tomato/toxcore/net_crypto.c
Green Sky 0ce5c0a0ad Squashed 'external/toxcore/c-toxcore/' changes from 03e9fbf3703..e740b4e3b2e
e740b4e3b2e feat: Implement Tox network profiler

git-subtree-dir: external/toxcore/c-toxcore
git-subtree-split: e740b4e3b2e3aa594ab259e2a80153f5eed8fd16
2024-09-22 12:50:20 +02:00

3246 lines
102 KiB
C

/* SPDX-License-Identifier: GPL-3.0-or-later
* Copyright © 2016-2018 The TokTok team.
* Copyright © 2013 Tox project.
*/
/**
* Functions for the core network crypto.
*
* NOTE: This code has to be perfect. We don't mess around with encryption.
*/
#include "net_crypto.h"
#include <string.h>
#include "DHT.h"
#include "LAN_discovery.h"
#include "TCP_client.h"
#include "TCP_connection.h"
#include "attributes.h"
#include "ccompat.h"
#include "crypto_core.h"
#include "list.h"
#include "logger.h"
#include "mem.h"
#include "mono_time.h"
#include "net_profile.h"
#include "network.h"
#include "util.h"
typedef struct Packet_Data {
uint64_t sent_time;
uint16_t length;
uint8_t data[MAX_CRYPTO_DATA_SIZE];
} Packet_Data;
typedef struct Packets_Array {
Packet_Data *buffer[CRYPTO_PACKET_BUFFER_SIZE];
uint32_t buffer_start;
uint32_t buffer_end; /* packet numbers in array: `{buffer_start, buffer_end)` */
} Packets_Array;
typedef enum Crypto_Conn_State {
/* the connection slot is free. This value is 0 so it is valid after
* `crypto_memzero(...)` of the parent struct
*/
CRYPTO_CONN_FREE = 0,
CRYPTO_CONN_NO_CONNECTION, /* the connection is allocated, but not yet used */
CRYPTO_CONN_COOKIE_REQUESTING, /* we are sending cookie request packets */
CRYPTO_CONN_HANDSHAKE_SENT, /* we are sending handshake packets */
/* we are sending handshake packets.
* we have received one from the other, but no data */
CRYPTO_CONN_NOT_CONFIRMED,
CRYPTO_CONN_ESTABLISHED, /* the connection is established */
} Crypto_Conn_State;
typedef struct Crypto_Connection {
uint8_t public_key[CRYPTO_PUBLIC_KEY_SIZE]; /* The real public key of the peer. */
uint8_t recv_nonce[CRYPTO_NONCE_SIZE]; /* Nonce of received packets. */
uint8_t sent_nonce[CRYPTO_NONCE_SIZE]; /* Nonce of sent packets. */
uint8_t sessionpublic_key[CRYPTO_PUBLIC_KEY_SIZE]; /* Our public key for this session. */
uint8_t sessionsecret_key[CRYPTO_SECRET_KEY_SIZE]; /* Our private key for this session. */
uint8_t peersessionpublic_key[CRYPTO_PUBLIC_KEY_SIZE]; /* The public key of the peer. */
uint8_t shared_key[CRYPTO_SHARED_KEY_SIZE]; /* The precomputed shared key from encrypt_precompute. */
Crypto_Conn_State status; /* See Crypto_Conn_State documentation */
uint64_t cookie_request_number; /* number used in the cookie request packets for this connection */
uint8_t dht_public_key[CRYPTO_PUBLIC_KEY_SIZE]; /* The dht public key of the peer */
uint8_t *temp_packet; /* Where the cookie request/handshake packet is stored while it is being sent. */
uint16_t temp_packet_length;
uint64_t temp_packet_sent_time; /* The time at which the last temp_packet was sent in ms. */
uint32_t temp_packet_num_sent;
IP_Port ip_portv4; /* The ip and port to contact this guy directly.*/
IP_Port ip_portv6;
uint64_t direct_lastrecv_timev4; /* The Time at which we last received a direct packet in ms. */
uint64_t direct_lastrecv_timev6;
uint64_t last_tcp_sent; /* Time the last TCP packet was sent. */
Packets_Array send_array;
Packets_Array recv_array;
connection_status_cb *connection_status_callback;
void *connection_status_callback_object;
int connection_status_callback_id;
connection_data_cb *connection_data_callback;
void *connection_data_callback_object;
int connection_data_callback_id;
connection_lossy_data_cb *connection_lossy_data_callback;
void *connection_lossy_data_callback_object;
int connection_lossy_data_callback_id;
uint64_t last_request_packet_sent;
uint64_t direct_send_attempt_time;
uint32_t packet_counter;
double packet_recv_rate;
uint64_t packet_counter_set;
double packet_send_rate;
uint32_t packets_left;
uint64_t last_packets_left_set;
double last_packets_left_rem;
double packet_send_rate_requested;
uint32_t packets_left_requested;
uint64_t last_packets_left_requested_set;
double last_packets_left_requested_rem;
uint32_t last_sendqueue_size[CONGESTION_QUEUE_ARRAY_SIZE];
uint32_t last_sendqueue_counter;
long signed int last_num_packets_sent[CONGESTION_LAST_SENT_ARRAY_SIZE];
long signed int last_num_packets_resent[CONGESTION_LAST_SENT_ARRAY_SIZE];
uint32_t packets_sent;
uint32_t packets_resent;
uint64_t last_congestion_event;
uint64_t rtt_time;
/* TCP_connection connection_number */
unsigned int connection_number_tcp;
bool maximum_speed_reached;
/* Must be a pointer, because the struct is moved in memory */
pthread_mutex_t *mutex;
dht_pk_cb *dht_pk_callback;
void *dht_pk_callback_object;
uint32_t dht_pk_callback_number;
} Crypto_Connection;
static const Crypto_Connection empty_crypto_connection = {{0}};
struct Net_Crypto {
const Logger *log;
const Memory *mem;
const Random *rng;
Mono_Time *mono_time;
const Network *ns;
DHT *dht;
TCP_Connections *tcp_c;
Crypto_Connection *crypto_connections;
pthread_mutex_t tcp_mutex;
pthread_mutex_t connections_mutex;
unsigned int connection_use_counter;
uint32_t crypto_connections_length; /* Length of connections array. */
/* Our public and secret keys. */
uint8_t self_public_key[CRYPTO_PUBLIC_KEY_SIZE];
uint8_t self_secret_key[CRYPTO_SECRET_KEY_SIZE];
/* The secret key used for cookies */
uint8_t secret_symmetric_key[CRYPTO_SYMMETRIC_KEY_SIZE];
new_connection_cb *new_connection_callback;
void *new_connection_callback_object;
/* The current optimal sleep time */
uint32_t current_sleep_time;
BS_List ip_port_list;
};
const uint8_t *nc_get_self_public_key(const Net_Crypto *c)
{
return c->self_public_key;
}
const uint8_t *nc_get_self_secret_key(const Net_Crypto *c)
{
return c->self_secret_key;
}
TCP_Connections *nc_get_tcp_c(const Net_Crypto *c)
{
return c->tcp_c;
}
DHT *nc_get_dht(const Net_Crypto *c)
{
return c->dht;
}
non_null()
static bool crypt_connection_id_is_valid(const Net_Crypto *c, int crypt_connection_id)
{
if ((uint32_t)crypt_connection_id >= c->crypto_connections_length) {
return false;
}
if (c->crypto_connections == nullptr) {
return false;
}
const Crypto_Conn_State status = c->crypto_connections[crypt_connection_id].status;
return status != CRYPTO_CONN_NO_CONNECTION && status != CRYPTO_CONN_FREE;
}
/** cookie timeout in seconds */
#define COOKIE_TIMEOUT 15
#define COOKIE_DATA_LENGTH (uint16_t)(CRYPTO_PUBLIC_KEY_SIZE * 2)
#define COOKIE_CONTENTS_LENGTH (uint16_t)(sizeof(uint64_t) + COOKIE_DATA_LENGTH)
#define COOKIE_LENGTH (uint16_t)(CRYPTO_NONCE_SIZE + COOKIE_CONTENTS_LENGTH + CRYPTO_MAC_SIZE)
#define COOKIE_REQUEST_PLAIN_LENGTH (uint16_t)(COOKIE_DATA_LENGTH + sizeof(uint64_t))
#define COOKIE_REQUEST_LENGTH (uint16_t)(1 + CRYPTO_PUBLIC_KEY_SIZE + CRYPTO_NONCE_SIZE + COOKIE_REQUEST_PLAIN_LENGTH + CRYPTO_MAC_SIZE)
#define COOKIE_RESPONSE_LENGTH (uint16_t)(1 + CRYPTO_NONCE_SIZE + COOKIE_LENGTH + sizeof(uint64_t) + CRYPTO_MAC_SIZE)
/** @brief Create a cookie request packet and put it in packet.
*
* dht_public_key is the dht public key of the other
*
* packet must be of size COOKIE_REQUEST_LENGTH or bigger.
*
* @retval -1 on failure.
* @retval COOKIE_REQUEST_LENGTH on success.
*/
non_null()
static int create_cookie_request(const Net_Crypto *c, uint8_t *packet, const uint8_t *dht_public_key,
uint64_t number, uint8_t *shared_key)
{
uint8_t plain[COOKIE_REQUEST_PLAIN_LENGTH];
memcpy(plain, c->self_public_key, CRYPTO_PUBLIC_KEY_SIZE);
memzero(plain + CRYPTO_PUBLIC_KEY_SIZE, CRYPTO_PUBLIC_KEY_SIZE);
memcpy(plain + (CRYPTO_PUBLIC_KEY_SIZE * 2), &number, sizeof(uint64_t));
const uint8_t *tmp_shared_key = dht_get_shared_key_sent(c->dht, dht_public_key);
memcpy(shared_key, tmp_shared_key, CRYPTO_SHARED_KEY_SIZE);
uint8_t nonce[CRYPTO_NONCE_SIZE];
random_nonce(c->rng, nonce);
packet[0] = NET_PACKET_COOKIE_REQUEST;
memcpy(packet + 1, dht_get_self_public_key(c->dht), CRYPTO_PUBLIC_KEY_SIZE);
memcpy(packet + 1 + CRYPTO_PUBLIC_KEY_SIZE, nonce, CRYPTO_NONCE_SIZE);
const int len = encrypt_data_symmetric(shared_key, nonce, plain, sizeof(plain),
packet + 1 + CRYPTO_PUBLIC_KEY_SIZE + CRYPTO_NONCE_SIZE);
if (len != COOKIE_REQUEST_PLAIN_LENGTH + CRYPTO_MAC_SIZE) {
return -1;
}
return 1 + CRYPTO_PUBLIC_KEY_SIZE + CRYPTO_NONCE_SIZE + len;
}
/** @brief Create cookie of length COOKIE_LENGTH from bytes of length COOKIE_DATA_LENGTH using encryption_key
*
* @retval -1 on failure.
* @retval 0 on success.
*/
non_null()
static int create_cookie(const Random *rng, const Mono_Time *mono_time, uint8_t *cookie, const uint8_t *bytes,
const uint8_t *encryption_key)
{
uint8_t contents[COOKIE_CONTENTS_LENGTH];
const uint64_t temp_time = mono_time_get(mono_time);
memcpy(contents, &temp_time, sizeof(temp_time));
memcpy(contents + sizeof(temp_time), bytes, COOKIE_DATA_LENGTH);
random_nonce(rng, cookie);
const int len = encrypt_data_symmetric(encryption_key, cookie, contents, sizeof(contents), cookie + CRYPTO_NONCE_SIZE);
if (len != COOKIE_LENGTH - CRYPTO_NONCE_SIZE) {
return -1;
}
return 0;
}
/** @brief Open cookie of length COOKIE_LENGTH to bytes of length COOKIE_DATA_LENGTH using encryption_key
*
* @retval -1 on failure.
* @retval 0 on success.
*/
non_null()
static int open_cookie(const Mono_Time *mono_time, uint8_t *bytes, const uint8_t *cookie,
const uint8_t *encryption_key)
{
uint8_t contents[COOKIE_CONTENTS_LENGTH];
const int len = decrypt_data_symmetric(encryption_key, cookie, cookie + CRYPTO_NONCE_SIZE,
COOKIE_LENGTH - CRYPTO_NONCE_SIZE, contents);
if (len != sizeof(contents)) {
return -1;
}
uint64_t cookie_time;
memcpy(&cookie_time, contents, sizeof(cookie_time));
const uint64_t temp_time = mono_time_get(mono_time);
if (cookie_time + COOKIE_TIMEOUT < temp_time || temp_time < cookie_time) {
return -1;
}
memcpy(bytes, contents + sizeof(cookie_time), COOKIE_DATA_LENGTH);
return 0;
}
/** @brief Create a cookie response packet and put it in packet.
* @param request_plain must be COOKIE_REQUEST_PLAIN_LENGTH bytes.
* @param packet must be of size COOKIE_RESPONSE_LENGTH or bigger.
*
* @retval -1 on failure.
* @retval COOKIE_RESPONSE_LENGTH on success.
*/
non_null()
static int create_cookie_response(const Net_Crypto *c, uint8_t *packet, const uint8_t *request_plain,
const uint8_t *shared_key, const uint8_t *dht_public_key)
{
uint8_t cookie_plain[COOKIE_DATA_LENGTH];
memcpy(cookie_plain, request_plain, CRYPTO_PUBLIC_KEY_SIZE);
memcpy(cookie_plain + CRYPTO_PUBLIC_KEY_SIZE, dht_public_key, CRYPTO_PUBLIC_KEY_SIZE);
uint8_t plain[COOKIE_LENGTH + sizeof(uint64_t)];
if (create_cookie(c->rng, c->mono_time, plain, cookie_plain, c->secret_symmetric_key) != 0) {
return -1;
}
memcpy(plain + COOKIE_LENGTH, request_plain + COOKIE_DATA_LENGTH, sizeof(uint64_t));
packet[0] = NET_PACKET_COOKIE_RESPONSE;
random_nonce(c->rng, packet + 1);
const int len = encrypt_data_symmetric(shared_key, packet + 1, plain, sizeof(plain), packet + 1 + CRYPTO_NONCE_SIZE);
if (len != COOKIE_RESPONSE_LENGTH - (1 + CRYPTO_NONCE_SIZE)) {
return -1;
}
return COOKIE_RESPONSE_LENGTH;
}
/** @brief Handle the cookie request packet of length length.
* Put what was in the request in request_plain (must be of size COOKIE_REQUEST_PLAIN_LENGTH)
* Put the key used to decrypt the request into shared_key (of size CRYPTO_SHARED_KEY_SIZE) for use in the response.
*
* @retval -1 on failure.
* @retval 0 on success.
*/
non_null()
static int handle_cookie_request(const Net_Crypto *c, uint8_t *request_plain, uint8_t *shared_key,
uint8_t *dht_public_key, const uint8_t *packet, uint16_t length)
{
if (length != COOKIE_REQUEST_LENGTH) {
return -1;
}
memcpy(dht_public_key, packet + 1, CRYPTO_PUBLIC_KEY_SIZE);
const uint8_t *tmp_shared_key = dht_get_shared_key_sent(c->dht, dht_public_key);
memcpy(shared_key, tmp_shared_key, CRYPTO_SHARED_KEY_SIZE);
const int len = decrypt_data_symmetric(shared_key, packet + 1 + CRYPTO_PUBLIC_KEY_SIZE,
packet + 1 + CRYPTO_PUBLIC_KEY_SIZE + CRYPTO_NONCE_SIZE, COOKIE_REQUEST_PLAIN_LENGTH + CRYPTO_MAC_SIZE,
request_plain);
if (len != COOKIE_REQUEST_PLAIN_LENGTH) {
return -1;
}
return 0;
}
/** Handle the cookie request packet (for raw UDP) */
non_null(1, 2, 3) nullable(5)
static int udp_handle_cookie_request(void *object, const IP_Port *source, const uint8_t *packet, uint16_t length,
void *userdata)
{
const Net_Crypto *c = (const Net_Crypto *)object;
uint8_t request_plain[COOKIE_REQUEST_PLAIN_LENGTH];
uint8_t shared_key[CRYPTO_SHARED_KEY_SIZE];
uint8_t dht_public_key[CRYPTO_PUBLIC_KEY_SIZE];
if (handle_cookie_request(c, request_plain, shared_key, dht_public_key, packet, length) != 0) {
return 1;
}
uint8_t data[COOKIE_RESPONSE_LENGTH];
if (create_cookie_response(c, data, request_plain, shared_key, dht_public_key) != sizeof(data)) {
return 1;
}
if ((uint32_t)sendpacket(dht_get_net(c->dht), source, data, sizeof(data)) != sizeof(data)) {
return 1;
}
return 0;
}
/** Handle the cookie request packet (for TCP) */
non_null()
static int tcp_handle_cookie_request(const Net_Crypto *c, int connections_number, const uint8_t *packet,
uint16_t length)
{
uint8_t request_plain[COOKIE_REQUEST_PLAIN_LENGTH];
uint8_t shared_key[CRYPTO_SHARED_KEY_SIZE];
uint8_t dht_public_key[CRYPTO_PUBLIC_KEY_SIZE];
if (handle_cookie_request(c, request_plain, shared_key, dht_public_key, packet, length) != 0) {
return -1;
}
uint8_t data[COOKIE_RESPONSE_LENGTH];
if (create_cookie_response(c, data, request_plain, shared_key, dht_public_key) != sizeof(data)) {
return -1;
}
const int ret = send_packet_tcp_connection(c->tcp_c, connections_number, data, sizeof(data));
return ret;
}
/** Handle the cookie request packet (for TCP oob packets) */
non_null()
static int tcp_oob_handle_cookie_request(const Net_Crypto *c, unsigned int tcp_connections_number,
const uint8_t *dht_public_key, const uint8_t *packet, uint16_t length)
{
uint8_t request_plain[COOKIE_REQUEST_PLAIN_LENGTH];
uint8_t shared_key[CRYPTO_SHARED_KEY_SIZE];
uint8_t dht_public_key_temp[CRYPTO_PUBLIC_KEY_SIZE];
if (handle_cookie_request(c, request_plain, shared_key, dht_public_key_temp, packet, length) != 0) {
return -1;
}
if (!pk_equal(dht_public_key, dht_public_key_temp)) {
return -1;
}
uint8_t data[COOKIE_RESPONSE_LENGTH];
if (create_cookie_response(c, data, request_plain, shared_key, dht_public_key) != sizeof(data)) {
return -1;
}
const int ret = tcp_send_oob_packet(c->tcp_c, tcp_connections_number, dht_public_key, data, sizeof(data));
return ret;
}
/** @brief Handle a cookie response packet of length encrypted with shared_key.
* put the cookie in the response in cookie
*
* @param cookie must be of length COOKIE_LENGTH.
*
* @retval -1 on failure.
* @retval COOKIE_LENGTH on success.
*/
non_null()
static int handle_cookie_response(uint8_t *cookie, uint64_t *number,
const uint8_t *packet, uint16_t length,
const uint8_t *shared_key)
{
if (length != COOKIE_RESPONSE_LENGTH) {
return -1;
}
uint8_t plain[COOKIE_LENGTH + sizeof(uint64_t)];
const int len = decrypt_data_symmetric(shared_key, packet + 1, packet + 1 + CRYPTO_NONCE_SIZE,
length - (1 + CRYPTO_NONCE_SIZE), plain);
if (len != sizeof(plain)) {
return -1;
}
memcpy(cookie, plain, COOKIE_LENGTH);
memcpy(number, plain + COOKIE_LENGTH, sizeof(uint64_t));
return COOKIE_LENGTH;
}
#define HANDSHAKE_PACKET_LENGTH (1 + COOKIE_LENGTH + CRYPTO_NONCE_SIZE + CRYPTO_NONCE_SIZE + CRYPTO_PUBLIC_KEY_SIZE + CRYPTO_SHA512_SIZE + COOKIE_LENGTH + CRYPTO_MAC_SIZE)
/** @brief Create a handshake packet and put it in packet.
* @param cookie must be COOKIE_LENGTH bytes.
* @param packet must be of size HANDSHAKE_PACKET_LENGTH or bigger.
*
* @retval -1 on failure.
* @retval HANDSHAKE_PACKET_LENGTH on success.
*/
non_null()
static int create_crypto_handshake(const Net_Crypto *c, uint8_t *packet, const uint8_t *cookie, const uint8_t *nonce,
const uint8_t *session_pk, const uint8_t *peer_real_pk, const uint8_t *peer_dht_pubkey)
{
uint8_t plain[CRYPTO_NONCE_SIZE + CRYPTO_PUBLIC_KEY_SIZE + CRYPTO_SHA512_SIZE + COOKIE_LENGTH];
memcpy(plain, nonce, CRYPTO_NONCE_SIZE);
memcpy(plain + CRYPTO_NONCE_SIZE, session_pk, CRYPTO_PUBLIC_KEY_SIZE);
crypto_sha512(plain + CRYPTO_NONCE_SIZE + CRYPTO_PUBLIC_KEY_SIZE, cookie, COOKIE_LENGTH);
uint8_t cookie_plain[COOKIE_DATA_LENGTH];
memcpy(cookie_plain, peer_real_pk, CRYPTO_PUBLIC_KEY_SIZE);
memcpy(cookie_plain + CRYPTO_PUBLIC_KEY_SIZE, peer_dht_pubkey, CRYPTO_PUBLIC_KEY_SIZE);
if (create_cookie(c->rng, c->mono_time, plain + CRYPTO_NONCE_SIZE + CRYPTO_PUBLIC_KEY_SIZE + CRYPTO_SHA512_SIZE,
cookie_plain, c->secret_symmetric_key) != 0) {
return -1;
}
random_nonce(c->rng, packet + 1 + COOKIE_LENGTH);
const int len = encrypt_data(peer_real_pk, c->self_secret_key, packet + 1 + COOKIE_LENGTH, plain, sizeof(plain),
packet + 1 + COOKIE_LENGTH + CRYPTO_NONCE_SIZE);
if (len != HANDSHAKE_PACKET_LENGTH - (1 + COOKIE_LENGTH + CRYPTO_NONCE_SIZE)) {
return -1;
}
packet[0] = NET_PACKET_CRYPTO_HS;
memcpy(packet + 1, cookie, COOKIE_LENGTH);
return HANDSHAKE_PACKET_LENGTH;
}
/** @brief Handle a crypto handshake packet of length.
* put the nonce contained in the packet in nonce,
* the session public key in session_pk
* the real public key of the peer in peer_real_pk
* the dht public key of the peer in dht_public_key and
* the cookie inside the encrypted part of the packet in cookie.
*
* if expected_real_pk isn't NULL it denotes the real public key
* the packet should be from.
*
* nonce must be at least CRYPTO_NONCE_SIZE
* session_pk must be at least CRYPTO_PUBLIC_KEY_SIZE
* peer_real_pk must be at least CRYPTO_PUBLIC_KEY_SIZE
* cookie must be at least COOKIE_LENGTH
*
* @retval false on failure.
* @retval true on success.
*/
non_null(1, 2, 3, 4, 5, 6, 7) nullable(9)
static bool handle_crypto_handshake(const Net_Crypto *c, uint8_t *nonce, uint8_t *session_pk, uint8_t *peer_real_pk,
uint8_t *dht_public_key, uint8_t *cookie, const uint8_t *packet, uint16_t length, const uint8_t *expected_real_pk)
{
if (length != HANDSHAKE_PACKET_LENGTH) {
return false;
}
uint8_t cookie_plain[COOKIE_DATA_LENGTH];
if (open_cookie(c->mono_time, cookie_plain, packet + 1, c->secret_symmetric_key) != 0) {
return false;
}
if (expected_real_pk != nullptr && !pk_equal(cookie_plain, expected_real_pk)) {
return false;
}
uint8_t cookie_hash[CRYPTO_SHA512_SIZE];
crypto_sha512(cookie_hash, packet + 1, COOKIE_LENGTH);
uint8_t plain[CRYPTO_NONCE_SIZE + CRYPTO_PUBLIC_KEY_SIZE + CRYPTO_SHA512_SIZE + COOKIE_LENGTH];
const int len = decrypt_data(cookie_plain, c->self_secret_key, packet + 1 + COOKIE_LENGTH,
packet + 1 + COOKIE_LENGTH + CRYPTO_NONCE_SIZE,
HANDSHAKE_PACKET_LENGTH - (1 + COOKIE_LENGTH + CRYPTO_NONCE_SIZE), plain);
if (len != sizeof(plain)) {
return false;
}
if (!crypto_sha512_eq(cookie_hash, plain + CRYPTO_NONCE_SIZE + CRYPTO_PUBLIC_KEY_SIZE)) {
return false;
}
memcpy(nonce, plain, CRYPTO_NONCE_SIZE);
memcpy(session_pk, plain + CRYPTO_NONCE_SIZE, CRYPTO_PUBLIC_KEY_SIZE);
memcpy(cookie, plain + CRYPTO_NONCE_SIZE + CRYPTO_PUBLIC_KEY_SIZE + CRYPTO_SHA512_SIZE, COOKIE_LENGTH);
memcpy(peer_real_pk, cookie_plain, CRYPTO_PUBLIC_KEY_SIZE);
memcpy(dht_public_key, cookie_plain + CRYPTO_PUBLIC_KEY_SIZE, CRYPTO_PUBLIC_KEY_SIZE);
return true;
}
non_null()
static Crypto_Connection *get_crypto_connection(const Net_Crypto *c, int crypt_connection_id)
{
if (!crypt_connection_id_is_valid(c, crypt_connection_id)) {
return nullptr;
}
return &c->crypto_connections[crypt_connection_id];
}
/** @brief Associate an ip_port to a connection.
*
* @retval -1 on failure.
* @retval 0 on success.
*/
non_null()
static int add_ip_port_connection(Net_Crypto *c, int crypt_connection_id, const IP_Port *ip_port)
{
Crypto_Connection *conn = get_crypto_connection(c, crypt_connection_id);
if (conn == nullptr) {
return -1;
}
if (net_family_is_ipv4(ip_port->ip.family)) {
if (!ipport_equal(ip_port, &conn->ip_portv4) && !ip_is_lan(&conn->ip_portv4.ip)) {
if (!bs_list_add(&c->ip_port_list, (const uint8_t *)ip_port, crypt_connection_id)) {
return -1;
}
bs_list_remove(&c->ip_port_list, (uint8_t *)&conn->ip_portv4, crypt_connection_id);
conn->ip_portv4 = *ip_port;
return 0;
}
} else if (net_family_is_ipv6(ip_port->ip.family)) {
if (!ipport_equal(ip_port, &conn->ip_portv6)) {
if (!bs_list_add(&c->ip_port_list, (const uint8_t *)ip_port, crypt_connection_id)) {
return -1;
}
bs_list_remove(&c->ip_port_list, (uint8_t *)&conn->ip_portv6, crypt_connection_id);
conn->ip_portv6 = *ip_port;
return 0;
}
}
return -1;
}
/** @brief Return the IP_Port that should be used to send packets to the other peer.
*
* @retval IP_Port with family 0 on failure.
* @return IP_Port on success.
*/
non_null()
static IP_Port return_ip_port_connection(const Net_Crypto *c, int crypt_connection_id)
{
const IP_Port empty = {{{0}}};
const Crypto_Connection *conn = get_crypto_connection(c, crypt_connection_id);
if (conn == nullptr) {
return empty;
}
const uint64_t current_time = mono_time_get(c->mono_time);
bool v6 = false;
bool v4 = false;
if ((UDP_DIRECT_TIMEOUT + conn->direct_lastrecv_timev4) > current_time) {
v4 = true;
}
if ((UDP_DIRECT_TIMEOUT + conn->direct_lastrecv_timev6) > current_time) {
v6 = true;
}
/* Prefer IP_Ports which haven't timed out to those which have.
* To break ties, prefer ipv4 lan, then ipv6, then non-lan ipv4.
*/
if (v4 && ip_is_lan(&conn->ip_portv4.ip)) {
return conn->ip_portv4;
}
if (v6 && net_family_is_ipv6(conn->ip_portv6.ip.family)) {
return conn->ip_portv6;
}
if (v4 && net_family_is_ipv4(conn->ip_portv4.ip.family)) {
return conn->ip_portv4;
}
if (ip_is_lan(&conn->ip_portv4.ip)) {
return conn->ip_portv4;
}
if (net_family_is_ipv6(conn->ip_portv6.ip.family)) {
return conn->ip_portv6;
}
if (net_family_is_ipv4(conn->ip_portv4.ip.family)) {
return conn->ip_portv4;
}
return empty;
}
/** @brief Sends a packet to the peer using the fastest route.
*
* @retval -1 on failure.
* @retval 0 on success.
*/
non_null()
static int send_packet_to(Net_Crypto *c, int crypt_connection_id, const uint8_t *data, uint16_t length)
{
// TODO(irungentoo): TCP, etc...
Crypto_Connection *conn = get_crypto_connection(c, crypt_connection_id);
if (conn == nullptr) {
return -1;
}
bool direct_send_attempt = false;
pthread_mutex_lock(conn->mutex);
const IP_Port ip_port = return_ip_port_connection(c, crypt_connection_id);
// TODO(irungentoo): on bad networks, direct connections might not last indefinitely.
if (!net_family_is_unspec(ip_port.ip.family)) {
bool direct_connected = false;
// FIXME(sudden6): handle return value
crypto_connection_status(c, crypt_connection_id, &direct_connected, nullptr);
if (direct_connected) {
if ((uint32_t)sendpacket(dht_get_net(c->dht), &ip_port, data, length) == length) {
pthread_mutex_unlock(conn->mutex);
return 0;
}
pthread_mutex_unlock(conn->mutex);
LOGGER_WARNING(c->log, "sending packet of length %d failed", length);
return -1;
}
// TODO(irungentoo): a better way of sending packets directly to confirm the others ip.
const uint64_t current_time = mono_time_get(c->mono_time);
if ((((UDP_DIRECT_TIMEOUT / 2) + conn->direct_send_attempt_time) < current_time && length < 96)
|| data[0] == NET_PACKET_COOKIE_REQUEST || data[0] == NET_PACKET_CRYPTO_HS) {
if ((uint32_t)sendpacket(dht_get_net(c->dht), &ip_port, data, length) == length) {
direct_send_attempt = true;
conn->direct_send_attempt_time = mono_time_get(c->mono_time);
}
}
}
pthread_mutex_unlock(conn->mutex);
pthread_mutex_lock(&c->tcp_mutex);
const int ret = send_packet_tcp_connection(c->tcp_c, conn->connection_number_tcp, data, length);
pthread_mutex_unlock(&c->tcp_mutex);
pthread_mutex_lock(conn->mutex);
if (ret == 0) {
conn->last_tcp_sent = current_time_monotonic(c->mono_time);
}
pthread_mutex_unlock(conn->mutex);
if (direct_send_attempt) {
return 0;
}
return ret;
}
/*** START: Array Related functions */
/** @brief Return number of packets in array
* Note that holes are counted too.
*/
non_null()
static uint32_t num_packets_array(const Packets_Array *array)
{
return array->buffer_end - array->buffer_start;
}
/** @brief Add data with packet number to array.
*
* @retval -1 on failure.
* @retval 0 on success.
*/
non_null()
static int add_data_to_buffer(const Memory *mem, Packets_Array *array, uint32_t number, const Packet_Data *data)
{
if (number - array->buffer_start >= CRYPTO_PACKET_BUFFER_SIZE) {
return -1;
}
const uint32_t num = number % CRYPTO_PACKET_BUFFER_SIZE;
if (array->buffer[num] != nullptr) {
return -1;
}
Packet_Data *new_d = (Packet_Data *)mem_alloc(mem, sizeof(Packet_Data));
if (new_d == nullptr) {
return -1;
}
*new_d = *data;
array->buffer[num] = new_d;
if (number - array->buffer_start >= num_packets_array(array)) {
array->buffer_end = number + 1;
}
return 0;
}
/** @brief Get pointer of data with packet number.
*
* @retval -1 on failure.
* @retval 0 if data at number is empty.
* @retval 1 if data pointer was put in data.
*/
non_null()
static int get_data_pointer(const Packets_Array *array, Packet_Data **data, uint32_t number)
{
const uint32_t num_spots = num_packets_array(array);
if (array->buffer_end - number > num_spots || number - array->buffer_start >= num_spots) {
return -1;
}
const uint32_t num = number % CRYPTO_PACKET_BUFFER_SIZE;
if (array->buffer[num] == nullptr) {
return 0;
}
*data = array->buffer[num];
return 1;
}
/** @brief Add data to end of array.
*
* @retval -1 on failure.
* @return packet number on success.
*/
non_null()
static int64_t add_data_end_of_buffer(const Logger *logger, const Memory *mem, Packets_Array *array, const Packet_Data *data)
{
const uint32_t num_spots = num_packets_array(array);
if (num_spots >= CRYPTO_PACKET_BUFFER_SIZE) {
LOGGER_WARNING(logger, "crypto packet buffer size exceeded; rejecting packet of length %d", data->length);
return -1;
}
Packet_Data *new_d = (Packet_Data *)mem_alloc(mem, sizeof(Packet_Data));
if (new_d == nullptr) {
LOGGER_ERROR(logger, "packet data allocation failed");
return -1;
}
*new_d = *data;
const uint32_t id = array->buffer_end;
array->buffer[id % CRYPTO_PACKET_BUFFER_SIZE] = new_d;
++array->buffer_end;
return id;
}
/** @brief Read data from beginning of array.
*
* @retval -1 on failure.
* @return packet number on success.
*/
non_null()
static int64_t read_data_beg_buffer(const Memory *mem, Packets_Array *array, Packet_Data *data)
{
if (array->buffer_end == array->buffer_start) {
return -1;
}
const uint32_t num = array->buffer_start % CRYPTO_PACKET_BUFFER_SIZE;
if (array->buffer[num] == nullptr) {
return -1;
}
*data = *array->buffer[num];
const uint32_t id = array->buffer_start;
++array->buffer_start;
mem_delete(mem, array->buffer[num]);
array->buffer[num] = nullptr;
return id;
}
/** @brief Delete all packets in array before number (but not number)
*
* @retval -1 on failure.
* @retval 0 on success
*/
non_null()
static int clear_buffer_until(const Memory *mem, Packets_Array *array, uint32_t number)
{
const uint32_t num_spots = num_packets_array(array);
if (array->buffer_end - number >= num_spots || number - array->buffer_start > num_spots) {
return -1;
}
uint32_t i;
for (i = array->buffer_start; i != number; ++i) {
const uint32_t num = i % CRYPTO_PACKET_BUFFER_SIZE;
if (array->buffer[num] != nullptr) {
mem_delete(mem, array->buffer[num]);
array->buffer[num] = nullptr;
}
}
array->buffer_start = i;
return 0;
}
non_null()
static int clear_buffer(const Memory *mem, Packets_Array *array)
{
uint32_t i;
for (i = array->buffer_start; i != array->buffer_end; ++i) {
const uint32_t num = i % CRYPTO_PACKET_BUFFER_SIZE;
if (array->buffer[num] != nullptr) {
mem_delete(mem, array->buffer[num]);
array->buffer[num] = nullptr;
}
}
array->buffer_start = i;
return 0;
}
/** @brief Set array buffer end to number.
*
* @retval -1 on failure.
* @retval 0 on success.
*/
non_null()
static int set_buffer_end(Packets_Array *array, uint32_t number)
{
if (number - array->buffer_start > CRYPTO_PACKET_BUFFER_SIZE) {
return -1;
}
if (number - array->buffer_end > CRYPTO_PACKET_BUFFER_SIZE) {
return -1;
}
array->buffer_end = number;
return 0;
}
/**
* @brief Create a packet request packet from recv_array and send_buffer_end into
* data of length.
*
* @retval -1 on failure.
* @return length of packet on success.
*/
non_null()
static int generate_request_packet(uint8_t *data, uint16_t length, const Packets_Array *recv_array)
{
if (length == 0) {
return -1;
}
data[0] = PACKET_ID_REQUEST;
uint16_t cur_len = 1;
if (recv_array->buffer_start == recv_array->buffer_end) {
return cur_len;
}
if (length <= cur_len) {
return cur_len;
}
uint32_t n = 1;
for (uint32_t i = recv_array->buffer_start; i != recv_array->buffer_end; ++i) {
const uint32_t num = i % CRYPTO_PACKET_BUFFER_SIZE;
if (recv_array->buffer[num] == nullptr) {
data[cur_len] = n;
n = 0;
++cur_len;
if (length <= cur_len) {
return cur_len;
}
} else if (n == 255) {
data[cur_len] = 0;
n = 0;
++cur_len;
if (length <= cur_len) {
return cur_len;
}
}
++n;
}
return cur_len;
}
/** @brief Handle a request data packet.
* Remove all the packets the other received from the array.
*
* @retval -1 on failure.
* @return number of requested packets on success.
*/
non_null()
static int handle_request_packet(const Memory *mem, Mono_Time *mono_time, Packets_Array *send_array,
const uint8_t *data, uint16_t length,
uint64_t *latest_send_time, uint64_t rtt_time)
{
if (length == 0) {
return -1;
}
if (data[0] != PACKET_ID_REQUEST) {
return -1;
}
if (length == 1) {
return 0;
}
++data;
--length;
uint32_t n = 1;
uint32_t requested = 0;
const uint64_t temp_time = current_time_monotonic(mono_time);
uint64_t l_sent_time = 0;
for (uint32_t i = send_array->buffer_start; i != send_array->buffer_end; ++i) {
if (length == 0) {
break;
}
const uint32_t num = i % CRYPTO_PACKET_BUFFER_SIZE;
if (n == data[0]) {
if (send_array->buffer[num] != nullptr) {
const uint64_t sent_time = send_array->buffer[num]->sent_time;
if ((sent_time + rtt_time) < temp_time) {
send_array->buffer[num]->sent_time = 0;
}
}
++data;
--length;
n = 0;
++requested;
} else {
if (send_array->buffer[num] != nullptr) {
l_sent_time = max_u64(l_sent_time, send_array->buffer[num]->sent_time);
mem_delete(mem, send_array->buffer[num]);
send_array->buffer[num] = nullptr;
}
}
if (n == 255) {
n = 1;
if (data[0] != 0) {
return -1;
}
++data;
--length;
} else {
++n;
}
}
*latest_send_time = max_u64(*latest_send_time, l_sent_time);
return requested;
}
/** END: Array Related functions */
#define MAX_DATA_DATA_PACKET_SIZE (MAX_CRYPTO_PACKET_SIZE - (1 + sizeof(uint16_t) + CRYPTO_MAC_SIZE))
/** @brief Creates and sends a data packet to the peer using the fastest route.
*
* @retval -1 on failure.
* @retval 0 on success.
*/
non_null()
static int send_data_packet(Net_Crypto *c, int crypt_connection_id, const uint8_t *data, uint16_t length)
{
const uint16_t max_length = MAX_CRYPTO_PACKET_SIZE - (1 + sizeof(uint16_t) + CRYPTO_MAC_SIZE);
if (length == 0 || length > max_length) {
LOGGER_ERROR(c->log, "zero-length or too large data packet: %d (max: %d)", length, max_length);
return -1;
}
Crypto_Connection *conn = get_crypto_connection(c, crypt_connection_id);
if (conn == nullptr) {
LOGGER_ERROR(c->log, "connection id %d not found", crypt_connection_id);
return -1;
}
pthread_mutex_lock(conn->mutex);
const uint16_t packet_size = 1 + sizeof(uint16_t) + length + CRYPTO_MAC_SIZE;
VLA(uint8_t, packet, packet_size);
packet[0] = NET_PACKET_CRYPTO_DATA;
memcpy(packet + 1, conn->sent_nonce + (CRYPTO_NONCE_SIZE - sizeof(uint16_t)), sizeof(uint16_t));
const int len = encrypt_data_symmetric(conn->shared_key, conn->sent_nonce, data, length, packet + 1 + sizeof(uint16_t));
if (len + 1 + sizeof(uint16_t) != packet_size) {
LOGGER_ERROR(c->log, "encryption failed: %d", len);
pthread_mutex_unlock(conn->mutex);
return -1;
}
increment_nonce(conn->sent_nonce);
pthread_mutex_unlock(conn->mutex);
return send_packet_to(c, crypt_connection_id, packet, packet_size);
}
/** @brief Creates and sends a data packet with buffer_start and num to the peer using the fastest route.
*
* @retval -1 on failure.
* @retval 0 on success.
*/
non_null()
static int send_data_packet_helper(Net_Crypto *c, int crypt_connection_id, uint32_t buffer_start, uint32_t num,
const uint8_t *data, uint16_t length)
{
if (length == 0 || length > MAX_CRYPTO_DATA_SIZE) {
LOGGER_ERROR(c->log, "zero-length or too large data packet: %d (max: %d)", length, MAX_CRYPTO_PACKET_SIZE);
return -1;
}
num = net_htonl(num);
buffer_start = net_htonl(buffer_start);
const uint16_t padding_length = (MAX_CRYPTO_DATA_SIZE - length) % CRYPTO_MAX_PADDING;
const uint16_t packet_size = sizeof(uint32_t) + sizeof(uint32_t) + padding_length + length;
VLA(uint8_t, packet, packet_size);
memcpy(packet, &buffer_start, sizeof(uint32_t));
memcpy(packet + sizeof(uint32_t), &num, sizeof(uint32_t));
memzero(packet + (sizeof(uint32_t) * 2), padding_length);
memcpy(packet + (sizeof(uint32_t) * 2) + padding_length, data, length);
return send_data_packet(c, crypt_connection_id, packet, packet_size);
}
non_null()
static int reset_max_speed_reached(Net_Crypto *c, int crypt_connection_id)
{
Crypto_Connection *conn = get_crypto_connection(c, crypt_connection_id);
if (conn == nullptr) {
return -1;
}
/* If last packet send failed, try to send packet again.
* If sending it fails we won't be able to send the new packet. */
if (conn->maximum_speed_reached) {
Packet_Data *dt = nullptr;
const uint32_t packet_num = conn->send_array.buffer_end - 1;
const int ret = get_data_pointer(&conn->send_array, &dt, packet_num);
if (ret == 1 && dt->sent_time == 0) {
if (send_data_packet_helper(c, crypt_connection_id, conn->recv_array.buffer_start, packet_num,
dt->data, dt->length) != 0) {
return -1;
}
dt->sent_time = current_time_monotonic(c->mono_time);
}
conn->maximum_speed_reached = false;
}
return 0;
}
/**
* @retval -1 if data could not be put in packet queue.
* @return positive packet number if data was put into the queue.
*/
non_null()
static int64_t send_lossless_packet(Net_Crypto *c, int crypt_connection_id, const uint8_t *data, uint16_t length,
bool congestion_control)
{
if (length == 0 || length > MAX_CRYPTO_DATA_SIZE) {
LOGGER_ERROR(c->log, "rejecting too large (or empty) packet of size %d on crypt connection %d", length,
crypt_connection_id);
return -1;
}
Crypto_Connection *conn = get_crypto_connection(c, crypt_connection_id);
if (conn == nullptr) {
return -1;
}
/* If last packet send failed, try to send packet again.
* If sending it fails we won't be able to send the new packet. */
reset_max_speed_reached(c, crypt_connection_id);
if (conn->maximum_speed_reached && congestion_control) {
LOGGER_INFO(c->log, "congestion control: maximum speed reached on crypt connection %d", crypt_connection_id);
return -1;
}
Packet_Data dt;
dt.sent_time = 0;
dt.length = length;
memcpy(dt.data, data, length);
pthread_mutex_lock(conn->mutex);
const int64_t packet_num = add_data_end_of_buffer(c->log, c->mem, &conn->send_array, &dt);
pthread_mutex_unlock(conn->mutex);
if (packet_num == -1) {
return -1;
}
if (!congestion_control && conn->maximum_speed_reached) {
return packet_num;
}
if (send_data_packet_helper(c, crypt_connection_id, conn->recv_array.buffer_start, packet_num, data, length) == 0) {
Packet_Data *dt1 = nullptr;
if (get_data_pointer(&conn->send_array, &dt1, packet_num) == 1) {
dt1->sent_time = current_time_monotonic(c->mono_time);
}
} else {
conn->maximum_speed_reached = true;
LOGGER_DEBUG(c->log, "send_data_packet failed (packet_num = %ld)", (long)packet_num);
}
return packet_num;
}
/**
* @brief Get the lowest 2 bytes from the nonce and convert
* them to host byte format before returning them.
*/
non_null()
static uint16_t get_nonce_uint16(const uint8_t *nonce)
{
uint16_t num;
memcpy(&num, nonce + (CRYPTO_NONCE_SIZE - sizeof(uint16_t)), sizeof(uint16_t));
return net_ntohs(num);
}
#define DATA_NUM_THRESHOLD 21845
/** @brief Handle a data packet.
* Decrypt packet of length and put it into data.
* data must be at least MAX_DATA_DATA_PACKET_SIZE big.
*
* @retval -1 on failure.
* @return length of data on success.
*/
non_null()
static int handle_data_packet(const Net_Crypto *c, int crypt_connection_id, uint8_t *data, const uint8_t *packet,
uint16_t length)
{
const uint16_t crypto_packet_overhead = 1 + sizeof(uint16_t) + CRYPTO_MAC_SIZE;
if (length <= crypto_packet_overhead || length > MAX_CRYPTO_PACKET_SIZE) {
return -1;
}
Crypto_Connection *conn = get_crypto_connection(c, crypt_connection_id);
if (conn == nullptr) {
return -1;
}
uint8_t nonce[CRYPTO_NONCE_SIZE];
memcpy(nonce, conn->recv_nonce, CRYPTO_NONCE_SIZE);
const uint16_t num_cur_nonce = get_nonce_uint16(nonce);
uint16_t num;
net_unpack_u16(packet + 1, &num);
const uint16_t diff = num - num_cur_nonce;
increment_nonce_number(nonce, diff);
const int len = decrypt_data_symmetric(conn->shared_key, nonce, packet + 1 + sizeof(uint16_t),
length - (1 + sizeof(uint16_t)), data);
if ((unsigned int)len != length - crypto_packet_overhead) {
return -1;
}
if (diff > DATA_NUM_THRESHOLD * 2) {
increment_nonce_number(conn->recv_nonce, DATA_NUM_THRESHOLD);
}
return len;
}
/** @brief Send a request packet.
*
* @retval -1 on failure.
* @retval 0 on success.
*/
non_null()
static int send_request_packet(Net_Crypto *c, int crypt_connection_id)
{
const Crypto_Connection *conn = get_crypto_connection(c, crypt_connection_id);
if (conn == nullptr) {
return -1;
}
uint8_t data[MAX_CRYPTO_DATA_SIZE];
const int len = generate_request_packet(data, sizeof(data), &conn->recv_array);
if (len == -1) {
return -1;
}
return send_data_packet_helper(c, crypt_connection_id, conn->recv_array.buffer_start, conn->send_array.buffer_end, data,
len);
}
/** @brief Send up to max num previously requested data packets.
*
* @retval -1 on failure.
* @return number of packets sent on success.
*/
non_null()
static int send_requested_packets(Net_Crypto *c, int crypt_connection_id, uint32_t max_num)
{
if (max_num == 0) {
return -1;
}
const Crypto_Connection *conn = get_crypto_connection(c, crypt_connection_id);
if (conn == nullptr) {
return -1;
}
const uint64_t temp_time = current_time_monotonic(c->mono_time);
const uint32_t array_size = num_packets_array(&conn->send_array);
uint32_t num_sent = 0;
for (uint32_t i = 0; i < array_size; ++i) {
Packet_Data *dt;
const uint32_t packet_num = i + conn->send_array.buffer_start;
const int ret = get_data_pointer(&conn->send_array, &dt, packet_num);
if (ret == -1) {
return -1;
}
if (ret == 0) {
continue;
}
if (dt->sent_time != 0) {
continue;
}
if (send_data_packet_helper(c, crypt_connection_id, conn->recv_array.buffer_start, packet_num, dt->data,
dt->length) == 0) {
dt->sent_time = temp_time;
++num_sent;
}
if (num_sent >= max_num) {
break;
}
}
return num_sent;
}
/** @brief Add a new temp packet to send repeatedly.
*
* @retval -1 on failure.
* @retval 0 on success.
*/
non_null()
static int new_temp_packet(const Net_Crypto *c, int crypt_connection_id, const uint8_t *packet, uint16_t length)
{
if (length == 0 || length > MAX_CRYPTO_PACKET_SIZE) {
return -1;
}
Crypto_Connection *conn = get_crypto_connection(c, crypt_connection_id);
if (conn == nullptr) {
return -1;
}
uint8_t *temp_packet = (uint8_t *)mem_balloc(c->mem, length);
if (temp_packet == nullptr) {
return -1;
}
if (conn->temp_packet != nullptr) {
mem_delete(c->mem, conn->temp_packet);
}
memcpy(temp_packet, packet, length);
conn->temp_packet = temp_packet;
conn->temp_packet_length = length;
conn->temp_packet_sent_time = 0;
conn->temp_packet_num_sent = 0;
return 0;
}
/** @brief Clear the temp packet.
*
* @retval -1 on failure.
* @retval 0 on success.
*/
non_null()
static int clear_temp_packet(const Net_Crypto *c, int crypt_connection_id)
{
Crypto_Connection *conn = get_crypto_connection(c, crypt_connection_id);
if (conn == nullptr) {
return -1;
}
if (conn->temp_packet != nullptr) {
mem_delete(c->mem, conn->temp_packet);
}
conn->temp_packet = nullptr;
conn->temp_packet_length = 0;
conn->temp_packet_sent_time = 0;
conn->temp_packet_num_sent = 0;
return 0;
}
/** @brief Send the temp packet.
*
* @retval -1 on failure.
* @retval 0 on success.
*/
non_null()
static int send_temp_packet(Net_Crypto *c, int crypt_connection_id)
{
Crypto_Connection *conn = get_crypto_connection(c, crypt_connection_id);
if (conn == nullptr) {
return -1;
}
if (conn->temp_packet == nullptr) {
return -1;
}
if (send_packet_to(c, crypt_connection_id, conn->temp_packet, conn->temp_packet_length) != 0) {
return -1;
}
conn->temp_packet_sent_time = current_time_monotonic(c->mono_time);
++conn->temp_packet_num_sent;
return 0;
}
/** @brief Create a handshake packet and set it as a temp packet.
* @param cookie must be COOKIE_LENGTH.
*
* @retval -1 on failure.
* @retval 0 on success.
*/
non_null()
static int create_send_handshake(Net_Crypto *c, int crypt_connection_id, const uint8_t *cookie,
const uint8_t *dht_public_key)
{
const Crypto_Connection *conn = get_crypto_connection(c, crypt_connection_id);
if (conn == nullptr) {
return -1;
}
uint8_t handshake_packet[HANDSHAKE_PACKET_LENGTH];
if (create_crypto_handshake(c, handshake_packet, cookie, conn->sent_nonce, conn->sessionpublic_key,
conn->public_key, dht_public_key) != sizeof(handshake_packet)) {
return -1;
}
if (new_temp_packet(c, crypt_connection_id, handshake_packet, sizeof(handshake_packet)) != 0) {
return -1;
}
send_temp_packet(c, crypt_connection_id);
return 0;
}
/** @brief Send a kill packet.
*
* @retval -1 on failure.
* @retval 0 on success.
*/
non_null()
static int send_kill_packet(Net_Crypto *c, int crypt_connection_id)
{
const Crypto_Connection *conn = get_crypto_connection(c, crypt_connection_id);
if (conn == nullptr) {
return -1;
}
const uint8_t kill_packet[1] = {PACKET_ID_KILL};
return send_data_packet_helper(c, crypt_connection_id, conn->recv_array.buffer_start, conn->send_array.buffer_end,
kill_packet, sizeof(kill_packet));
}
non_null(1) nullable(3)
static void connection_kill(Net_Crypto *c, int crypt_connection_id, void *userdata)
{
const Crypto_Connection *conn = get_crypto_connection(c, crypt_connection_id);
if (conn == nullptr) {
return;
}
if (conn->connection_status_callback != nullptr) {
conn->connection_status_callback(conn->connection_status_callback_object, conn->connection_status_callback_id,
false, userdata);
}
while (true) { /* TODO(irungentoo): is this really the best way to do this? */
pthread_mutex_lock(&c->connections_mutex);
if (c->connection_use_counter == 0) {
break;
}
pthread_mutex_unlock(&c->connections_mutex);
}
crypto_kill(c, crypt_connection_id);
pthread_mutex_unlock(&c->connections_mutex);
}
/** @brief Handle a received data packet.
*
* @retval -1 on failure.
* @retval 0 on success.
*/
non_null(1, 3) nullable(6)
static int handle_data_packet_core(Net_Crypto *c, int crypt_connection_id, const uint8_t *packet, uint16_t length,
bool udp, void *userdata)
{
if (length > MAX_CRYPTO_PACKET_SIZE || length <= CRYPTO_DATA_PACKET_MIN_SIZE) {
return -1;
}
Crypto_Connection *conn = get_crypto_connection(c, crypt_connection_id);
if (conn == nullptr) {
return -1;
}
uint8_t data[MAX_DATA_DATA_PACKET_SIZE];
const int len = handle_data_packet(c, crypt_connection_id, data, packet, length);
if (len <= (int)(sizeof(uint32_t) * 2)) {
return -1;
}
uint32_t buffer_start;
uint32_t num;
memcpy(&buffer_start, data, sizeof(uint32_t));
memcpy(&num, data + sizeof(uint32_t), sizeof(uint32_t));
buffer_start = net_ntohl(buffer_start);
num = net_ntohl(num);
uint64_t rtt_calc_time = 0;
if (buffer_start != conn->send_array.buffer_start) {
Packet_Data *packet_time;
if (get_data_pointer(&conn->send_array, &packet_time, conn->send_array.buffer_start) == 1) {
rtt_calc_time = packet_time->sent_time;
}
if (clear_buffer_until(c->mem, &conn->send_array, buffer_start) != 0) {
return -1;
}
}
const uint8_t *real_data = data + (sizeof(uint32_t) * 2);
uint16_t real_length = len - (sizeof(uint32_t) * 2);
while (real_data[0] == 0) { /* Remove Padding */
++real_data;
--real_length;
if (real_length == 0) {
return -1;
}
}
if (real_data[0] == PACKET_ID_KILL) {
connection_kill(c, crypt_connection_id, userdata);
return 0;
}
if (conn->status == CRYPTO_CONN_NOT_CONFIRMED) {
clear_temp_packet(c, crypt_connection_id);
conn->status = CRYPTO_CONN_ESTABLISHED;
if (conn->connection_status_callback != nullptr) {
conn->connection_status_callback(conn->connection_status_callback_object, conn->connection_status_callback_id,
true, userdata);
}
}
if (real_data[0] == PACKET_ID_REQUEST) {
uint64_t rtt_time;
if (udp) {
rtt_time = conn->rtt_time;
} else {
rtt_time = DEFAULT_TCP_PING_CONNECTION;
}
const int requested = handle_request_packet(c->mem, c->mono_time, &conn->send_array, real_data, real_length, &rtt_calc_time, rtt_time);
if (requested == -1) {
return -1;
}
set_buffer_end(&conn->recv_array, num);
} else if (real_data[0] >= PACKET_ID_RANGE_LOSSLESS_START && real_data[0] <= PACKET_ID_RANGE_LOSSLESS_END) {
Packet_Data dt = {0};
dt.length = real_length;
memcpy(dt.data, real_data, real_length);
if (add_data_to_buffer(c->mem, &conn->recv_array, num, &dt) != 0) {
return -1;
}
while (true) {
pthread_mutex_lock(conn->mutex);
const int ret = read_data_beg_buffer(c->mem, &conn->recv_array, &dt);
pthread_mutex_unlock(conn->mutex);
if (ret == -1) {
break;
}
if (conn->connection_data_callback != nullptr) {
conn->connection_data_callback(conn->connection_data_callback_object, conn->connection_data_callback_id, dt.data,
dt.length, userdata);
}
/* conn might get killed in callback. */
conn = get_crypto_connection(c, crypt_connection_id);
if (conn == nullptr) {
return -1;
}
}
/* Packet counter. */
++conn->packet_counter;
} else if (real_data[0] >= PACKET_ID_RANGE_LOSSY_START && real_data[0] <= PACKET_ID_RANGE_LOSSY_END) {
set_buffer_end(&conn->recv_array, num);
if (conn->connection_lossy_data_callback != nullptr) {
conn->connection_lossy_data_callback(conn->connection_lossy_data_callback_object,
conn->connection_lossy_data_callback_id, real_data, real_length, userdata);
}
} else {
return -1;
}
if (rtt_calc_time != 0) {
const uint64_t rtt_time = current_time_monotonic(c->mono_time) - rtt_calc_time;
if (rtt_time < conn->rtt_time) {
conn->rtt_time = rtt_time;
}
}
return 0;
}
non_null()
static int handle_packet_cookie_response(Net_Crypto *c, int crypt_connection_id, const uint8_t *packet, uint16_t length)
{
Crypto_Connection *conn = get_crypto_connection(c, crypt_connection_id);
if (conn == nullptr) {
return -1;
}
if (conn->status != CRYPTO_CONN_COOKIE_REQUESTING) {
return -1;
}
uint8_t cookie[COOKIE_LENGTH];
uint64_t number;
if (handle_cookie_response(cookie, &number, packet, length, conn->shared_key) != sizeof(cookie)) {
return -1;
}
if (number != conn->cookie_request_number) {
return -1;
}
if (create_send_handshake(c, crypt_connection_id, cookie, conn->dht_public_key) != 0) {
return -1;
}
conn->status = CRYPTO_CONN_HANDSHAKE_SENT;
return 0;
}
non_null(1, 3) nullable(5)
static int handle_packet_crypto_hs(Net_Crypto *c, int crypt_connection_id, const uint8_t *packet, uint16_t length,
void *userdata)
{
Crypto_Connection *conn = get_crypto_connection(c, crypt_connection_id);
if (conn == nullptr) {
return -1;
}
if (conn->status != CRYPTO_CONN_COOKIE_REQUESTING
&& conn->status != CRYPTO_CONN_HANDSHAKE_SENT
&& conn->status != CRYPTO_CONN_NOT_CONFIRMED) {
return -1;
}
uint8_t peer_real_pk[CRYPTO_PUBLIC_KEY_SIZE];
uint8_t dht_public_key[CRYPTO_PUBLIC_KEY_SIZE];
uint8_t cookie[COOKIE_LENGTH];
if (!handle_crypto_handshake(c, conn->recv_nonce, conn->peersessionpublic_key, peer_real_pk, dht_public_key, cookie,
packet, length, conn->public_key)) {
return -1;
}
if (pk_equal(dht_public_key, conn->dht_public_key)) {
encrypt_precompute(conn->peersessionpublic_key, conn->sessionsecret_key, conn->shared_key);
if (conn->status == CRYPTO_CONN_COOKIE_REQUESTING) {
if (create_send_handshake(c, crypt_connection_id, cookie, dht_public_key) != 0) {
return -1;
}
}
conn->status = CRYPTO_CONN_NOT_CONFIRMED;
} else {
if (conn->dht_pk_callback != nullptr) {
conn->dht_pk_callback(conn->dht_pk_callback_object, conn->dht_pk_callback_number, dht_public_key, userdata);
}
}
return 0;
}
non_null(1, 3) nullable(6)
static int handle_packet_crypto_data(Net_Crypto *c, int crypt_connection_id, const uint8_t *packet, uint16_t length,
bool udp, void *userdata)
{
const Crypto_Connection *conn = get_crypto_connection(c, crypt_connection_id);
if (conn == nullptr) {
return -1;
}
if (conn->status != CRYPTO_CONN_NOT_CONFIRMED && conn->status != CRYPTO_CONN_ESTABLISHED) {
return -1;
}
return handle_data_packet_core(c, crypt_connection_id, packet, length, udp, userdata);
}
/** @brief Handle a packet that was received for the connection.
*
* @retval -1 on failure.
* @retval 0 on success.
*/
non_null(1, 3) nullable(6)
static int handle_packet_connection(Net_Crypto *c, int crypt_connection_id, const uint8_t *packet, uint16_t length,
bool udp, void *userdata)
{
if (length == 0 || length > MAX_CRYPTO_PACKET_SIZE) {
return -1;
}
switch (packet[0]) {
case NET_PACKET_COOKIE_RESPONSE:
return handle_packet_cookie_response(c, crypt_connection_id, packet, length);
case NET_PACKET_CRYPTO_HS:
return handle_packet_crypto_hs(c, crypt_connection_id, packet, length, userdata);
case NET_PACKET_CRYPTO_DATA:
return handle_packet_crypto_data(c, crypt_connection_id, packet, length, udp, userdata);
default:
return -1;
}
}
/** @brief Set the size of the friend list to numfriends.
*
* @retval -1 if mem_vrealloc fails.
* @retval 0 if it succeeds.
*/
non_null()
static int realloc_cryptoconnection(Net_Crypto *c, uint32_t num)
{
if (num == 0) {
mem_delete(c->mem, c->crypto_connections);
c->crypto_connections = nullptr;
return 0;
}
Crypto_Connection *newcrypto_connections = (Crypto_Connection *)mem_vrealloc(
c->mem, c->crypto_connections, num, sizeof(Crypto_Connection));
if (newcrypto_connections == nullptr) {
return -1;
}
c->crypto_connections = newcrypto_connections;
return 0;
}
/** @brief Create a new empty crypto connection.
*
* @retval -1 on failure.
* @return connection id on success.
*/
non_null()
static int create_crypto_connection(Net_Crypto *c)
{
while (true) { /* TODO(irungentoo): is this really the best way to do this? */
pthread_mutex_lock(&c->connections_mutex);
if (c->connection_use_counter == 0) {
break;
}
pthread_mutex_unlock(&c->connections_mutex);
}
int id = -1;
for (uint32_t i = 0; i < c->crypto_connections_length; ++i) {
if (c->crypto_connections[i].status == CRYPTO_CONN_FREE) {
id = i;
break;
}
}
if (id == -1) {
if (realloc_cryptoconnection(c, c->crypto_connections_length + 1) == 0) {
id = c->crypto_connections_length;
++c->crypto_connections_length;
c->crypto_connections[id] = empty_crypto_connection;
}
}
if (id != -1) {
pthread_mutex_t *mutex = (pthread_mutex_t *)mem_alloc(c->mem, sizeof(pthread_mutex_t));
if (mutex == nullptr) {
pthread_mutex_unlock(&c->connections_mutex);
return -1;
}
if (pthread_mutex_init(mutex, nullptr) != 0) {
mem_delete(c->mem, mutex);
pthread_mutex_unlock(&c->connections_mutex);
return -1;
}
// Memsetting float/double to 0 is non-portable, so we explicitly set them to 0
c->crypto_connections[id].packet_recv_rate = 0.0;
c->crypto_connections[id].packet_send_rate = 0.0;
c->crypto_connections[id].last_packets_left_rem = 0.0;
c->crypto_connections[id].packet_send_rate_requested = 0.0;
c->crypto_connections[id].last_packets_left_requested_rem = 0.0;
c->crypto_connections[id].mutex = mutex;
c->crypto_connections[id].status = CRYPTO_CONN_NO_CONNECTION;
}
pthread_mutex_unlock(&c->connections_mutex);
return id;
}
/** @brief Wipe a crypto connection.
*
* @retval -1 on failure.
* @retval 0 on success.
*/
non_null()
static int wipe_crypto_connection(Net_Crypto *c, int crypt_connection_id)
{
if ((uint32_t)crypt_connection_id >= c->crypto_connections_length) {
return -1;
}
if (c->crypto_connections == nullptr) {
return -1;
}
const Crypto_Conn_State status = c->crypto_connections[crypt_connection_id].status;
if (status == CRYPTO_CONN_FREE) {
return -1;
}
uint32_t i;
pthread_mutex_destroy(c->crypto_connections[crypt_connection_id].mutex);
mem_delete(c->mem, c->crypto_connections[crypt_connection_id].mutex);
crypto_memzero(&c->crypto_connections[crypt_connection_id], sizeof(Crypto_Connection));
/* check if we can resize the connections array */
for (i = c->crypto_connections_length; i != 0; --i) {
if (c->crypto_connections[i - 1].status != CRYPTO_CONN_FREE) {
break;
}
}
if (c->crypto_connections_length != i) {
c->crypto_connections_length = i;
realloc_cryptoconnection(c, c->crypto_connections_length);
}
return 0;
}
/** @brief Get crypto connection id from public key of peer.
*
* @retval -1 if there are no connections like we are looking for.
* @return id if it found it.
*/
non_null()
static int getcryptconnection_id(const Net_Crypto *c, const uint8_t *public_key)
{
for (uint32_t i = 0; i < c->crypto_connections_length; ++i) {
if (!crypt_connection_id_is_valid(c, i)) {
continue;
}
if (pk_equal(public_key, c->crypto_connections[i].public_key)) {
return i;
}
}
return -1;
}
/** @brief Add a source to the crypto connection.
* This is to be used only when we have received a packet from that source.
*
* @retval -1 on failure.
* @retval 0 if source was a direct UDP connection.
* @return positive number on success.
*/
non_null()
static int crypto_connection_add_source(Net_Crypto *c, int crypt_connection_id, const IP_Port *source)
{
Crypto_Connection *conn = get_crypto_connection(c, crypt_connection_id);
if (conn == nullptr) {
return -1;
}
if (net_family_is_ipv4(source->ip.family) || net_family_is_ipv6(source->ip.family)) {
if (add_ip_port_connection(c, crypt_connection_id, source) != 0) {
return -1;
}
if (net_family_is_ipv4(source->ip.family)) {
conn->direct_lastrecv_timev4 = mono_time_get(c->mono_time);
} else {
conn->direct_lastrecv_timev6 = mono_time_get(c->mono_time);
}
return 0;
}
unsigned int tcp_connections_number;
if (ip_port_to_tcp_connections_number(source, &tcp_connections_number)) {
if (add_tcp_number_relay_connection(c->tcp_c, conn->connection_number_tcp, tcp_connections_number) == 0) {
return 1;
}
}
return -1;
}
/** @brief Set function to be called when someone requests a new connection to us.
*
* The set function should return -1 on failure and 0 on success.
*
* n_c is only valid for the duration of the function call.
*/
void new_connection_handler(Net_Crypto *c, new_connection_cb *new_connection_callback, void *object)
{
c->new_connection_callback = new_connection_callback;
c->new_connection_callback_object = object;
}
/** @brief Handle a handshake packet by someone who wants to initiate a new connection with us.
* This calls the callback set by `new_connection_handler()` if the handshake is ok.
*
* @retval -1 on failure.
* @retval 0 on success.
*/
non_null(1, 2, 3) nullable(5)
static int handle_new_connection_handshake(Net_Crypto *c, const IP_Port *source, const uint8_t *data, uint16_t length,
void *userdata)
{
uint8_t *cookie = (uint8_t *)mem_balloc(c->mem, COOKIE_LENGTH);
if (cookie == nullptr) {
return -1;
}
New_Connection n_c = {{{{0}}}};
n_c.cookie = cookie;
n_c.source = *source;
n_c.cookie_length = COOKIE_LENGTH;
if (!handle_crypto_handshake(c, n_c.recv_nonce, n_c.peersessionpublic_key, n_c.public_key, n_c.dht_public_key,
n_c.cookie, data, length, nullptr)) {
mem_delete(c->mem, n_c.cookie);
return -1;
}
const int crypt_connection_id = getcryptconnection_id(c, n_c.public_key);
if (crypt_connection_id != -1) {
Crypto_Connection *conn = get_crypto_connection(c, crypt_connection_id);
if (conn == nullptr) {
return -1;
}
if (!pk_equal(n_c.dht_public_key, conn->dht_public_key)) {
connection_kill(c, crypt_connection_id, userdata);
} else {
if (conn->status != CRYPTO_CONN_COOKIE_REQUESTING && conn->status != CRYPTO_CONN_HANDSHAKE_SENT) {
mem_delete(c->mem, n_c.cookie);
return -1;
}
memcpy(conn->recv_nonce, n_c.recv_nonce, CRYPTO_NONCE_SIZE);
memcpy(conn->peersessionpublic_key, n_c.peersessionpublic_key, CRYPTO_PUBLIC_KEY_SIZE);
encrypt_precompute(conn->peersessionpublic_key, conn->sessionsecret_key, conn->shared_key);
crypto_connection_add_source(c, crypt_connection_id, source);
if (create_send_handshake(c, crypt_connection_id, n_c.cookie, n_c.dht_public_key) != 0) {
mem_delete(c->mem, n_c.cookie);
return -1;
}
conn->status = CRYPTO_CONN_NOT_CONFIRMED;
mem_delete(c->mem, n_c.cookie);
return 0;
}
}
const int ret = c->new_connection_callback(c->new_connection_callback_object, &n_c);
mem_delete(c->mem, n_c.cookie);
return ret;
}
/** @brief Accept a crypto connection.
*
* return -1 on failure.
* return connection id on success.
*/
int accept_crypto_connection(Net_Crypto *c, const New_Connection *n_c)
{
if (getcryptconnection_id(c, n_c->public_key) != -1) {
return -1;
}
const int crypt_connection_id = create_crypto_connection(c);
if (crypt_connection_id == -1) {
LOGGER_ERROR(c->log, "Could not create new crypto connection");
return -1;
}
Crypto_Connection *conn = &c->crypto_connections[crypt_connection_id];
if (n_c->cookie_length != COOKIE_LENGTH) {
wipe_crypto_connection(c, crypt_connection_id);
return -1;
}
pthread_mutex_lock(&c->tcp_mutex);
const int connection_number_tcp = new_tcp_connection_to(c->tcp_c, n_c->dht_public_key, crypt_connection_id);
pthread_mutex_unlock(&c->tcp_mutex);
if (connection_number_tcp == -1) {
wipe_crypto_connection(c, crypt_connection_id);
return -1;
}
conn->connection_number_tcp = connection_number_tcp;
memcpy(conn->public_key, n_c->public_key, CRYPTO_PUBLIC_KEY_SIZE);
memcpy(conn->recv_nonce, n_c->recv_nonce, CRYPTO_NONCE_SIZE);
memcpy(conn->peersessionpublic_key, n_c->peersessionpublic_key, CRYPTO_PUBLIC_KEY_SIZE);
random_nonce(c->rng, conn->sent_nonce);
crypto_new_keypair(c->rng, conn->sessionpublic_key, conn->sessionsecret_key);
encrypt_precompute(conn->peersessionpublic_key, conn->sessionsecret_key, conn->shared_key);
conn->status = CRYPTO_CONN_NOT_CONFIRMED;
if (create_send_handshake(c, crypt_connection_id, n_c->cookie, n_c->dht_public_key) != 0) {
pthread_mutex_lock(&c->tcp_mutex);
kill_tcp_connection_to(c->tcp_c, conn->connection_number_tcp);
pthread_mutex_unlock(&c->tcp_mutex);
wipe_crypto_connection(c, crypt_connection_id);
return -1;
}
memcpy(conn->dht_public_key, n_c->dht_public_key, CRYPTO_PUBLIC_KEY_SIZE);
conn->packet_send_rate = CRYPTO_PACKET_MIN_RATE;
conn->packet_send_rate_requested = CRYPTO_PACKET_MIN_RATE;
conn->packets_left = CRYPTO_MIN_QUEUE_LENGTH;
conn->rtt_time = DEFAULT_PING_CONNECTION;
crypto_connection_add_source(c, crypt_connection_id, &n_c->source);
return crypt_connection_id;
}
/** @brief Create a crypto connection.
* If one to that real public key already exists, return it.
*
* return -1 on failure.
* return connection id on success.
*/
int new_crypto_connection(Net_Crypto *c, const uint8_t *real_public_key, const uint8_t *dht_public_key)
{
int crypt_connection_id = getcryptconnection_id(c, real_public_key);
if (crypt_connection_id != -1) {
return crypt_connection_id;
}
crypt_connection_id = create_crypto_connection(c);
if (crypt_connection_id == -1) {
return -1;
}
Crypto_Connection *conn = &c->crypto_connections[crypt_connection_id];
pthread_mutex_lock(&c->tcp_mutex);
const int connection_number_tcp = new_tcp_connection_to(c->tcp_c, dht_public_key, crypt_connection_id);
pthread_mutex_unlock(&c->tcp_mutex);
if (connection_number_tcp == -1) {
wipe_crypto_connection(c, crypt_connection_id);
return -1;
}
conn->connection_number_tcp = connection_number_tcp;
memcpy(conn->public_key, real_public_key, CRYPTO_PUBLIC_KEY_SIZE);
random_nonce(c->rng, conn->sent_nonce);
crypto_new_keypair(c->rng, conn->sessionpublic_key, conn->sessionsecret_key);
conn->status = CRYPTO_CONN_COOKIE_REQUESTING;
conn->packet_send_rate = CRYPTO_PACKET_MIN_RATE;
conn->packet_send_rate_requested = CRYPTO_PACKET_MIN_RATE;
conn->packets_left = CRYPTO_MIN_QUEUE_LENGTH;
conn->rtt_time = DEFAULT_PING_CONNECTION;
memcpy(conn->dht_public_key, dht_public_key, CRYPTO_PUBLIC_KEY_SIZE);
conn->cookie_request_number = random_u64(c->rng);
uint8_t cookie_request[COOKIE_REQUEST_LENGTH];
if (create_cookie_request(c, cookie_request, conn->dht_public_key, conn->cookie_request_number,
conn->shared_key) != sizeof(cookie_request)
|| new_temp_packet(c, crypt_connection_id, cookie_request, sizeof(cookie_request)) != 0) {
pthread_mutex_lock(&c->tcp_mutex);
kill_tcp_connection_to(c->tcp_c, conn->connection_number_tcp);
pthread_mutex_unlock(&c->tcp_mutex);
wipe_crypto_connection(c, crypt_connection_id);
return -1;
}
return crypt_connection_id;
}
/** @brief Set the direct ip of the crypto connection.
*
* Connected is 0 if we are not sure we are connected to that person, 1 if we are sure.
*
* return -1 on failure.
* return 0 on success.
*/
int set_direct_ip_port(Net_Crypto *c, int crypt_connection_id, const IP_Port *ip_port, bool connected)
{
Crypto_Connection *conn = get_crypto_connection(c, crypt_connection_id);
if (conn == nullptr) {
return -1;
}
if (add_ip_port_connection(c, crypt_connection_id, ip_port) != 0) {
return -1;
}
const uint64_t direct_lastrecv_time = connected ? mono_time_get(c->mono_time) : 0;
if (net_family_is_ipv4(ip_port->ip.family)) {
conn->direct_lastrecv_timev4 = direct_lastrecv_time;
} else {
conn->direct_lastrecv_timev6 = direct_lastrecv_time;
}
return 0;
}
non_null(1, 3) nullable(5)
static int tcp_data_callback(void *object, int crypt_connection_id, const uint8_t *packet, uint16_t length,
void *userdata)
{
Net_Crypto *c = (Net_Crypto *)object;
if (length == 0 || length > MAX_CRYPTO_PACKET_SIZE) {
return -1;
}
const Crypto_Connection *conn = get_crypto_connection(c, crypt_connection_id);
if (conn == nullptr) {
return -1;
}
if (packet[0] == NET_PACKET_COOKIE_REQUEST) {
return tcp_handle_cookie_request(c, conn->connection_number_tcp, packet, length);
}
// This unlocks the mutex that at this point is locked by do_tcp before
// calling do_tcp_connections.
pthread_mutex_unlock(&c->tcp_mutex);
const int ret = handle_packet_connection(c, crypt_connection_id, packet, length, false, userdata);
pthread_mutex_lock(&c->tcp_mutex);
if (ret != 0) {
return -1;
}
// TODO(irungentoo): detect and kill bad TCP connections.
return 0;
}
non_null(1, 2, 4) nullable(6)
static int tcp_oob_callback(void *object, const uint8_t *public_key, unsigned int tcp_connections_number,
const uint8_t *packet, uint16_t length, void *userdata)
{
Net_Crypto *c = (Net_Crypto *)object;
if (length == 0 || length > MAX_CRYPTO_PACKET_SIZE) {
return -1;
}
if (packet[0] == NET_PACKET_COOKIE_REQUEST) {
return tcp_oob_handle_cookie_request(c, tcp_connections_number, public_key, packet, length);
}
if (packet[0] == NET_PACKET_CRYPTO_HS) {
const IP_Port source = tcp_connections_number_to_ip_port(tcp_connections_number);
if (handle_new_connection_handshake(c, &source, packet, length, userdata) != 0) {
return -1;
}
return 0;
}
return -1;
}
/** @brief Add a tcp relay, associating it to a crypt_connection_id.
*
* return 0 if it was added.
* return -1 if it wasn't.
*/
int add_tcp_relay_peer(Net_Crypto *c, int crypt_connection_id, const IP_Port *ip_port, const uint8_t *public_key)
{
const Crypto_Connection *conn = get_crypto_connection(c, crypt_connection_id);
if (conn == nullptr) {
return -1;
}
pthread_mutex_lock(&c->tcp_mutex);
const int ret = add_tcp_relay_connection(c->tcp_c, conn->connection_number_tcp, ip_port, public_key);
pthread_mutex_unlock(&c->tcp_mutex);
return ret;
}
/** @brief Add a tcp relay to the array.
*
* return 0 if it was added.
* return -1 if it wasn't.
*/
int add_tcp_relay(Net_Crypto *c, const IP_Port *ip_port, const uint8_t *public_key)
{
pthread_mutex_lock(&c->tcp_mutex);
const int ret = add_tcp_relay_global(c->tcp_c, ip_port, public_key);
pthread_mutex_unlock(&c->tcp_mutex);
return ret;
}
/** @brief Return a random TCP connection number for use in send_tcp_onion_request.
*
* TODO(irungentoo): This number is just the index of an array that the elements can
* change without warning.
*
* return TCP connection number on success.
* return -1 on failure.
*/
int get_random_tcp_con_number(Net_Crypto *c)
{
pthread_mutex_lock(&c->tcp_mutex);
const int ret = get_random_tcp_onion_conn_number(c->tcp_c);
pthread_mutex_unlock(&c->tcp_mutex);
return ret;
}
/** @brief Put IP_Port of a random onion TCP connection in ip_port.
*
* return true on success.
* return false on failure.
*/
bool get_random_tcp_conn_ip_port(Net_Crypto *c, IP_Port *ip_port)
{
pthread_mutex_lock(&c->tcp_mutex);
const bool ret = tcp_get_random_conn_ip_port(c->tcp_c, ip_port);
pthread_mutex_unlock(&c->tcp_mutex);
return ret;
}
/** @brief Send an onion packet via the TCP relay corresponding to tcp_connections_number.
*
* return 0 on success.
* return -1 on failure.
*/
int send_tcp_onion_request(Net_Crypto *c, unsigned int tcp_connections_number, const uint8_t *data, uint16_t length)
{
pthread_mutex_lock(&c->tcp_mutex);
const int ret = tcp_send_onion_request(c->tcp_c, tcp_connections_number, data, length);
pthread_mutex_unlock(&c->tcp_mutex);
return ret;
}
/**
* Send a forward request to the TCP relay with IP_Port tcp_forwarder,
* requesting to forward data via a chain of dht nodes starting with dht_node.
* A chain_length of 0 means that dht_node is the final destination of data.
*
* return 0 on success.
* return -1 on failure.
*/
int send_tcp_forward_request(const Logger *logger, Net_Crypto *c, const IP_Port *tcp_forwarder, const IP_Port *dht_node,
const uint8_t *chain_keys, uint16_t chain_length,
const uint8_t *data, uint16_t data_length)
{
pthread_mutex_lock(&c->tcp_mutex);
const int ret = tcp_send_forward_request(logger, c->tcp_c, tcp_forwarder, dht_node,
chain_keys, chain_length, data, data_length);
pthread_mutex_unlock(&c->tcp_mutex);
return ret;
}
/** @brief Copy a maximum of num random TCP relays we are connected to to tcp_relays.
*
* NOTE that the family of the copied ip ports will be set to TCP_INET or TCP_INET6.
*
* return number of relays copied to tcp_relays on success.
* return 0 on failure.
*/
unsigned int copy_connected_tcp_relays(Net_Crypto *c, Node_format *tcp_relays, uint16_t num)
{
if (num == 0) {
return 0;
}
pthread_mutex_lock(&c->tcp_mutex);
const unsigned int ret = tcp_copy_connected_relays(c->tcp_c, tcp_relays, num);
pthread_mutex_unlock(&c->tcp_mutex);
return ret;
}
uint32_t copy_connected_tcp_relays_index(Net_Crypto *c, Node_format *tcp_relays, uint16_t num, uint32_t idx)
{
if (num == 0) {
return 0;
}
pthread_mutex_lock(&c->tcp_mutex);
const uint32_t ret = tcp_copy_connected_relays_index(c->tcp_c, tcp_relays, num, idx);
pthread_mutex_unlock(&c->tcp_mutex);
return ret;
}
non_null()
static void do_tcp(Net_Crypto *c, void *userdata)
{
pthread_mutex_lock(&c->tcp_mutex);
do_tcp_connections(c->log, c->tcp_c, userdata);
pthread_mutex_unlock(&c->tcp_mutex);
for (uint32_t i = 0; i < c->crypto_connections_length; ++i) {
const Crypto_Connection *conn = get_crypto_connection(c, i);
if (conn == nullptr) {
continue;
}
if (conn->status != CRYPTO_CONN_ESTABLISHED) {
continue;
}
bool direct_connected = false;
if (!crypto_connection_status(c, i, &direct_connected, nullptr)) {
continue;
}
pthread_mutex_lock(&c->tcp_mutex);
set_tcp_connection_to_status(c->tcp_c, conn->connection_number_tcp, !direct_connected);
pthread_mutex_unlock(&c->tcp_mutex);
}
}
/** @brief Set function to be called when connection with crypt_connection_id goes connects/disconnects.
*
* The set function should return -1 on failure and 0 on success.
* Note that if this function is set, the connection will clear itself on disconnect.
* Object and id will be passed to this function untouched.
* status is 1 if the connection is going online, 0 if it is going offline.
*
* return -1 on failure.
* return 0 on success.
*/
int connection_status_handler(const Net_Crypto *c, int crypt_connection_id,
connection_status_cb *connection_status_callback, void *object, int id)
{
Crypto_Connection *conn = get_crypto_connection(c, crypt_connection_id);
if (conn == nullptr) {
return -1;
}
conn->connection_status_callback = connection_status_callback;
conn->connection_status_callback_object = object;
conn->connection_status_callback_id = id;
return 0;
}
/** @brief Set function to be called when connection with crypt_connection_id receives a lossless data packet of length.
*
* The set function should return -1 on failure and 0 on success.
* Object and id will be passed to this function untouched.
*
* return -1 on failure.
* return 0 on success.
*/
int connection_data_handler(const Net_Crypto *c, int crypt_connection_id,
connection_data_cb *connection_data_callback, void *object, int id)
{
Crypto_Connection *conn = get_crypto_connection(c, crypt_connection_id);
if (conn == nullptr) {
return -1;
}
conn->connection_data_callback = connection_data_callback;
conn->connection_data_callback_object = object;
conn->connection_data_callback_id = id;
return 0;
}
/** @brief Set function to be called when connection with crypt_connection_id receives a lossy data packet of length.
*
* The set function should return -1 on failure and 0 on success.
* Object and id will be passed to this function untouched.
*
* return -1 on failure.
* return 0 on success.
*/
int connection_lossy_data_handler(const Net_Crypto *c, int crypt_connection_id,
connection_lossy_data_cb *connection_lossy_data_callback,
void *object, int id)
{
Crypto_Connection *conn = get_crypto_connection(c, crypt_connection_id);
if (conn == nullptr) {
return -1;
}
conn->connection_lossy_data_callback = connection_lossy_data_callback;
conn->connection_lossy_data_callback_object = object;
conn->connection_lossy_data_callback_id = id;
return 0;
}
/** @brief Set the function for this friend that will be callbacked with object and number if
* the friend sends us a different dht public key than we have associated to him.
*
* If this function is called, the connection should be recreated with the new public key.
*
* object and number will be passed as argument to this function.
*
* return -1 on failure.
* return 0 on success.
*/
int nc_dht_pk_callback(const Net_Crypto *c, int crypt_connection_id, dht_pk_cb *function, void *object, uint32_t number)
{
Crypto_Connection *conn = get_crypto_connection(c, crypt_connection_id);
if (conn == nullptr) {
return -1;
}
conn->dht_pk_callback = function;
conn->dht_pk_callback_object = object;
conn->dht_pk_callback_number = number;
return 0;
}
/** @brief Get the crypto connection id from the ip_port.
*
* return -1 on failure.
* return connection id on success.
*/
non_null()
static int crypto_id_ip_port(const Net_Crypto *c, const IP_Port *ip_port)
{
return bs_list_find(&c->ip_port_list, (const uint8_t *)ip_port);
}
#define CRYPTO_MIN_PACKET_SIZE (1 + sizeof(uint16_t) + CRYPTO_MAC_SIZE)
/** @brief Handle raw UDP packets coming directly from the socket.
*
* Handles:
* Cookie response packets.
* Crypto handshake packets.
* Crypto data packets.
*
*/
non_null(1, 2, 3) nullable(5)
static int udp_handle_packet(void *object, const IP_Port *source, const uint8_t *packet, uint16_t length,
void *userdata)
{
Net_Crypto *c = (Net_Crypto *)object;
if (length <= CRYPTO_MIN_PACKET_SIZE || length > MAX_CRYPTO_PACKET_SIZE) {
return 1;
}
const int crypt_connection_id = crypto_id_ip_port(c, source);
if (crypt_connection_id == -1) {
if (packet[0] != NET_PACKET_CRYPTO_HS) {
return 1;
}
if (handle_new_connection_handshake(c, source, packet, length, userdata) != 0) {
return 1;
}
return 0;
}
if (handle_packet_connection(c, crypt_connection_id, packet, length, true, userdata) != 0) {
return 1;
}
Crypto_Connection *conn = get_crypto_connection(c, crypt_connection_id);
if (conn == nullptr) {
return -1;
}
pthread_mutex_lock(conn->mutex);
if (net_family_is_ipv4(source->ip.family)) {
conn->direct_lastrecv_timev4 = mono_time_get(c->mono_time);
} else {
conn->direct_lastrecv_timev6 = mono_time_get(c->mono_time);
}
pthread_mutex_unlock(conn->mutex);
return 0;
}
/** @brief The dT for the average packet receiving rate calculations.
* Also used as the
*/
#define PACKET_COUNTER_AVERAGE_INTERVAL 50
/** @brief Ratio of recv queue size / recv packet rate (in seconds) times
* the number of ms between request packets to send at that ratio
*/
#define REQUEST_PACKETS_COMPARE_CONSTANT (0.125 * 100.0)
/** @brief Timeout for increasing speed after congestion event (in ms). */
#define CONGESTION_EVENT_TIMEOUT 1000
/**
* If the send queue is SEND_QUEUE_RATIO times larger than the
* calculated link speed the packet send speed will be reduced
* by a value depending on this number.
*/
#define SEND_QUEUE_RATIO 2.0
non_null()
static void send_crypto_packets(Net_Crypto *c)
{
const uint64_t temp_time = current_time_monotonic(c->mono_time);
double total_send_rate = 0;
uint32_t peak_request_packet_interval = -1;
for (uint32_t i = 0; i < c->crypto_connections_length; ++i) {
Crypto_Connection *conn = get_crypto_connection(c, i);
if (conn == nullptr) {
continue;
}
if ((CRYPTO_SEND_PACKET_INTERVAL + conn->temp_packet_sent_time) < temp_time) {
send_temp_packet(c, i);
}
if ((conn->status == CRYPTO_CONN_NOT_CONFIRMED || conn->status == CRYPTO_CONN_ESTABLISHED)
&& (CRYPTO_SEND_PACKET_INTERVAL + conn->last_request_packet_sent) < temp_time) {
if (send_request_packet(c, i) == 0) {
conn->last_request_packet_sent = temp_time;
}
}
if (conn->status == CRYPTO_CONN_ESTABLISHED) {
if (conn->packet_recv_rate > CRYPTO_PACKET_MIN_RATE) {
double request_packet_interval = REQUEST_PACKETS_COMPARE_CONSTANT / ((num_packets_array(
&conn->recv_array) + 1.0) / (conn->packet_recv_rate + 1.0));
const double request_packet_interval2 = ((CRYPTO_PACKET_MIN_RATE / conn->packet_recv_rate) *
(double)CRYPTO_SEND_PACKET_INTERVAL) + (double)PACKET_COUNTER_AVERAGE_INTERVAL;
if (request_packet_interval2 < request_packet_interval) {
request_packet_interval = request_packet_interval2;
}
if (request_packet_interval < PACKET_COUNTER_AVERAGE_INTERVAL) {
request_packet_interval = PACKET_COUNTER_AVERAGE_INTERVAL;
}
if (request_packet_interval > CRYPTO_SEND_PACKET_INTERVAL) {
request_packet_interval = CRYPTO_SEND_PACKET_INTERVAL;
}
if (temp_time - conn->last_request_packet_sent > (uint64_t)request_packet_interval) {
if (send_request_packet(c, i) == 0) {
conn->last_request_packet_sent = temp_time;
}
}
if (request_packet_interval < peak_request_packet_interval) {
peak_request_packet_interval = request_packet_interval;
}
}
if ((PACKET_COUNTER_AVERAGE_INTERVAL + conn->packet_counter_set) < temp_time) {
const double dt = (double)(temp_time - conn->packet_counter_set);
conn->packet_recv_rate = (double)conn->packet_counter / (dt / 1000.0);
conn->packet_counter = 0;
conn->packet_counter_set = temp_time;
const uint32_t packets_sent = conn->packets_sent;
conn->packets_sent = 0;
const uint32_t packets_resent = conn->packets_resent;
conn->packets_resent = 0;
/* conjestion control
* calculate a new value of conn->packet_send_rate based on some data
*/
const unsigned int pos = conn->last_sendqueue_counter % CONGESTION_QUEUE_ARRAY_SIZE;
conn->last_sendqueue_size[pos] = num_packets_array(&conn->send_array);
long signed int sum = 0;
sum = (long signed int)conn->last_sendqueue_size[pos] -
(long signed int)conn->last_sendqueue_size[(pos + 1) % CONGESTION_QUEUE_ARRAY_SIZE];
const unsigned int n_p_pos = conn->last_sendqueue_counter % CONGESTION_LAST_SENT_ARRAY_SIZE;
conn->last_num_packets_sent[n_p_pos] = packets_sent;
conn->last_num_packets_resent[n_p_pos] = packets_resent;
conn->last_sendqueue_counter = (conn->last_sendqueue_counter + 1) %
(CONGESTION_QUEUE_ARRAY_SIZE * CONGESTION_LAST_SENT_ARRAY_SIZE);
bool direct_connected = false;
/* return value can be ignored since the `if` above ensures the connection is established */
crypto_connection_status(c, i, &direct_connected, nullptr);
/* When switching from TCP to UDP, don't change the packet send rate for CONGESTION_EVENT_TIMEOUT ms. */
if (!(direct_connected && conn->last_tcp_sent + CONGESTION_EVENT_TIMEOUT > temp_time)) {
long signed int total_sent = 0;
long signed int total_resent = 0;
// TODO(irungentoo): use real delay
unsigned int delay = (unsigned int)(((double)conn->rtt_time / PACKET_COUNTER_AVERAGE_INTERVAL) + 0.5);
const unsigned int packets_set_rem_array = CONGESTION_LAST_SENT_ARRAY_SIZE - CONGESTION_QUEUE_ARRAY_SIZE;
if (delay > packets_set_rem_array) {
delay = packets_set_rem_array;
}
for (unsigned j = 0; j < CONGESTION_QUEUE_ARRAY_SIZE; ++j) {
const unsigned int ind = (j + (packets_set_rem_array - delay) + n_p_pos) % CONGESTION_LAST_SENT_ARRAY_SIZE;
total_sent += conn->last_num_packets_sent[ind];
total_resent += conn->last_num_packets_resent[ind];
}
if (sum > 0) {
total_sent -= sum;
} else {
if (total_resent > -sum) {
total_resent = -sum;
}
}
/* if queue is too big only allow resending packets. */
const uint32_t npackets = num_packets_array(&conn->send_array);
double min_speed = 1000.0 * (((double)total_sent) / ((double)CONGESTION_QUEUE_ARRAY_SIZE *
PACKET_COUNTER_AVERAGE_INTERVAL));
const double min_speed_request = 1000.0 * (((double)(total_sent + total_resent)) / (
(double)CONGESTION_QUEUE_ARRAY_SIZE * PACKET_COUNTER_AVERAGE_INTERVAL));
if (min_speed < CRYPTO_PACKET_MIN_RATE) {
min_speed = CRYPTO_PACKET_MIN_RATE;
}
const double send_array_ratio = (double)npackets / min_speed;
// TODO(irungentoo): Improve formula?
if (send_array_ratio > SEND_QUEUE_RATIO && CRYPTO_MIN_QUEUE_LENGTH < npackets) {
conn->packet_send_rate = min_speed * (1.0 / (send_array_ratio / SEND_QUEUE_RATIO));
} else if (conn->last_congestion_event + CONGESTION_EVENT_TIMEOUT < temp_time) {
conn->packet_send_rate = min_speed * 1.2;
} else {
conn->packet_send_rate = min_speed * 0.9;
}
conn->packet_send_rate_requested = min_speed_request * 1.2;
if (conn->packet_send_rate < CRYPTO_PACKET_MIN_RATE) {
conn->packet_send_rate = CRYPTO_PACKET_MIN_RATE;
}
if (conn->packet_send_rate_requested < conn->packet_send_rate) {
conn->packet_send_rate_requested = conn->packet_send_rate;
}
}
}
if (conn->last_packets_left_set == 0 || conn->last_packets_left_requested_set == 0) {
conn->last_packets_left_requested_set = temp_time;
conn->last_packets_left_set = temp_time;
conn->packets_left_requested = CRYPTO_MIN_QUEUE_LENGTH;
conn->packets_left = CRYPTO_MIN_QUEUE_LENGTH;
} else {
if (((uint64_t)((1000.0 / conn->packet_send_rate) + 0.5) + conn->last_packets_left_set) <= temp_time) {
double n_packets = conn->packet_send_rate * (((double)(temp_time - conn->last_packets_left_set)) / 1000.0);
n_packets += conn->last_packets_left_rem;
const uint32_t num_packets = n_packets;
const double rem = n_packets - (double)num_packets;
if (conn->packets_left > num_packets * 4 + CRYPTO_MIN_QUEUE_LENGTH) {
conn->packets_left = num_packets * 4 + CRYPTO_MIN_QUEUE_LENGTH;
} else {
conn->packets_left += num_packets;
}
conn->last_packets_left_set = temp_time;
conn->last_packets_left_rem = rem;
}
if (((uint64_t)((1000.0 / conn->packet_send_rate_requested) + 0.5) + conn->last_packets_left_requested_set) <=
temp_time) {
double n_packets = conn->packet_send_rate_requested * (((double)(temp_time - conn->last_packets_left_requested_set)) /
1000.0);
n_packets += conn->last_packets_left_requested_rem;
const uint32_t num_packets = n_packets;
const double rem = n_packets - (double)num_packets;
conn->packets_left_requested = num_packets;
conn->last_packets_left_requested_set = temp_time;
conn->last_packets_left_requested_rem = rem;
}
if (conn->packets_left > conn->packets_left_requested) {
conn->packets_left_requested = conn->packets_left;
}
}
const int ret = send_requested_packets(c, i, conn->packets_left_requested);
if (ret != -1) {
conn->packets_left_requested -= ret;
conn->packets_resent += ret;
if ((unsigned int)ret < conn->packets_left) {
conn->packets_left -= ret;
} else {
conn->last_congestion_event = temp_time;
conn->packets_left = 0;
}
}
if (conn->packet_send_rate > CRYPTO_PACKET_MIN_RATE * 1.5) {
total_send_rate += conn->packet_send_rate;
}
}
}
c->current_sleep_time = -1;
uint32_t sleep_time = peak_request_packet_interval;
if (c->current_sleep_time > sleep_time) {
c->current_sleep_time = sleep_time;
}
if (total_send_rate > CRYPTO_PACKET_MIN_RATE) {
sleep_time = 1000.0 / total_send_rate;
if (c->current_sleep_time > sleep_time) {
c->current_sleep_time = sleep_time + 1;
}
}
sleep_time = CRYPTO_SEND_PACKET_INTERVAL;
if (c->current_sleep_time > sleep_time) {
c->current_sleep_time = sleep_time;
}
}
/**
* @retval 1 if max speed was reached for this connection (no more data can be physically through the pipe).
* @retval 0 if it wasn't reached.
*/
bool max_speed_reached(Net_Crypto *c, int crypt_connection_id)
{
return reset_max_speed_reached(c, crypt_connection_id) != 0;
}
/**
* @return the number of packet slots left in the sendbuffer.
* @retval 0 if failure.
*/
uint32_t crypto_num_free_sendqueue_slots(const Net_Crypto *c, int crypt_connection_id)
{
const Crypto_Connection *conn = get_crypto_connection(c, crypt_connection_id);
if (conn == nullptr) {
return 0;
}
const uint32_t max_packets = CRYPTO_PACKET_BUFFER_SIZE - num_packets_array(&conn->send_array);
if (conn->packets_left < max_packets) {
return conn->packets_left;
}
return max_packets;
}
/** @brief Sends a lossless cryptopacket.
*
* return -1 if data could not be put in packet queue.
* return positive packet number if data was put into the queue.
*
* The first byte of data must be in the PACKET_ID_RANGE_LOSSLESS.
*
* congestion_control: should congestion control apply to this packet?
*/
int64_t write_cryptpacket(Net_Crypto *c, int crypt_connection_id, const uint8_t *data, uint16_t length,
bool congestion_control)
{
if (length == 0) {
// We need at least a packet id.
LOGGER_ERROR(c->log, "rejecting empty packet for crypto connection %d", crypt_connection_id);
return -1;
}
if (data[0] < PACKET_ID_RANGE_LOSSLESS_START || data[0] > PACKET_ID_RANGE_LOSSLESS_END) {
LOGGER_ERROR(c->log, "rejecting lossless packet with out-of-range id %d", data[0]);
return -1;
}
Crypto_Connection *conn = get_crypto_connection(c, crypt_connection_id);
if (conn == nullptr) {
LOGGER_WARNING(c->log, "invalid crypt connection id %d", crypt_connection_id);
return -1;
}
if (conn->status != CRYPTO_CONN_ESTABLISHED) {
LOGGER_WARNING(c->log, "attempted to send packet to non-established connection %d", crypt_connection_id);
return -1;
}
if (congestion_control && conn->packets_left == 0) {
LOGGER_ERROR(c->log, "congestion control: rejecting packet of length %d on crypt connection %d", length,
crypt_connection_id);
return -1;
}
const int64_t ret = send_lossless_packet(c, crypt_connection_id, data, length, congestion_control);
if (ret == -1) {
return -1;
}
if (congestion_control) {
--conn->packets_left;
--conn->packets_left_requested;
++conn->packets_sent;
}
return ret;
}
/** @brief Check if packet_number was received by the other side.
*
* packet_number must be a valid packet number of a packet sent on this connection.
*
* return -1 on failure.
* return 0 on success.
*
* Note: The condition `buffer_end - buffer_start < packet_number - buffer_start` is
* a trick which handles situations `buffer_end >= buffer_start` and
* `buffer_end < buffer_start` (when buffer_end overflowed) both correctly.
*
* It CANNOT be simplified to `packet_number < buffer_start`, as it will fail
* when `buffer_end < buffer_start`.
*/
int cryptpacket_received(const Net_Crypto *c, int crypt_connection_id, uint32_t packet_number)
{
const Crypto_Connection *conn = get_crypto_connection(c, crypt_connection_id);
if (conn == nullptr) {
return -1;
}
const uint32_t num = num_packets_array(&conn->send_array);
const uint32_t num1 = packet_number - conn->send_array.buffer_start;
if (num >= num1) {
return -1;
}
return 0;
}
/** @brief Sends a lossy cryptopacket.
*
* return -1 on failure.
* return 0 on success.
*
* The first byte of data must be in the PACKET_ID_RANGE_LOSSY.
*/
int send_lossy_cryptpacket(Net_Crypto *c, int crypt_connection_id, const uint8_t *data, uint16_t length)
{
if (length == 0 || length > MAX_CRYPTO_DATA_SIZE) {
return -1;
}
if (data[0] < PACKET_ID_RANGE_LOSSY_START || data[0] > PACKET_ID_RANGE_LOSSY_END) {
return -1;
}
pthread_mutex_lock(&c->connections_mutex);
++c->connection_use_counter;
pthread_mutex_unlock(&c->connections_mutex);
Crypto_Connection *conn = get_crypto_connection(c, crypt_connection_id);
int ret = -1;
if (conn != nullptr) {
pthread_mutex_lock(conn->mutex);
const uint32_t buffer_start = conn->recv_array.buffer_start;
const uint32_t buffer_end = conn->send_array.buffer_end;
pthread_mutex_unlock(conn->mutex);
ret = send_data_packet_helper(c, crypt_connection_id, buffer_start, buffer_end, data, length);
}
pthread_mutex_lock(&c->connections_mutex);
--c->connection_use_counter;
pthread_mutex_unlock(&c->connections_mutex);
return ret;
}
/** @brief Kill a crypto connection.
*
* return -1 on failure.
* return 0 on success.
*/
int crypto_kill(Net_Crypto *c, int crypt_connection_id)
{
Crypto_Connection *conn = get_crypto_connection(c, crypt_connection_id);
int ret = -1;
if (conn != nullptr) {
if (conn->status == CRYPTO_CONN_ESTABLISHED) {
send_kill_packet(c, crypt_connection_id);
}
pthread_mutex_lock(&c->tcp_mutex);
kill_tcp_connection_to(c->tcp_c, conn->connection_number_tcp);
pthread_mutex_unlock(&c->tcp_mutex);
bs_list_remove(&c->ip_port_list, (uint8_t *)&conn->ip_portv4, crypt_connection_id);
bs_list_remove(&c->ip_port_list, (uint8_t *)&conn->ip_portv6, crypt_connection_id);
clear_temp_packet(c, crypt_connection_id);
clear_buffer(c->mem, &conn->send_array);
clear_buffer(c->mem, &conn->recv_array);
ret = wipe_crypto_connection(c, crypt_connection_id);
}
return ret;
}
bool crypto_connection_status(const Net_Crypto *c, int crypt_connection_id, bool *direct_connected,
uint32_t *online_tcp_relays)
{
const Crypto_Connection *conn = get_crypto_connection(c, crypt_connection_id);
if (conn == nullptr) {
return false;
}
if (direct_connected != nullptr) {
*direct_connected = false;
const uint64_t current_time = mono_time_get(c->mono_time);
if ((UDP_DIRECT_TIMEOUT + conn->direct_lastrecv_timev4) > current_time ||
(UDP_DIRECT_TIMEOUT + conn->direct_lastrecv_timev6) > current_time) {
*direct_connected = true;
}
}
if (online_tcp_relays != nullptr) {
*online_tcp_relays = tcp_connection_to_online_tcp_relays(c->tcp_c, conn->connection_number_tcp);
}
return true;
}
void new_keys(Net_Crypto *c)
{
crypto_new_keypair(c->rng, c->self_public_key, c->self_secret_key);
}
/** @brief Save the public and private keys to the keys array.
* Length must be CRYPTO_PUBLIC_KEY_SIZE + CRYPTO_SECRET_KEY_SIZE.
*
* TODO(irungentoo): Save only secret key.
*/
void save_keys(const Net_Crypto *c, uint8_t *keys)
{
memcpy(keys, c->self_public_key, CRYPTO_PUBLIC_KEY_SIZE);
memcpy(keys + CRYPTO_PUBLIC_KEY_SIZE, c->self_secret_key, CRYPTO_SECRET_KEY_SIZE);
}
/** @brief Load the secret key.
* Length must be CRYPTO_SECRET_KEY_SIZE.
*/
void load_secret_key(Net_Crypto *c, const uint8_t *sk)
{
memcpy(c->self_secret_key, sk, CRYPTO_SECRET_KEY_SIZE);
crypto_derive_public_key(c->self_public_key, c->self_secret_key);
}
/** @brief Create new instance of Net_Crypto.
* Sets all the global connection variables to their default values.
*/
Net_Crypto *new_net_crypto(const Logger *log, const Memory *mem, const Random *rng, const Network *ns,
Mono_Time *mono_time, DHT *dht, const TCP_Proxy_Info *proxy_info)
{
if (dht == nullptr) {
return nullptr;
}
Net_Crypto *temp = (Net_Crypto *)mem_alloc(mem, sizeof(Net_Crypto));
if (temp == nullptr) {
return nullptr;
}
temp->log = log;
temp->mem = mem;
temp->rng = rng;
temp->mono_time = mono_time;
temp->ns = ns;
temp->tcp_c = new_tcp_connections(log, mem, rng, ns, mono_time, dht_get_self_secret_key(dht), proxy_info);
if (temp->tcp_c == nullptr) {
mem_delete(mem, temp);
return nullptr;
}
set_packet_tcp_connection_callback(temp->tcp_c, &tcp_data_callback, temp);
set_oob_packet_tcp_connection_callback(temp->tcp_c, &tcp_oob_callback, temp);
if (create_recursive_mutex(&temp->tcp_mutex) != 0 ||
pthread_mutex_init(&temp->connections_mutex, nullptr) != 0) {
kill_tcp_connections(temp->tcp_c);
mem_delete(mem, temp);
return nullptr;
}
temp->dht = dht;
new_keys(temp);
new_symmetric_key(rng, temp->secret_symmetric_key);
temp->current_sleep_time = CRYPTO_SEND_PACKET_INTERVAL;
networking_registerhandler(dht_get_net(dht), NET_PACKET_COOKIE_REQUEST, &udp_handle_cookie_request, temp);
networking_registerhandler(dht_get_net(dht), NET_PACKET_COOKIE_RESPONSE, &udp_handle_packet, temp);
networking_registerhandler(dht_get_net(dht), NET_PACKET_CRYPTO_HS, &udp_handle_packet, temp);
networking_registerhandler(dht_get_net(dht), NET_PACKET_CRYPTO_DATA, &udp_handle_packet, temp);
bs_list_init(&temp->ip_port_list, sizeof(IP_Port), 8, ipport_cmp_handler);
return temp;
}
non_null(1) nullable(2)
static void kill_timedout(Net_Crypto *c, void *userdata)
{
for (uint32_t i = 0; i < c->crypto_connections_length; ++i) {
const Crypto_Connection *conn = get_crypto_connection(c, i);
if (conn == nullptr) {
continue;
}
if (conn->status == CRYPTO_CONN_COOKIE_REQUESTING || conn->status == CRYPTO_CONN_HANDSHAKE_SENT
|| conn->status == CRYPTO_CONN_NOT_CONFIRMED) {
if (conn->temp_packet_num_sent < MAX_NUM_SENDPACKET_TRIES) {
continue;
}
connection_kill(c, i, userdata);
}
#if 0
if (conn->status == CRYPTO_CONN_ESTABLISHED) {
// TODO(irungentoo): add a timeout here?
/* do_timeout_here(); */
}
#endif /* 0 */
}
}
/** return the optimal interval in ms for running do_net_crypto. */
uint32_t crypto_run_interval(const Net_Crypto *c)
{
return c->current_sleep_time;
}
/** Main loop. */
void do_net_crypto(Net_Crypto *c, void *userdata)
{
kill_timedout(c, userdata);
do_tcp(c, userdata);
send_crypto_packets(c);
}
void kill_net_crypto(Net_Crypto *c)
{
if (c == nullptr) {
return;
}
const Memory *mem = c->mem;
for (uint32_t i = 0; i < c->crypto_connections_length; ++i) {
crypto_kill(c, i);
}
pthread_mutex_destroy(&c->tcp_mutex);
pthread_mutex_destroy(&c->connections_mutex);
kill_tcp_connections(c->tcp_c);
bs_list_free(&c->ip_port_list);
networking_registerhandler(dht_get_net(c->dht), NET_PACKET_COOKIE_REQUEST, nullptr, nullptr);
networking_registerhandler(dht_get_net(c->dht), NET_PACKET_COOKIE_RESPONSE, nullptr, nullptr);
networking_registerhandler(dht_get_net(c->dht), NET_PACKET_CRYPTO_HS, nullptr, nullptr);
networking_registerhandler(dht_get_net(c->dht), NET_PACKET_CRYPTO_DATA, nullptr, nullptr);
crypto_memzero(c, sizeof(Net_Crypto));
mem_delete(mem, c);
}
const Net_Profile *nc_get_tcp_client_net_profile(const Net_Crypto *c)
{
if (c == nullptr) {
return nullptr;
}
const TCP_Connections *tcp_c = nc_get_tcp_c(c);
if (tcp_c == nullptr) {
return nullptr;
}
return tcp_connection_get_client_net_profile(tcp_c);
}