tomato/toxcore/crypto_core.c
Green Sky 3b6bb15e86 Squashed 'external/toxcore/c-toxcore/' changes from 11ab1d2a723..d9b8fa6098d
d9b8fa6098d fix: Fake broadcast address for 127.x.x.x
aa649165a57 chore: Add code for future netprof TCP testing
9e5693de5ac chore: add to_string functions for netprof enums
52d915e6a90 cleanup: Heap allocate network profile objects
80fabd4a729 feat: Implement Tox network profiler
05abe083cb6 cleanup: Some random cleanups, mostly related to mem.
5cca24513b8 cleanup: Check that onion IP/Port packing worked.
e092ecd1244 cleanup: Use tox memory allocator in some more places.
3cfe41c7587 fix: Avoid `memcpy`-ing structs into onion ping id data.
e32ac001938 fix: Add more information on why the frame was not sent.
ab887003687 fix: Allow TCP connections to fail `connect` calls.
7603170e663 refactor: Use tox memory in group connection allocations.
5bd8a85eb89 cleanup: Align internal logger with external on type of source line.
e9bf524d9e1 cleanup: Add missing `#include` to sort_test.cc.
d10c966b998 feat: Add `to_string` functions for toxencryptsave errors.
7bfd0dc8003 docs: Update the docs for group join functions
380dde9f2ae test: Add more logging to TCP connection constructor.
0f12f384c8c cleanup: Reduce stack frame sizes to below 4096 bytes.
bc43cec0626 chore: Happy new year!
fbe78f1702e cleanup: Add a `TOX_HIDE_DEPRECATED` check to hide deprecated symbols.
44d9da07e77 refactor: Use tox memory for group moderation/pack allocations.
7f26d520168 refactor: Use tox memory in group chats allocations.
2f62f3d0e77 refactor: Use tox Memory for group allocations.
8a968162041 chore: Add dispatch/events headers to bazel export.
2bbfb35abf6 docs: Output the error code string instead of int. in toxav logging
d55d0e4eaef cleanup: Remove redundant code for checking if group exists
2a6dc643338 chore: Upgrade dependencies for websockify.
fc0650601c1 fix: Allow peers to reconnect to group chats using a password

git-subtree-dir: external/toxcore/c-toxcore
git-subtree-split: d9b8fa6098de6c074038b6664d2572627540b148
2025-01-18 15:53:06 +01:00

536 lines
18 KiB
C

/* SPDX-License-Identifier: GPL-3.0-or-later
* Copyright © 2016-2025 The TokTok team.
* Copyright © 2013 Tox project.
*/
#include "crypto_core.h"
#include <assert.h>
#include <string.h>
#include <sodium.h>
#include "attributes.h"
#include "ccompat.h"
#include "mem.h"
#include "util.h"
static_assert(CRYPTO_PUBLIC_KEY_SIZE == crypto_box_PUBLICKEYBYTES,
"CRYPTO_PUBLIC_KEY_SIZE should be equal to crypto_box_PUBLICKEYBYTES");
static_assert(CRYPTO_SECRET_KEY_SIZE == crypto_box_SECRETKEYBYTES,
"CRYPTO_SECRET_KEY_SIZE should be equal to crypto_box_SECRETKEYBYTES");
static_assert(CRYPTO_SHARED_KEY_SIZE == crypto_box_BEFORENMBYTES,
"CRYPTO_SHARED_KEY_SIZE should be equal to crypto_box_BEFORENMBYTES");
static_assert(CRYPTO_SYMMETRIC_KEY_SIZE == crypto_box_BEFORENMBYTES,
"CRYPTO_SYMMETRIC_KEY_SIZE should be equal to crypto_box_BEFORENMBYTES");
static_assert(CRYPTO_MAC_SIZE == crypto_box_MACBYTES,
"CRYPTO_MAC_SIZE should be equal to crypto_box_MACBYTES");
static_assert(CRYPTO_NONCE_SIZE == crypto_box_NONCEBYTES,
"CRYPTO_NONCE_SIZE should be equal to crypto_box_NONCEBYTES");
static_assert(CRYPTO_HMAC_SIZE == crypto_auth_BYTES,
"CRYPTO_HMAC_SIZE should be equal to crypto_auth_BYTES");
static_assert(CRYPTO_HMAC_KEY_SIZE == crypto_auth_KEYBYTES,
"CRYPTO_HMAC_KEY_SIZE should be equal to crypto_auth_KEYBYTES");
static_assert(CRYPTO_SHA256_SIZE == crypto_hash_sha256_BYTES,
"CRYPTO_SHA256_SIZE should be equal to crypto_hash_sha256_BYTES");
static_assert(CRYPTO_SHA512_SIZE == crypto_hash_sha512_BYTES,
"CRYPTO_SHA512_SIZE should be equal to crypto_hash_sha512_BYTES");
static_assert(CRYPTO_PUBLIC_KEY_SIZE == 32,
"CRYPTO_PUBLIC_KEY_SIZE is required to be 32 bytes for pk_equal to work");
static_assert(CRYPTO_SIGNATURE_SIZE == crypto_sign_BYTES,
"CRYPTO_SIGNATURE_SIZE should be equal to crypto_sign_BYTES");
static_assert(CRYPTO_SIGN_PUBLIC_KEY_SIZE == crypto_sign_PUBLICKEYBYTES,
"CRYPTO_SIGN_PUBLIC_KEY_SIZE should be equal to crypto_sign_PUBLICKEYBYTES");
static_assert(CRYPTO_SIGN_SECRET_KEY_SIZE == crypto_sign_SECRETKEYBYTES,
"CRYPTO_SIGN_SECRET_KEY_SIZE should be equal to crypto_sign_SECRETKEYBYTES");
bool create_extended_keypair(Extended_Public_Key *pk, Extended_Secret_Key *sk, const Random *rng)
{
/* create signature key pair */
uint8_t seed[crypto_sign_SEEDBYTES];
random_bytes(rng, seed, crypto_sign_SEEDBYTES);
crypto_sign_seed_keypair(pk->sig, sk->sig, seed);
crypto_memzero(seed, crypto_sign_SEEDBYTES);
/* convert public signature key to public encryption key */
const int res1 = crypto_sign_ed25519_pk_to_curve25519(pk->enc, pk->sig);
/* convert secret signature key to secret encryption key */
const int res2 = crypto_sign_ed25519_sk_to_curve25519(sk->enc, sk->sig);
return res1 == 0 && res2 == 0;
}
const uint8_t *get_enc_key(const Extended_Public_Key *key)
{
return key->enc;
}
const uint8_t *get_sig_pk(const Extended_Public_Key *key)
{
return key->sig;
}
void set_sig_pk(Extended_Public_Key *key, const uint8_t *sig_pk)
{
memcpy(key->sig, sig_pk, SIG_PUBLIC_KEY_SIZE);
}
const uint8_t *get_sig_sk(const Extended_Secret_Key *key)
{
return key->sig;
}
const uint8_t *get_chat_id(const Extended_Public_Key *key)
{
return key->sig;
}
#if !defined(FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION)
non_null()
static uint8_t *crypto_malloc(const Memory *mem, size_t bytes)
{
uint8_t *ptr = (uint8_t *)mem_balloc(mem, bytes);
if (ptr != nullptr) {
crypto_memlock(ptr, bytes);
}
return ptr;
}
non_null(1) nullable(2)
static void crypto_free(const Memory *mem, uint8_t *ptr, size_t bytes)
{
if (ptr != nullptr) {
crypto_memzero(ptr, bytes);
crypto_memunlock(ptr, bytes);
}
mem_delete(mem, ptr);
}
#endif /* !defined(FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION) */
void crypto_memzero(void *data, size_t length)
{
#if defined(FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION)
memzero((uint8_t *)data, length);
#else
sodium_memzero(data, length);
#endif /* FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION */
}
bool crypto_memlock(void *data, size_t length)
{
#if defined(FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION)
return false;
#else
return sodium_mlock(data, length) == 0;
#endif /* FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION */
}
bool crypto_memunlock(void *data, size_t length)
{
#if defined(FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION)
return false;
#else
return sodium_munlock(data, length) == 0;
#endif /* FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION */
}
bool pk_equal(const uint8_t pk1[CRYPTO_PUBLIC_KEY_SIZE], const uint8_t pk2[CRYPTO_PUBLIC_KEY_SIZE])
{
#ifdef FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION
// Hope that this is better for the fuzzer
return memcmp(pk1, pk2, CRYPTO_PUBLIC_KEY_SIZE) == 0;
#else
return crypto_verify_32(pk1, pk2) == 0;
#endif /* FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION */
}
void pk_copy(uint8_t dest[CRYPTO_PUBLIC_KEY_SIZE], const uint8_t src[CRYPTO_PUBLIC_KEY_SIZE])
{
memcpy(dest, src, CRYPTO_PUBLIC_KEY_SIZE);
}
bool crypto_sha512_eq(const uint8_t cksum1[CRYPTO_SHA512_SIZE], const uint8_t cksum2[CRYPTO_SHA512_SIZE])
{
#if defined(FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION)
// Hope that this is better for the fuzzer
return memcmp(cksum1, cksum2, CRYPTO_SHA512_SIZE) == 0;
#else
return crypto_verify_64(cksum1, cksum2) == 0;
#endif /* FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION */
}
bool crypto_sha256_eq(const uint8_t cksum1[CRYPTO_SHA256_SIZE], const uint8_t cksum2[CRYPTO_SHA256_SIZE])
{
#ifdef FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION
// Hope that this is better for the fuzzer
return memcmp(cksum1, cksum2, CRYPTO_SHA256_SIZE) == 0;
#else
return crypto_verify_32(cksum1, cksum2) == 0;
#endif /* FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION */
}
uint8_t random_u08(const Random *rng)
{
uint8_t randnum;
random_bytes(rng, &randnum, 1);
return randnum;
}
uint16_t random_u16(const Random *rng)
{
uint16_t randnum;
random_bytes(rng, (uint8_t *)&randnum, sizeof(randnum));
return randnum;
}
uint32_t random_u32(const Random *rng)
{
uint32_t randnum;
random_bytes(rng, (uint8_t *)&randnum, sizeof(randnum));
return randnum;
}
uint64_t random_u64(const Random *rng)
{
uint64_t randnum;
random_bytes(rng, (uint8_t *)&randnum, sizeof(randnum));
return randnum;
}
uint32_t random_range_u32(const Random *rng, uint32_t upper_bound)
{
return rng->funcs->random_uniform(rng->obj, upper_bound);
}
bool crypto_signature_create(uint8_t signature[CRYPTO_SIGNATURE_SIZE],
const uint8_t *message, uint64_t message_length,
const uint8_t secret_key[SIG_SECRET_KEY_SIZE])
{
return crypto_sign_detached(signature, nullptr, message, message_length, secret_key) == 0;
}
bool crypto_signature_verify(const uint8_t signature[CRYPTO_SIGNATURE_SIZE],
const uint8_t *message, uint64_t message_length,
const uint8_t public_key[SIG_PUBLIC_KEY_SIZE])
{
return crypto_sign_verify_detached(signature, message, message_length, public_key) == 0;
}
bool public_key_valid(const uint8_t public_key[CRYPTO_PUBLIC_KEY_SIZE])
{
/* Last bit of key is always zero. */
return public_key[31] < 128;
}
int32_t encrypt_precompute(const uint8_t public_key[CRYPTO_PUBLIC_KEY_SIZE],
const uint8_t secret_key[CRYPTO_SECRET_KEY_SIZE],
uint8_t shared_key[CRYPTO_SHARED_KEY_SIZE])
{
#ifdef FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION
memcpy(shared_key, public_key, CRYPTO_SHARED_KEY_SIZE);
return 0;
#else
return crypto_box_beforenm(shared_key, public_key, secret_key);
#endif /* FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION */
}
int32_t encrypt_data_symmetric(const Memory *mem,
const uint8_t shared_key[CRYPTO_SHARED_KEY_SIZE],
const uint8_t nonce[CRYPTO_NONCE_SIZE],
const uint8_t *plain, size_t length, uint8_t *encrypted)
{
if (length == 0 || shared_key == nullptr || nonce == nullptr || plain == nullptr || encrypted == nullptr) {
return -1;
}
#ifdef FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION
// Don't encrypt anything.
memcpy(encrypted, plain, length);
// Zero MAC to avoid uninitialized memory reads.
memzero(encrypted + length, crypto_box_MACBYTES);
#else
const size_t size_temp_plain = length + crypto_box_ZEROBYTES;
const size_t size_temp_encrypted = length + crypto_box_MACBYTES + crypto_box_BOXZEROBYTES;
uint8_t *temp_plain = crypto_malloc(mem, size_temp_plain);
uint8_t *temp_encrypted = crypto_malloc(mem, size_temp_encrypted);
if (temp_plain == nullptr || temp_encrypted == nullptr) {
crypto_free(mem, temp_plain, size_temp_plain);
crypto_free(mem, temp_encrypted, size_temp_encrypted);
return -1;
}
// crypto_box_afternm requires the entire range of the output array be
// initialised with something. It doesn't matter what it's initialised with,
// so we'll pick 0x00.
memzero(temp_encrypted, size_temp_encrypted);
memzero(temp_plain, crypto_box_ZEROBYTES);
// Pad the message with 32 0 bytes.
memcpy(temp_plain + crypto_box_ZEROBYTES, plain, length);
if (crypto_box_afternm(temp_encrypted, temp_plain, length + crypto_box_ZEROBYTES, nonce,
shared_key) != 0) {
crypto_free(mem, temp_plain, size_temp_plain);
crypto_free(mem, temp_encrypted, size_temp_encrypted);
return -1;
}
// Unpad the encrypted message.
memcpy(encrypted, temp_encrypted + crypto_box_BOXZEROBYTES, length + crypto_box_MACBYTES);
crypto_free(mem, temp_plain, size_temp_plain);
crypto_free(mem, temp_encrypted, size_temp_encrypted);
#endif /* FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION */
assert(length < INT32_MAX - crypto_box_MACBYTES);
return (int32_t)(length + crypto_box_MACBYTES);
}
int32_t decrypt_data_symmetric(const Memory *mem,
const uint8_t shared_key[CRYPTO_SHARED_KEY_SIZE],
const uint8_t nonce[CRYPTO_NONCE_SIZE],
const uint8_t *encrypted, size_t length, uint8_t *plain)
{
if (length <= crypto_box_BOXZEROBYTES || shared_key == nullptr || nonce == nullptr || encrypted == nullptr
|| plain == nullptr) {
return -1;
}
#ifdef FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION
assert(length >= crypto_box_MACBYTES);
memcpy(plain, encrypted, length - crypto_box_MACBYTES); // Don't encrypt anything
#else
const size_t size_temp_plain = length + crypto_box_ZEROBYTES;
const size_t size_temp_encrypted = length + crypto_box_BOXZEROBYTES;
uint8_t *temp_plain = crypto_malloc(mem, size_temp_plain);
uint8_t *temp_encrypted = crypto_malloc(mem, size_temp_encrypted);
if (temp_plain == nullptr || temp_encrypted == nullptr) {
crypto_free(mem, temp_plain, size_temp_plain);
crypto_free(mem, temp_encrypted, size_temp_encrypted);
return -1;
}
// crypto_box_open_afternm requires the entire range of the output array be
// initialised with something. It doesn't matter what it's initialised with,
// so we'll pick 0x00.
memzero(temp_plain, size_temp_plain);
memzero(temp_encrypted, crypto_box_BOXZEROBYTES);
// Pad the message with 16 0 bytes.
memcpy(temp_encrypted + crypto_box_BOXZEROBYTES, encrypted, length);
if (crypto_box_open_afternm(temp_plain, temp_encrypted, length + crypto_box_BOXZEROBYTES, nonce,
shared_key) != 0) {
crypto_free(mem, temp_plain, size_temp_plain);
crypto_free(mem, temp_encrypted, size_temp_encrypted);
return -1;
}
memcpy(plain, temp_plain + crypto_box_ZEROBYTES, length - crypto_box_MACBYTES);
crypto_free(mem, temp_plain, size_temp_plain);
crypto_free(mem, temp_encrypted, size_temp_encrypted);
#endif /* FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION */
assert(length > crypto_box_MACBYTES);
assert(length < INT32_MAX);
return (int32_t)(length - crypto_box_MACBYTES);
}
int32_t encrypt_data(const Memory *mem,
const uint8_t public_key[CRYPTO_PUBLIC_KEY_SIZE],
const uint8_t secret_key[CRYPTO_SECRET_KEY_SIZE],
const uint8_t nonce[CRYPTO_NONCE_SIZE],
const uint8_t *plain, size_t length, uint8_t *encrypted)
{
if (public_key == nullptr || secret_key == nullptr) {
return -1;
}
uint8_t k[crypto_box_BEFORENMBYTES];
encrypt_precompute(public_key, secret_key, k);
const int ret = encrypt_data_symmetric(mem, k, nonce, plain, length, encrypted);
crypto_memzero(k, sizeof(k));
return ret;
}
int32_t decrypt_data(const Memory *mem,
const uint8_t public_key[CRYPTO_PUBLIC_KEY_SIZE],
const uint8_t secret_key[CRYPTO_SECRET_KEY_SIZE],
const uint8_t nonce[CRYPTO_NONCE_SIZE],
const uint8_t *encrypted, size_t length, uint8_t *plain)
{
if (public_key == nullptr || secret_key == nullptr) {
return -1;
}
uint8_t k[crypto_box_BEFORENMBYTES];
encrypt_precompute(public_key, secret_key, k);
const int ret = decrypt_data_symmetric(mem, k, nonce, encrypted, length, plain);
crypto_memzero(k, sizeof(k));
return ret;
}
void increment_nonce(uint8_t nonce[CRYPTO_NONCE_SIZE])
{
/* TODO(irungentoo): use `increment_nonce_number(nonce, 1)` or
* sodium_increment (change to little endian).
*
* NOTE don't use breaks inside this loop.
* In particular, make sure, as far as possible,
* that loop bounds and their potential underflow or overflow
* are independent of user-controlled input (you may have heard of the Heartbleed bug).
*/
uint_fast16_t carry = 1U;
for (uint32_t i = crypto_box_NONCEBYTES; i != 0; --i) {
carry += (uint_fast16_t)nonce[i - 1];
nonce[i - 1] = (uint8_t)carry;
carry >>= 8;
}
}
void increment_nonce_number(uint8_t nonce[CRYPTO_NONCE_SIZE], uint32_t increment)
{
/* NOTE don't use breaks inside this loop
* In particular, make sure, as far as possible,
* that loop bounds and their potential underflow or overflow
* are independent of user-controlled input (you may have heard of the Heartbleed bug).
*/
uint8_t num_as_nonce[crypto_box_NONCEBYTES] = {0};
num_as_nonce[crypto_box_NONCEBYTES - 4] = increment >> 24;
num_as_nonce[crypto_box_NONCEBYTES - 3] = increment >> 16;
num_as_nonce[crypto_box_NONCEBYTES - 2] = increment >> 8;
num_as_nonce[crypto_box_NONCEBYTES - 1] = increment;
uint_fast16_t carry = 0U;
for (uint32_t i = crypto_box_NONCEBYTES; i != 0; --i) {
carry += (uint_fast16_t)nonce[i - 1] + (uint_fast16_t)num_as_nonce[i - 1];
nonce[i - 1] = (uint8_t)carry;
carry >>= 8;
}
}
void random_nonce(const Random *rng, uint8_t nonce[CRYPTO_NONCE_SIZE])
{
random_bytes(rng, nonce, crypto_box_NONCEBYTES);
}
void new_symmetric_key(const Random *rng, uint8_t key[CRYPTO_SYMMETRIC_KEY_SIZE])
{
random_bytes(rng, key, CRYPTO_SYMMETRIC_KEY_SIZE);
}
int32_t crypto_new_keypair(const Random *rng,
uint8_t public_key[CRYPTO_PUBLIC_KEY_SIZE],
uint8_t secret_key[CRYPTO_SECRET_KEY_SIZE])
{
random_bytes(rng, secret_key, CRYPTO_SECRET_KEY_SIZE);
memzero(public_key, CRYPTO_PUBLIC_KEY_SIZE); // Make MSAN happy
crypto_derive_public_key(public_key, secret_key);
return 0;
}
void crypto_derive_public_key(uint8_t public_key[CRYPTO_PUBLIC_KEY_SIZE],
const uint8_t secret_key[CRYPTO_SECRET_KEY_SIZE])
{
crypto_scalarmult_curve25519_base(public_key, secret_key);
}
void new_hmac_key(const Random *rng, uint8_t key[CRYPTO_HMAC_KEY_SIZE])
{
random_bytes(rng, key, CRYPTO_HMAC_KEY_SIZE);
}
void crypto_hmac(uint8_t auth[CRYPTO_HMAC_SIZE], const uint8_t key[CRYPTO_HMAC_KEY_SIZE],
const uint8_t *data, size_t length)
{
#ifdef FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION
memcpy(auth, key, 16);
memcpy(auth + 16, data, length < 16 ? length : 16);
#else
crypto_auth(auth, data, length, key);
#endif /* FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION */
}
bool crypto_hmac_verify(const uint8_t auth[CRYPTO_HMAC_SIZE], const uint8_t key[CRYPTO_HMAC_KEY_SIZE],
const uint8_t *data, size_t length)
{
#ifdef FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION
return memcmp(auth, key, 16) == 0 && memcmp(auth + 16, data, length < 16 ? length : 16) == 0;
#else
return crypto_auth_verify(auth, data, length, key) == 0;
#endif /* FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION */
}
void crypto_sha256(uint8_t hash[CRYPTO_SHA256_SIZE], const uint8_t *data, size_t length)
{
#ifdef FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION
memzero(hash, CRYPTO_SHA256_SIZE);
memcpy(hash, data, length < CRYPTO_SHA256_SIZE ? length : CRYPTO_SHA256_SIZE);
#else
crypto_hash_sha256(hash, data, length);
#endif /* FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION */
}
void crypto_sha512(uint8_t hash[CRYPTO_SHA512_SIZE], const uint8_t *data, size_t length)
{
#ifdef FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION
memzero(hash, CRYPTO_SHA512_SIZE);
memcpy(hash, data, length < CRYPTO_SHA512_SIZE ? length : CRYPTO_SHA512_SIZE);
#else
crypto_hash_sha512(hash, data, length);
#endif /* FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION */
}
non_null()
static void sys_random_bytes(void *obj, uint8_t *bytes, size_t length)
{
randombytes(bytes, length);
}
non_null()
static uint32_t sys_random_uniform(void *obj, uint32_t upper_bound)
{
return randombytes_uniform(upper_bound);
}
static const Random_Funcs os_random_funcs = {
sys_random_bytes,
sys_random_uniform,
};
static const Random os_random_obj = {&os_random_funcs};
const Random *os_random(void)
{
#ifdef FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION
if ((true)) {
return nullptr;
}
#endif /* FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION */
// It is safe to call this function more than once and from different
// threads -- subsequent calls won't have any effects.
if (sodium_init() == -1) {
return nullptr;
}
return &os_random_obj;
}
void random_bytes(const Random *rng, uint8_t *bytes, size_t length)
{
rng->funcs->random_bytes(rng->obj, bytes, length);
}