for (uint32_t i = 0; i < DHT_FAKE_FRIEND_NUMBER; ++i) { count += list_nodes(dht->rng, dht->friends_list[(i + r) % DHT_FAKE_FRIEND_NUMBER].client_list, MAX_FRIEND_CLIENTS, dht->cur_time, nodes + count, max_num - count); if (count >= max_num) { break; } } return count; } /** @brief Put up to max_num nodes in nodes from the closelist. * * @return the number of nodes. */ uint16_t closelist_nodes(const DHT *dht, Node_format *nodes, uint16_t max_num) { return list_nodes(dht->rng, dht->close_clientlist, LCLIENT_LIST, dht->cur_time, nodes, max_num); } /*----------------------------------------------------------------------------------*/ void cryptopacket_registerhandler(DHT *dht, uint8_t byte, cryptopacket_handler_cb *cb, void *object) { dht->cryptopackethandlers[byte].function = cb; dht->cryptopackethandlers[byte].object = object; } non_null() static int cryptopacket_handle(void *object, const IP_Port *source, const uint8_t *packet, uint16_t length, void *userdata) { DHT *const dht = (DHT *)object; assert(packet[0] == NET_PACKET_CRYPTO); if (length <= CRYPTO_PUBLIC_KEY_SIZE * 2 + CRYPTO_NONCE_SIZE + 1 + CRYPTO_MAC_SIZE || length > MAX_CRYPTO_REQUEST_SIZE + CRYPTO_MAC_SIZE) { return 1; } // Check if request is for us. if (pk_equal(packet + 1, dht->self_public_key)) { uint8_t public_key[CRYPTO_PUBLIC_KEY_SIZE]; uint8_t data[MAX_CRYPTO_REQUEST_SIZE]; uint8_t number; const int len = handle_request(dht->self_public_key, dht->self_secret_key, public_key, data, &number, packet, length); if (len == -1 || len == 0) { return 1; } if (dht->cryptopackethandlers[number].function == nullptr) { return 1; } return dht->cryptopackethandlers[number].function( dht->cryptopackethandlers[number].object, source, public_key, data, len, userdata); } /* If request is not for us, try routing it. */ const int retval = route_packet(dht, packet + 1, packet, length); if ((unsigned int)retval == length) { return 0; } return 1; } void dht_callback_get_nodes_response(DHT *dht, dht_get_nodes_response_cb *function) { dht->get_nodes_response = function; } non_null(1, 2, 3) nullable(5) static int handle_lan_discovery(void *object, const IP_Port *source, const uint8_t *packet, uint16_t length, void *userdata) { DHT *dht = (DHT *)object; if (!dht->lan_discovery_enabled) { return 1; } if (!ip_is_lan(&source->ip)) { return 1; } if (length != CRYPTO_PUBLIC_KEY_SIZE + 1) { return 1; } dht_bootstrap(dht, source, packet + 1); return 0; } /*----------------------------------------------------------------------------------*/ DHT *new_dht(const Logger *log, const Memory *mem, const Random *rng, const Network *ns, Mono_Time *mono_time, Networking_Core *net, bool hole_punching_enabled, bool lan_discovery_enabled) { if (net == nullptr) { return nullptr; } DHT *const dht = (DHT *)mem_alloc(mem, sizeof(DHT)); if (dht == nullptr) { return nullptr; } dht->ns = ns; dht->mono_time = mono_time; dht->cur_time = mono_time_get(mono_time); dht->log = log; dht->net = net; dht->rng = rng; dht->mem = mem; dht->hole_punching_enabled = hole_punching_enabled; dht->lan_discovery_enabled = lan_discovery_enabled; dht->ping = ping_new(mem, mono_time, rng, dht); if (dht->ping == nullptr) { kill_dht(dht); return nullptr; } networking_registerhandler(dht->net, NET_PACKET_GET_NODES, &handle_getnodes, dht); networking_registerhandler(dht->net, NET_PACKET_SEND_NODES_IPV6, &handle_sendnodes_ipv6, dht); networking_registerhandler(dht->net, NET_PACKET_CRYPTO, &cryptopacket_handle, dht); networking_registerhandler(dht->net, NET_PACKET_LAN_DISCOVERY, &handle_lan_discovery, dht); cryptopacket_registerhandler(dht, CRYPTO_PACKET_NAT_PING, &handle_nat_ping, dht); #ifdef CHECK_ANNOUNCE_NODE networking_registerhandler(dht->net, NET_PACKET_DATA_SEARCH_RESPONSE, &handle_data_search_response, dht); #endif crypto_new_keypair(rng, dht->self_public_key, dht->self_secret_key); dht->shared_keys_recv = shared_key_cache_new(mono_time, mem, dht->self_secret_key, KEYS_TIMEOUT, MAX_KEYS_PER_SLOT); dht->shared_keys_sent = shared_key_cache_new(mono_time, mem, dht->self_secret_key, KEYS_TIMEOUT, MAX_KEYS_PER_SLOT); if (dht->shared_keys_recv == nullptr || dht->shared_keys_sent == nullptr) { kill_dht(dht); return nullptr; } dht->dht_ping_array = ping_array_new(mem, DHT_PING_ARRAY_SIZE, PING_TIMEOUT); if (dht->dht_ping_array == nullptr) { kill_dht(dht); return nullptr; } for (uint32_t i = 0; i < DHT_FAKE_FRIEND_NUMBER; ++i) { uint8_t random_public_key_bytes[CRYPTO_PUBLIC_KEY_SIZE]; uint8_t random_secret_key_bytes[CRYPTO_SECRET_KEY_SIZE]; crypto_new_keypair(rng, random_public_key_bytes, random_secret_key_bytes); uint32_t token; // We don't intend to delete these ever, but need to pass the token if (dht_addfriend(dht, random_public_key_bytes, nullptr, nullptr, 0, &token) != 0) { kill_dht(dht); return nullptr; } } if (dht->num_friends != DHT_FAKE_FRIEND_NUMBER) { LOGGER_ERROR(log, "the RNG provided seems to be broken: it generated the same keypair twice"); kill_dht(dht); return nullptr; } return dht; } void do_dht(DHT *dht) { const uint64_t cur_time = mono_time_get(dht->mono_time); if (dht->cur_time == cur_time) { return; } dht->cur_time = cur_time; // Load friends/clients if first call to do_dht if (dht->loaded_num_nodes > 0) { dht_connect_after_load(dht); } do_close(dht); do_dht_friends(dht); do_nat(dht); ping_iterate(dht->ping); } void kill_dht(DHT *dht) { if (dht == nullptr) { return; } networking_registerhandler(dht->net, NET_PACKET_GET_NODES, nullptr, nullptr); networking_registerhandler(dht->net, NET_PACKET_SEND_NODES_IPV6, nullptr, nullptr); networking_registerhandler(dht->net, NET_PACKET_CRYPTO, nullptr, nullptr); networking_registerhandler(dht->net, NET_PACKET_LAN_DISCOVERY, nullptr, nullptr); cryptopacket_registerhandler(dht, CRYPTO_PACKET_NAT_PING, nullptr, nullptr); shared_key_cache_free(dht->shared_keys_recv); shared_key_cache_free(dht->shared_keys_sent); ping_array_kill(dht->dht_ping_array); ping_kill(dht->mem, dht->ping); mem_delete(dht->mem, dht->friends_list); mem_delete(dht->mem, dht->loaded_nodes_list); crypto_memzero(dht->self_secret_key, sizeof(dht->self_secret_key)); mem_delete(dht->mem, dht); } /* new DHT format for load/save, more robust and forward compatible */ // TODO(irungentoo): Move this closer to Messenger. #define DHT_STATE_COOKIE_GLOBAL 0x159000d #define DHT_STATE_COOKIE_TYPE 0x11ce #define DHT_STATE_TYPE_NODES 4 #define MAX_SAVED_DHT_NODES (((DHT_FAKE_FRIEND_NUMBER * MAX_FRIEND_CLIENTS) + LCLIENT_LIST) * 2) /** Get the size of the DHT (for saving). */ uint32_t dht_size(const DHT *dht) { uint32_t numv4 = 0; uint32_t numv6 = 0; for (uint32_t i = 0; i < dht->loaded_num_nodes; ++i) { numv4 += net_family_is_ipv4(dht->loaded_nodes_list[i].ip_port.ip.family); numv6 += net_family_is_ipv6(dht->loaded_nodes_list[i].ip_port.ip.family); } for (uint32_t i = 0; i < LCLIENT_LIST; ++i) { numv4 += dht->close_clientlist[i].assoc4.timestamp != 0; numv6 += dht->close_clientlist[i].assoc6.timestamp != 0; } for (uint32_t i = 0; i < DHT_FAKE_FRIEND_NUMBER && i < dht->num_friends; ++i) { const DHT_Friend *const fr = &dht->friends_list[i]; for (uint32_t j = 0; j < MAX_FRIEND_CLIENTS; ++j) { numv4 += fr->client_list[j].assoc4.timestamp != 0; numv6 += fr->client_list[j].assoc6.timestamp != 0; } } const uint32_t size32 = sizeof(uint32_t); const uint32_t sizesubhead = size32 * 2; return size32 + sizesubhead + packed_node_size(net_family_ipv4()) * numv4 + packed_node_size(net_family_ipv6()) * numv6; } /** Save the DHT in data where data is an array of size `dht_size()`. */ void dht_save(const DHT *dht, uint8_t *data) { host_to_lendian_bytes32(data, DHT_STATE_COOKIE_GLOBAL); data += sizeof(uint32_t); uint8_t *const old_data = data; /* get right offset. we write the actual header later. */ data = state_write_section_header(data, DHT_STATE_COOKIE_TYPE, 0, 0); Node_format *clients = (Node_format *)mem_valloc(dht->mem, MAX_SAVED_DHT_NODES, sizeof(Node_format)); if (clients == nullptr) { LOGGER_ERROR(dht->log, "could not allocate %u nodes", MAX_SAVED_DHT_NODES); return; } uint32_t num = 0; if (dht->loaded_num_nodes > 0) { memcpy(clients, dht->loaded_nodes_list, sizeof(Node_format) * dht->loaded_num_nodes); num += dht->loaded_num_nodes; } for (uint32_t i = 0; i < LCLIENT_LIST; ++i) { if (dht->close_clientlist[i].assoc4.timestamp != 0) { memcpy(clients[num].public_key, dht->close_clientlist[i].public_key, CRYPTO_PUBLIC_KEY_SIZE); clients[num].ip_port = dht->close_clientlist[i].assoc4.ip_port; ++num; } if (dht->close_clientlist[i].assoc6.timestamp != 0) { memcpy(clients[num].public_key, dht->close_clientlist[i].public_key, CRYPTO_PUBLIC_KEY_SIZE); clients[num].ip_port = dht->close_clientlist[i].assoc6.ip_port; ++num; } } for (uint32_t i = 0; i < DHT_FAKE_FRIEND_NUMBER && i < dht->num_friends; ++i) { const DHT_Friend *const fr = &dht->friends_list[i]; for (uint32_t j = 0; j < MAX_FRIEND_CLIENTS; ++j) { if (fr->client_list[j].assoc4.timestamp != 0) { memcpy(clients[num].public_key, fr->client_list[j].public_key, CRYPTO_PUBLIC_KEY_SIZE); clients[num].ip_port = fr->client_list[j].assoc4.ip_port; ++num; } if (fr->client_list[j].assoc6.timestamp != 0) { memcpy(clients[num].public_key, fr->client_list[j].public_key, CRYPTO_PUBLIC_KEY_SIZE); clients[num].ip_port = fr->client_list[j].assoc6.ip_port; ++num; } } } state_write_section_header( old_data, DHT_STATE_COOKIE_TYPE, pack_nodes(dht->log, data, sizeof(Node_format) * num, clients, num), DHT_STATE_TYPE_NODES); mem_delete(dht->mem, clients); } /** Bootstrap from this number of nodes every time `dht_connect_after_load()` is called */ #define SAVE_BOOTSTAP_FREQUENCY 8 int dht_connect_after_load(DHT *dht) { if (dht == nullptr) { return -1; } if (dht->loaded_nodes_list == nullptr) { return -1; } /* DHT is connected, stop. */ if (dht_non_lan_connected(dht)) { mem_delete(dht->mem, dht->loaded_nodes_list); dht->loaded_nodes_list = nullptr; dht->loaded_num_nodes = 0; return 0; } for (uint32_t i = 0; i < dht->loaded_num_nodes && i < SAVE_BOOTSTAP_FREQUENCY; ++i) { const unsigned int index = dht->loaded_nodes_index % dht->loaded_num_nodes; dht_bootstrap(dht, &dht->loaded_nodes_list[index].ip_port, dht->loaded_nodes_list[index].public_key); ++dht->loaded_nodes_index; } return 0; } non_null() static State_Load_Status dht_load_state_callback(void *outer, const uint8_t *data, uint32_t length, uint16_t type) { DHT *dht = (DHT *)outer; switch (type) { case DHT_STATE_TYPE_NODES: { if (length == 0) { break; } mem_delete(dht->mem, dht->loaded_nodes_list); // Copy to loaded_clients_list dht->loaded_nodes_list = (Node_format *)mem_valloc(dht->mem, MAX_SAVED_DHT_NODES, sizeof(Node_format)); if (dht->loaded_nodes_list == nullptr) { LOGGER_ERROR(dht->log, "could not allocate %u nodes", MAX_SAVED_DHT_NODES); dht->loaded_num_nodes = 0; break; } const int num = unpack_nodes(dht->loaded_nodes_list, MAX_SAVED_DHT_NODES, nullptr, data, length, false); if (num > 0) { dht->loaded_num_nodes = num; } else { dht->loaded_num_nodes = 0; } break; } default: { LOGGER_ERROR(dht->log, "Load state (DHT): contains unrecognized part (len %u, type %u)", length, type); break; } } return STATE_LOAD_STATUS_CONTINUE; } int dht_load(DHT *dht, const uint8_t *data, uint32_t length) { const uint32_t cookie_len = sizeof(uint32_t); if (length > cookie_len) { uint32_t data32; lendian_bytes_to_host32(&data32, data); if (data32 == DHT_STATE_COOKIE_GLOBAL) { return state_load(dht->log, dht_load_state_callback, dht, data + cookie_len, length - cookie_len, DHT_STATE_COOKIE_TYPE); } } return -1; } /** * @retval false if we are not connected to the DHT. * @retval true if we are. */ bool dht_isconnected(const DHT *dht) { for (uint32_t i = 0; i < LCLIENT_LIST; ++i) { const Client_data *const client = &dht->close_clientlist[i]; if (!assoc_timeout(dht->cur_time, &client->assoc4) || !assoc_timeout(dht->cur_time, &client->assoc6)) { return true; } } return false; } /** * @retval false if we are not connected or only connected to lan peers with the DHT. * @retval true if we are. */ bool dht_non_lan_connected(const DHT *dht) { for (uint32_t i = 0; i < LCLIENT_LIST; ++i) { const Client_data *const client = &dht->close_clientlist[i]; if (!assoc_timeout(dht->cur_time, &client->assoc4) && !ip_is_lan(&client->assoc4.ip_port.ip)) { return true; } if (!assoc_timeout(dht->cur_time, &client->assoc6) && !ip_is_lan(&client->assoc6.ip_port.ip)) { return true; } } return false; } uint16_t dht_get_num_closelist(const DHT *dht) { uint16_t num_valid_close_clients = 0; for (uint32_t i = 0; i < LCLIENT_LIST; ++i) { const Client_data *const client = dht_get_close_client(dht, i); // check if client is valid if (!(assoc_timeout(dht->cur_time, &client->assoc4) && assoc_timeout(dht->cur_time, &client->assoc6))) { ++num_valid_close_clients; } } return num_valid_close_clients; } uint16_t dht_get_num_closelist_announce_capable(const DHT *dht) { uint16_t num_valid_close_clients_with_cap = 0; for (uint32_t i = 0; i < LCLIENT_LIST; ++i) { const Client_data *const client = dht_get_close_client(dht, i); // check if client is valid if (!(assoc_timeout(dht->cur_time, &client->assoc4) && assoc_timeout(dht->cur_time, &client->assoc6)) && client->announce_node) { ++num_valid_close_clients_with_cap; } } return num_valid_close_clients_with_cap; } unsigned int ipport_self_copy(const DHT *dht, IP_Port *dest) { ipport_reset(dest); bool is_lan = false; for (uint32_t i = 0; i < LCLIENT_LIST; ++i) { const Client_data *client = dht_get_close_client(dht, i); const IP_Port *ip_port4 = &client->assoc4.ret_ip_port; if (client->assoc4.ret_ip_self && ipport_isset(ip_port4)) { ipport_copy(dest, ip_port4); is_lan = ip_is_lan(&dest->ip); if (!is_lan) { break; } } const IP_Port *ip_port6 = &client->assoc6.ret_ip_port; if (client->assoc6.ret_ip_self && ipport_isset(ip_port6)) { ipport_copy(dest, ip_port6); is_lan = ip_is_lan(&dest->ip); if (!is_lan) { break; } } } if (!ipport_isset(dest)) { return 0; } if (is_lan) { return 2; } return 1; }