tomato/toxcore/network.c
Green Sky 3b6bb15e86 Squashed 'external/toxcore/c-toxcore/' changes from 11ab1d2a723..d9b8fa6098d
d9b8fa6098d fix: Fake broadcast address for 127.x.x.x
aa649165a57 chore: Add code for future netprof TCP testing
9e5693de5ac chore: add to_string functions for netprof enums
52d915e6a90 cleanup: Heap allocate network profile objects
80fabd4a729 feat: Implement Tox network profiler
05abe083cb6 cleanup: Some random cleanups, mostly related to mem.
5cca24513b8 cleanup: Check that onion IP/Port packing worked.
e092ecd1244 cleanup: Use tox memory allocator in some more places.
3cfe41c7587 fix: Avoid `memcpy`-ing structs into onion ping id data.
e32ac001938 fix: Add more information on why the frame was not sent.
ab887003687 fix: Allow TCP connections to fail `connect` calls.
7603170e663 refactor: Use tox memory in group connection allocations.
5bd8a85eb89 cleanup: Align internal logger with external on type of source line.
e9bf524d9e1 cleanup: Add missing `#include` to sort_test.cc.
d10c966b998 feat: Add `to_string` functions for toxencryptsave errors.
7bfd0dc8003 docs: Update the docs for group join functions
380dde9f2ae test: Add more logging to TCP connection constructor.
0f12f384c8c cleanup: Reduce stack frame sizes to below 4096 bytes.
bc43cec0626 chore: Happy new year!
fbe78f1702e cleanup: Add a `TOX_HIDE_DEPRECATED` check to hide deprecated symbols.
44d9da07e77 refactor: Use tox memory for group moderation/pack allocations.
7f26d520168 refactor: Use tox memory in group chats allocations.
2f62f3d0e77 refactor: Use tox Memory for group allocations.
8a968162041 chore: Add dispatch/events headers to bazel export.
2bbfb35abf6 docs: Output the error code string instead of int. in toxav logging
d55d0e4eaef cleanup: Remove redundant code for checking if group exists
2a6dc643338 chore: Upgrade dependencies for websockify.
fc0650601c1 fix: Allow peers to reconnect to group chats using a password

git-subtree-dir: external/toxcore/c-toxcore
git-subtree-split: d9b8fa6098de6c074038b6664d2572627540b148
2025-01-18 15:53:06 +01:00

2448 lines
65 KiB
C

/* SPDX-License-Identifier: GPL-3.0-or-later
* Copyright © 2016-2025 The TokTok team.
* Copyright © 2013 Tox project.
*/
/**
* Functions for the core networking.
*/
#ifdef __APPLE__
#define _DARWIN_C_SOURCE
#endif /* __APPLE__ */
// For Solaris.
#ifdef __sun
#define __EXTENSIONS__ 1
#endif /* __sun */
// For Linux (and some BSDs).
#ifndef _XOPEN_SOURCE
#define _XOPEN_SOURCE 700
#endif /* _XOPEN_SOURCE */
#if defined(_WIN32) && defined(_WIN32_WINNT) && defined(_WIN32_WINNT_WINXP) && _WIN32_WINNT >= _WIN32_WINNT_WINXP
#undef _WIN32_WINNT
#define _WIN32_WINNT 0x501
#endif /* defined(_WIN32) && defined(_WIN32_WINNT) && defined(_WIN32_WINNT_WINXP) && _WIN32_WINNT >= _WIN32_WINNT_WINXP */
#if !defined(OS_WIN32) && (defined(_WIN32) || defined(__WIN32__) || defined(WIN32))
#define OS_WIN32
#endif /* !defined(OS_WIN32) && (defined(_WIN32) || defined(__WIN32__) || defined(WIN32)) */
#if defined(OS_WIN32) && !defined(WINVER)
// Windows XP
#define WINVER 0x0501
#endif /* defined(OS_WIN32) && !defined(WINVER) */
#include "network.h"
#ifdef OS_WIN32 // Put win32 includes here
// The mingw32/64 Windows library warns about including winsock2.h after
// windows.h even though with the above it's a valid thing to do. So, to make
// mingw32 headers happy, we include winsock2.h first.
#include <winsock2.h>
// Comment line here to avoid reordering by source code formatters.
#include <windows.h>
#include <ws2tcpip.h>
#endif /* OS_WIN32 */
#ifdef __APPLE__
#include <mach/clock.h>
#include <mach/mach.h>
#endif /* __APPLE__ */
#if !defined(OS_WIN32)
#include <arpa/inet.h>
#include <errno.h>
#include <fcntl.h>
#include <netdb.h>
#include <netinet/in.h>
#include <sys/ioctl.h>
#include <sys/socket.h>
#include <sys/time.h>
#include <sys/types.h>
#include <unistd.h>
#ifdef __sun
#include <stropts.h>
#include <sys/filio.h>
#endif /* __sun */
#else
#ifndef IPV6_V6ONLY
#define IPV6_V6ONLY 27
#endif /* IPV6_V6ONLY */
#endif /* !defined(OS_WIN32) */
#include <assert.h>
#include <limits.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "attributes.h"
#include "bin_pack.h"
#include "ccompat.h"
#include "logger.h"
#include "mem.h"
#include "net_profile.h"
#include "util.h"
// Disable MSG_NOSIGNAL on systems not supporting it, e.g. Windows, FreeBSD
#if !defined(MSG_NOSIGNAL)
#define MSG_NOSIGNAL 0
#endif /* !defined(MSG_NOSIGNAL) */
#ifndef IPV6_ADD_MEMBERSHIP
#ifdef IPV6_JOIN_GROUP
#define IPV6_ADD_MEMBERSHIP IPV6_JOIN_GROUP
#endif /* IPV6_JOIN_GROUP */
#endif /* IPV6_ADD_MEMBERSHIP */
static_assert(sizeof(IP4) == SIZE_IP4, "IP4 size must be 4");
// TODO(iphydf): Stop relying on this. We memcpy this struct (and IP4 above)
// into packets but really should be serialising it properly.
static_assert(sizeof(IP6) == SIZE_IP6, "IP6 size must be 16");
#if !defined(OS_WIN32)
static bool should_ignore_recv_error(int err)
{
return err == EWOULDBLOCK;
}
static bool should_ignore_connect_error(int err)
{
return err == EWOULDBLOCK || err == EINPROGRESS;
}
non_null()
static const char *inet_ntop4(const struct in_addr *addr, char *buf, size_t bufsize)
{
return inet_ntop(AF_INET, addr, buf, bufsize);
}
non_null()
static const char *inet_ntop6(const struct in6_addr *addr, char *buf, size_t bufsize)
{
return inet_ntop(AF_INET6, addr, buf, bufsize);
}
non_null()
static int inet_pton4(const char *addr_string, struct in_addr *addrbuf)
{
return inet_pton(AF_INET, addr_string, addrbuf);
}
non_null()
static int inet_pton6(const char *addr_string, struct in6_addr *addrbuf)
{
return inet_pton(AF_INET6, addr_string, addrbuf);
}
#else
#ifndef IPV6_V6ONLY
#define IPV6_V6ONLY 27
#endif /* IPV6_V6ONLY */
static bool should_ignore_recv_error(int err)
{
// We ignore WSAECONNRESET as Windows helpfully* sends that error if a
// previously sent UDP packet wasn't delivered.
return err == WSAEWOULDBLOCK || err == WSAECONNRESET;
}
static bool should_ignore_connect_error(int err)
{
return err == WSAEWOULDBLOCK || err == WSAEINPROGRESS;
}
non_null()
static const char *inet_ntop4(const struct in_addr *addr, char *buf, size_t bufsize)
{
struct sockaddr_in saddr = {0};
saddr.sin_family = AF_INET;
saddr.sin_addr = *addr;
DWORD len = bufsize;
if (WSAAddressToString((LPSOCKADDR)&saddr, sizeof(saddr), nullptr, buf, &len)) {
return nullptr;
}
return buf;
}
non_null()
static const char *inet_ntop6(const struct in6_addr *addr, char *buf, size_t bufsize)
{
struct sockaddr_in6 saddr = {0};
saddr.sin6_family = AF_INET6;
saddr.sin6_addr = *addr;
DWORD len = bufsize;
if (WSAAddressToString((LPSOCKADDR)&saddr, sizeof(saddr), nullptr, buf, &len)) {
return nullptr;
}
return buf;
}
non_null()
static int inet_pton4(const char *addrString, struct in_addr *addrbuf)
{
struct sockaddr_in saddr = {0};
INT len = sizeof(saddr);
if (WSAStringToAddress((LPTSTR)addrString, AF_INET, nullptr, (LPSOCKADDR)&saddr, &len)) {
return 0;
}
*addrbuf = saddr.sin_addr;
return 1;
}
non_null()
static int inet_pton6(const char *addrString, struct in6_addr *addrbuf)
{
struct sockaddr_in6 saddr = {0};
INT len = sizeof(saddr);
if (WSAStringToAddress((LPTSTR)addrString, AF_INET6, nullptr, (LPSOCKADDR)&saddr, &len)) {
return 0;
}
*addrbuf = saddr.sin6_addr;
return 1;
}
#endif /* !defined(OS_WIN32) */
static_assert(TOX_INET6_ADDRSTRLEN >= INET6_ADDRSTRLEN,
"TOX_INET6_ADDRSTRLEN should be greater or equal to INET6_ADDRSTRLEN (#INET6_ADDRSTRLEN)");
static_assert(TOX_INET_ADDRSTRLEN >= INET_ADDRSTRLEN,
"TOX_INET_ADDRSTRLEN should be greater or equal to INET_ADDRSTRLEN (#INET_ADDRSTRLEN)");
static int make_proto(int proto)
{
switch (proto) {
case TOX_PROTO_TCP:
return IPPROTO_TCP;
case TOX_PROTO_UDP:
return IPPROTO_UDP;
default:
return proto;
}
}
static int make_socktype(int type)
{
switch (type) {
case TOX_SOCK_STREAM:
return SOCK_STREAM;
case TOX_SOCK_DGRAM:
return SOCK_DGRAM;
default:
return type;
}
}
static int make_family(Family tox_family)
{
switch (tox_family.value) {
case TOX_AF_INET:
return AF_INET;
case TOX_AF_INET6:
return AF_INET6;
case TOX_AF_UNSPEC:
return AF_UNSPEC;
default:
return tox_family.value;
}
}
static const Family family_unspec = {TOX_AF_UNSPEC};
static const Family family_ipv4 = {TOX_AF_INET};
static const Family family_ipv6 = {TOX_AF_INET6};
static const Family family_tcp_server = {TCP_SERVER_FAMILY};
static const Family family_tcp_client = {TCP_CLIENT_FAMILY};
static const Family family_tcp_ipv4 = {TCP_INET};
static const Family family_tcp_ipv6 = {TCP_INET6};
static const Family family_tox_tcp_ipv4 = {TOX_TCP_INET};
static const Family family_tox_tcp_ipv6 = {TOX_TCP_INET6};
static const Family *make_tox_family(int family)
{
switch (family) {
case AF_INET:
return &family_ipv4;
case AF_INET6:
return &family_ipv6;
case AF_UNSPEC:
return &family_unspec;
default:
return nullptr;
}
}
non_null()
static void get_ip4(IP4 *result, const struct in_addr *addr)
{
static_assert(sizeof(result->uint32) == sizeof(addr->s_addr),
"Tox and operating system don't agree on size of IPv4 addresses");
result->uint32 = addr->s_addr;
}
non_null()
static void get_ip6(IP6 *result, const struct in6_addr *addr)
{
static_assert(sizeof(result->uint8) == sizeof(addr->s6_addr),
"Tox and operating system don't agree on size of IPv6 addresses");
memcpy(result->uint8, addr->s6_addr, sizeof(result->uint8));
}
non_null()
static void fill_addr4(const IP4 *ip, struct in_addr *addr)
{
addr->s_addr = ip->uint32;
}
non_null()
static void fill_addr6(const IP6 *ip, struct in6_addr *addr)
{
memcpy(addr->s6_addr, ip->uint8, sizeof(ip->uint8));
}
#if !defined(INADDR_LOOPBACK)
#define INADDR_LOOPBACK 0x7f000001
#endif /* !defined(INADDR_LOOPBACK) */
IP4 get_ip4_broadcast(void)
{
const IP4 ip4_broadcast = { INADDR_BROADCAST };
return ip4_broadcast;
}
IP6 get_ip6_broadcast(void)
{
const IP6 ip6_broadcast = {
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }
};
return ip6_broadcast;
}
IP4 get_ip4_loopback(void)
{
IP4 loopback;
loopback.uint32 = htonl(INADDR_LOOPBACK);
return loopback;
}
IP6 get_ip6_loopback(void)
{
/* in6addr_loopback isn't available everywhere, so we do it ourselves. */
IP6 loopback = {{0}};
loopback.uint8[15] = 1;
return loopback;
}
#ifndef OS_WIN32
#define INVALID_SOCKET (-1)
#endif /* OS_WIN32 */
int net_socket_to_native(Socket sock)
{
return (force int)sock.value;
}
Socket net_socket_from_native(int sock)
{
const Socket res = {(force Socket_Value)sock};
return res;
}
Socket net_invalid_socket(void)
{
return net_socket_from_native(INVALID_SOCKET);
}
Family net_family_unspec(void)
{
return family_unspec;
}
Family net_family_ipv4(void)
{
return family_ipv4;
}
Family net_family_ipv6(void)
{
return family_ipv6;
}
Family net_family_tcp_server(void)
{
return family_tcp_server;
}
Family net_family_tcp_client(void)
{
return family_tcp_client;
}
Family net_family_tcp_ipv4(void)
{
return family_tcp_ipv4;
}
Family net_family_tcp_ipv6(void)
{
return family_tcp_ipv6;
}
Family net_family_tox_tcp_ipv4(void)
{
return family_tox_tcp_ipv4;
}
Family net_family_tox_tcp_ipv6(void)
{
return family_tox_tcp_ipv6;
}
bool net_family_is_unspec(Family family)
{
return family.value == family_unspec.value;
}
bool net_family_is_ipv4(Family family)
{
return family.value == family_ipv4.value;
}
bool net_family_is_ipv6(Family family)
{
return family.value == family_ipv6.value;
}
bool net_family_is_tcp_server(Family family)
{
return family.value == family_tcp_server.value;
}
bool net_family_is_tcp_client(Family family)
{
return family.value == family_tcp_client.value;
}
bool net_family_is_tcp_ipv4(Family family)
{
return family.value == family_tcp_ipv4.value;
}
bool net_family_is_tcp_ipv6(Family family)
{
return family.value == family_tcp_ipv6.value;
}
bool net_family_is_tox_tcp_ipv4(Family family)
{
return family.value == family_tox_tcp_ipv4.value;
}
bool net_family_is_tox_tcp_ipv6(Family family)
{
return family.value == family_tox_tcp_ipv6.value;
}
bool sock_valid(Socket sock)
{
const Socket invalid_socket = net_invalid_socket();
return sock.value != invalid_socket.value;
}
struct Network_Addr {
struct sockaddr_storage addr;
size_t size;
};
non_null()
static int sys_close(void *obj, Socket sock)
{
#if defined(OS_WIN32)
return closesocket(net_socket_to_native(sock));
#else // !OS_WIN32
return close(net_socket_to_native(sock));
#endif /* OS_WIN32 */
}
non_null()
static Socket sys_accept(void *obj, Socket sock)
{
return net_socket_from_native(accept(net_socket_to_native(sock), nullptr, nullptr));
}
non_null()
static int sys_bind(void *obj, Socket sock, const Network_Addr *addr)
{
return bind(net_socket_to_native(sock), (const struct sockaddr *)&addr->addr, addr->size);
}
non_null()
static int sys_listen(void *obj, Socket sock, int backlog)
{
return listen(net_socket_to_native(sock), backlog);
}
non_null()
static int sys_connect(void *obj, Socket sock, const Network_Addr *addr)
{
return connect(net_socket_to_native(sock), (const struct sockaddr *)&addr->addr, addr->size);
}
non_null()
static int sys_recvbuf(void *obj, Socket sock)
{
#ifdef OS_WIN32
u_long count = 0;
ioctlsocket(net_socket_to_native(sock), FIONREAD, &count);
#else
int count = 0;
ioctl(net_socket_to_native(sock), FIONREAD, &count);
#endif /* OS_WIN32 */
return count;
}
non_null()
static int sys_recv(void *obj, Socket sock, uint8_t *buf, size_t len)
{
return recv(net_socket_to_native(sock), (char *)buf, len, MSG_NOSIGNAL);
}
non_null()
static int sys_send(void *obj, Socket sock, const uint8_t *buf, size_t len)
{
return send(net_socket_to_native(sock), (const char *)buf, len, MSG_NOSIGNAL);
}
non_null()
static int sys_sendto(void *obj, Socket sock, const uint8_t *buf, size_t len, const Network_Addr *addr)
{
return sendto(net_socket_to_native(sock), (const char *)buf, len, 0, (const struct sockaddr *)&addr->addr, addr->size);
}
non_null()
static int sys_recvfrom(void *obj, Socket sock, uint8_t *buf, size_t len, Network_Addr *addr)
{
socklen_t size = addr->size;
const int ret = recvfrom(net_socket_to_native(sock), (char *)buf, len, 0, (struct sockaddr *)&addr->addr, &size);
addr->size = size;
return ret;
}
non_null()
static Socket sys_socket(void *obj, int domain, int type, int proto)
{
return net_socket_from_native(socket(domain, type, proto));
}
non_null()
static int sys_socket_nonblock(void *obj, Socket sock, bool nonblock)
{
#ifdef OS_WIN32
u_long mode = nonblock ? 1 : 0;
return ioctlsocket(net_socket_to_native(sock), FIONBIO, &mode);
#else
return fcntl(net_socket_to_native(sock), F_SETFL, O_NONBLOCK, nonblock ? 1 : 0);
#endif /* OS_WIN32 */
}
non_null()
static int sys_getsockopt(void *obj, Socket sock, int level, int optname, void *optval, size_t *optlen)
{
socklen_t len = *optlen;
const int ret = getsockopt(net_socket_to_native(sock), level, optname, (char *)optval, &len);
*optlen = len;
return ret;
}
non_null()
static int sys_setsockopt(void *obj, Socket sock, int level, int optname, const void *optval, size_t optlen)
{
return setsockopt(net_socket_to_native(sock), level, optname, (const char *)optval, optlen);
}
// sets and fills an array of addrs for address
// returns the number of entries in addrs
non_null()
static int sys_getaddrinfo(void *obj, const Memory *mem, const char *address, int family, int sock_type, Network_Addr **addrs)
{
assert(addrs != nullptr);
struct addrinfo hints = {0};
hints.ai_family = family;
// different platforms favour a different field
// hints.ai_socktype = SOCK_DGRAM; // type of socket Tox uses.
hints.ai_socktype = sock_type;
// hints.ai_protocol = protocol;
struct addrinfo *infos = nullptr;
const int rc = getaddrinfo(address, nullptr, &hints, &infos);
// Lookup failed.
if (rc != 0) {
// TODO(Green-Sky): log error
return 0;
}
const int32_t max_count = INT32_MAX / sizeof(Network_Addr);
// we count number of "valid" results
int result = 0;
for (struct addrinfo *walker = infos; walker != nullptr && result < max_count; walker = walker->ai_next) {
if (walker->ai_family == family || family == AF_UNSPEC) {
++result;
}
// do we need to check socktype/protocol?
}
assert(max_count >= result);
Network_Addr *tmp_addrs = (Network_Addr *)mem_valloc(mem, result, sizeof(Network_Addr));
if (tmp_addrs == nullptr) {
freeaddrinfo(infos);
return 0;
}
// now we fill in
int i = 0;
for (struct addrinfo *walker = infos; walker != nullptr; walker = walker->ai_next) {
if (walker->ai_family == family || family == AF_UNSPEC) {
tmp_addrs[i].size = sizeof(struct sockaddr_storage);
tmp_addrs[i].addr.ss_family = walker->ai_family;
// according to spec, storage is supposed to be large enough (and source shows they are)
// storage is 128 bytes
assert(walker->ai_addrlen <= tmp_addrs[i].size);
memcpy(&tmp_addrs[i].addr, walker->ai_addr, walker->ai_addrlen);
tmp_addrs[i].size = walker->ai_addrlen;
++i;
}
}
assert(i == result);
freeaddrinfo(infos);
*addrs = tmp_addrs;
// number of entries in addrs
return result;
}
non_null()
static int sys_freeaddrinfo(void *obj, const Memory *mem, Network_Addr *addrs)
{
if (addrs == nullptr) {
return 0;
}
mem_delete(mem, addrs);
return 0;
}
static const Network_Funcs os_network_funcs = {
sys_close,
sys_accept,
sys_bind,
sys_listen,
sys_connect,
sys_recvbuf,
sys_recv,
sys_recvfrom,
sys_send,
sys_sendto,
sys_socket,
sys_socket_nonblock,
sys_getsockopt,
sys_setsockopt,
sys_getaddrinfo,
sys_freeaddrinfo,
};
static const Network os_network_obj = {&os_network_funcs, nullptr};
const Network *os_network(void)
{
#ifdef FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION
if ((true)) {
return nullptr;
}
#endif /* FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION */
#ifdef OS_WIN32
WSADATA wsaData;
if (WSAStartup(MAKEWORD(2, 2), &wsaData) != NO_ERROR) {
return nullptr;
}
#endif /* OS_WIN32 */
return &os_network_obj;
}
#if 0
/* TODO(iphydf): Call this from functions that use `os_network()`. */
void os_network_deinit(const Network *ns)
{
#ifdef OS_WIN32
WSACleanup();
#endif /* OS_WIN32 */
}
#endif /* 0 */
non_null()
static int net_setsockopt(const Network *ns, Socket sock, int level, int optname, const void *optval, size_t optlen)
{
return ns->funcs->setsockopt(ns->obj, sock, level, optname, optval, optlen);
}
non_null()
static int net_getsockopt(const Network *ns, Socket sock, int level, int optname, void *optval, size_t *optlen)
{
return ns->funcs->getsockopt(ns->obj, sock, level, optname, optval, optlen);
}
non_null()
static uint32_t data_0(uint16_t buflen, const uint8_t *buffer)
{
uint32_t data = 0;
if (buflen > 4) {
net_unpack_u32(buffer + 1, &data);
}
return data;
}
non_null()
static uint32_t data_1(uint16_t buflen, const uint8_t *buffer)
{
uint32_t data = 0;
if (buflen > 8) {
net_unpack_u32(buffer + 5, &data);
}
return data;
}
static const char *net_packet_type_name(Net_Packet_Type type)
{
switch (type) {
case NET_PACKET_PING_REQUEST:
return "PING_REQUEST";
case NET_PACKET_PING_RESPONSE:
return "PING_RESPONSE";
case NET_PACKET_GET_NODES:
return "GET_NODES";
case NET_PACKET_SEND_NODES_IPV6:
return "SEND_NODES_IPV6";
case NET_PACKET_COOKIE_REQUEST:
return "COOKIE_REQUEST";
case NET_PACKET_COOKIE_RESPONSE:
return "COOKIE_RESPONSE";
case NET_PACKET_CRYPTO_HS:
return "CRYPTO_HS";
case NET_PACKET_CRYPTO_DATA:
return "CRYPTO_DATA";
case NET_PACKET_CRYPTO:
return "CRYPTO";
case NET_PACKET_GC_HANDSHAKE:
return "GC_HANDSHAKE";
case NET_PACKET_GC_LOSSLESS:
return "GC_LOSSLESS";
case NET_PACKET_GC_LOSSY:
return "GC_LOSSY";
case NET_PACKET_LAN_DISCOVERY:
return "LAN_DISCOVERY";
case NET_PACKET_ONION_SEND_INITIAL:
return "ONION_SEND_INITIAL";
case NET_PACKET_ONION_SEND_1:
return "ONION_SEND_1";
case NET_PACKET_ONION_SEND_2:
return "ONION_SEND_2";
case NET_PACKET_ANNOUNCE_REQUEST_OLD:
return "ANNOUNCE_REQUEST_OLD";
case NET_PACKET_ANNOUNCE_RESPONSE_OLD:
return "ANNOUNCE_RESPONSE_OLD";
case NET_PACKET_ONION_DATA_REQUEST:
return "ONION_DATA_REQUEST";
case NET_PACKET_ONION_DATA_RESPONSE:
return "ONION_DATA_RESPONSE";
case NET_PACKET_ANNOUNCE_REQUEST:
return "ANNOUNCE_REQUEST";
case NET_PACKET_ANNOUNCE_RESPONSE:
return "ANNOUNCE_RESPONSE";
case NET_PACKET_ONION_RECV_3:
return "ONION_RECV_3";
case NET_PACKET_ONION_RECV_2:
return "ONION_RECV_2";
case NET_PACKET_ONION_RECV_1:
return "ONION_RECV_1";
case NET_PACKET_FORWARD_REQUEST:
return "FORWARD_REQUEST";
case NET_PACKET_FORWARDING:
return "FORWARDING";
case NET_PACKET_FORWARD_REPLY:
return "FORWARD_REPLY";
case NET_PACKET_DATA_SEARCH_REQUEST:
return "DATA_SEARCH_REQUEST";
case NET_PACKET_DATA_SEARCH_RESPONSE:
return "DATA_SEARCH_RESPONSE";
case NET_PACKET_DATA_RETRIEVE_REQUEST:
return "DATA_RETRIEVE_REQUEST";
case NET_PACKET_DATA_RETRIEVE_RESPONSE:
return "DATA_RETRIEVE_RESPONSE";
case NET_PACKET_STORE_ANNOUNCE_REQUEST:
return "STORE_ANNOUNCE_REQUEST";
case NET_PACKET_STORE_ANNOUNCE_RESPONSE:
return "STORE_ANNOUNCE_RESPONSE";
case BOOTSTRAP_INFO_PACKET_ID:
return "BOOTSTRAP_INFO";
case NET_PACKET_MAX:
return "MAX";
}
return "<unknown>";
}
non_null()
static void loglogdata(const Logger *log, const char *message, const uint8_t *buffer,
uint16_t buflen, const IP_Port *ip_port, long res)
{
if (res < 0) { /* Windows doesn't necessarily know `%zu` */
Ip_Ntoa ip_str;
const int error = net_error();
char *strerror = net_new_strerror(error);
LOGGER_TRACE(log, "[%02x = %-21s] %s %3u%c %s:%u (%u: %s) | %08x%08x...%02x",
buffer[0], net_packet_type_name((Net_Packet_Type)buffer[0]), message,
min_u16(buflen, 999), 'E',
net_ip_ntoa(&ip_port->ip, &ip_str), net_ntohs(ip_port->port), error,
strerror, data_0(buflen, buffer), data_1(buflen, buffer), buffer[buflen - 1]);
net_kill_strerror(strerror);
} else if ((res > 0) && ((size_t)res <= buflen)) {
Ip_Ntoa ip_str;
LOGGER_TRACE(log, "[%02x = %-21s] %s %3u%c %s:%u (%u: %s) | %08x%08x...%02x",
buffer[0], net_packet_type_name((Net_Packet_Type)buffer[0]), message,
min_u16(res, 999), (size_t)res < buflen ? '<' : '=',
net_ip_ntoa(&ip_port->ip, &ip_str), net_ntohs(ip_port->port), 0, "OK",
data_0(buflen, buffer), data_1(buflen, buffer), buffer[buflen - 1]);
} else { /* empty or overwrite */
Ip_Ntoa ip_str;
LOGGER_TRACE(log, "[%02x = %-21s] %s %lu%c%u %s:%u (%u: %s) | %08x%08x...%02x",
buffer[0], net_packet_type_name((Net_Packet_Type)buffer[0]), message,
res, res == 0 ? '!' : '>', buflen,
net_ip_ntoa(&ip_port->ip, &ip_str), net_ntohs(ip_port->port), 0, "OK",
data_0(buflen, buffer), data_1(buflen, buffer), buffer[buflen - 1]);
}
}
int net_send(const Network *ns, const Logger *log,
Socket sock, const uint8_t *buf, size_t len, const IP_Port *ip_port, Net_Profile *net_profile)
{
const int res = ns->funcs->send(ns->obj, sock, buf, len);
if (res > 0) {
netprof_record_packet(net_profile, buf[0], res, PACKET_DIRECTION_SEND);
}
loglogdata(log, "T=>", buf, len, ip_port, res);
return res;
}
non_null()
static int net_sendto(
const Network *ns,
Socket sock, const uint8_t *buf, size_t len, const Network_Addr *addr, const IP_Port *ip_port)
{
return ns->funcs->sendto(ns->obj, sock, buf, len, addr);
}
int net_recv(const Network *ns, const Logger *log,
Socket sock, uint8_t *buf, size_t len, const IP_Port *ip_port)
{
const int res = ns->funcs->recv(ns->obj, sock, buf, len);
loglogdata(log, "=>T", buf, len, ip_port, res);
return res;
}
non_null()
static int net_recvfrom(const Network *ns,
Socket sock, uint8_t *buf, size_t len, Network_Addr *addr)
{
return ns->funcs->recvfrom(ns->obj, sock, buf, len, addr);
}
int net_listen(const Network *ns, Socket sock, int backlog)
{
return ns->funcs->listen(ns->obj, sock, backlog);
}
non_null()
static int net_bind(const Network *ns, Socket sock, const Network_Addr *addr)
{
return ns->funcs->bind(ns->obj, sock, addr);
}
Socket net_accept(const Network *ns, Socket sock)
{
return ns->funcs->accept(ns->obj, sock);
}
/** Close the socket. */
void kill_sock(const Network *ns, Socket sock)
{
ns->funcs->close(ns->obj, sock);
}
bool set_socket_nonblock(const Network *ns, Socket sock)
{
return ns->funcs->socket_nonblock(ns->obj, sock, true) == 0;
}
bool set_socket_nosigpipe(const Network *ns, Socket sock)
{
#if defined(__APPLE__)
int set = 1;
return net_setsockopt(ns, sock, SOL_SOCKET, SO_NOSIGPIPE, &set, sizeof(int)) == 0;
#else
return true;
#endif /* __APPLE__ */
}
bool set_socket_reuseaddr(const Network *ns, Socket sock)
{
int set = 1;
#if defined(OS_WIN32)
return net_setsockopt(ns, sock, SOL_SOCKET, SO_EXCLUSIVEADDRUSE, &set, sizeof(set)) == 0;
#else
return net_setsockopt(ns, sock, SOL_SOCKET, SO_REUSEADDR, &set, sizeof(set)) == 0;
#endif /* OS_WIN32 */
}
bool set_socket_dualstack(const Network *ns, Socket sock)
{
int ipv6only = 0;
size_t optsize = sizeof(ipv6only);
const int res = net_getsockopt(ns, sock, IPPROTO_IPV6, IPV6_V6ONLY, &ipv6only, &optsize);
if ((res == 0) && (ipv6only == 0)) {
return true;
}
ipv6only = 0;
return net_setsockopt(ns, sock, IPPROTO_IPV6, IPV6_V6ONLY, &ipv6only, sizeof(ipv6only)) == 0;
}
typedef struct Packet_Handler {
packet_handler_cb *function;
void *object;
} Packet_Handler;
struct Networking_Core {
const Logger *log;
const Memory *mem;
Packet_Handler packethandlers[256];
const Network *ns;
Family family;
uint16_t port;
/* Our UDP socket. */
Socket sock;
Net_Profile *udp_net_profile;
};
Family net_family(const Networking_Core *net)
{
return net->family;
}
uint16_t net_port(const Networking_Core *net)
{
return net->port;
}
/* Basic network functions:
*/
int send_packet(const Networking_Core *net, const IP_Port *ip_port, Packet packet)
{
IP_Port ipp_copy = *ip_port;
if (net_family_is_unspec(ip_port->ip.family)) {
// TODO(iphydf): Make this an error. Currently this fails sometimes when
// called from DHT.c:do_ping_and_sendnode_requests.
return -1;
}
if (net_family_is_unspec(net->family)) { /* Socket not initialized */
// TODO(iphydf): Make this an error. Currently, the onion client calls
// this via DHT getnodes.
LOGGER_WARNING(net->log, "attempted to send message of length %u on uninitialised socket", packet.length);
return -1;
}
/* socket TOX_AF_INET, but target IP NOT: can't send */
if (net_family_is_ipv4(net->family) && !net_family_is_ipv4(ipp_copy.ip.family)) {
// TODO(iphydf): Make this an error. Occasionally we try to send to an
// all-zero ip_port.
Ip_Ntoa ip_str;
LOGGER_WARNING(net->log, "attempted to send message with network family %d (probably IPv6) on IPv4 socket (%s)",
ipp_copy.ip.family.value, net_ip_ntoa(&ipp_copy.ip, &ip_str));
return -1;
}
if (net_family_is_ipv4(ipp_copy.ip.family) && net_family_is_ipv6(net->family)) {
/* must convert to IPV4-in-IPV6 address */
IP6 ip6;
/* there should be a macro for this in a standards compliant
* environment, not found */
ip6.uint32[0] = 0;
ip6.uint32[1] = 0;
ip6.uint32[2] = net_htonl(0xFFFF);
ip6.uint32[3] = ipp_copy.ip.ip.v4.uint32;
ipp_copy.ip.family = net_family_ipv6();
ipp_copy.ip.ip.v6 = ip6;
}
Network_Addr addr;
if (net_family_is_ipv4(ipp_copy.ip.family)) {
struct sockaddr_in *const addr4 = (struct sockaddr_in *)&addr.addr;
addr.size = sizeof(struct sockaddr_in);
addr4->sin_family = AF_INET;
addr4->sin_port = ipp_copy.port;
fill_addr4(&ipp_copy.ip.ip.v4, &addr4->sin_addr);
} else if (net_family_is_ipv6(ipp_copy.ip.family)) {
struct sockaddr_in6 *const addr6 = (struct sockaddr_in6 *)&addr.addr;
addr.size = sizeof(struct sockaddr_in6);
addr6->sin6_family = AF_INET6;
addr6->sin6_port = ipp_copy.port;
fill_addr6(&ipp_copy.ip.ip.v6, &addr6->sin6_addr);
addr6->sin6_flowinfo = 0;
addr6->sin6_scope_id = 0;
} else {
LOGGER_ERROR(net->log, "unknown address type: %d", ipp_copy.ip.family.value);
return -1;
}
const long res = net_sendto(net->ns, net->sock, packet.data, packet.length, &addr, &ipp_copy);
loglogdata(net->log, "O=>", packet.data, packet.length, ip_port, res);
assert(res <= INT_MAX);
if (res == packet.length && packet.data != nullptr) {
netprof_record_packet(net->udp_net_profile, packet.data[0], packet.length, PACKET_DIRECTION_SEND);
}
return (int)res;
}
/**
* Function to send packet(data) of length length to ip_port.
*
* @deprecated Use send_packet instead.
*/
int sendpacket(const Networking_Core *net, const IP_Port *ip_port, const uint8_t *data, uint16_t length)
{
const Packet packet = {data, length};
return send_packet(net, ip_port, packet);
}
/** @brief Function to receive data
* ip and port of sender is put into ip_port.
* Packet data is put into data.
* Packet length is put into length.
*/
non_null()
static int receivepacket(const Network *ns, const Memory *mem, const Logger *log, Socket sock, IP_Port *ip_port, uint8_t *data, uint32_t *length)
{
memset(ip_port, 0, sizeof(IP_Port));
Network_Addr addr = {{0}};
addr.size = sizeof(addr.addr);
*length = 0;
const int fail_or_len = net_recvfrom(ns, sock, data, MAX_UDP_PACKET_SIZE, &addr);
if (fail_or_len < 0) {
const int error = net_error();
if (!should_ignore_recv_error(error)) {
char *strerror = net_new_strerror(error);
LOGGER_ERROR(log, "unexpected error reading from socket: %u, %s", error, strerror);
net_kill_strerror(strerror);
}
return -1; /* Nothing received. */
}
*length = (uint32_t)fail_or_len;
if (addr.addr.ss_family == AF_INET) {
const struct sockaddr_in *addr_in = (const struct sockaddr_in *)&addr.addr;
const Family *const family = make_tox_family(addr_in->sin_family);
assert(family != nullptr);
if (family == nullptr) {
return -1;
}
ip_port->ip.family = *family;
get_ip4(&ip_port->ip.ip.v4, &addr_in->sin_addr);
ip_port->port = addr_in->sin_port;
} else if (addr.addr.ss_family == AF_INET6) {
const struct sockaddr_in6 *addr_in6 = (const struct sockaddr_in6 *)&addr.addr;
const Family *const family = make_tox_family(addr_in6->sin6_family);
assert(family != nullptr);
if (family == nullptr) {
return -1;
}
ip_port->ip.family = *family;
get_ip6(&ip_port->ip.ip.v6, &addr_in6->sin6_addr);
ip_port->port = addr_in6->sin6_port;
if (ipv6_ipv4_in_v6(&ip_port->ip.ip.v6)) {
ip_port->ip.family = net_family_ipv4();
ip_port->ip.ip.v4.uint32 = ip_port->ip.ip.v6.uint32[3];
}
} else {
return -1;
}
loglogdata(log, "=>O", data, MAX_UDP_PACKET_SIZE, ip_port, *length);
return 0;
}
void networking_registerhandler(Networking_Core *net, uint8_t byte, packet_handler_cb *cb, void *object)
{
net->packethandlers[byte].function = cb;
net->packethandlers[byte].object = object;
}
void networking_poll(const Networking_Core *net, void *userdata)
{
if (net_family_is_unspec(net->family)) {
/* Socket not initialized */
return;
}
IP_Port ip_port;
uint8_t data[MAX_UDP_PACKET_SIZE] = {0};
uint32_t length;
while (receivepacket(net->ns, net->mem, net->log, net->sock, &ip_port, data, &length) != -1) {
if (length < 1) {
continue;
}
netprof_record_packet(net->udp_net_profile, data[0], length, PACKET_DIRECTION_RECV);
const Packet_Handler *const handler = &net->packethandlers[data[0]];
if (handler->function == nullptr) {
// TODO(https://github.com/TokTok/c-toxcore/issues/1115): Make this
// a warning or error again.
LOGGER_DEBUG(net->log, "[%02u] -- Packet has no handler", data[0]);
continue;
}
handler->function(handler->object, &ip_port, data, length, userdata);
}
}
/** @brief Initialize networking.
* Bind to ip and port.
* ip must be in network order EX: 127.0.0.1 = (7F000001).
* port is in host byte order (this means don't worry about it).
*
* @return Networking_Core object if no problems
* @retval NULL if there are problems.
*
* If error is non NULL it is set to 0 if no issues, 1 if socket related error, 2 if other.
*/
Networking_Core *new_networking_ex(
const Logger *log, const Memory *mem, const Network *ns, const IP *ip,
uint16_t port_from, uint16_t port_to, unsigned int *error)
{
/* If both from and to are 0, use default port range
* If one is 0 and the other is non-0, use the non-0 value as only port
* If from > to, swap
*/
if (port_from == 0 && port_to == 0) {
port_from = TOX_PORTRANGE_FROM;
port_to = TOX_PORTRANGE_TO;
} else if (port_from == 0 && port_to != 0) {
port_from = port_to;
} else if (port_from != 0 && port_to == 0) {
port_to = port_from;
} else if (port_from > port_to) {
const uint16_t temp_port = port_from;
port_from = port_to;
port_to = temp_port;
}
if (error != nullptr) {
*error = 2;
}
/* maybe check for invalid IPs like 224+.x.y.z? if there is any IP set ever */
if (!net_family_is_ipv4(ip->family) && !net_family_is_ipv6(ip->family)) {
LOGGER_ERROR(log, "invalid address family: %u", ip->family.value);
return nullptr;
}
Networking_Core *temp = (Networking_Core *)mem_alloc(mem, sizeof(Networking_Core));
if (temp == nullptr) {
return nullptr;
}
Net_Profile *np = netprof_new(log, mem);
if (np == nullptr) {
free(temp);
return nullptr;
}
temp->udp_net_profile = np;
temp->ns = ns;
temp->log = log;
temp->mem = mem;
temp->family = ip->family;
temp->port = 0;
/* Initialize our socket. */
/* add log message what we're creating */
temp->sock = net_socket(ns, temp->family, TOX_SOCK_DGRAM, TOX_PROTO_UDP);
/* Check for socket error. */
if (!sock_valid(temp->sock)) {
const int neterror = net_error();
char *strerror = net_new_strerror(neterror);
LOGGER_ERROR(log, "failed to get a socket?! %d, %s", neterror, strerror);
net_kill_strerror(strerror);
netprof_kill(mem, temp->udp_net_profile);
mem_delete(mem, temp);
if (error != nullptr) {
*error = 1;
}
return nullptr;
}
/* Functions to increase the size of the send and receive UDP buffers.
*/
int n = 1024 * 1024 * 2;
if (net_setsockopt(ns, temp->sock, SOL_SOCKET, SO_RCVBUF, &n, sizeof(n)) != 0) {
LOGGER_WARNING(log, "failed to set socket option %d", SO_RCVBUF);
}
if (net_setsockopt(ns, temp->sock, SOL_SOCKET, SO_SNDBUF, &n, sizeof(n)) != 0) {
LOGGER_WARNING(log, "failed to set socket option %d", SO_SNDBUF);
}
/* Enable broadcast on socket */
int broadcast = 1;
if (net_setsockopt(ns, temp->sock, SOL_SOCKET, SO_BROADCAST, &broadcast, sizeof(broadcast)) != 0) {
LOGGER_ERROR(log, "failed to set socket option %d", SO_BROADCAST);
}
/* iOS UDP sockets are weird and apparently can SIGPIPE */
if (!set_socket_nosigpipe(ns, temp->sock)) {
kill_networking(temp);
if (error != nullptr) {
*error = 1;
}
return nullptr;
}
/* Set socket nonblocking. */
if (!set_socket_nonblock(ns, temp->sock)) {
kill_networking(temp);
if (error != nullptr) {
*error = 1;
}
return nullptr;
}
/* Bind our socket to port PORT and the given IP address (usually 0.0.0.0 or ::) */
uint16_t *portptr = nullptr;
Network_Addr addr = {{0}};
if (net_family_is_ipv4(temp->family)) {
struct sockaddr_in *addr4 = (struct sockaddr_in *)&addr.addr;
addr.size = sizeof(struct sockaddr_in);
addr4->sin_family = AF_INET;
addr4->sin_port = 0;
fill_addr4(&ip->ip.v4, &addr4->sin_addr);
portptr = &addr4->sin_port;
} else if (net_family_is_ipv6(temp->family)) {
struct sockaddr_in6 *addr6 = (struct sockaddr_in6 *)&addr.addr;
addr.size = sizeof(struct sockaddr_in6);
addr6->sin6_family = AF_INET6;
addr6->sin6_port = 0;
fill_addr6(&ip->ip.v6, &addr6->sin6_addr);
addr6->sin6_flowinfo = 0;
addr6->sin6_scope_id = 0;
portptr = &addr6->sin6_port;
} else {
mem_delete(mem, temp);
return nullptr;
}
if (net_family_is_ipv6(ip->family)) {
const bool is_dualstack = set_socket_dualstack(ns, temp->sock);
if (is_dualstack) {
LOGGER_TRACE(log, "Dual-stack socket: enabled");
} else {
LOGGER_ERROR(log, "Dual-stack socket failed to enable, won't be able to receive from/send to IPv4 addresses");
}
#ifndef ESP_PLATFORM
/* multicast local nodes */
struct ipv6_mreq mreq = {{{{0}}}};
mreq.ipv6mr_multiaddr.s6_addr[0] = 0xFF;
mreq.ipv6mr_multiaddr.s6_addr[1] = 0x02;
mreq.ipv6mr_multiaddr.s6_addr[15] = 0x01;
mreq.ipv6mr_interface = 0;
const int res = net_setsockopt(ns, temp->sock, IPPROTO_IPV6, IPV6_ADD_MEMBERSHIP, &mreq, sizeof(mreq));
const int neterror = net_error();
char *strerror = net_new_strerror(neterror);
if (res < 0) {
LOGGER_INFO(log, "Failed to activate local multicast membership in FF02::1. (%d, %s)", neterror, strerror);
} else {
LOGGER_TRACE(log, "Local multicast group joined successfully. (%d, %s)", neterror, strerror);
}
net_kill_strerror(strerror);
#endif /* ESP_PLATFORM */
}
/* A hanging program or a different user might block the standard port.
* As long as it isn't a parameter coming from the commandline,
* try a few ports after it, to see if we can find a "free" one.
*
* If we go on without binding, the first sendto() automatically binds to
* a free port chosen by the system (i.e. anything from 1024 to 65535).
*
* Returning NULL after bind fails has both advantages and disadvantages:
* advantage:
* we can rely on getting the port in the range 33445..33450, which
* enables us to tell joe user to open their firewall to a small range
*
* disadvantage:
* some clients might not test return of tox_new(), blindly assuming that
* it worked ok (which it did previously without a successful bind)
*/
uint16_t port_to_try = port_from;
*portptr = net_htons(port_to_try);
for (uint16_t tries = port_from; tries <= port_to; ++tries) {
const int res = net_bind(ns, temp->sock, &addr);
if (res == 0) {
temp->port = *portptr;
Ip_Ntoa ip_str;
LOGGER_DEBUG(log, "Bound successfully to %s:%u", net_ip_ntoa(ip, &ip_str),
net_ntohs(temp->port));
/* errno isn't reset on success, only set on failure, the failed
* binds with parallel clients yield a -EPERM to the outside if
* errno isn't cleared here */
if (tries > 0) {
errno = 0;
}
if (error != nullptr) {
*error = 0;
}
return temp;
}
++port_to_try;
if (port_to_try > port_to) {
port_to_try = port_from;
}
*portptr = net_htons(port_to_try);
}
Ip_Ntoa ip_str;
const int neterror = net_error();
char *strerror = net_new_strerror(neterror);
LOGGER_ERROR(log, "failed to bind socket: %d, %s IP: %s port_from: %u port_to: %u",
neterror, strerror, net_ip_ntoa(ip, &ip_str), port_from, port_to);
net_kill_strerror(strerror);
kill_networking(temp);
if (error != nullptr) {
*error = 1;
}
return nullptr;
}
Networking_Core *new_networking_no_udp(const Logger *log, const Memory *mem, const Network *ns)
{
/* this is the easiest way to completely disable UDP without changing too much code. */
Networking_Core *net = (Networking_Core *)mem_alloc(mem, sizeof(Networking_Core));
if (net == nullptr) {
return nullptr;
}
net->ns = ns;
net->log = log;
net->mem = mem;
return net;
}
/** Function to cleanup networking stuff (doesn't do much right now). */
void kill_networking(Networking_Core *net)
{
if (net == nullptr) {
return;
}
if (!net_family_is_unspec(net->family)) {
/* Socket is initialized, so we close it. */
kill_sock(net->ns, net->sock);
}
netprof_kill(net->mem, net->udp_net_profile);
mem_delete(net->mem, net);
}
bool ip_equal(const IP *a, const IP *b)
{
if (a == nullptr || b == nullptr) {
return false;
}
/* same family */
if (a->family.value == b->family.value) {
if (net_family_is_ipv4(a->family) || net_family_is_tcp_ipv4(a->family)) {
struct in_addr addr_a;
struct in_addr addr_b;
fill_addr4(&a->ip.v4, &addr_a);
fill_addr4(&b->ip.v4, &addr_b);
return addr_a.s_addr == addr_b.s_addr;
}
if (net_family_is_ipv6(a->family) || net_family_is_tcp_ipv6(a->family)) {
return a->ip.v6.uint64[0] == b->ip.v6.uint64[0] &&
a->ip.v6.uint64[1] == b->ip.v6.uint64[1];
}
return false;
}
/* different family: check on the IPv6 one if it is the IPv4 one embedded */
if (net_family_is_ipv4(a->family) && net_family_is_ipv6(b->family)) {
if (ipv6_ipv4_in_v6(&b->ip.v6)) {
struct in_addr addr_a;
fill_addr4(&a->ip.v4, &addr_a);
return addr_a.s_addr == b->ip.v6.uint32[3];
}
} else if (net_family_is_ipv6(a->family) && net_family_is_ipv4(b->family)) {
if (ipv6_ipv4_in_v6(&a->ip.v6)) {
struct in_addr addr_b;
fill_addr4(&b->ip.v4, &addr_b);
return a->ip.v6.uint32[3] == addr_b.s_addr;
}
}
return false;
}
bool ipport_equal(const IP_Port *a, const IP_Port *b)
{
if (a == nullptr || b == nullptr) {
return false;
}
if (a->port == 0 || (a->port != b->port)) {
return false;
}
return ip_equal(&a->ip, &b->ip);
}
non_null()
static int ip4_cmp(const IP4 *a, const IP4 *b)
{
return cmp_uint(a->uint32, b->uint32);
}
non_null()
static int ip6_cmp(const IP6 *a, const IP6 *b)
{
const int res = cmp_uint(a->uint64[0], b->uint64[0]);
if (res != 0) {
return res;
}
return cmp_uint(a->uint64[1], b->uint64[1]);
}
non_null()
static int ip_cmp(const IP *a, const IP *b)
{
const int res = cmp_uint(a->family.value, b->family.value);
if (res != 0) {
return res;
}
switch (a->family.value) {
case TOX_AF_UNSPEC:
return 0;
case TOX_AF_INET:
case TCP_INET:
case TOX_TCP_INET:
return ip4_cmp(&a->ip.v4, &b->ip.v4);
case TOX_AF_INET6:
case TCP_INET6:
case TOX_TCP_INET6:
case TCP_SERVER_FAMILY: // these happen to be ipv6 according to TCP_server.c.
case TCP_CLIENT_FAMILY:
return ip6_cmp(&a->ip.v6, &b->ip.v6);
}
// Invalid, we don't compare any further and consider them equal.
return 0;
}
int ipport_cmp_handler(const void *a, const void *b, size_t size)
{
const IP_Port *ipp_a = (const IP_Port *)a;
const IP_Port *ipp_b = (const IP_Port *)b;
assert(size == sizeof(IP_Port));
const int ip_res = ip_cmp(&ipp_a->ip, &ipp_b->ip);
if (ip_res != 0) {
return ip_res;
}
return cmp_uint(ipp_a->port, ipp_b->port);
}
static const IP empty_ip = {{0}};
/** nulls out ip */
void ip_reset(IP *ip)
{
if (ip == nullptr) {
return;
}
*ip = empty_ip;
}
static const IP_Port empty_ip_port = {{{0}}};
/** nulls out ip_port */
void ipport_reset(IP_Port *ipport)
{
if (ipport == nullptr) {
return;
}
*ipport = empty_ip_port;
}
/** nulls out ip, sets family according to flag */
void ip_init(IP *ip, bool ipv6enabled)
{
if (ip == nullptr) {
return;
}
ip_reset(ip);
ip->family = ipv6enabled ? net_family_ipv6() : net_family_ipv4();
}
/** checks if ip is valid */
bool ip_isset(const IP *ip)
{
if (ip == nullptr) {
return false;
}
return !net_family_is_unspec(ip->family);
}
/** checks if ip is valid */
bool ipport_isset(const IP_Port *ipport)
{
if (ipport == nullptr) {
return false;
}
if (ipport->port == 0) {
return false;
}
return ip_isset(&ipport->ip);
}
/** copies an ip structure (careful about direction) */
void ip_copy(IP *target, const IP *source)
{
if (source == nullptr || target == nullptr) {
return;
}
*target = *source;
}
/** copies an ip_port structure (careful about direction) */
void ipport_copy(IP_Port *target, const IP_Port *source)
{
if (source == nullptr || target == nullptr) {
return;
}
// Write to a temporary object first, so that padding bytes are
// uninitialised and msan can catch mistakes in downstream code.
IP_Port tmp;
tmp.ip.family = source->ip.family;
tmp.ip.ip = source->ip.ip;
tmp.port = source->port;
*target = tmp;
}
/** @brief Packs an IP structure.
*
* It's the caller's responsibility to make sure `is_ipv4` tells the truth. This
* function is an implementation detail of @ref bin_pack_ip_port.
*
* @param is_ipv4 whether this IP is an IP4 or IP6.
*
* @retval true on success.
*/
non_null()
static bool bin_pack_ip(Bin_Pack *bp, const IP *ip, bool is_ipv4)
{
if (is_ipv4) {
return bin_pack_bin_b(bp, ip->ip.v4.uint8, SIZE_IP4);
} else {
return bin_pack_bin_b(bp, ip->ip.v6.uint8, SIZE_IP6);
}
}
/** @brief Packs an IP_Port structure.
*
* @retval true on success.
*/
bool bin_pack_ip_port(Bin_Pack *bp, const Logger *logger, const IP_Port *ip_port)
{
bool is_ipv4;
uint8_t family;
if (net_family_is_ipv4(ip_port->ip.family)) {
// TODO(irungentoo): use functions to convert endianness
is_ipv4 = true;
family = TOX_AF_INET;
} else if (net_family_is_tcp_ipv4(ip_port->ip.family)) {
is_ipv4 = true;
family = TOX_TCP_INET;
} else if (net_family_is_ipv6(ip_port->ip.family)) {
is_ipv4 = false;
family = TOX_AF_INET6;
} else if (net_family_is_tcp_ipv6(ip_port->ip.family)) {
is_ipv4 = false;
family = TOX_TCP_INET6;
} else {
Ip_Ntoa ip_str;
// TODO(iphydf): Find out why we're trying to pack invalid IPs, stop
// doing that, and turn this into an error.
LOGGER_TRACE(logger, "cannot pack invalid IP: %s", net_ip_ntoa(&ip_port->ip, &ip_str));
return false;
}
return bin_pack_u08_b(bp, family)
&& bin_pack_ip(bp, &ip_port->ip, is_ipv4)
&& bin_pack_u16_b(bp, net_ntohs(ip_port->port));
}
non_null()
static bool bin_pack_ip_port_handler(const void *obj, const Logger *logger, Bin_Pack *bp)
{
const IP_Port *ip_port = (const IP_Port *)obj;
return bin_pack_ip_port(bp, logger, ip_port);
}
int pack_ip_port(const Logger *logger, uint8_t *data, uint16_t length, const IP_Port *ip_port)
{
const uint32_t size = bin_pack_obj_size(bin_pack_ip_port_handler, ip_port, logger);
if (size > length) {
return -1;
}
if (!bin_pack_obj(bin_pack_ip_port_handler, ip_port, logger, data, length)) {
return -1;
}
assert(size < INT_MAX);
return (int)size;
}
int unpack_ip_port(IP_Port *ip_port, const uint8_t *data, uint16_t length, bool tcp_enabled)
{
if (data == nullptr) {
return -1;
}
bool is_ipv4;
Family host_family;
if (data[0] == TOX_AF_INET) {
is_ipv4 = true;
host_family = net_family_ipv4();
} else if (data[0] == TOX_TCP_INET) {
if (!tcp_enabled) {
return -1;
}
is_ipv4 = true;
host_family = net_family_tcp_ipv4();
} else if (data[0] == TOX_AF_INET6) {
is_ipv4 = false;
host_family = net_family_ipv6();
} else if (data[0] == TOX_TCP_INET6) {
if (!tcp_enabled) {
return -1;
}
is_ipv4 = false;
host_family = net_family_tcp_ipv6();
} else {
return -1;
}
ipport_reset(ip_port);
if (is_ipv4) {
const uint32_t size = 1 + SIZE_IP4 + sizeof(uint16_t);
if (size > length) {
return -1;
}
ip_port->ip.family = host_family;
memcpy(ip_port->ip.ip.v4.uint8, data + 1, SIZE_IP4);
memcpy(&ip_port->port, data + 1 + SIZE_IP4, sizeof(uint16_t));
return size;
} else {
const uint32_t size = 1 + SIZE_IP6 + sizeof(uint16_t);
if (size > length) {
return -1;
}
ip_port->ip.family = host_family;
memcpy(ip_port->ip.ip.v6.uint8, data + 1, SIZE_IP6);
memcpy(&ip_port->port, data + 1 + SIZE_IP6, sizeof(uint16_t));
return size;
}
}
const char *net_ip_ntoa(const IP *ip, Ip_Ntoa *ip_str)
{
assert(ip_str != nullptr);
ip_str->ip_is_valid = false;
if (ip == nullptr) {
snprintf(ip_str->buf, sizeof(ip_str->buf), "(IP invalid: NULL)");
ip_str->length = (uint16_t)strlen(ip_str->buf);
return ip_str->buf;
}
if (!ip_parse_addr(ip, ip_str->buf, sizeof(ip_str->buf))) {
snprintf(ip_str->buf, sizeof(ip_str->buf), "(IP invalid, family %u)", ip->family.value);
ip_str->length = (uint16_t)strlen(ip_str->buf);
return ip_str->buf;
}
/* brute force protection against lacking termination */
ip_str->buf[sizeof(ip_str->buf) - 1] = '\0';
ip_str->length = (uint16_t)strlen(ip_str->buf);
ip_str->ip_is_valid = true;
return ip_str->buf;
}
bool ip_parse_addr(const IP *ip, char *address, size_t length)
{
if (address == nullptr || ip == nullptr) {
return false;
}
if (net_family_is_ipv4(ip->family)) {
struct in_addr addr;
assert(make_family(ip->family) == AF_INET);
fill_addr4(&ip->ip.v4, &addr);
return inet_ntop4(&addr, address, length) != nullptr;
}
if (net_family_is_ipv6(ip->family)) {
struct in6_addr addr;
assert(make_family(ip->family) == AF_INET6);
fill_addr6(&ip->ip.v6, &addr);
return inet_ntop6(&addr, address, length) != nullptr;
}
return false;
}
bool addr_parse_ip(const char *address, IP *to)
{
if (address == nullptr || to == nullptr) {
return false;
}
struct in_addr addr4;
if (inet_pton4(address, &addr4) == 1) {
to->family = net_family_ipv4();
get_ip4(&to->ip.v4, &addr4);
return true;
}
struct in6_addr addr6;
if (inet_pton6(address, &addr6) == 1) {
to->family = net_family_ipv6();
get_ip6(&to->ip.v6, &addr6);
return true;
}
return false;
}
/** addr_resolve return values */
#define TOX_ADDR_RESOLVE_INET 1
#define TOX_ADDR_RESOLVE_INET6 2
/**
* Uses getaddrinfo to resolve an address into an IP address.
*
* Uses the first IPv4/IPv6 addresses returned by getaddrinfo.
*
* @param address a hostname (or something parseable to an IP address)
* @param to to.family MUST be initialized, either set to a specific IP version
* (TOX_AF_INET/TOX_AF_INET6) or to the unspecified TOX_AF_UNSPEC (0), if both
* IP versions are acceptable
* @param extra can be NULL and is only set in special circumstances, see returns
*
* Returns in `*to` a valid IPAny (v4/v6),
* prefers v6 if `ip.family` was TOX_AF_UNSPEC and both available
* Returns in `*extra` an IPv4 address, if family was TOX_AF_UNSPEC and `*to` is TOX_AF_INET6
*
* @return false on failure, true on success.
*/
non_null(1, 2, 3, 4) nullable(5)
static bool addr_resolve(const Network *ns, const Memory *mem, const char *address, IP *to, IP *extra)
{
#ifdef FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION
if ((true)) {
return false;
}
#endif /* FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION */
if (address == nullptr || to == nullptr) {
return false;
}
const Family tox_family = to->family;
const int family = make_family(tox_family);
Network_Addr *addrs = nullptr;
const int rc = ns->funcs->getaddrinfo(ns->obj, mem, address, family, 0, &addrs);
// Lookup failed / empty.
if (rc <= 0) {
return false;
}
assert(addrs != nullptr);
IP ip4;
ip_init(&ip4, false); // ipv6enabled = false
IP ip6;
ip_init(&ip6, true); // ipv6enabled = true
int result = 0;
bool done = false;
for (int i = 0; i < rc && !done; ++i) {
switch (addrs[i].addr.ss_family) {
case AF_INET: {
if (addrs[i].addr.ss_family == family) { /* AF_INET requested, done */
const struct sockaddr_in *addr = (const struct sockaddr_in *)(const void *)&addrs[i].addr;
get_ip4(&to->ip.v4, &addr->sin_addr);
result = TOX_ADDR_RESOLVE_INET;
done = true;
} else if ((result & TOX_ADDR_RESOLVE_INET) == 0) { /* AF_UNSPEC requested, store away */
const struct sockaddr_in *addr = (const struct sockaddr_in *)(const void *)&addrs[i].addr;
get_ip4(&ip4.ip.v4, &addr->sin_addr);
result |= TOX_ADDR_RESOLVE_INET;
}
break; /* switch */
}
case AF_INET6: {
if (addrs[i].addr.ss_family == family) { /* AF_INET6 requested, done */
if (addrs[i].size == sizeof(struct sockaddr_in6)) {
const struct sockaddr_in6 *addr = (const struct sockaddr_in6 *)(void *)&addrs[i].addr;
get_ip6(&to->ip.v6, &addr->sin6_addr);
result = TOX_ADDR_RESOLVE_INET6;
done = true;
}
} else if ((result & TOX_ADDR_RESOLVE_INET6) == 0) { /* AF_UNSPEC requested, store away */
if (addrs[i].size == sizeof(struct sockaddr_in6)) {
const struct sockaddr_in6 *addr = (const struct sockaddr_in6 *)(void *)&addrs[i].addr;
get_ip6(&ip6.ip.v6, &addr->sin6_addr);
result |= TOX_ADDR_RESOLVE_INET6;
}
}
break; /* switch */
}
}
}
if (family == AF_UNSPEC) {
if ((result & TOX_ADDR_RESOLVE_INET6) != 0) {
ip_copy(to, &ip6);
if ((result & TOX_ADDR_RESOLVE_INET) != 0 && (extra != nullptr)) {
ip_copy(extra, &ip4);
}
} else if ((result & TOX_ADDR_RESOLVE_INET) != 0) {
ip_copy(to, &ip4);
} else {
result = 0;
}
}
ns->funcs->freeaddrinfo(ns->obj, mem, addrs);
return result != 0;
}
bool addr_resolve_or_parse_ip(const Network *ns, const Memory *mem, const char *address, IP *to, IP *extra, bool dns_enabled)
{
if (dns_enabled && addr_resolve(ns, mem, address, to, extra)) {
return true;
}
return addr_parse_ip(address, to);
}
const char *net_err_connect_to_string(Net_Err_Connect err)
{
switch (err) {
case NET_ERR_CONNECT_OK:
return "NET_ERR_CONNECT_OK";
case NET_ERR_CONNECT_INVALID_FAMILY:
return "NET_ERR_CONNECT_INVALID_FAMILY";
case NET_ERR_CONNECT_FAILED:
return "NET_ERR_CONNECT_FAILED";
}
return "<invalid Net_Err_Connect>";
}
bool net_connect(const Network *ns, const Memory *mem, const Logger *log, Socket sock, const IP_Port *ip_port, Net_Err_Connect *err)
{
Network_Addr addr = {{0}};
if (net_family_is_ipv4(ip_port->ip.family)) {
struct sockaddr_in *addr4 = (struct sockaddr_in *)&addr.addr;
addr.size = sizeof(struct sockaddr_in);
addr4->sin_family = AF_INET;
fill_addr4(&ip_port->ip.ip.v4, &addr4->sin_addr);
addr4->sin_port = ip_port->port;
} else if (net_family_is_ipv6(ip_port->ip.family)) {
struct sockaddr_in6 *addr6 = (struct sockaddr_in6 *)&addr.addr;
addr.size = sizeof(struct sockaddr_in6);
addr6->sin6_family = AF_INET6;
fill_addr6(&ip_port->ip.ip.v6, &addr6->sin6_addr);
addr6->sin6_port = ip_port->port;
} else {
Ip_Ntoa ip_str;
LOGGER_ERROR(log, "cannot connect to %s:%d which is neither IPv4 nor IPv6",
net_ip_ntoa(&ip_port->ip, &ip_str), net_ntohs(ip_port->port));
*err = NET_ERR_CONNECT_INVALID_FAMILY;
return false;
}
#ifdef FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION
if ((true)) {
*err = NET_ERR_CONNECT_OK;
return true;
}
#endif /* FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION */
Ip_Ntoa ip_str;
LOGGER_DEBUG(log, "connecting socket %d to %s:%d",
net_socket_to_native(sock), net_ip_ntoa(&ip_port->ip, &ip_str), net_ntohs(ip_port->port));
errno = 0;
if (ns->funcs->connect(ns->obj, sock, &addr) == -1) {
const int error = net_error();
// Non-blocking socket: "Operation in progress" means it's connecting.
if (!should_ignore_connect_error(error)) {
char *net_strerror = net_new_strerror(error);
LOGGER_WARNING(log, "failed to connect to %s:%d: %d (%s)",
net_ip_ntoa(&ip_port->ip, &ip_str), net_ntohs(ip_port->port), error, net_strerror);
net_kill_strerror(net_strerror);
*err = NET_ERR_CONNECT_FAILED;
return false;
}
}
*err = NET_ERR_CONNECT_OK;
return true;
}
int32_t net_getipport(const Network *ns, const Memory *mem, const char *node, IP_Port **res, int tox_type, bool dns_enabled)
{
assert(node != nullptr);
// Try parsing as IP address first.
IP_Port parsed = {{{0}}};
// Initialise to nullptr. In error paths, at least we initialise the out
// parameter.
*res = nullptr;
if (addr_parse_ip(node, &parsed.ip)) {
IP_Port *tmp = (IP_Port *)mem_alloc(mem, sizeof(IP_Port));
if (tmp == nullptr) {
return -1;
}
tmp[0] = parsed;
*res = tmp;
return 1;
}
if (!dns_enabled) {
return -1;
}
#ifdef FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION
if ((true)) {
IP_Port *ip_port = (IP_Port *)mem_alloc(mem, sizeof(IP_Port));
if (ip_port == nullptr) {
abort();
}
ip_port->ip.ip.v4.uint32 = net_htonl(0x7F000003); // 127.0.0.3
ip_port->ip.family = *make_tox_family(AF_INET);
*res = ip_port;
return 1;
}
#endif /* FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION */
int type = make_socktype(tox_type);
// ugly
if (tox_type == -1) {
type = 0;
}
// It's not an IP address, so now we try doing a DNS lookup.
Network_Addr *addrs = nullptr;
const int rc = ns->funcs->getaddrinfo(ns->obj, mem, node, AF_UNSPEC, type, &addrs);
// Lookup failed / empty.
if (rc <= 0) {
return -1;
}
assert(addrs != nullptr);
// Used to avoid calloc parameter overflow
const size_t max_count = min_u64(SIZE_MAX, INT32_MAX) / sizeof(IP_Port);
size_t count = 0;
for (int i = 0; i < rc && count < max_count; ++i) {
if (addrs[i].addr.ss_family != AF_INET && addrs[i].addr.ss_family != AF_INET6) {
continue;
}
++count;
}
assert(count <= max_count);
if (count == 0) {
ns->funcs->freeaddrinfo(ns->obj, mem, addrs);
return 0;
}
IP_Port *ip_port = (IP_Port *)mem_valloc(mem, count, sizeof(IP_Port));
if (ip_port == nullptr) {
ns->funcs->freeaddrinfo(ns->obj, mem, addrs);
*res = nullptr;
return -1;
}
*res = ip_port;
for (int i = 0; i < rc && count < max_count; ++i) {
if (addrs[i].addr.ss_family == AF_INET) {
const struct sockaddr_in *addr = (const struct sockaddr_in *)(const void *)&addrs[i].addr;
ip_port->ip.ip.v4.uint32 = addr->sin_addr.s_addr;
} else if (addrs[i].addr.ss_family == AF_INET6) {
const struct sockaddr_in6 *addr = (const struct sockaddr_in6 *)(const void *)&addrs[i].addr;
memcpy(ip_port->ip.ip.v6.uint8, addr->sin6_addr.s6_addr, sizeof(IP6));
} else {
continue;
}
const Family *const family = make_tox_family(addrs[i].addr.ss_family);
assert(family != nullptr);
if (family == nullptr) {
ns->funcs->freeaddrinfo(ns->obj, mem, addrs);
return -1;
}
ip_port->ip.family = *family;
++ip_port;
}
ns->funcs->freeaddrinfo(ns->obj, mem, addrs);
return count;
}
void net_freeipport(const Memory *mem, IP_Port *ip_ports)
{
mem_delete(mem, ip_ports);
}
bool bind_to_port(const Network *ns, Socket sock, Family family, uint16_t port)
{
Network_Addr addr = {{0}};
if (net_family_is_ipv4(family)) {
struct sockaddr_in *addr4 = (struct sockaddr_in *)&addr.addr;
addr.size = sizeof(struct sockaddr_in);
addr4->sin_family = AF_INET;
addr4->sin_port = net_htons(port);
} else if (net_family_is_ipv6(family)) {
struct sockaddr_in6 *addr6 = (struct sockaddr_in6 *)&addr.addr;
addr.size = sizeof(struct sockaddr_in6);
addr6->sin6_family = AF_INET6;
addr6->sin6_port = net_htons(port);
} else {
return false;
}
return net_bind(ns, sock, &addr) == 0;
}
Socket net_socket(const Network *ns, Family domain, int type, int protocol)
{
const int platform_domain = make_family(domain);
const int platform_type = make_socktype(type);
const int platform_prot = make_proto(protocol);
return ns->funcs->socket(ns->obj, platform_domain, platform_type, platform_prot);
}
uint16_t net_socket_data_recv_buffer(const Network *ns, Socket sock)
{
const int count = ns->funcs->recvbuf(ns->obj, sock);
return (uint16_t)max_s32(0, min_s32(count, UINT16_MAX));
}
uint32_t net_htonl(uint32_t hostlong)
{
return htonl(hostlong);
}
uint16_t net_htons(uint16_t hostshort)
{
return htons(hostshort);
}
uint32_t net_ntohl(uint32_t hostlong)
{
return ntohl(hostlong);
}
uint16_t net_ntohs(uint16_t hostshort)
{
return ntohs(hostshort);
}
size_t net_pack_bool(uint8_t *bytes, bool v)
{
bytes[0] = v ? 1 : 0;
return 1;
}
size_t net_pack_u16(uint8_t *bytes, uint16_t v)
{
bytes[0] = (v >> 8) & 0xff;
bytes[1] = v & 0xff;
return sizeof(v);
}
size_t net_pack_u32(uint8_t *bytes, uint32_t v)
{
uint8_t *p = bytes;
p += net_pack_u16(p, (v >> 16) & 0xffff);
p += net_pack_u16(p, v & 0xffff);
return p - bytes;
}
size_t net_pack_u64(uint8_t *bytes, uint64_t v)
{
uint8_t *p = bytes;
p += net_pack_u32(p, (v >> 32) & 0xffffffff);
p += net_pack_u32(p, v & 0xffffffff);
return p - bytes;
}
size_t net_unpack_bool(const uint8_t *bytes, bool *v)
{
*v = bytes[0] != 0;
return 1;
}
size_t net_unpack_u16(const uint8_t *bytes, uint16_t *v)
{
const uint8_t hi = bytes[0];
const uint8_t lo = bytes[1];
*v = ((uint16_t)hi << 8) | lo;
return sizeof(*v);
}
size_t net_unpack_u32(const uint8_t *bytes, uint32_t *v)
{
const uint8_t *p = bytes;
uint16_t hi;
uint16_t lo;
p += net_unpack_u16(p, &hi);
p += net_unpack_u16(p, &lo);
*v = ((uint32_t)hi << 16) | lo;
return p - bytes;
}
size_t net_unpack_u64(const uint8_t *bytes, uint64_t *v)
{
const uint8_t *p = bytes;
uint32_t hi;
uint32_t lo;
p += net_unpack_u32(p, &hi);
p += net_unpack_u32(p, &lo);
*v = ((uint64_t)hi << 32) | lo;
return p - bytes;
}
bool ipv6_ipv4_in_v6(const IP6 *a)
{
return a->uint64[0] == 0 && a->uint32[2] == net_htonl(0xffff);
}
int net_error(void)
{
#ifdef OS_WIN32
return WSAGetLastError();
#else
return errno;
#endif /* OS_WIN32 */
}
#ifdef OS_WIN32
char *net_new_strerror(int error)
{
char *str = nullptr;
// Windows API is weird. The 5th function arg is of char* type, but we
// have to pass char** so that it could assign new memory block to our
// pointer, so we have to cast our char** to char* for the compilation
// not to fail (otherwise it would fail to find a variant of this function
// accepting char** as the 5th arg) and Windows inside casts it back
// to char** to do the assignment. So no, this cast you see here, although
// it looks weird, is not a mistake.
FormatMessageA(FORMAT_MESSAGE_ALLOCATE_BUFFER | FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_IGNORE_INSERTS, nullptr,
error, 0, (char *)&str, 0, nullptr);
return str;
}
#else
#if defined(_GNU_SOURCE) && defined(__GLIBC__)
non_null()
static const char *net_strerror_r(int error, char *tmp, size_t tmp_size)
{
const char *retstr = strerror_r(error, tmp, tmp_size);
if (errno != 0) {
snprintf(tmp, tmp_size, "error %d (strerror_r failed with errno %d)", error, errno);
}
return retstr;
}
#else
non_null()
static const char *net_strerror_r(int error, char *tmp, size_t tmp_size)
{
const int fmt_error = strerror_r(error, tmp, tmp_size);
if (fmt_error != 0) {
snprintf(tmp, tmp_size, "error %d (strerror_r failed with error %d, errno %d)", error, fmt_error, errno);
}
return tmp;
}
#endif /* GNU */
char *net_new_strerror(int error)
{
char tmp[256];
errno = 0;
const char *retstr = net_strerror_r(error, tmp, sizeof(tmp));
const size_t retstr_len = strlen(retstr);
char *str = (char *)malloc(retstr_len + 1);
if (str == nullptr) {
return nullptr;
}
memcpy(str, retstr, retstr_len + 1);
return str;
}
#endif /* OS_WIN32 */
void net_kill_strerror(char *strerror)
{
#ifdef OS_WIN32
LocalFree((char *)strerror);
#else
free(strerror);
#endif /* OS_WIN32 */
}
const Net_Profile *net_get_net_profile(const Networking_Core *net)
{
if (net == nullptr) {
return nullptr;
}
return net->udp_net_profile;
}