#include "DHT.h" #include #include #include #include #include #include #include "DHT_test_util.hh" #include "crypto_core.h" #include "crypto_core_test_util.hh" #include "logger.h" #include "mem_test_util.hh" #include "mono_time.h" #include "network.h" #include "network_test_util.hh" #include "test_util.hh" namespace { using ::testing::Each; using ::testing::ElementsAre; using ::testing::Eq; using ::testing::PrintToString; using ::testing::UnorderedElementsAre; using SecretKey = std::array; struct KeyPair { PublicKey pk; SecretKey sk; explicit KeyPair(const Random *rng) { crypto_new_keypair(rng, pk.data(), sk.data()); } }; TEST(IdClosest, KeyIsClosestToItself) { Test_Random rng; PublicKey pk0 = random_pk(rng); PublicKey pk1; do { // Get a random key that's not the same as pk0. pk1 = random_pk(rng); } while (pk0 == pk1); EXPECT_EQ(id_closest(pk0.data(), pk0.data(), pk1.data()), 1); } TEST(IdClosest, IdenticalKeysAreSameDistance) { Test_Random rng; PublicKey pk0 = random_pk(rng); PublicKey pk1 = random_pk(rng); EXPECT_EQ(id_closest(pk0.data(), pk1.data(), pk1.data()), 0); } TEST(IdClosest, DistanceIsCommutative) { Test_Random rng; PublicKey pk0 = random_pk(rng); PublicKey pk1 = random_pk(rng); PublicKey pk2 = random_pk(rng); ASSERT_NE(pk1, pk2); // RNG can't produce the same random key twice // Two non-equal keys can't have the same distance from any given key. EXPECT_NE(id_closest(pk0.data(), pk1.data(), pk2.data()), 0); if (id_closest(pk0.data(), pk1.data(), pk2.data()) == 1) { EXPECT_EQ(id_closest(pk0.data(), pk2.data(), pk1.data()), 2); } if (id_closest(pk0.data(), pk1.data(), pk2.data()) == 2) { EXPECT_EQ(id_closest(pk0.data(), pk2.data(), pk1.data()), 1); } } TEST(IdClosest, SmallXorDistanceIsCloser) { PublicKey const pk0 = {0xaa}; PublicKey const pk1 = {0xa0}; PublicKey const pk2 = {0x0a}; EXPECT_EQ(id_closest(pk0.data(), pk1.data(), pk2.data()), 1); } TEST(IdClosest, DistinctKeysCannotHaveTheSameDistance) { PublicKey const pk0 = {0x06}; PublicKey const pk1 = {0x00}; PublicKey pk2 = {0x00}; for (uint8_t i = 1; i < 0xff; ++i) { pk2[0] = i; EXPECT_NE(id_closest(pk0.data(), pk1.data(), pk2.data()), 0); } } TEST(AddToList, OverridesKeysWithCloserKeys) { PublicKey const self_pk = {0xaa}; PublicKey const keys[] = { {0xa0}, // closest {0x0a}, // {0x0b}, // {0x0c}, // {0x0d}, // {0xa1}, // closer than the 4 keys above }; std::array nodes{}; IP_Port ip_port = {0}; EXPECT_TRUE(add_to_list(nodes.data(), nodes.size(), keys[0].data(), &ip_port, self_pk.data())); EXPECT_TRUE(add_to_list(nodes.data(), nodes.size(), keys[1].data(), &ip_port, self_pk.data())); EXPECT_TRUE(add_to_list(nodes.data(), nodes.size(), keys[2].data(), &ip_port, self_pk.data())); EXPECT_TRUE(add_to_list(nodes.data(), nodes.size(), keys[3].data(), &ip_port, self_pk.data())); EXPECT_EQ(to_array(nodes[0].public_key), keys[0]); EXPECT_EQ(to_array(nodes[1].public_key), keys[1]); EXPECT_EQ(to_array(nodes[2].public_key), keys[2]); EXPECT_EQ(to_array(nodes[3].public_key), keys[3]); // key 4 is less close than keys 0-3 EXPECT_FALSE(add_to_list(nodes.data(), nodes.size(), keys[4].data(), &ip_port, self_pk.data())); // 5 is closer than all except key 0 EXPECT_TRUE(add_to_list(nodes.data(), nodes.size(), keys[5].data(), &ip_port, self_pk.data())); EXPECT_EQ(to_array(nodes[0].public_key), keys[0]); EXPECT_EQ(to_array(nodes[1].public_key), keys[5]); EXPECT_EQ(to_array(nodes[2].public_key), keys[1]); EXPECT_EQ(to_array(nodes[3].public_key), keys[2]); } Node_format fill(Node_format v, PublicKey const &pk, IP_Port const &ip_port) { std::copy(pk.begin(), pk.end(), v.public_key); v.ip_port = ip_port; return v; } TEST(AddToList, AddsFirstKeysInOrder) { Test_Random rng; // Make cmp_key the furthest away from 00000... as possible, so all initial inserts succeed. PublicKey const cmp_pk{0xff, 0xff, 0xff, 0xff}; // Generate a bunch of other keys, sorted by distance from cmp_pk. auto const keys = sorted(array_of<20>(random_pk, rng), [&cmp_pk](auto const &pk1, auto const &pk2) { return id_closest(cmp_pk.data(), pk1.data(), pk2.data()) == 1; }); auto const ips = array_of<20>(increasing_ip_port(0, rng)); std::vector nodes(4); // Add a bunch of nodes. ASSERT_TRUE(add_to_list(nodes.data(), nodes.size(), keys[2].data(), &ips[2], cmp_pk.data())) << "failed to insert\n" << " cmp_pk = " << cmp_pk << "\n" << " pk = " << keys[2] << "\n" << " nodes_list = " << PrintToString(nodes); ASSERT_TRUE(add_to_list(nodes.data(), nodes.size(), keys[5].data(), &ips[5], cmp_pk.data())) << "failed to insert\n" << " cmp_pk = " << cmp_pk << "\n" << " pk = " << keys[5] << "\n" << " nodes_list = " << PrintToString(nodes); ASSERT_TRUE(add_to_list(nodes.data(), nodes.size(), keys[7].data(), &ips[7], cmp_pk.data())) << "failed to insert\n" << " cmp_pk = " << cmp_pk << "\n" << " pk = " << keys[7] << "\n" << " nodes_list = " << PrintToString(nodes); ASSERT_TRUE(add_to_list(nodes.data(), nodes.size(), keys[9].data(), &ips[9], cmp_pk.data())) << "failed to insert\n" << " cmp_pk = " << cmp_pk << "\n" << " pk = " << keys[9] << "\n" << " nodes_list = " << PrintToString(nodes); // They should all appear in order. EXPECT_THAT(nodes, ElementsAre( // fill(Node_format{}, keys[2], ips[2]), // fill(Node_format{}, keys[5], ips[5]), // fill(Node_format{}, keys[7], ips[7]), // fill(Node_format{}, keys[9], ips[9]))); // Adding another node that's further away will not happen. ASSERT_FALSE(add_to_list(nodes.data(), nodes.size(), keys[10].data(), &ips[10], cmp_pk.data())) << "incorrectly inserted\n" << " cmp_pk = " << cmp_pk << "\n" << " pk = " << keys[10] << "\n" << " nodes_list = " << PrintToString(nodes); // Now shuffle each time we add a node, which should work fine. std::mt19937 mt_rng; // Adding one that's closer will happen. std::shuffle(nodes.begin(), nodes.end(), mt_rng); ASSERT_TRUE(add_to_list(nodes.data(), nodes.size(), keys[8].data(), &ips[8], cmp_pk.data())) << "failed to insert\n" << " cmp_pk = " << cmp_pk << "\n" << " pk = " << keys[8] << "\n" << " nodes_list = " << PrintToString(nodes); EXPECT_THAT(nodes, UnorderedElementsAre( // fill(Node_format{}, keys[2], ips[2]), // fill(Node_format{}, keys[5], ips[5]), // fill(Node_format{}, keys[7], ips[7]), // fill(Node_format{}, keys[8], ips[8]))); // Adding one that's closer than almost all of them will happen. std::shuffle(nodes.begin(), nodes.end(), mt_rng); ASSERT_TRUE(add_to_list(nodes.data(), nodes.size(), keys[4].data(), &ips[4], cmp_pk.data())) << "failed to insert\n" << " cmp_pk = " << cmp_pk << "\n" << " pk = " << keys[4] << "\n" << " nodes_list = " << PrintToString(nodes); EXPECT_THAT(nodes, UnorderedElementsAre( // fill(Node_format{}, keys[2], ips[2]), // fill(Node_format{}, keys[4], ips[4]), // fill(Node_format{}, keys[5], ips[5]), // fill(Node_format{}, keys[7], ips[7]))); // Adding one that's closer than all of them will happen. std::shuffle(nodes.begin(), nodes.end(), mt_rng); ASSERT_TRUE(add_to_list(nodes.data(), nodes.size(), keys[1].data(), &ips[1], cmp_pk.data())) << "failed to insert\n" << " cmp_pk = " << cmp_pk << "\n" << " pk = " << keys[1] << "\n" << " nodes_list = " << PrintToString(nodes); EXPECT_THAT(nodes, UnorderedElementsAre( // fill(Node_format{}, keys[1], ips[1]), // fill(Node_format{}, keys[2], ips[2]), // fill(Node_format{}, keys[4], ips[4]), // fill(Node_format{}, keys[5], ips[5]))); } TEST(AddToList, KeepsKeysInOrder) { Test_Random rng; // Any random cmp_pk should work, as well as the smallest or (approximately) largest pk. for (PublicKey const cmp_pk : {random_pk(rng), PublicKey{0x00}, PublicKey{0xff, 0xff}}) { auto const by_distance = [&cmp_pk](auto const &node1, auto const &node2) { return id_closest(cmp_pk.data(), node1.public_key, node2.public_key) == 1; }; // Generate a bunch of other keys, not sorted. auto const nodes = vector_of(16, random_node_format, rng); std::vector node_list(4); // Add all of them. for (Node_format const &node : nodes) { add_to_list( node_list.data(), node_list.size(), node.public_key, &node.ip_port, cmp_pk.data()); // Nodes should always be sorted. EXPECT_THAT(node_list, Eq(sorted(node_list, by_distance))); } } } TEST(Request, CreateAndParse) { Test_Random rng; // Peers. const KeyPair sender(rng); const KeyPair receiver(rng); const uint8_t sent_pkt_id = CRYPTO_PACKET_FRIEND_REQ; // Encoded packet. std::array packet; // Received components. PublicKey pk; std::array incoming; uint8_t recvd_pkt_id; // Request data: maximum payload is 918 bytes, so create a payload 1 byte larger than max. std::vector outgoing(919); random_bytes(rng, outgoing.data(), outgoing.size()); EXPECT_LT(create_request(rng, sender.pk.data(), sender.sk.data(), packet.data(), receiver.pk.data(), outgoing.data(), outgoing.size(), sent_pkt_id), 0); // Pop one element so the payload is 918 bytes. Packing should now succeed. outgoing.pop_back(); const int max_sent_length = create_request(rng, sender.pk.data(), sender.sk.data(), packet.data(), receiver.pk.data(), outgoing.data(), outgoing.size(), sent_pkt_id); ASSERT_GT(max_sent_length, 0); // success. // Check that handle_request rejects packets larger than the maximum created packet size. EXPECT_LT(handle_request(receiver.pk.data(), receiver.sk.data(), pk.data(), incoming.data(), &recvd_pkt_id, packet.data(), max_sent_length + 1), 0); // Now try all possible packet sizes from max (918) to 0. while (!outgoing.empty()) { // Pack: const int sent_length = create_request(rng, sender.pk.data(), sender.sk.data(), packet.data(), receiver.pk.data(), outgoing.data(), outgoing.size(), sent_pkt_id); ASSERT_GT(sent_length, 0); // Unpack: const int recvd_length = handle_request(receiver.pk.data(), receiver.sk.data(), pk.data(), incoming.data(), &recvd_pkt_id, packet.data(), sent_length); ASSERT_GE(recvd_length, 0); EXPECT_EQ( std::vector(incoming.begin(), incoming.begin() + recvd_length), outgoing); outgoing.pop_back(); } } TEST(AnnounceNodes, SetAndTest) { Test_Random rng; Test_Memory mem; Test_Network ns; Logger *log = logger_new(mem); ASSERT_NE(log, nullptr); Mono_Time *mono_time = mono_time_new(mem, nullptr, nullptr); ASSERT_NE(mono_time, nullptr); Ptr net(new_networking_no_udp(log, mem, ns)); ASSERT_NE(net, nullptr); Ptr dht(new_dht(log, mem, rng, ns, mono_time, net.get(), true, true)); ASSERT_NE(dht, nullptr); uint8_t pk_data[CRYPTO_PUBLIC_KEY_SIZE]; memcpy(pk_data, dht_get_self_public_key(dht.get()), sizeof(pk_data)); PublicKey self_pk(to_array(pk_data)); PublicKey pk1 = random_pk(rng); ASSERT_NE(pk1, self_pk); // Test with maximally close key to self pk_data[CRYPTO_PUBLIC_KEY_SIZE - 1] = ~pk_data[CRYPTO_PUBLIC_KEY_SIZE - 1]; PublicKey pk2(to_array(pk_data)); ASSERT_NE(pk2, pk1); IP_Port ip_port = {0}; ip_port.ip.family = net_family_ipv4(); set_announce_node(dht.get(), pk1.data()); set_announce_node(dht.get(), pk2.data()); EXPECT_TRUE(addto_lists(dht.get(), &ip_port, pk1.data())); EXPECT_TRUE(addto_lists(dht.get(), &ip_port, pk2.data())); Node_format nodes[MAX_SENT_NODES]; EXPECT_EQ( 0, get_close_nodes(dht.get(), self_pk.data(), nodes, net_family_unspec(), true, true)); set_announce_node(dht.get(), pk1.data()); set_announce_node(dht.get(), pk2.data()); EXPECT_EQ( 2, get_close_nodes(dht.get(), self_pk.data(), nodes, net_family_unspec(), true, true)); mono_time_free(mem, mono_time); logger_kill(log); } } // namespace