/* SPDX-License-Identifier: GPL-3.0-or-later * Copyright © 2016-2018 The TokTok team. * Copyright © 2013 Tox project. */ /** * Functions for the core network crypto. * * NOTE: This code has to be perfect. We don't mess around with encryption. */ #include "net_crypto.h" #include #include "DHT.h" #include "LAN_discovery.h" #include "TCP_client.h" #include "TCP_connection.h" #include "attributes.h" #include "ccompat.h" #include "crypto_core.h" #include "list.h" #include "logger.h" #include "mem.h" #include "mono_time.h" #include "net_profile.h" #include "network.h" #include "util.h" typedef struct Packet_Data { uint64_t sent_time; uint16_t length; uint8_t data[MAX_CRYPTO_DATA_SIZE]; } Packet_Data; typedef struct Packets_Array { Packet_Data *buffer[CRYPTO_PACKET_BUFFER_SIZE]; uint32_t buffer_start; uint32_t buffer_end; /* packet numbers in array: `{buffer_start, buffer_end)` */ } Packets_Array; typedef enum Crypto_Conn_State { /* the connection slot is free. This value is 0 so it is valid after * `crypto_memzero(...)` of the parent struct */ CRYPTO_CONN_FREE = 0, CRYPTO_CONN_NO_CONNECTION, /* the connection is allocated, but not yet used */ CRYPTO_CONN_COOKIE_REQUESTING, /* we are sending cookie request packets */ CRYPTO_CONN_HANDSHAKE_SENT, /* we are sending handshake packets */ /* we are sending handshake packets. * we have received one from the other, but no data */ CRYPTO_CONN_NOT_CONFIRMED, CRYPTO_CONN_ESTABLISHED, /* the connection is established */ } Crypto_Conn_State; typedef struct Crypto_Connection { uint8_t public_key[CRYPTO_PUBLIC_KEY_SIZE]; /* The real public key of the peer. */ uint8_t recv_nonce[CRYPTO_NONCE_SIZE]; /* Nonce of received packets. */ uint8_t sent_nonce[CRYPTO_NONCE_SIZE]; /* Nonce of sent packets. */ uint8_t sessionpublic_key[CRYPTO_PUBLIC_KEY_SIZE]; /* Our public key for this session. */ uint8_t sessionsecret_key[CRYPTO_SECRET_KEY_SIZE]; /* Our private key for this session. */ uint8_t peersessionpublic_key[CRYPTO_PUBLIC_KEY_SIZE]; /* The public key of the peer. */ uint8_t shared_key[CRYPTO_SHARED_KEY_SIZE]; /* The precomputed shared key from encrypt_precompute. */ Crypto_Conn_State status; /* See Crypto_Conn_State documentation */ uint64_t cookie_request_number; /* number used in the cookie request packets for this connection */ uint8_t dht_public_key[CRYPTO_PUBLIC_KEY_SIZE]; /* The dht public key of the peer */ uint8_t *temp_packet; /* Where the cookie request/handshake packet is stored while it is being sent. */ uint16_t temp_packet_length; uint64_t temp_packet_sent_time; /* The time at which the last temp_packet was sent in ms. */ uint32_t temp_packet_num_sent; IP_Port ip_portv4; /* The ip and port to contact this guy directly.*/ IP_Port ip_portv6; uint64_t direct_lastrecv_timev4; /* The Time at which we last received a direct packet in ms. */ uint64_t direct_lastrecv_timev6; uint64_t last_tcp_sent; /* Time the last TCP packet was sent. */ Packets_Array send_array; Packets_Array recv_array; connection_status_cb *connection_status_callback; void *connection_status_callback_object; int connection_status_callback_id; connection_data_cb *connection_data_callback; void *connection_data_callback_object; int connection_data_callback_id; connection_lossy_data_cb *connection_lossy_data_callback; void *connection_lossy_data_callback_object; int connection_lossy_data_callback_id; uint64_t last_request_packet_sent; uint64_t direct_send_attempt_time; uint32_t packet_counter; double packet_recv_rate; uint64_t packet_counter_set; double packet_send_rate; uint32_t packets_left; uint64_t last_packets_left_set; double last_packets_left_rem; double packet_send_rate_requested; uint32_t packets_left_requested; uint64_t last_packets_left_requested_set; double last_packets_left_requested_rem; uint32_t last_sendqueue_size[CONGESTION_QUEUE_ARRAY_SIZE]; uint32_t last_sendqueue_counter; long signed int last_num_packets_sent[CONGESTION_LAST_SENT_ARRAY_SIZE]; long signed int last_num_packets_resent[CONGESTION_LAST_SENT_ARRAY_SIZE]; uint32_t packets_sent; uint32_t packets_resent; uint64_t last_congestion_event; uint64_t rtt_time; /* TCP_connection connection_number */ unsigned int connection_number_tcp; bool maximum_speed_reached; dht_pk_cb *dht_pk_callback; void *dht_pk_callback_object; uint32_t dht_pk_callback_number; } Crypto_Connection; static const Crypto_Connection empty_crypto_connection = {{0}}; struct Net_Crypto { const Logger *log; const Memory *mem; const Random *rng; Mono_Time *mono_time; const Network *ns; DHT *dht; TCP_Connections *tcp_c; Crypto_Connection *crypto_connections; uint32_t crypto_connections_length; /* Length of connections array. */ /* Our public and secret keys. */ uint8_t self_public_key[CRYPTO_PUBLIC_KEY_SIZE]; uint8_t self_secret_key[CRYPTO_SECRET_KEY_SIZE]; /* The secret key used for cookies */ uint8_t secret_symmetric_key[CRYPTO_SYMMETRIC_KEY_SIZE]; new_connection_cb *new_connection_callback; void *new_connection_callback_object; /* The current optimal sleep time */ uint32_t current_sleep_time; BS_List ip_port_list; }; const uint8_t *nc_get_self_public_key(const Net_Crypto *c) { return c->self_public_key; } const uint8_t *nc_get_self_secret_key(const Net_Crypto *c) { return c->self_secret_key; } TCP_Connections *nc_get_tcp_c(const Net_Crypto *c) { return c->tcp_c; } DHT *nc_get_dht(const Net_Crypto *c) { return c->dht; } non_null() static bool crypt_connection_id_is_valid(const Net_Crypto *c, int crypt_connection_id) { if ((uint32_t)crypt_connection_id >= c->crypto_connections_length) { return false; } if (c->crypto_connections == nullptr) { return false; } const Crypto_Conn_State status = c->crypto_connections[crypt_connection_id].status; return status != CRYPTO_CONN_NO_CONNECTION && status != CRYPTO_CONN_FREE; } /** cookie timeout in seconds */ #define COOKIE_TIMEOUT 15 #define COOKIE_DATA_LENGTH (uint16_t)(CRYPTO_PUBLIC_KEY_SIZE * 2) #define COOKIE_CONTENTS_LENGTH (uint16_t)(sizeof(uint64_t) + COOKIE_DATA_LENGTH) #define COOKIE_LENGTH (uint16_t)(CRYPTO_NONCE_SIZE + COOKIE_CONTENTS_LENGTH + CRYPTO_MAC_SIZE) #define COOKIE_REQUEST_PLAIN_LENGTH (uint16_t)(COOKIE_DATA_LENGTH + sizeof(uint64_t)) #define COOKIE_REQUEST_LENGTH (uint16_t)(1 + CRYPTO_PUBLIC_KEY_SIZE + CRYPTO_NONCE_SIZE + COOKIE_REQUEST_PLAIN_LENGTH + CRYPTO_MAC_SIZE) #define COOKIE_RESPONSE_LENGTH (uint16_t)(1 + CRYPTO_NONCE_SIZE + COOKIE_LENGTH + sizeof(uint64_t) + CRYPTO_MAC_SIZE) /** @brief Create a cookie request packet and put it in packet. * * dht_public_key is the dht public key of the other * * packet must be of size COOKIE_REQUEST_LENGTH or bigger. * * @retval -1 on failure. * @retval COOKIE_REQUEST_LENGTH on success. */ non_null() static int create_cookie_request(const Net_Crypto *c, uint8_t *packet, const uint8_t *dht_public_key, uint64_t number, uint8_t *shared_key) { uint8_t plain[COOKIE_REQUEST_PLAIN_LENGTH]; memcpy(plain, c->self_public_key, CRYPTO_PUBLIC_KEY_SIZE); memzero(plain + CRYPTO_PUBLIC_KEY_SIZE, CRYPTO_PUBLIC_KEY_SIZE); memcpy(plain + (CRYPTO_PUBLIC_KEY_SIZE * 2), &number, sizeof(uint64_t)); const uint8_t *tmp_shared_key = dht_get_shared_key_sent(c->dht, dht_public_key); memcpy(shared_key, tmp_shared_key, CRYPTO_SHARED_KEY_SIZE); uint8_t nonce[CRYPTO_NONCE_SIZE]; random_nonce(c->rng, nonce); packet[0] = NET_PACKET_COOKIE_REQUEST; memcpy(packet + 1, dht_get_self_public_key(c->dht), CRYPTO_PUBLIC_KEY_SIZE); memcpy(packet + 1 + CRYPTO_PUBLIC_KEY_SIZE, nonce, CRYPTO_NONCE_SIZE); const int len = encrypt_data_symmetric(shared_key, nonce, plain, sizeof(plain), packet + 1 + CRYPTO_PUBLIC_KEY_SIZE + CRYPTO_NONCE_SIZE); if (len != COOKIE_REQUEST_PLAIN_LENGTH + CRYPTO_MAC_SIZE) { return -1; } return 1 + CRYPTO_PUBLIC_KEY_SIZE + CRYPTO_NONCE_SIZE + len; } /** @brief Create cookie of length COOKIE_LENGTH from bytes of length COOKIE_DATA_LENGTH using encryption_key * * @retval -1 on failure. * @retval 0 on success. */ non_null() static int create_cookie(const Random *rng, const Mono_Time *mono_time, uint8_t *cookie, const uint8_t *bytes, const uint8_t *encryption_key) { uint8_t contents[COOKIE_CONTENTS_LENGTH]; const uint64_t temp_time = mono_time_get(mono_time); memcpy(contents, &temp_time, sizeof(temp_time)); memcpy(contents + sizeof(temp_time), bytes, COOKIE_DATA_LENGTH); random_nonce(rng, cookie); const int len = encrypt_data_symmetric(encryption_key, cookie, contents, sizeof(contents), cookie + CRYPTO_NONCE_SIZE); if (len != COOKIE_LENGTH - CRYPTO_NONCE_SIZE) { return -1; } return 0; } /** @brief Open cookie of length COOKIE_LENGTH to bytes of length COOKIE_DATA_LENGTH using encryption_key * * @retval -1 on failure. * @retval 0 on success. */ non_null() static int open_cookie(const Mono_Time *mono_time, uint8_t *bytes, const uint8_t *cookie, const uint8_t *encryption_key) { uint8_t contents[COOKIE_CONTENTS_LENGTH]; const int len = decrypt_data_symmetric(encryption_key, cookie, cookie + CRYPTO_NONCE_SIZE, COOKIE_LENGTH - CRYPTO_NONCE_SIZE, contents); if (len != sizeof(contents)) { return -1; } uint64_t cookie_time; memcpy(&cookie_time, contents, sizeof(cookie_time)); const uint64_t temp_time = mono_time_get(mono_time); if (cookie_time + COOKIE_TIMEOUT < temp_time || temp_time < cookie_time) { return -1; } memcpy(bytes, contents + sizeof(cookie_time), COOKIE_DATA_LENGTH); return 0; } /** @brief Create a cookie response packet and put it in packet. * @param request_plain must be COOKIE_REQUEST_PLAIN_LENGTH bytes. * @param packet must be of size COOKIE_RESPONSE_LENGTH or bigger. * * @retval -1 on failure. * @retval COOKIE_RESPONSE_LENGTH on success. */ non_null() static int create_cookie_response(const Net_Crypto *c, uint8_t *packet, const uint8_t *request_plain, const uint8_t *shared_key, const uint8_t *dht_public_key) { uint8_t cookie_plain[COOKIE_DATA_LENGTH]; memcpy(cookie_plain, request_plain, CRYPTO_PUBLIC_KEY_SIZE); memcpy(cookie_plain + CRYPTO_PUBLIC_KEY_SIZE, dht_public_key, CRYPTO_PUBLIC_KEY_SIZE); uint8_t plain[COOKIE_LENGTH + sizeof(uint64_t)]; if (create_cookie(c->rng, c->mono_time, plain, cookie_plain, c->secret_symmetric_key) != 0) { return -1; } memcpy(plain + COOKIE_LENGTH, request_plain + COOKIE_DATA_LENGTH, sizeof(uint64_t)); packet[0] = NET_PACKET_COOKIE_RESPONSE; random_nonce(c->rng, packet + 1); const int len = encrypt_data_symmetric(shared_key, packet + 1, plain, sizeof(plain), packet + 1 + CRYPTO_NONCE_SIZE); if (len != COOKIE_RESPONSE_LENGTH - (1 + CRYPTO_NONCE_SIZE)) { return -1; } return COOKIE_RESPONSE_LENGTH; } /** @brief Handle the cookie request packet of length length. * Put what was in the request in request_plain (must be of size COOKIE_REQUEST_PLAIN_LENGTH) * Put the key used to decrypt the request into shared_key (of size CRYPTO_SHARED_KEY_SIZE) for use in the response. * * @retval -1 on failure. * @retval 0 on success. */ non_null() static int handle_cookie_request(const Net_Crypto *c, uint8_t *request_plain, uint8_t *shared_key, uint8_t *dht_public_key, const uint8_t *packet, uint16_t length) { if (length != COOKIE_REQUEST_LENGTH) { return -1; } memcpy(dht_public_key, packet + 1, CRYPTO_PUBLIC_KEY_SIZE); const uint8_t *tmp_shared_key = dht_get_shared_key_sent(c->dht, dht_public_key); memcpy(shared_key, tmp_shared_key, CRYPTO_SHARED_KEY_SIZE); const int len = decrypt_data_symmetric(shared_key, packet + 1 + CRYPTO_PUBLIC_KEY_SIZE, packet + 1 + CRYPTO_PUBLIC_KEY_SIZE + CRYPTO_NONCE_SIZE, COOKIE_REQUEST_PLAIN_LENGTH + CRYPTO_MAC_SIZE, request_plain); if (len != COOKIE_REQUEST_PLAIN_LENGTH) { return -1; } return 0; } /** Handle the cookie request packet (for raw UDP) */ non_null(1, 2, 3) nullable(5) static int udp_handle_cookie_request(void *object, const IP_Port *source, const uint8_t *packet, uint16_t length, void *userdata) { const Net_Crypto *c = (const Net_Crypto *)object; uint8_t request_plain[COOKIE_REQUEST_PLAIN_LENGTH]; uint8_t shared_key[CRYPTO_SHARED_KEY_SIZE]; uint8_t dht_public_key[CRYPTO_PUBLIC_KEY_SIZE]; if (handle_cookie_request(c, request_plain, shared_key, dht_public_key, packet, length) != 0) { return 1; } uint8_t data[COOKIE_RESPONSE_LENGTH]; if (create_cookie_response(c, data, request_plain, shared_key, dht_public_key) != sizeof(data)) { return 1; } if ((uint32_t)sendpacket(dht_get_net(c->dht), source, data, sizeof(data)) != sizeof(data)) { return 1; } return 0; } /** Handle the cookie request packet (for TCP) */ non_null() static int tcp_handle_cookie_request(const Net_Crypto *c, int connections_number, const uint8_t *packet, uint16_t length) { uint8_t request_plain[COOKIE_REQUEST_PLAIN_LENGTH]; uint8_t shared_key[CRYPTO_SHARED_KEY_SIZE]; uint8_t dht_public_key[CRYPTO_PUBLIC_KEY_SIZE]; if (handle_cookie_request(c, request_plain, shared_key, dht_public_key, packet, length) != 0) { return -1; } uint8_t data[COOKIE_RESPONSE_LENGTH]; if (create_cookie_response(c, data, request_plain, shared_key, dht_public_key) != sizeof(data)) { return -1; } const int ret = send_packet_tcp_connection(c->tcp_c, connections_number, data, sizeof(data)); return ret; } /** Handle the cookie request packet (for TCP oob packets) */ non_null() static int tcp_oob_handle_cookie_request(const Net_Crypto *c, unsigned int tcp_connections_number, const uint8_t *dht_public_key, const uint8_t *packet, uint16_t length) { uint8_t request_plain[COOKIE_REQUEST_PLAIN_LENGTH]; uint8_t shared_key[CRYPTO_SHARED_KEY_SIZE]; uint8_t dht_public_key_temp[CRYPTO_PUBLIC_KEY_SIZE]; if (handle_cookie_request(c, request_plain, shared_key, dht_public_key_temp, packet, length) != 0) { return -1; } if (!pk_equal(dht_public_key, dht_public_key_temp)) { return -1; } uint8_t data[COOKIE_RESPONSE_LENGTH]; if (create_cookie_response(c, data, request_plain, shared_key, dht_public_key) != sizeof(data)) { return -1; } const int ret = tcp_send_oob_packet(c->tcp_c, tcp_connections_number, dht_public_key, data, sizeof(data)); return ret; } /** @brief Handle a cookie response packet of length encrypted with shared_key. * put the cookie in the response in cookie * * @param cookie must be of length COOKIE_LENGTH. * * @retval -1 on failure. * @retval COOKIE_LENGTH on success. */ non_null() static int handle_cookie_response(uint8_t *cookie, uint64_t *number, const uint8_t *packet, uint16_t length, const uint8_t *shared_key) { if (length != COOKIE_RESPONSE_LENGTH) { return -1; } uint8_t plain[COOKIE_LENGTH + sizeof(uint64_t)]; const int len = decrypt_data_symmetric(shared_key, packet + 1, packet + 1 + CRYPTO_NONCE_SIZE, length - (1 + CRYPTO_NONCE_SIZE), plain); if (len != sizeof(plain)) { return -1; } memcpy(cookie, plain, COOKIE_LENGTH); memcpy(number, plain + COOKIE_LENGTH, sizeof(uint64_t)); return COOKIE_LENGTH; } #define HANDSHAKE_PACKET_LENGTH (1 + COOKIE_LENGTH + CRYPTO_NONCE_SIZE + CRYPTO_NONCE_SIZE + CRYPTO_PUBLIC_KEY_SIZE + CRYPTO_SHA512_SIZE + COOKIE_LENGTH + CRYPTO_MAC_SIZE) /** @brief Create a handshake packet and put it in packet. * @param cookie must be COOKIE_LENGTH bytes. * @param packet must be of size HANDSHAKE_PACKET_LENGTH or bigger. * * @retval -1 on failure. * @retval HANDSHAKE_PACKET_LENGTH on success. */ non_null() static int create_crypto_handshake(const Net_Crypto *c, uint8_t *packet, const uint8_t *cookie, const uint8_t *nonce, const uint8_t *session_pk, const uint8_t *peer_real_pk, const uint8_t *peer_dht_pubkey) { uint8_t plain[CRYPTO_NONCE_SIZE + CRYPTO_PUBLIC_KEY_SIZE + CRYPTO_SHA512_SIZE + COOKIE_LENGTH]; memcpy(plain, nonce, CRYPTO_NONCE_SIZE); memcpy(plain + CRYPTO_NONCE_SIZE, session_pk, CRYPTO_PUBLIC_KEY_SIZE); crypto_sha512(plain + CRYPTO_NONCE_SIZE + CRYPTO_PUBLIC_KEY_SIZE, cookie, COOKIE_LENGTH); uint8_t cookie_plain[COOKIE_DATA_LENGTH]; memcpy(cookie_plain, peer_real_pk, CRYPTO_PUBLIC_KEY_SIZE); memcpy(cookie_plain + CRYPTO_PUBLIC_KEY_SIZE, peer_dht_pubkey, CRYPTO_PUBLIC_KEY_SIZE); if (create_cookie(c->rng, c->mono_time, plain + CRYPTO_NONCE_SIZE + CRYPTO_PUBLIC_KEY_SIZE + CRYPTO_SHA512_SIZE, cookie_plain, c->secret_symmetric_key) != 0) { return -1; } random_nonce(c->rng, packet + 1 + COOKIE_LENGTH); const int len = encrypt_data(peer_real_pk, c->self_secret_key, packet + 1 + COOKIE_LENGTH, plain, sizeof(plain), packet + 1 + COOKIE_LENGTH + CRYPTO_NONCE_SIZE); if (len != HANDSHAKE_PACKET_LENGTH - (1 + COOKIE_LENGTH + CRYPTO_NONCE_SIZE)) { return -1; } packet[0] = NET_PACKET_CRYPTO_HS; memcpy(packet + 1, cookie, COOKIE_LENGTH); return HANDSHAKE_PACKET_LENGTH; } /** @brief Handle a crypto handshake packet of length. * put the nonce contained in the packet in nonce, * the session public key in session_pk * the real public key of the peer in peer_real_pk * the dht public key of the peer in dht_public_key and * the cookie inside the encrypted part of the packet in cookie. * * if expected_real_pk isn't NULL it denotes the real public key * the packet should be from. * * nonce must be at least CRYPTO_NONCE_SIZE * session_pk must be at least CRYPTO_PUBLIC_KEY_SIZE * peer_real_pk must be at least CRYPTO_PUBLIC_KEY_SIZE * cookie must be at least COOKIE_LENGTH * * @retval false on failure. * @retval true on success. */ non_null(1, 2, 3, 4, 5, 6, 7) nullable(9) static bool handle_crypto_handshake(const Net_Crypto *c, uint8_t *nonce, uint8_t *session_pk, uint8_t *peer_real_pk, uint8_t *dht_public_key, uint8_t *cookie, const uint8_t *packet, uint16_t length, const uint8_t *expected_real_pk) { if (length != HANDSHAKE_PACKET_LENGTH) { return false; } uint8_t cookie_plain[COOKIE_DATA_LENGTH]; if (open_cookie(c->mono_time, cookie_plain, packet + 1, c->secret_symmetric_key) != 0) { return false; } if (expected_real_pk != nullptr && !pk_equal(cookie_plain, expected_real_pk)) { return false; } uint8_t cookie_hash[CRYPTO_SHA512_SIZE]; crypto_sha512(cookie_hash, packet + 1, COOKIE_LENGTH); uint8_t plain[CRYPTO_NONCE_SIZE + CRYPTO_PUBLIC_KEY_SIZE + CRYPTO_SHA512_SIZE + COOKIE_LENGTH]; const int len = decrypt_data(cookie_plain, c->self_secret_key, packet + 1 + COOKIE_LENGTH, packet + 1 + COOKIE_LENGTH + CRYPTO_NONCE_SIZE, HANDSHAKE_PACKET_LENGTH - (1 + COOKIE_LENGTH + CRYPTO_NONCE_SIZE), plain); if (len != sizeof(plain)) { return false; } if (!crypto_sha512_eq(cookie_hash, plain + CRYPTO_NONCE_SIZE + CRYPTO_PUBLIC_KEY_SIZE)) { return false; } memcpy(nonce, plain, CRYPTO_NONCE_SIZE); memcpy(session_pk, plain + CRYPTO_NONCE_SIZE, CRYPTO_PUBLIC_KEY_SIZE); memcpy(cookie, plain + CRYPTO_NONCE_SIZE + CRYPTO_PUBLIC_KEY_SIZE + CRYPTO_SHA512_SIZE, COOKIE_LENGTH); memcpy(peer_real_pk, cookie_plain, CRYPTO_PUBLIC_KEY_SIZE); memcpy(dht_public_key, cookie_plain + CRYPTO_PUBLIC_KEY_SIZE, CRYPTO_PUBLIC_KEY_SIZE); return true; } non_null() static Crypto_Connection *get_crypto_connection(const Net_Crypto *c, int crypt_connection_id) { if (!crypt_connection_id_is_valid(c, crypt_connection_id)) { return nullptr; } return &c->crypto_connections[crypt_connection_id]; } /** @brief Associate an ip_port to a connection. * * @retval -1 on failure. * @retval 0 on success. */ non_null() static int add_ip_port_connection(Net_Crypto *c, int crypt_connection_id, const IP_Port *ip_port) { Crypto_Connection *conn = get_crypto_connection(c, crypt_connection_id); if (conn == nullptr) { return -1; } if (net_family_is_ipv4(ip_port->ip.family)) { if (!ipport_equal(ip_port, &conn->ip_portv4) && !ip_is_lan(&conn->ip_portv4.ip)) { if (!bs_list_add(&c->ip_port_list, (const uint8_t *)ip_port, crypt_connection_id)) { return -1; } bs_list_remove(&c->ip_port_list, (uint8_t *)&conn->ip_portv4, crypt_connection_id); conn->ip_portv4 = *ip_port; return 0; } } else if (net_family_is_ipv6(ip_port->ip.family)) { if (!ipport_equal(ip_port, &conn->ip_portv6)) { if (!bs_list_add(&c->ip_port_list, (const uint8_t *)ip_port, crypt_connection_id)) { return -1; } bs_list_remove(&c->ip_port_list, (uint8_t *)&conn->ip_portv6, crypt_connection_id); conn->ip_portv6 = *ip_port; return 0; } } return -1; } /** @brief Return the IP_Port that should be used to send packets to the other peer. * * @retval IP_Port with family 0 on failure. * @return IP_Port on success. */ non_null() static IP_Port return_ip_port_connection(const Net_Crypto *c, int crypt_connection_id) { const IP_Port empty = {{{0}}}; const Crypto_Connection *conn = get_crypto_connection(c, crypt_connection_id); if (conn == nullptr) { return empty; } const uint64_t current_time = mono_time_get(c->mono_time); bool v6 = false; bool v4 = false; if ((UDP_DIRECT_TIMEOUT + conn->direct_lastrecv_timev4) > current_time) { v4 = true; } if ((UDP_DIRECT_TIMEOUT + conn->direct_lastrecv_timev6) > current_time) { v6 = true; } /* Prefer IP_Ports which haven't timed out to those which have. * To break ties, prefer ipv4 lan, then ipv6, then non-lan ipv4. */ if (v4 && ip_is_lan(&conn->ip_portv4.ip)) { return conn->ip_portv4; } if (v6 && net_family_is_ipv6(conn->ip_portv6.ip.family)) { return conn->ip_portv6; } if (v4 && net_family_is_ipv4(conn->ip_portv4.ip.family)) { return conn->ip_portv4; } if (ip_is_lan(&conn->ip_portv4.ip)) { return conn->ip_portv4; } if (net_family_is_ipv6(conn->ip_portv6.ip.family)) { return conn->ip_portv6; } if (net_family_is_ipv4(conn->ip_portv4.ip.family)) { return conn->ip_portv4; } return empty; } /** @brief Sends a packet to the peer using the fastest route. * * @retval -1 on failure. * @retval 0 on success. */ non_null() static int send_packet_to(Net_Crypto *c, int crypt_connection_id, const uint8_t *data, uint16_t length) { // TODO(irungentoo): TCP, etc... Crypto_Connection *conn = get_crypto_connection(c, crypt_connection_id); if (conn == nullptr) { return -1; } bool direct_send_attempt = false; const IP_Port ip_port = return_ip_port_connection(c, crypt_connection_id); // TODO(irungentoo): on bad networks, direct connections might not last indefinitely. if (!net_family_is_unspec(ip_port.ip.family)) { bool direct_connected = false; // FIXME(sudden6): handle return value crypto_connection_status(c, crypt_connection_id, &direct_connected, nullptr); if (direct_connected) { if ((uint32_t)sendpacket(dht_get_net(c->dht), &ip_port, data, length) == length) { return 0; } LOGGER_WARNING(c->log, "sending packet of length %d failed", length); return -1; } // TODO(irungentoo): a better way of sending packets directly to confirm the others ip. const uint64_t current_time = mono_time_get(c->mono_time); if ((((UDP_DIRECT_TIMEOUT / 2) + conn->direct_send_attempt_time) < current_time && length < 96) || data[0] == NET_PACKET_COOKIE_REQUEST || data[0] == NET_PACKET_CRYPTO_HS) { if ((uint32_t)sendpacket(dht_get_net(c->dht), &ip_port, data, length) == length) { direct_send_attempt = true; conn->direct_send_attempt_time = mono_time_get(c->mono_time); } } } const int ret = send_packet_tcp_connection(c->tcp_c, conn->connection_number_tcp, data, length); if (ret == 0) { conn->last_tcp_sent = current_time_monotonic(c->mono_time); } if (direct_send_attempt) { return 0; } return ret; } /*** START: Array Related functions */ /** @brief Return number of packets in array * Note that holes are counted too. */ non_null() static uint32_t num_packets_array(const Packets_Array *array) { return array->buffer_end - array->buffer_start; } /** @brief Add data with packet number to array. * * @retval -1 on failure. * @retval 0 on success. */ non_null() static int add_data_to_buffer(const Memory *mem, Packets_Array *array, uint32_t number, const Packet_Data *data) { if (number - array->buffer_start >= CRYPTO_PACKET_BUFFER_SIZE) { return -1; } const uint32_t num = number % CRYPTO_PACKET_BUFFER_SIZE; if (array->buffer[num] != nullptr) { return -1; } Packet_Data *new_d = (Packet_Data *)mem_alloc(mem, sizeof(Packet_Data)); if (new_d == nullptr) { return -1; } *new_d = *data; array->buffer[num] = new_d; if (number - array->buffer_start >= num_packets_array(array)) { array->buffer_end = number + 1; } return 0; } /** @brief Get pointer of data with packet number. * * @retval -1 on failure. * @retval 0 if data at number is empty. * @retval 1 if data pointer was put in data. */ non_null() static int get_data_pointer(const Packets_Array *array, Packet_Data **data, uint32_t number) { const uint32_t num_spots = num_packets_array(array); if (array->buffer_end - number > num_spots || number - array->buffer_start >= num_spots) { return -1; } const uint32_t num = number % CRYPTO_PACKET_BUFFER_SIZE; if (array->buffer[num] == nullptr) { return 0; } *data = array->buffer[num]; return 1; } /** @brief Add data to end of array. * * @retval -1 on failure. * @return packet number on success. */ non_null() static int64_t add_data_end_of_buffer(const Logger *logger, const Memory *mem, Packets_Array *array, const Packet_Data *data) { const uint32_t num_spots = num_packets_array(array); if (num_spots >= CRYPTO_PACKET_BUFFER_SIZE) { LOGGER_WARNING(logger, "crypto packet buffer size exceeded; rejecting packet of length %d", data->length); return -1; } Packet_Data *new_d = (Packet_Data *)mem_alloc(mem, sizeof(Packet_Data)); if (new_d == nullptr) { LOGGER_ERROR(logger, "packet data allocation failed"); return -1; } *new_d = *data; const uint32_t id = array->buffer_end; array->buffer[id % CRYPTO_PACKET_BUFFER_SIZE] = new_d; ++array->buffer_end; return id; } /** @brief Read data from beginning of array. * * @retval -1 on failure. * @return packet number on success. */ non_null() static int64_t read_data_beg_buffer(const Memory *mem, Packets_Array *array, Packet_Data *data) { if (array->buffer_end == array->buffer_start) { return -1; } const uint32_t num = array->buffer_start % CRYPTO_PACKET_BUFFER_SIZE; if (array->buffer[num] == nullptr) { return -1; } *data = *array->buffer[num]; const uint32_t id = array->buffer_start; ++array->buffer_start; mem_delete(mem, array->buffer[num]); array->buffer[num] = nullptr; return id; } /** @brief Delete all packets in array before number (but not number) * * @retval -1 on failure. * @retval 0 on success */ non_null() static int clear_buffer_until(const Memory *mem, Packets_Array *array, uint32_t number) { const uint32_t num_spots = num_packets_array(array); if (array->buffer_end - number >= num_spots || number - array->buffer_start > num_spots) { return -1; } uint32_t i; for (i = array->buffer_start; i != number; ++i) { const uint32_t num = i % CRYPTO_PACKET_BUFFER_SIZE; if (array->buffer[num] != nullptr) { mem_delete(mem, array->buffer[num]); array->buffer[num] = nullptr; } } array->buffer_start = i; return 0; } non_null() static int clear_buffer(const Memory *mem, Packets_Array *array) { uint32_t i; for (i = array->buffer_start; i != array->buffer_end; ++i) { const uint32_t num = i % CRYPTO_PACKET_BUFFER_SIZE; if (array->buffer[num] != nullptr) { mem_delete(mem, array->buffer[num]); array->buffer[num] = nullptr; } } array->buffer_start = i; return 0; } /** @brief Set array buffer end to number. * * @retval -1 on failure. * @retval 0 on success. */ non_null() static int set_buffer_end(Packets_Array *array, uint32_t number) { if (number - array->buffer_start > CRYPTO_PACKET_BUFFER_SIZE) { return -1; } if (number - array->buffer_end > CRYPTO_PACKET_BUFFER_SIZE) { return -1; } array->buffer_end = number; return 0; } /** * @brief Create a packet request packet from recv_array and send_buffer_end into * data of length. * * @retval -1 on failure. * @return length of packet on success. */ non_null() static int generate_request_packet(uint8_t *data, uint16_t length, const Packets_Array *recv_array) { if (length == 0) { return -1; } data[0] = PACKET_ID_REQUEST; uint16_t cur_len = 1; if (recv_array->buffer_start == recv_array->buffer_end) { return cur_len; } if (length <= cur_len) { return cur_len; } uint32_t n = 1; for (uint32_t i = recv_array->buffer_start; i != recv_array->buffer_end; ++i) { const uint32_t num = i % CRYPTO_PACKET_BUFFER_SIZE; if (recv_array->buffer[num] == nullptr) { data[cur_len] = n; n = 0; ++cur_len; if (length <= cur_len) { return cur_len; } } else if (n == 255) { data[cur_len] = 0; n = 0; ++cur_len; if (length <= cur_len) { return cur_len; } } ++n; } return cur_len; } /** @brief Handle a request data packet. * Remove all the packets the other received from the array. * * @retval -1 on failure. * @return number of requested packets on success. */ non_null() static int handle_request_packet(const Memory *mem, Mono_Time *mono_time, Packets_Array *send_array, const uint8_t *data, uint16_t length, uint64_t *latest_send_time, uint64_t rtt_time) { if (length == 0) { return -1; } if (data[0] != PACKET_ID_REQUEST) { return -1; } if (length == 1) { return 0; } ++data; --length; uint32_t n = 1; uint32_t requested = 0; const uint64_t temp_time = current_time_monotonic(mono_time); uint64_t l_sent_time = 0; for (uint32_t i = send_array->buffer_start; i != send_array->buffer_end; ++i) { if (length == 0) { break; } const uint32_t num = i % CRYPTO_PACKET_BUFFER_SIZE; if (n == data[0]) { if (send_array->buffer[num] != nullptr) { const uint64_t sent_time = send_array->buffer[num]->sent_time; if ((sent_time + rtt_time) < temp_time) { send_array->buffer[num]->sent_time = 0; } } ++data; --length; n = 0; ++requested; } else { if (send_array->buffer[num] != nullptr) { l_sent_time = max_u64(l_sent_time, send_array->buffer[num]->sent_time); mem_delete(mem, send_array->buffer[num]); send_array->buffer[num] = nullptr; } } if (n == 255) { n = 1; if (data[0] != 0) { return -1; } ++data; --length; } else { ++n; } } *latest_send_time = max_u64(*latest_send_time, l_sent_time); return requested; } /** END: Array Related functions */ #define MAX_DATA_DATA_PACKET_SIZE (MAX_CRYPTO_PACKET_SIZE - (1 + sizeof(uint16_t) + CRYPTO_MAC_SIZE)) /** @brief Creates and sends a data packet to the peer using the fastest route. * * @retval -1 on failure. * @retval 0 on success. */ non_null() static int send_data_packet(Net_Crypto *c, int crypt_connection_id, const uint8_t *data, uint16_t length) { const uint16_t max_length = MAX_CRYPTO_PACKET_SIZE - (1 + sizeof(uint16_t) + CRYPTO_MAC_SIZE); if (length == 0 || length > max_length) { LOGGER_ERROR(c->log, "zero-length or too large data packet: %d (max: %d)", length, max_length); return -1; } Crypto_Connection *conn = get_crypto_connection(c, crypt_connection_id); if (conn == nullptr) { LOGGER_ERROR(c->log, "connection id %d not found", crypt_connection_id); return -1; } const uint16_t packet_size = 1 + sizeof(uint16_t) + length + CRYPTO_MAC_SIZE; VLA(uint8_t, packet, packet_size); packet[0] = NET_PACKET_CRYPTO_DATA; memcpy(packet + 1, conn->sent_nonce + (CRYPTO_NONCE_SIZE - sizeof(uint16_t)), sizeof(uint16_t)); const int len = encrypt_data_symmetric(conn->shared_key, conn->sent_nonce, data, length, packet + 1 + sizeof(uint16_t)); if (len + 1 + sizeof(uint16_t) != packet_size) { LOGGER_ERROR(c->log, "encryption failed: %d", len); return -1; } increment_nonce(conn->sent_nonce); return send_packet_to(c, crypt_connection_id, packet, packet_size); } /** @brief Creates and sends a data packet with buffer_start and num to the peer using the fastest route. * * @retval -1 on failure. * @retval 0 on success. */ non_null() static int send_data_packet_helper(Net_Crypto *c, int crypt_connection_id, uint32_t buffer_start, uint32_t num, const uint8_t *data, uint16_t length) { if (length == 0 || length > MAX_CRYPTO_DATA_SIZE) { LOGGER_ERROR(c->log, "zero-length or too large data packet: %d (max: %d)", length, MAX_CRYPTO_PACKET_SIZE); return -1; } num = net_htonl(num); buffer_start = net_htonl(buffer_start); const uint16_t padding_length = (MAX_CRYPTO_DATA_SIZE - length) % CRYPTO_MAX_PADDING; const uint16_t packet_size = sizeof(uint32_t) + sizeof(uint32_t) + padding_length + length; VLA(uint8_t, packet, packet_size); memcpy(packet, &buffer_start, sizeof(uint32_t)); memcpy(packet + sizeof(uint32_t), &num, sizeof(uint32_t)); memzero(packet + (sizeof(uint32_t) * 2), padding_length); memcpy(packet + (sizeof(uint32_t) * 2) + padding_length, data, length); return send_data_packet(c, crypt_connection_id, packet, packet_size); } non_null() static int reset_max_speed_reached(Net_Crypto *c, int crypt_connection_id) { Crypto_Connection *conn = get_crypto_connection(c, crypt_connection_id); if (conn == nullptr) { return -1; } /* If last packet send failed, try to send packet again. * If sending it fails we won't be able to send the new packet. */ if (conn->maximum_speed_reached) { Packet_Data *dt = nullptr; const uint32_t packet_num = conn->send_array.buffer_end - 1; const int ret = get_data_pointer(&conn->send_array, &dt, packet_num); if (ret == 1 && dt->sent_time == 0) { if (send_data_packet_helper(c, crypt_connection_id, conn->recv_array.buffer_start, packet_num, dt->data, dt->length) != 0) { return -1; } dt->sent_time = current_time_monotonic(c->mono_time); } conn->maximum_speed_reached = false; } return 0; } /** * @retval -1 if data could not be put in packet queue. * @return positive packet number if data was put into the queue. */ non_null() static int64_t send_lossless_packet(Net_Crypto *c, int crypt_connection_id, const uint8_t *data, uint16_t length, bool congestion_control) { if (length == 0 || length > MAX_CRYPTO_DATA_SIZE) { LOGGER_ERROR(c->log, "rejecting too large (or empty) packet of size %d on crypt connection %d", length, crypt_connection_id); return -1; } Crypto_Connection *conn = get_crypto_connection(c, crypt_connection_id); if (conn == nullptr) { return -1; } /* If last packet send failed, try to send packet again. * If sending it fails we won't be able to send the new packet. */ reset_max_speed_reached(c, crypt_connection_id); if (conn->maximum_speed_reached && congestion_control) { LOGGER_INFO(c->log, "congestion control: maximum speed reached on crypt connection %d", crypt_connection_id); return -1; } Packet_Data dt; dt.sent_time = 0; dt.length = length; memcpy(dt.data, data, length); const int64_t packet_num = add_data_end_of_buffer(c->log, c->mem, &conn->send_array, &dt); if (packet_num == -1) { return -1; } if (!congestion_control && conn->maximum_speed_reached) { return packet_num; } if (send_data_packet_helper(c, crypt_connection_id, conn->recv_array.buffer_start, packet_num, data, length) == 0) { Packet_Data *dt1 = nullptr; if (get_data_pointer(&conn->send_array, &dt1, packet_num) == 1) { dt1->sent_time = current_time_monotonic(c->mono_time); } } else { conn->maximum_speed_reached = true; LOGGER_DEBUG(c->log, "send_data_packet failed (packet_num = %ld)", (long)packet_num); } return packet_num; } /** * @brief Get the lowest 2 bytes from the nonce and convert * them to host byte format before returning them. */ non_null() static uint16_t get_nonce_uint16(const uint8_t *nonce) { uint16_t num; memcpy(&num, nonce + (CRYPTO_NONCE_SIZE - sizeof(uint16_t)), sizeof(uint16_t)); return net_ntohs(num); } #define DATA_NUM_THRESHOLD 21845 /** @brief Handle a data packet. * Decrypt packet of length and put it into data. * data must be at least MAX_DATA_DATA_PACKET_SIZE big. * * @retval -1 on failure. * @return length of data on success. */ non_null() static int handle_data_packet(const Net_Crypto *c, int crypt_connection_id, uint8_t *data, const uint8_t *packet, uint16_t length) { const uint16_t crypto_packet_overhead = 1 + sizeof(uint16_t) + CRYPTO_MAC_SIZE; if (length <= crypto_packet_overhead || length > MAX_CRYPTO_PACKET_SIZE) { return -1; } Crypto_Connection *conn = get_crypto_connection(c, crypt_connection_id); if (conn == nullptr) { return -1; } uint8_t nonce[CRYPTO_NONCE_SIZE]; memcpy(nonce, conn->recv_nonce, CRYPTO_NONCE_SIZE); const uint16_t num_cur_nonce = get_nonce_uint16(nonce); uint16_t num; net_unpack_u16(packet + 1, &num); const uint16_t diff = num - num_cur_nonce; increment_nonce_number(nonce, diff); const int len = decrypt_data_symmetric(conn->shared_key, nonce, packet + 1 + sizeof(uint16_t), length - (1 + sizeof(uint16_t)), data); if ((unsigned int)len != length - crypto_packet_overhead) { return -1; } if (diff > DATA_NUM_THRESHOLD * 2) { increment_nonce_number(conn->recv_nonce, DATA_NUM_THRESHOLD); } return len; } /** @brief Send a request packet. * * @retval -1 on failure. * @retval 0 on success. */ non_null() static int send_request_packet(Net_Crypto *c, int crypt_connection_id) { const Crypto_Connection *conn = get_crypto_connection(c, crypt_connection_id); if (conn == nullptr) { return -1; } uint8_t data[MAX_CRYPTO_DATA_SIZE]; const int len = generate_request_packet(data, sizeof(data), &conn->recv_array); if (len == -1) { return -1; } return send_data_packet_helper(c, crypt_connection_id, conn->recv_array.buffer_start, conn->send_array.buffer_end, data, len); } /** @brief Send up to max num previously requested data packets. * * @retval -1 on failure. * @return number of packets sent on success. */ non_null() static int send_requested_packets(Net_Crypto *c, int crypt_connection_id, uint32_t max_num) { if (max_num == 0) { return -1; } const Crypto_Connection *conn = get_crypto_connection(c, crypt_connection_id); if (conn == nullptr) { return -1; } const uint64_t temp_time = current_time_monotonic(c->mono_time); const uint32_t array_size = num_packets_array(&conn->send_array); uint32_t num_sent = 0; for (uint32_t i = 0; i < array_size; ++i) { Packet_Data *dt; const uint32_t packet_num = i + conn->send_array.buffer_start; const int ret = get_data_pointer(&conn->send_array, &dt, packet_num); if (ret == -1) { return -1; } if (ret == 0) { continue; } if (dt->sent_time != 0) { continue; } if (send_data_packet_helper(c, crypt_connection_id, conn->recv_array.buffer_start, packet_num, dt->data, dt->length) == 0) { dt->sent_time = temp_time; ++num_sent; } if (num_sent >= max_num) { break; } } return num_sent; } /** @brief Add a new temp packet to send repeatedly. * * @retval -1 on failure. * @retval 0 on success. */ non_null() static int new_temp_packet(const Net_Crypto *c, int crypt_connection_id, const uint8_t *packet, uint16_t length) { if (length == 0 || length > MAX_CRYPTO_PACKET_SIZE) { return -1; } Crypto_Connection *conn = get_crypto_connection(c, crypt_connection_id); if (conn == nullptr) { return -1; } uint8_t *temp_packet = (uint8_t *)mem_balloc(c->mem, length); if (temp_packet == nullptr) { return -1; } if (conn->temp_packet != nullptr) { mem_delete(c->mem, conn->temp_packet); } memcpy(temp_packet, packet, length); conn->temp_packet = temp_packet; conn->temp_packet_length = length; conn->temp_packet_sent_time = 0; conn->temp_packet_num_sent = 0; return 0; } /** @brief Clear the temp packet. * * @retval -1 on failure. * @retval 0 on success. */ non_null() static int clear_temp_packet(const Net_Crypto *c, int crypt_connection_id) { Crypto_Connection *conn = get_crypto_connection(c, crypt_connection_id); if (conn == nullptr) { return -1; } if (conn->temp_packet != nullptr) { mem_delete(c->mem, conn->temp_packet); } conn->temp_packet = nullptr; conn->temp_packet_length = 0; conn->temp_packet_sent_time = 0; conn->temp_packet_num_sent = 0; return 0; } /** @brief Send the temp packet. * * @retval -1 on failure. * @retval 0 on success. */ non_null() static int send_temp_packet(Net_Crypto *c, int crypt_connection_id) { Crypto_Connection *conn = get_crypto_connection(c, crypt_connection_id); if (conn == nullptr) { return -1; } if (conn->temp_packet == nullptr) { return -1; } if (send_packet_to(c, crypt_connection_id, conn->temp_packet, conn->temp_packet_length) != 0) { return -1; } conn->temp_packet_sent_time = current_time_monotonic(c->mono_time); ++conn->temp_packet_num_sent; return 0; } /** @brief Create a handshake packet and set it as a temp packet. * @param cookie must be COOKIE_LENGTH. * * @retval -1 on failure. * @retval 0 on success. */ non_null() static int create_send_handshake(Net_Crypto *c, int crypt_connection_id, const uint8_t *cookie, const uint8_t *dht_public_key) { const Crypto_Connection *conn = get_crypto_connection(c, crypt_connection_id); if (conn == nullptr) { return -1; } uint8_t handshake_packet[HANDSHAKE_PACKET_LENGTH]; if (create_crypto_handshake(c, handshake_packet, cookie, conn->sent_nonce, conn->sessionpublic_key, conn->public_key, dht_public_key) != sizeof(handshake_packet)) { return -1; } if (new_temp_packet(c, crypt_connection_id, handshake_packet, sizeof(handshake_packet)) != 0) { return -1; } send_temp_packet(c, crypt_connection_id); return 0; } /** @brief Send a kill packet. * * @retval -1 on failure. * @retval 0 on success. */ non_null() static int send_kill_packet(Net_Crypto *c, int crypt_connection_id) { const Crypto_Connection *conn = get_crypto_connection(c, crypt_connection_id); if (conn == nullptr) { return -1; } const uint8_t kill_packet[1] = {PACKET_ID_KILL}; return send_data_packet_helper(c, crypt_connection_id, conn->recv_array.buffer_start, conn->send_array.buffer_end, kill_packet, sizeof(kill_packet)); } non_null(1) nullable(3) static void connection_kill(Net_Crypto *c, int crypt_connection_id, void *userdata) { const Crypto_Connection *conn = get_crypto_connection(c, crypt_connection_id); if (conn == nullptr) { return; } if (conn->connection_status_callback != nullptr) { conn->connection_status_callback(conn->connection_status_callback_object, conn->connection_status_callback_id, false, userdata); } crypto_kill(c, crypt_connection_id); } /** @brief Handle a received data packet. * * @retval -1 on failure. * @retval 0 on success. */ non_null(1, 3) nullable(6) static int handle_data_packet_core(Net_Crypto *c, int crypt_connection_id, const uint8_t *packet, uint16_t length, bool udp, void *userdata) { if (length > MAX_CRYPTO_PACKET_SIZE || length <= CRYPTO_DATA_PACKET_MIN_SIZE) { return -1; } Crypto_Connection *conn = get_crypto_connection(c, crypt_connection_id); if (conn == nullptr) { return -1; } uint8_t data[MAX_DATA_DATA_PACKET_SIZE]; const int len = handle_data_packet(c, crypt_connection_id, data, packet, length); if (len <= (int)(sizeof(uint32_t) * 2)) { return -1; } uint32_t buffer_start; uint32_t num; memcpy(&buffer_start, data, sizeof(uint32_t)); memcpy(&num, data + sizeof(uint32_t), sizeof(uint32_t)); buffer_start = net_ntohl(buffer_start); num = net_ntohl(num); uint64_t rtt_calc_time = 0; if (buffer_start != conn->send_array.buffer_start) { Packet_Data *packet_time; if (get_data_pointer(&conn->send_array, &packet_time, conn->send_array.buffer_start) == 1) { rtt_calc_time = packet_time->sent_time; } if (clear_buffer_until(c->mem, &conn->send_array, buffer_start) != 0) { return -1; } } const uint8_t *real_data = data + (sizeof(uint32_t) * 2); uint16_t real_length = len - (sizeof(uint32_t) * 2); while (real_data[0] == 0) { /* Remove Padding */ ++real_data; --real_length; if (real_length == 0) { return -1; } } if (real_data[0] == PACKET_ID_KILL) { connection_kill(c, crypt_connection_id, userdata); return 0; } if (conn->status == CRYPTO_CONN_NOT_CONFIRMED) { clear_temp_packet(c, crypt_connection_id); conn->status = CRYPTO_CONN_ESTABLISHED; if (conn->connection_status_callback != nullptr) { conn->connection_status_callback(conn->connection_status_callback_object, conn->connection_status_callback_id, true, userdata); } } if (real_data[0] == PACKET_ID_REQUEST) { uint64_t rtt_time; if (udp) { rtt_time = conn->rtt_time; } else { rtt_time = DEFAULT_TCP_PING_CONNECTION; } const int requested = handle_request_packet(c->mem, c->mono_time, &conn->send_array, real_data, real_length, &rtt_calc_time, rtt_time); if (requested == -1) { return -1; } set_buffer_end(&conn->recv_array, num); } else if (real_data[0] >= PACKET_ID_RANGE_LOSSLESS_START && real_data[0] <= PACKET_ID_RANGE_LOSSLESS_END) { Packet_Data dt = {0}; dt.length = real_length; memcpy(dt.data, real_data, real_length); if (add_data_to_buffer(c->mem, &conn->recv_array, num, &dt) != 0) { return -1; } while (true) { const int ret = read_data_beg_buffer(c->mem, &conn->recv_array, &dt); if (ret == -1) { break; } if (conn->connection_data_callback != nullptr) { conn->connection_data_callback(conn->connection_data_callback_object, conn->connection_data_callback_id, dt.data, dt.length, userdata); } /* conn might get killed in callback. */ conn = get_crypto_connection(c, crypt_connection_id); if (conn == nullptr) { return -1; } } /* Packet counter. */ ++conn->packet_counter; } else if (real_data[0] >= PACKET_ID_RANGE_LOSSY_START && real_data[0] <= PACKET_ID_RANGE_LOSSY_END) { set_buffer_end(&conn->recv_array, num); if (conn->connection_lossy_data_callback != nullptr) { conn->connection_lossy_data_callback(conn->connection_lossy_data_callback_object, conn->connection_lossy_data_callback_id, real_data, real_length, userdata); } } else { return -1; } if (rtt_calc_time != 0) { const uint64_t rtt_time = current_time_monotonic(c->mono_time) - rtt_calc_time; if (rtt_time < conn->rtt_time) { conn->rtt_time = rtt_time; } } return 0; } non_null() static int handle_packet_cookie_response(Net_Crypto *c, int crypt_connection_id, const uint8_t *packet, uint16_t length) { Crypto_Connection *conn = get_crypto_connection(c, crypt_connection_id); if (conn == nullptr) { return -1; } if (conn->status != CRYPTO_CONN_COOKIE_REQUESTING) { return -1; } uint8_t cookie[COOKIE_LENGTH]; uint64_t number; if (handle_cookie_response(cookie, &number, packet, length, conn->shared_key) != sizeof(cookie)) { return -1; } if (number != conn->cookie_request_number) { return -1; } if (create_send_handshake(c, crypt_connection_id, cookie, conn->dht_public_key) != 0) { return -1; } conn->status = CRYPTO_CONN_HANDSHAKE_SENT; return 0; } non_null(1, 3) nullable(5) static int handle_packet_crypto_hs(Net_Crypto *c, int crypt_connection_id, const uint8_t *packet, uint16_t length, void *userdata) { Crypto_Connection *conn = get_crypto_connection(c, crypt_connection_id); if (conn == nullptr) { return -1; } if (conn->status != CRYPTO_CONN_COOKIE_REQUESTING && conn->status != CRYPTO_CONN_HANDSHAKE_SENT && conn->status != CRYPTO_CONN_NOT_CONFIRMED) { return -1; } uint8_t peer_real_pk[CRYPTO_PUBLIC_KEY_SIZE]; uint8_t dht_public_key[CRYPTO_PUBLIC_KEY_SIZE]; uint8_t cookie[COOKIE_LENGTH]; if (!handle_crypto_handshake(c, conn->recv_nonce, conn->peersessionpublic_key, peer_real_pk, dht_public_key, cookie, packet, length, conn->public_key)) { return -1; } if (pk_equal(dht_public_key, conn->dht_public_key)) { encrypt_precompute(conn->peersessionpublic_key, conn->sessionsecret_key, conn->shared_key); if (conn->status == CRYPTO_CONN_COOKIE_REQUESTING) { if (create_send_handshake(c, crypt_connection_id, cookie, dht_public_key) != 0) { return -1; } } conn->status = CRYPTO_CONN_NOT_CONFIRMED; } else { if (conn->dht_pk_callback != nullptr) { conn->dht_pk_callback(conn->dht_pk_callback_object, conn->dht_pk_callback_number, dht_public_key, userdata); } } return 0; } non_null(1, 3) nullable(6) static int handle_packet_crypto_data(Net_Crypto *c, int crypt_connection_id, const uint8_t *packet, uint16_t length, bool udp, void *userdata) { const Crypto_Connection *conn = get_crypto_connection(c, crypt_connection_id); if (conn == nullptr) { return -1; } if (conn->status != CRYPTO_CONN_NOT_CONFIRMED && conn->status != CRYPTO_CONN_ESTABLISHED) { return -1; } return handle_data_packet_core(c, crypt_connection_id, packet, length, udp, userdata); } /** @brief Handle a packet that was received for the connection. * * @retval -1 on failure. * @retval 0 on success. */ non_null(1, 3) nullable(6) static int handle_packet_connection(Net_Crypto *c, int crypt_connection_id, const uint8_t *packet, uint16_t length, bool udp, void *userdata) { if (length == 0 || length > MAX_CRYPTO_PACKET_SIZE) { return -1; } switch (packet[0]) { case NET_PACKET_COOKIE_RESPONSE: return handle_packet_cookie_response(c, crypt_connection_id, packet, length); case NET_PACKET_CRYPTO_HS: return handle_packet_crypto_hs(c, crypt_connection_id, packet, length, userdata); case NET_PACKET_CRYPTO_DATA: return handle_packet_crypto_data(c, crypt_connection_id, packet, length, udp, userdata); default: return -1; } } /** @brief Set the size of the friend list to numfriends. * * @retval -1 if mem_vrealloc fails. * @retval 0 if it succeeds. */ non_null() static int realloc_cryptoconnection(Net_Crypto *c, uint32_t num) { if (num == 0) { mem_delete(c->mem, c->crypto_connections); c->crypto_connections = nullptr; return 0; } Crypto_Connection *newcrypto_connections = (Crypto_Connection *)mem_vrealloc( c->mem, c->crypto_connections, num, sizeof(Crypto_Connection)); if (newcrypto_connections == nullptr) { return -1; } c->crypto_connections = newcrypto_connections; return 0; } /** @brief Create a new empty crypto connection. * * @retval -1 on failure. * @return connection id on success. */ non_null() static int create_crypto_connection(Net_Crypto *c) { int id = -1; for (uint32_t i = 0; i < c->crypto_connections_length; ++i) { if (c->crypto_connections[i].status == CRYPTO_CONN_FREE) { id = i; break; } } if (id == -1) { if (realloc_cryptoconnection(c, c->crypto_connections_length + 1) == 0) { id = c->crypto_connections_length; ++c->crypto_connections_length; c->crypto_connections[id] = empty_crypto_connection; } } if (id != -1) { // Memsetting float/double to 0 is non-portable, so we explicitly set them to 0 c->crypto_connections[id].packet_recv_rate = 0.0; c->crypto_connections[id].packet_send_rate = 0.0; c->crypto_connections[id].last_packets_left_rem = 0.0; c->crypto_connections[id].packet_send_rate_requested = 0.0; c->crypto_connections[id].last_packets_left_requested_rem = 0.0; // TODO(Green-Sky): This enum is likely unneeded and the same as FREE. c->crypto_connections[id].status = CRYPTO_CONN_NO_CONNECTION; } return id; } /** @brief Wipe a crypto connection. * * @retval -1 on failure. * @retval 0 on success. */ non_null() static int wipe_crypto_connection(Net_Crypto *c, int crypt_connection_id) { if ((uint32_t)crypt_connection_id >= c->crypto_connections_length) { return -1; } if (c->crypto_connections == nullptr) { return -1; } const Crypto_Conn_State status = c->crypto_connections[crypt_connection_id].status; if (status == CRYPTO_CONN_FREE) { return -1; } uint32_t i; crypto_memzero(&c->crypto_connections[crypt_connection_id], sizeof(Crypto_Connection)); /* check if we can resize the connections array */ for (i = c->crypto_connections_length; i != 0; --i) { if (c->crypto_connections[i - 1].status != CRYPTO_CONN_FREE) { break; } } if (c->crypto_connections_length != i) { c->crypto_connections_length = i; realloc_cryptoconnection(c, c->crypto_connections_length); } return 0; } /** @brief Get crypto connection id from public key of peer. * * @retval -1 if there are no connections like we are looking for. * @return id if it found it. */ non_null() static int getcryptconnection_id(const Net_Crypto *c, const uint8_t *public_key) { for (uint32_t i = 0; i < c->crypto_connections_length; ++i) { if (!crypt_connection_id_is_valid(c, i)) { continue; } if (pk_equal(public_key, c->crypto_connections[i].public_key)) { return i; } } return -1; } /** @brief Add a source to the crypto connection. * This is to be used only when we have received a packet from that source. * * @retval -1 on failure. * @retval 0 if source was a direct UDP connection. * @return positive number on success. */ non_null() static int crypto_connection_add_source(Net_Crypto *c, int crypt_connection_id, const IP_Port *source) { Crypto_Connection *conn = get_crypto_connection(c, crypt_connection_id); if (conn == nullptr) { return -1; } if (net_family_is_ipv4(source->ip.family) || net_family_is_ipv6(source->ip.family)) { if (add_ip_port_connection(c, crypt_connection_id, source) != 0) { return -1; } if (net_family_is_ipv4(source->ip.family)) { conn->direct_lastrecv_timev4 = mono_time_get(c->mono_time); } else { conn->direct_lastrecv_timev6 = mono_time_get(c->mono_time); } return 0; } unsigned int tcp_connections_number; if (ip_port_to_tcp_connections_number(source, &tcp_connections_number)) { if (add_tcp_number_relay_connection(c->tcp_c, conn->connection_number_tcp, tcp_connections_number) == 0) { return 1; } } return -1; } /** @brief Set function to be called when someone requests a new connection to us. * * The set function should return -1 on failure and 0 on success. * * n_c is only valid for the duration of the function call. */ void new_connection_handler(Net_Crypto *c, new_connection_cb *new_connection_callback, void *object) { c->new_connection_callback = new_connection_callback; c->new_connection_callback_object = object; } /** @brief Handle a handshake packet by someone who wants to initiate a new connection with us. * This calls the callback set by `new_connection_handler()` if the handshake is ok. * * @retval -1 on failure. * @retval 0 on success. */ non_null(1, 2, 3) nullable(5) static int handle_new_connection_handshake(Net_Crypto *c, const IP_Port *source, const uint8_t *data, uint16_t length, void *userdata) { uint8_t *cookie = (uint8_t *)mem_balloc(c->mem, COOKIE_LENGTH); if (cookie == nullptr) { return -1; } New_Connection n_c = {{{{0}}}}; n_c.cookie = cookie; n_c.source = *source; n_c.cookie_length = COOKIE_LENGTH; if (!handle_crypto_handshake(c, n_c.recv_nonce, n_c.peersessionpublic_key, n_c.public_key, n_c.dht_public_key, n_c.cookie, data, length, nullptr)) { mem_delete(c->mem, n_c.cookie); return -1; } const int crypt_connection_id = getcryptconnection_id(c, n_c.public_key); if (crypt_connection_id != -1) { Crypto_Connection *conn = get_crypto_connection(c, crypt_connection_id); if (conn == nullptr) { return -1; } if (!pk_equal(n_c.dht_public_key, conn->dht_public_key)) { connection_kill(c, crypt_connection_id, userdata); } else { if (conn->status != CRYPTO_CONN_COOKIE_REQUESTING && conn->status != CRYPTO_CONN_HANDSHAKE_SENT) { mem_delete(c->mem, n_c.cookie); return -1; } memcpy(conn->recv_nonce, n_c.recv_nonce, CRYPTO_NONCE_SIZE); memcpy(conn->peersessionpublic_key, n_c.peersessionpublic_key, CRYPTO_PUBLIC_KEY_SIZE); encrypt_precompute(conn->peersessionpublic_key, conn->sessionsecret_key, conn->shared_key); crypto_connection_add_source(c, crypt_connection_id, source); if (create_send_handshake(c, crypt_connection_id, n_c.cookie, n_c.dht_public_key) != 0) { mem_delete(c->mem, n_c.cookie); return -1; } conn->status = CRYPTO_CONN_NOT_CONFIRMED; mem_delete(c->mem, n_c.cookie); return 0; } } const int ret = c->new_connection_callback(c->new_connection_callback_object, &n_c); mem_delete(c->mem, n_c.cookie); return ret; } /** @brief Accept a crypto connection. * * return -1 on failure. * return connection id on success. */ int accept_crypto_connection(Net_Crypto *c, const New_Connection *n_c) { if (getcryptconnection_id(c, n_c->public_key) != -1) { return -1; } const int crypt_connection_id = create_crypto_connection(c); if (crypt_connection_id == -1) { LOGGER_ERROR(c->log, "Could not create new crypto connection"); return -1; } Crypto_Connection *conn = &c->crypto_connections[crypt_connection_id]; if (n_c->cookie_length != COOKIE_LENGTH) { wipe_crypto_connection(c, crypt_connection_id); return -1; } const int connection_number_tcp = new_tcp_connection_to(c->tcp_c, n_c->dht_public_key, crypt_connection_id); if (connection_number_tcp == -1) { wipe_crypto_connection(c, crypt_connection_id); return -1; } conn->connection_number_tcp = connection_number_tcp; memcpy(conn->public_key, n_c->public_key, CRYPTO_PUBLIC_KEY_SIZE); memcpy(conn->recv_nonce, n_c->recv_nonce, CRYPTO_NONCE_SIZE); memcpy(conn->peersessionpublic_key, n_c->peersessionpublic_key, CRYPTO_PUBLIC_KEY_SIZE); random_nonce(c->rng, conn->sent_nonce); crypto_new_keypair(c->rng, conn->sessionpublic_key, conn->sessionsecret_key); encrypt_precompute(conn->peersessionpublic_key, conn->sessionsecret_key, conn->shared_key); conn->status = CRYPTO_CONN_NOT_CONFIRMED; if (create_send_handshake(c, crypt_connection_id, n_c->cookie, n_c->dht_public_key) != 0) { kill_tcp_connection_to(c->tcp_c, conn->connection_number_tcp); wipe_crypto_connection(c, crypt_connection_id); return -1; } memcpy(conn->dht_public_key, n_c->dht_public_key, CRYPTO_PUBLIC_KEY_SIZE); conn->packet_send_rate = CRYPTO_PACKET_MIN_RATE; conn->packet_send_rate_requested = CRYPTO_PACKET_MIN_RATE; conn->packets_left = CRYPTO_MIN_QUEUE_LENGTH; conn->rtt_time = DEFAULT_PING_CONNECTION; crypto_connection_add_source(c, crypt_connection_id, &n_c->source); return crypt_connection_id; } /** @brief Create a crypto connection. * If one to that real public key already exists, return it. * * return -1 on failure. * return connection id on success. */ int new_crypto_connection(Net_Crypto *c, const uint8_t *real_public_key, const uint8_t *dht_public_key) { int crypt_connection_id = getcryptconnection_id(c, real_public_key); if (crypt_connection_id != -1) { return crypt_connection_id; } crypt_connection_id = create_crypto_connection(c); if (crypt_connection_id == -1) { return -1; } Crypto_Connection *conn = &c->crypto_connections[crypt_connection_id]; const int connection_number_tcp = new_tcp_connection_to(c->tcp_c, dht_public_key, crypt_connection_id); if (connection_number_tcp == -1) { wipe_crypto_connection(c, crypt_connection_id); return -1; } conn->connection_number_tcp = connection_number_tcp; memcpy(conn->public_key, real_public_key, CRYPTO_PUBLIC_KEY_SIZE); random_nonce(c->rng, conn->sent_nonce); crypto_new_keypair(c->rng, conn->sessionpublic_key, conn->sessionsecret_key); conn->status = CRYPTO_CONN_COOKIE_REQUESTING; conn->packet_send_rate = CRYPTO_PACKET_MIN_RATE; conn->packet_send_rate_requested = CRYPTO_PACKET_MIN_RATE; conn->packets_left = CRYPTO_MIN_QUEUE_LENGTH; conn->rtt_time = DEFAULT_PING_CONNECTION; memcpy(conn->dht_public_key, dht_public_key, CRYPTO_PUBLIC_KEY_SIZE); conn->cookie_request_number = random_u64(c->rng); uint8_t cookie_request[COOKIE_REQUEST_LENGTH]; if (create_cookie_request(c, cookie_request, conn->dht_public_key, conn->cookie_request_number, conn->shared_key) != sizeof(cookie_request) || new_temp_packet(c, crypt_connection_id, cookie_request, sizeof(cookie_request)) != 0) { kill_tcp_connection_to(c->tcp_c, conn->connection_number_tcp); wipe_crypto_connection(c, crypt_connection_id); return -1; } return crypt_connection_id; } /** @brief Set the direct ip of the crypto connection. * * Connected is 0 if we are not sure we are connected to that person, 1 if we are sure. * * return -1 on failure. * return 0 on success. */ int set_direct_ip_port(Net_Crypto *c, int crypt_connection_id, const IP_Port *ip_port, bool connected) { Crypto_Connection *conn = get_crypto_connection(c, crypt_connection_id); if (conn == nullptr) { return -1; } if (add_ip_port_connection(c, crypt_connection_id, ip_port) != 0) { return -1; } const uint64_t direct_lastrecv_time = connected ? mono_time_get(c->mono_time) : 0; if (net_family_is_ipv4(ip_port->ip.family)) { conn->direct_lastrecv_timev4 = direct_lastrecv_time; } else { conn->direct_lastrecv_timev6 = direct_lastrecv_time; } return 0; } non_null(1, 3) nullable(5) static int tcp_data_callback(void *object, int crypt_connection_id, const uint8_t *packet, uint16_t length, void *userdata) { Net_Crypto *c = (Net_Crypto *)object; if (length == 0 || length > MAX_CRYPTO_PACKET_SIZE) { return -1; } const Crypto_Connection *conn = get_crypto_connection(c, crypt_connection_id); if (conn == nullptr) { return -1; } if (packet[0] == NET_PACKET_COOKIE_REQUEST) { return tcp_handle_cookie_request(c, conn->connection_number_tcp, packet, length); } const int ret = handle_packet_connection(c, crypt_connection_id, packet, length, false, userdata); if (ret != 0) { return -1; } // TODO(irungentoo): detect and kill bad TCP connections. return 0; } non_null(1, 2, 4) nullable(6) static int tcp_oob_callback(void *object, const uint8_t *public_key, unsigned int tcp_connections_number, const uint8_t *packet, uint16_t length, void *userdata) { Net_Crypto *c = (Net_Crypto *)object; if (length == 0 || length > MAX_CRYPTO_PACKET_SIZE) { return -1; } if (packet[0] == NET_PACKET_COOKIE_REQUEST) { return tcp_oob_handle_cookie_request(c, tcp_connections_number, public_key, packet, length); } if (packet[0] == NET_PACKET_CRYPTO_HS) { const IP_Port source = tcp_connections_number_to_ip_port(tcp_connections_number); if (handle_new_connection_handshake(c, &source, packet, length, userdata) != 0) { return -1; } return 0; } return -1; } /** @brief Add a tcp relay, associating it to a crypt_connection_id. * * return 0 if it was added. * return -1 if it wasn't. */ int add_tcp_relay_peer(Net_Crypto *c, int crypt_connection_id, const IP_Port *ip_port, const uint8_t *public_key) { const Crypto_Connection *conn = get_crypto_connection(c, crypt_connection_id); if (conn == nullptr) { return -1; } return add_tcp_relay_connection(c->tcp_c, conn->connection_number_tcp, ip_port, public_key); } /** @brief Add a tcp relay to the array. * * return 0 if it was added. * return -1 if it wasn't. */ int add_tcp_relay(Net_Crypto *c, const IP_Port *ip_port, const uint8_t *public_key) { return add_tcp_relay_global(c->tcp_c, ip_port, public_key); } /** @brief Return a random TCP connection number for use in send_tcp_onion_request. * * TODO(irungentoo): This number is just the index of an array that the elements can * change without warning. * * return TCP connection number on success. * return -1 on failure. */ int get_random_tcp_con_number(const Net_Crypto *c) { return get_random_tcp_onion_conn_number(c->tcp_c); } /** @brief Put IP_Port of a random onion TCP connection in ip_port. * * return true on success. * return false on failure. */ bool get_random_tcp_conn_ip_port(const Net_Crypto *c, IP_Port *ip_port) { return tcp_get_random_conn_ip_port(c->tcp_c, ip_port); } /** @brief Send an onion packet via the TCP relay corresponding to tcp_connections_number. * * return 0 on success. * return -1 on failure. */ int send_tcp_onion_request(Net_Crypto *c, unsigned int tcp_connections_number, const uint8_t *data, uint16_t length) { return tcp_send_onion_request(c->tcp_c, tcp_connections_number, data, length); } /** * Send a forward request to the TCP relay with IP_Port tcp_forwarder, * requesting to forward data via a chain of dht nodes starting with dht_node. * A chain_length of 0 means that dht_node is the final destination of data. * * return 0 on success. * return -1 on failure. */ int send_tcp_forward_request(const Logger *logger, Net_Crypto *c, const IP_Port *tcp_forwarder, const IP_Port *dht_node, const uint8_t *chain_keys, uint16_t chain_length, const uint8_t *data, uint16_t data_length) { return tcp_send_forward_request(logger, c->tcp_c, tcp_forwarder, dht_node, chain_keys, chain_length, data, data_length); } /** @brief Copy a maximum of num random TCP relays we are connected to to tcp_relays. * * NOTE that the family of the copied ip ports will be set to TCP_INET or TCP_INET6. * * return number of relays copied to tcp_relays on success. * return 0 on failure. */ unsigned int copy_connected_tcp_relays(const Net_Crypto *c, Node_format *tcp_relays, uint16_t num) { if (num == 0) { return 0; } return tcp_copy_connected_relays(c->tcp_c, tcp_relays, num); } uint32_t copy_connected_tcp_relays_index(const Net_Crypto *c, Node_format *tcp_relays, uint16_t num, uint32_t idx) { if (num == 0) { return 0; } return tcp_copy_connected_relays_index(c->tcp_c, tcp_relays, num, idx); } non_null() static void do_tcp(Net_Crypto *c, void *userdata) { do_tcp_connections(c->log, c->tcp_c, userdata); for (uint32_t i = 0; i < c->crypto_connections_length; ++i) { const Crypto_Connection *conn = get_crypto_connection(c, i); if (conn == nullptr) { continue; } if (conn->status != CRYPTO_CONN_ESTABLISHED) { continue; } bool direct_connected = false; if (!crypto_connection_status(c, i, &direct_connected, nullptr)) { continue; } set_tcp_connection_to_status(c->tcp_c, conn->connection_number_tcp, !direct_connected); } } /** @brief Set function to be called when connection with crypt_connection_id goes connects/disconnects. * * The set function should return -1 on failure and 0 on success. * Note that if this function is set, the connection will clear itself on disconnect. * Object and id will be passed to this function untouched. * status is 1 if the connection is going online, 0 if it is going offline. * * return -1 on failure. * return 0 on success. */ int connection_status_handler(const Net_Crypto *c, int crypt_connection_id, connection_status_cb *connection_status_callback, void *object, int id) { Crypto_Connection *conn = get_crypto_connection(c, crypt_connection_id); if (conn == nullptr) { return -1; } conn->connection_status_callback = connection_status_callback; conn->connection_status_callback_object = object; conn->connection_status_callback_id = id; return 0; } /** @brief Set function to be called when connection with crypt_connection_id receives a lossless data packet of length. * * The set function should return -1 on failure and 0 on success. * Object and id will be passed to this function untouched. * * return -1 on failure. * return 0 on success. */ int connection_data_handler(const Net_Crypto *c, int crypt_connection_id, connection_data_cb *connection_data_callback, void *object, int id) { Crypto_Connection *conn = get_crypto_connection(c, crypt_connection_id); if (conn == nullptr) { return -1; } conn->connection_data_callback = connection_data_callback; conn->connection_data_callback_object = object; conn->connection_data_callback_id = id; return 0; } /** @brief Set function to be called when connection with crypt_connection_id receives a lossy data packet of length. * * The set function should return -1 on failure and 0 on success. * Object and id will be passed to this function untouched. * * return -1 on failure. * return 0 on success. */ int connection_lossy_data_handler(const Net_Crypto *c, int crypt_connection_id, connection_lossy_data_cb *connection_lossy_data_callback, void *object, int id) { Crypto_Connection *conn = get_crypto_connection(c, crypt_connection_id); if (conn == nullptr) { return -1; } conn->connection_lossy_data_callback = connection_lossy_data_callback; conn->connection_lossy_data_callback_object = object; conn->connection_lossy_data_callback_id = id; return 0; } /** @brief Set the function for this friend that will be callbacked with object and number if * the friend sends us a different dht public key than we have associated to him. * * If this function is called, the connection should be recreated with the new public key. * * object and number will be passed as argument to this function. * * return -1 on failure. * return 0 on success. */ int nc_dht_pk_callback(const Net_Crypto *c, int crypt_connection_id, dht_pk_cb *function, void *object, uint32_t number) { Crypto_Connection *conn = get_crypto_connection(c, crypt_connection_id); if (conn == nullptr) { return -1; } conn->dht_pk_callback = function; conn->dht_pk_callback_object = object; conn->dht_pk_callback_number = number; return 0; } /** @brief Get the crypto connection id from the ip_port. * * return -1 on failure. * return connection id on success. */ non_null() static int crypto_id_ip_port(const Net_Crypto *c, const IP_Port *ip_port) { return bs_list_find(&c->ip_port_list, (const uint8_t *)ip_port); } #define CRYPTO_MIN_PACKET_SIZE (1 + sizeof(uint16_t) + CRYPTO_MAC_SIZE) /** @brief Handle raw UDP packets coming directly from the socket. * * Handles: * Cookie response packets. * Crypto handshake packets. * Crypto data packets. * */ non_null(1, 2, 3) nullable(5) static int udp_handle_packet(void *object, const IP_Port *source, const uint8_t *packet, uint16_t length, void *userdata) { Net_Crypto *c = (Net_Crypto *)object; if (length <= CRYPTO_MIN_PACKET_SIZE || length > MAX_CRYPTO_PACKET_SIZE) { return 1; } const int crypt_connection_id = crypto_id_ip_port(c, source); if (crypt_connection_id == -1) { if (packet[0] != NET_PACKET_CRYPTO_HS) { return 1; } if (handle_new_connection_handshake(c, source, packet, length, userdata) != 0) { return 1; } return 0; } if (handle_packet_connection(c, crypt_connection_id, packet, length, true, userdata) != 0) { return 1; } Crypto_Connection *conn = get_crypto_connection(c, crypt_connection_id); if (conn == nullptr) { return -1; } if (net_family_is_ipv4(source->ip.family)) { conn->direct_lastrecv_timev4 = mono_time_get(c->mono_time); } else { conn->direct_lastrecv_timev6 = mono_time_get(c->mono_time); } return 0; } /** @brief The dT for the average packet receiving rate calculations. * Also used as the */ #define PACKET_COUNTER_AVERAGE_INTERVAL 50 /** @brief Ratio of recv queue size / recv packet rate (in seconds) times * the number of ms between request packets to send at that ratio */ #define REQUEST_PACKETS_COMPARE_CONSTANT (0.125 * 100.0) /** @brief Timeout for increasing speed after congestion event (in ms). */ #define CONGESTION_EVENT_TIMEOUT 1000 /** * If the send queue is SEND_QUEUE_RATIO times larger than the * calculated link speed the packet send speed will be reduced * by a value depending on this number. */ #define SEND_QUEUE_RATIO 2.0 non_null() static void send_crypto_packets(Net_Crypto *c) { const uint64_t temp_time = current_time_monotonic(c->mono_time); double total_send_rate = 0; uint32_t peak_request_packet_interval = -1; for (uint32_t i = 0; i < c->crypto_connections_length; ++i) { Crypto_Connection *conn = get_crypto_connection(c, i); if (conn == nullptr) { continue; } if ((CRYPTO_SEND_PACKET_INTERVAL + conn->temp_packet_sent_time) < temp_time) { send_temp_packet(c, i); } if ((conn->status == CRYPTO_CONN_NOT_CONFIRMED || conn->status == CRYPTO_CONN_ESTABLISHED) && (CRYPTO_SEND_PACKET_INTERVAL + conn->last_request_packet_sent) < temp_time) { if (send_request_packet(c, i) == 0) { conn->last_request_packet_sent = temp_time; } } if (conn->status == CRYPTO_CONN_ESTABLISHED) { if (conn->packet_recv_rate > CRYPTO_PACKET_MIN_RATE) { double request_packet_interval = REQUEST_PACKETS_COMPARE_CONSTANT / ((num_packets_array( &conn->recv_array) + 1.0) / (conn->packet_recv_rate + 1.0)); const double request_packet_interval2 = ((CRYPTO_PACKET_MIN_RATE / conn->packet_recv_rate) * (double)CRYPTO_SEND_PACKET_INTERVAL) + (double)PACKET_COUNTER_AVERAGE_INTERVAL; if (request_packet_interval2 < request_packet_interval) { request_packet_interval = request_packet_interval2; } if (request_packet_interval < PACKET_COUNTER_AVERAGE_INTERVAL) { request_packet_interval = PACKET_COUNTER_AVERAGE_INTERVAL; } if (request_packet_interval > CRYPTO_SEND_PACKET_INTERVAL) { request_packet_interval = CRYPTO_SEND_PACKET_INTERVAL; } if (temp_time - conn->last_request_packet_sent > (uint64_t)request_packet_interval) { if (send_request_packet(c, i) == 0) { conn->last_request_packet_sent = temp_time; } } if (request_packet_interval < peak_request_packet_interval) { peak_request_packet_interval = request_packet_interval; } } if ((PACKET_COUNTER_AVERAGE_INTERVAL + conn->packet_counter_set) < temp_time) { const double dt = (double)(temp_time - conn->packet_counter_set); conn->packet_recv_rate = (double)conn->packet_counter / (dt / 1000.0); conn->packet_counter = 0; conn->packet_counter_set = temp_time; const uint32_t packets_sent = conn->packets_sent; conn->packets_sent = 0; const uint32_t packets_resent = conn->packets_resent; conn->packets_resent = 0; /* conjestion control * calculate a new value of conn->packet_send_rate based on some data */ const unsigned int pos = conn->last_sendqueue_counter % CONGESTION_QUEUE_ARRAY_SIZE; conn->last_sendqueue_size[pos] = num_packets_array(&conn->send_array); long signed int sum = 0; sum = (long signed int)conn->last_sendqueue_size[pos] - (long signed int)conn->last_sendqueue_size[(pos + 1) % CONGESTION_QUEUE_ARRAY_SIZE]; const unsigned int n_p_pos = conn->last_sendqueue_counter % CONGESTION_LAST_SENT_ARRAY_SIZE; conn->last_num_packets_sent[n_p_pos] = packets_sent; conn->last_num_packets_resent[n_p_pos] = packets_resent; conn->last_sendqueue_counter = (conn->last_sendqueue_counter + 1) % (CONGESTION_QUEUE_ARRAY_SIZE * CONGESTION_LAST_SENT_ARRAY_SIZE); bool direct_connected = false; /* return value can be ignored since the `if` above ensures the connection is established */ crypto_connection_status(c, i, &direct_connected, nullptr); /* When switching from TCP to UDP, don't change the packet send rate for CONGESTION_EVENT_TIMEOUT ms. */ if (!(direct_connected && conn->last_tcp_sent + CONGESTION_EVENT_TIMEOUT > temp_time)) { long signed int total_sent = 0; long signed int total_resent = 0; // TODO(irungentoo): use real delay unsigned int delay = (unsigned int)(((double)conn->rtt_time / PACKET_COUNTER_AVERAGE_INTERVAL) + 0.5); const unsigned int packets_set_rem_array = CONGESTION_LAST_SENT_ARRAY_SIZE - CONGESTION_QUEUE_ARRAY_SIZE; if (delay > packets_set_rem_array) { delay = packets_set_rem_array; } for (unsigned j = 0; j < CONGESTION_QUEUE_ARRAY_SIZE; ++j) { const unsigned int ind = (j + (packets_set_rem_array - delay) + n_p_pos) % CONGESTION_LAST_SENT_ARRAY_SIZE; total_sent += conn->last_num_packets_sent[ind]; total_resent += conn->last_num_packets_resent[ind]; } if (sum > 0) { total_sent -= sum; } else { if (total_resent > -sum) { total_resent = -sum; } } /* if queue is too big only allow resending packets. */ const uint32_t npackets = num_packets_array(&conn->send_array); double min_speed = 1000.0 * (((double)total_sent) / ((double)CONGESTION_QUEUE_ARRAY_SIZE * PACKET_COUNTER_AVERAGE_INTERVAL)); const double min_speed_request = 1000.0 * (((double)(total_sent + total_resent)) / ( (double)CONGESTION_QUEUE_ARRAY_SIZE * PACKET_COUNTER_AVERAGE_INTERVAL)); if (min_speed < CRYPTO_PACKET_MIN_RATE) { min_speed = CRYPTO_PACKET_MIN_RATE; } const double send_array_ratio = (double)npackets / min_speed; // TODO(irungentoo): Improve formula? if (send_array_ratio > SEND_QUEUE_RATIO && CRYPTO_MIN_QUEUE_LENGTH < npackets) { conn->packet_send_rate = min_speed * (1.0 / (send_array_ratio / SEND_QUEUE_RATIO)); } else if (conn->last_congestion_event + CONGESTION_EVENT_TIMEOUT < temp_time) { conn->packet_send_rate = min_speed * 1.2; } else { conn->packet_send_rate = min_speed * 0.9; } conn->packet_send_rate_requested = min_speed_request * 1.2; if (conn->packet_send_rate < CRYPTO_PACKET_MIN_RATE) { conn->packet_send_rate = CRYPTO_PACKET_MIN_RATE; } if (conn->packet_send_rate_requested < conn->packet_send_rate) { conn->packet_send_rate_requested = conn->packet_send_rate; } } } if (conn->last_packets_left_set == 0 || conn->last_packets_left_requested_set == 0) { conn->last_packets_left_requested_set = temp_time; conn->last_packets_left_set = temp_time; conn->packets_left_requested = CRYPTO_MIN_QUEUE_LENGTH; conn->packets_left = CRYPTO_MIN_QUEUE_LENGTH; } else { if (((uint64_t)((1000.0 / conn->packet_send_rate) + 0.5) + conn->last_packets_left_set) <= temp_time) { double n_packets = conn->packet_send_rate * (((double)(temp_time - conn->last_packets_left_set)) / 1000.0); n_packets += conn->last_packets_left_rem; const uint32_t num_packets = n_packets; const double rem = n_packets - (double)num_packets; if (conn->packets_left > num_packets * 4 + CRYPTO_MIN_QUEUE_LENGTH) { conn->packets_left = num_packets * 4 + CRYPTO_MIN_QUEUE_LENGTH; } else { conn->packets_left += num_packets; } conn->last_packets_left_set = temp_time; conn->last_packets_left_rem = rem; } if (((uint64_t)((1000.0 / conn->packet_send_rate_requested) + 0.5) + conn->last_packets_left_requested_set) <= temp_time) { double n_packets = conn->packet_send_rate_requested * (((double)(temp_time - conn->last_packets_left_requested_set)) / 1000.0); n_packets += conn->last_packets_left_requested_rem; const uint32_t num_packets = n_packets; const double rem = n_packets - (double)num_packets; conn->packets_left_requested = num_packets; conn->last_packets_left_requested_set = temp_time; conn->last_packets_left_requested_rem = rem; } if (conn->packets_left > conn->packets_left_requested) { conn->packets_left_requested = conn->packets_left; } } const int ret = send_requested_packets(c, i, conn->packets_left_requested); if (ret != -1) { conn->packets_left_requested -= ret; conn->packets_resent += ret; if ((unsigned int)ret < conn->packets_left) { conn->packets_left -= ret; } else { conn->last_congestion_event = temp_time; conn->packets_left = 0; } } if (conn->packet_send_rate > CRYPTO_PACKET_MIN_RATE * 1.5) { total_send_rate += conn->packet_send_rate; } } } c->current_sleep_time = -1; uint32_t sleep_time = peak_request_packet_interval; if (c->current_sleep_time > sleep_time) { c->current_sleep_time = sleep_time; } if (total_send_rate > CRYPTO_PACKET_MIN_RATE) { sleep_time = 1000.0 / total_send_rate; if (c->current_sleep_time > sleep_time) { c->current_sleep_time = sleep_time + 1; } } sleep_time = CRYPTO_SEND_PACKET_INTERVAL; if (c->current_sleep_time > sleep_time) { c->current_sleep_time = sleep_time; } } /** * @retval 1 if max speed was reached for this connection (no more data can be physically through the pipe). * @retval 0 if it wasn't reached. */ bool max_speed_reached(Net_Crypto *c, int crypt_connection_id) { return reset_max_speed_reached(c, crypt_connection_id) != 0; } /** * @return the number of packet slots left in the sendbuffer. * @retval 0 if failure. */ uint32_t crypto_num_free_sendqueue_slots(const Net_Crypto *c, int crypt_connection_id) { const Crypto_Connection *conn = get_crypto_connection(c, crypt_connection_id); if (conn == nullptr) { return 0; } const uint32_t max_packets = CRYPTO_PACKET_BUFFER_SIZE - num_packets_array(&conn->send_array); if (conn->packets_left < max_packets) { return conn->packets_left; } return max_packets; } /** @brief Sends a lossless cryptopacket. * * return -1 if data could not be put in packet queue. * return positive packet number if data was put into the queue. * * The first byte of data must be in the PACKET_ID_RANGE_LOSSLESS. * * congestion_control: should congestion control apply to this packet? */ int64_t write_cryptpacket(Net_Crypto *c, int crypt_connection_id, const uint8_t *data, uint16_t length, bool congestion_control) { if (length == 0) { // We need at least a packet id. LOGGER_ERROR(c->log, "rejecting empty packet for crypto connection %d", crypt_connection_id); return -1; } if (data[0] < PACKET_ID_RANGE_LOSSLESS_START || data[0] > PACKET_ID_RANGE_LOSSLESS_END) { LOGGER_ERROR(c->log, "rejecting lossless packet with out-of-range id %d", data[0]); return -1; } Crypto_Connection *conn = get_crypto_connection(c, crypt_connection_id); if (conn == nullptr) { LOGGER_WARNING(c->log, "invalid crypt connection id %d", crypt_connection_id); return -1; } if (conn->status != CRYPTO_CONN_ESTABLISHED) { LOGGER_WARNING(c->log, "attempted to send packet to non-established connection %d", crypt_connection_id); return -1; } if (congestion_control && conn->packets_left == 0) { LOGGER_ERROR(c->log, "congestion control: rejecting packet of length %d on crypt connection %d", length, crypt_connection_id); return -1; } const int64_t ret = send_lossless_packet(c, crypt_connection_id, data, length, congestion_control); if (ret == -1) { return -1; } if (congestion_control) { --conn->packets_left; --conn->packets_left_requested; ++conn->packets_sent; } return ret; } /** @brief Check if packet_number was received by the other side. * * packet_number must be a valid packet number of a packet sent on this connection. * * return -1 on failure. * return 0 on success. * * Note: The condition `buffer_end - buffer_start < packet_number - buffer_start` is * a trick which handles situations `buffer_end >= buffer_start` and * `buffer_end < buffer_start` (when buffer_end overflowed) both correctly. * * It CANNOT be simplified to `packet_number < buffer_start`, as it will fail * when `buffer_end < buffer_start`. */ int cryptpacket_received(const Net_Crypto *c, int crypt_connection_id, uint32_t packet_number) { const Crypto_Connection *conn = get_crypto_connection(c, crypt_connection_id); if (conn == nullptr) { return -1; } const uint32_t num = num_packets_array(&conn->send_array); const uint32_t num1 = packet_number - conn->send_array.buffer_start; if (num >= num1) { return -1; } return 0; } /** @brief Sends a lossy cryptopacket. * * return -1 on failure. * return 0 on success. * * The first byte of data must be in the PACKET_ID_RANGE_LOSSY. */ int send_lossy_cryptpacket(Net_Crypto *c, int crypt_connection_id, const uint8_t *data, uint16_t length) { if (length == 0 || length > MAX_CRYPTO_DATA_SIZE) { return -1; } if (data[0] < PACKET_ID_RANGE_LOSSY_START || data[0] > PACKET_ID_RANGE_LOSSY_END) { return -1; } Crypto_Connection *conn = get_crypto_connection(c, crypt_connection_id); int ret = -1; if (conn != nullptr) { const uint32_t buffer_start = conn->recv_array.buffer_start; const uint32_t buffer_end = conn->send_array.buffer_end; ret = send_data_packet_helper(c, crypt_connection_id, buffer_start, buffer_end, data, length); } return ret; } /** @brief Kill a crypto connection. * * return -1 on failure. * return 0 on success. */ int crypto_kill(Net_Crypto *c, int crypt_connection_id) { Crypto_Connection *conn = get_crypto_connection(c, crypt_connection_id); int ret = -1; if (conn != nullptr) { if (conn->status == CRYPTO_CONN_ESTABLISHED) { send_kill_packet(c, crypt_connection_id); } kill_tcp_connection_to(c->tcp_c, conn->connection_number_tcp); bs_list_remove(&c->ip_port_list, (uint8_t *)&conn->ip_portv4, crypt_connection_id); bs_list_remove(&c->ip_port_list, (uint8_t *)&conn->ip_portv6, crypt_connection_id); clear_temp_packet(c, crypt_connection_id); clear_buffer(c->mem, &conn->send_array); clear_buffer(c->mem, &conn->recv_array); ret = wipe_crypto_connection(c, crypt_connection_id); } return ret; } bool crypto_connection_status(const Net_Crypto *c, int crypt_connection_id, bool *direct_connected, uint32_t *online_tcp_relays) { const Crypto_Connection *conn = get_crypto_connection(c, crypt_connection_id); if (conn == nullptr) { return false; } if (direct_connected != nullptr) { *direct_connected = false; const uint64_t current_time = mono_time_get(c->mono_time); if ((UDP_DIRECT_TIMEOUT + conn->direct_lastrecv_timev4) > current_time || (UDP_DIRECT_TIMEOUT + conn->direct_lastrecv_timev6) > current_time) { *direct_connected = true; } } if (online_tcp_relays != nullptr) { *online_tcp_relays = tcp_connection_to_online_tcp_relays(c->tcp_c, conn->connection_number_tcp); } return true; } void new_keys(Net_Crypto *c) { crypto_new_keypair(c->rng, c->self_public_key, c->self_secret_key); } /** @brief Save the public and private keys to the keys array. * Length must be CRYPTO_PUBLIC_KEY_SIZE + CRYPTO_SECRET_KEY_SIZE. * * TODO(irungentoo): Save only secret key. */ void save_keys(const Net_Crypto *c, uint8_t *keys) { memcpy(keys, c->self_public_key, CRYPTO_PUBLIC_KEY_SIZE); memcpy(keys + CRYPTO_PUBLIC_KEY_SIZE, c->self_secret_key, CRYPTO_SECRET_KEY_SIZE); } /** @brief Load the secret key. * Length must be CRYPTO_SECRET_KEY_SIZE. */ void load_secret_key(Net_Crypto *c, const uint8_t *sk) { memcpy(c->self_secret_key, sk, CRYPTO_SECRET_KEY_SIZE); crypto_derive_public_key(c->self_public_key, c->self_secret_key); } /** @brief Create new instance of Net_Crypto. * Sets all the global connection variables to their default values. */ Net_Crypto *new_net_crypto(const Logger *log, const Memory *mem, const Random *rng, const Network *ns, Mono_Time *mono_time, DHT *dht, const TCP_Proxy_Info *proxy_info) { if (dht == nullptr) { return nullptr; } Net_Crypto *temp = (Net_Crypto *)mem_alloc(mem, sizeof(Net_Crypto)); if (temp == nullptr) { return nullptr; } temp->log = log; temp->mem = mem; temp->rng = rng; temp->mono_time = mono_time; temp->ns = ns; temp->tcp_c = new_tcp_connections(log, mem, rng, ns, mono_time, dht_get_self_secret_key(dht), proxy_info); if (temp->tcp_c == nullptr) { mem_delete(mem, temp); return nullptr; } set_packet_tcp_connection_callback(temp->tcp_c, &tcp_data_callback, temp); set_oob_packet_tcp_connection_callback(temp->tcp_c, &tcp_oob_callback, temp); temp->dht = dht; new_keys(temp); new_symmetric_key(rng, temp->secret_symmetric_key); temp->current_sleep_time = CRYPTO_SEND_PACKET_INTERVAL; networking_registerhandler(dht_get_net(dht), NET_PACKET_COOKIE_REQUEST, &udp_handle_cookie_request, temp); networking_registerhandler(dht_get_net(dht), NET_PACKET_COOKIE_RESPONSE, &udp_handle_packet, temp); networking_registerhandler(dht_get_net(dht), NET_PACKET_CRYPTO_HS, &udp_handle_packet, temp); networking_registerhandler(dht_get_net(dht), NET_PACKET_CRYPTO_DATA, &udp_handle_packet, temp); bs_list_init(&temp->ip_port_list, sizeof(IP_Port), 8, ipport_cmp_handler); return temp; } non_null(1) nullable(2) static void kill_timedout(Net_Crypto *c, void *userdata) { for (uint32_t i = 0; i < c->crypto_connections_length; ++i) { const Crypto_Connection *conn = get_crypto_connection(c, i); if (conn == nullptr) { continue; } if (conn->status == CRYPTO_CONN_COOKIE_REQUESTING || conn->status == CRYPTO_CONN_HANDSHAKE_SENT || conn->status == CRYPTO_CONN_NOT_CONFIRMED) { if (conn->temp_packet_num_sent < MAX_NUM_SENDPACKET_TRIES) { continue; } connection_kill(c, i, userdata); } #if 0 if (conn->status == CRYPTO_CONN_ESTABLISHED) { // TODO(irungentoo): add a timeout here? /* do_timeout_here(); */ } #endif /* 0 */ } } /** return the optimal interval in ms for running do_net_crypto. */ uint32_t crypto_run_interval(const Net_Crypto *c) { return c->current_sleep_time; } /** Main loop. */ void do_net_crypto(Net_Crypto *c, void *userdata) { kill_timedout(c, userdata); do_tcp(c, userdata); send_crypto_packets(c); } void kill_net_crypto(Net_Crypto *c) { if (c == nullptr) { return; } const Memory *mem = c->mem; for (uint32_t i = 0; i < c->crypto_connections_length; ++i) { crypto_kill(c, i); } kill_tcp_connections(c->tcp_c); bs_list_free(&c->ip_port_list); networking_registerhandler(dht_get_net(c->dht), NET_PACKET_COOKIE_REQUEST, nullptr, nullptr); networking_registerhandler(dht_get_net(c->dht), NET_PACKET_COOKIE_RESPONSE, nullptr, nullptr); networking_registerhandler(dht_get_net(c->dht), NET_PACKET_CRYPTO_HS, nullptr, nullptr); networking_registerhandler(dht_get_net(c->dht), NET_PACKET_CRYPTO_DATA, nullptr, nullptr); crypto_memzero(c, sizeof(Net_Crypto)); mem_delete(mem, c); } const Net_Profile *nc_get_tcp_client_net_profile(const Net_Crypto *c) { if (c == nullptr) { return nullptr; } const TCP_Connections *tcp_c = nc_get_tcp_c(c); if (tcp_c == nullptr) { return nullptr; } return tcp_connection_get_client_net_profile(tcp_c); }