640e6cace fix(toxav): remove extra copy of video frame on encode Tested and works, but there might be alignment issues and other stuff. 6f7f51554 chore(toxav): use realtime deadline for vp8 encoder Technically all this does is choose a quality based on frame duration, which we always set to 1, and as such is always realtime. (In same timebase as pts, which we use as a frame counter...) 5047ae5a2 chore: make the source tarball exhibit the old behavior 14804a4b8 chore: Fix sonar-scan CI action. e2db7d946 cleanup: Exclude lan_discovery test from running on macos, instead of excluding it from the project. 3accade67 chore: Fix CI, disabling some tests that no longer run on CI. ef8d767e6 cleanup: Fix comment formatting errors. 34ec822da cleanup: Fix some clang-19 format warnings. 40b3f0b46 refactor: Use clang's nullability qualifiers instead of attributes. f81e30679 refactor: Use per-parameter nullability annotations. REVERT: 1701691d5 chore(toxav): use realtime deadline for vp8 encoder Technically all this does is choose a quality based on frame duration, which we always set to 1, and as such is always realtime. (In same timebase as pts, which we use as a frame counter...) REVERT: a87505867 fix(toxav): remove extra copy of video frame on encode Tested and works, but there might be alignment issues and other stuff. git-subtree-dir: external/toxcore/c-toxcore git-subtree-split: 640e6cace81b4412c45977b94eb9c41e53c54035
462 lines
16 KiB
C
462 lines
16 KiB
C
/* SPDX-License-Identifier: GPL-3.0-or-later
|
|
* Copyright © 2016-2025 The TokTok team.
|
|
* Copyright © 2013 Tox project.
|
|
*/
|
|
|
|
/** @file
|
|
* @brief Functions for the core crypto.
|
|
*
|
|
* @note This code has to be perfect. We don't mess around with encryption.
|
|
*/
|
|
#ifndef C_TOXCORE_TOXCORE_CRYPTO_CORE_H
|
|
#define C_TOXCORE_TOXCORE_CRYPTO_CORE_H
|
|
|
|
#include <stdbool.h>
|
|
#include <stddef.h>
|
|
#include <stdint.h>
|
|
|
|
#include "attributes.h"
|
|
#include "mem.h"
|
|
|
|
#ifdef __cplusplus
|
|
extern "C" {
|
|
#endif
|
|
|
|
/**
|
|
* @brief The number of bytes in a signature.
|
|
*/
|
|
#define CRYPTO_SIGNATURE_SIZE 64
|
|
|
|
/**
|
|
* @brief The number of bytes in a Tox public key used for signatures.
|
|
*/
|
|
#define CRYPTO_SIGN_PUBLIC_KEY_SIZE 32
|
|
|
|
/**
|
|
* @brief The number of bytes in a Tox secret key used for signatures.
|
|
*/
|
|
#define CRYPTO_SIGN_SECRET_KEY_SIZE 64
|
|
|
|
/**
|
|
* @brief The number of bytes in a Tox public key used for encryption.
|
|
*/
|
|
#define CRYPTO_PUBLIC_KEY_SIZE 32
|
|
|
|
/**
|
|
* @brief The number of bytes in a Tox secret key used for encryption.
|
|
*/
|
|
#define CRYPTO_SECRET_KEY_SIZE 32
|
|
|
|
/**
|
|
* @brief The number of bytes in a shared key computed from public and secret keys.
|
|
*/
|
|
#define CRYPTO_SHARED_KEY_SIZE 32
|
|
|
|
/**
|
|
* @brief The number of bytes in a symmetric key.
|
|
*/
|
|
#define CRYPTO_SYMMETRIC_KEY_SIZE CRYPTO_SHARED_KEY_SIZE
|
|
|
|
/**
|
|
* @brief The number of bytes needed for the MAC (message authentication code) in an
|
|
* encrypted message.
|
|
*/
|
|
#define CRYPTO_MAC_SIZE 16
|
|
|
|
/**
|
|
* @brief The number of bytes in a nonce used for encryption/decryption.
|
|
*/
|
|
#define CRYPTO_NONCE_SIZE 24
|
|
|
|
/**
|
|
* @brief The number of bytes in a SHA256 hash.
|
|
*/
|
|
#define CRYPTO_SHA256_SIZE 32
|
|
|
|
/**
|
|
* @brief The number of bytes in a SHA512 hash.
|
|
*/
|
|
#define CRYPTO_SHA512_SIZE 64
|
|
|
|
/** @brief Fill a byte array with random bytes.
|
|
*
|
|
* This is the key generator callback and as such must be a cryptographically
|
|
* secure pseudo-random number generator (CSPRNG). The security of Tox heavily
|
|
* depends on the security of this RNG.
|
|
*/
|
|
typedef void crypto_random_bytes_cb(void *_Nullable obj, uint8_t *_Nonnull bytes, size_t length);
|
|
|
|
/** @brief Generate a random integer between 0 and @p upper_bound.
|
|
*
|
|
* Should produce a uniform random distribution, but Tox security does not
|
|
* depend on this being correct. In principle, it could even be a non-CSPRNG.
|
|
*/
|
|
typedef uint32_t crypto_random_uniform_cb(void *_Nullable obj, uint32_t upper_bound);
|
|
|
|
/** @brief Virtual function table for Random. */
|
|
typedef struct Random_Funcs {
|
|
crypto_random_bytes_cb *_Nullable random_bytes;
|
|
crypto_random_uniform_cb *_Nullable random_uniform;
|
|
} Random_Funcs;
|
|
|
|
/** @brief Random number generator object.
|
|
*
|
|
* Can be used by test code and fuzzers to make toxcore behave in specific
|
|
* well-defined (non-random) ways. Production code ought to use libsodium's
|
|
* CSPRNG and use `os_random` below.
|
|
*/
|
|
typedef struct Random {
|
|
const Random_Funcs *_Nullable funcs;
|
|
void *_Nullable obj;
|
|
} Random;
|
|
|
|
/** @brief System random number generator.
|
|
*
|
|
* Uses libsodium's CSPRNG (on Linux, `/dev/urandom`).
|
|
*/
|
|
const Random *_Nullable os_random(void);
|
|
|
|
/**
|
|
* @brief The number of bytes in an encryption public key used by DHT group chats.
|
|
*/
|
|
#define ENC_PUBLIC_KEY_SIZE CRYPTO_PUBLIC_KEY_SIZE
|
|
|
|
/**
|
|
* @brief The number of bytes in an encryption secret key used by DHT group chats.
|
|
*/
|
|
#define ENC_SECRET_KEY_SIZE CRYPTO_SECRET_KEY_SIZE
|
|
|
|
/**
|
|
* @brief The number of bytes in a signature public key.
|
|
*/
|
|
#define SIG_PUBLIC_KEY_SIZE CRYPTO_SIGN_PUBLIC_KEY_SIZE
|
|
|
|
/**
|
|
* @brief The number of bytes in a signature secret key.
|
|
*/
|
|
#define SIG_SECRET_KEY_SIZE CRYPTO_SIGN_SECRET_KEY_SIZE
|
|
|
|
/**
|
|
* @brief The number of bytes in a DHT group chat public key identifier.
|
|
*/
|
|
#define CHAT_ID_SIZE SIG_PUBLIC_KEY_SIZE
|
|
|
|
/**
|
|
* @brief The number of bytes in an extended public key used by DHT group chats.
|
|
*/
|
|
#define EXT_PUBLIC_KEY_SIZE (ENC_PUBLIC_KEY_SIZE + SIG_PUBLIC_KEY_SIZE)
|
|
|
|
/**
|
|
* @brief The number of bytes in an extended secret key used by DHT group chats.
|
|
*/
|
|
#define EXT_SECRET_KEY_SIZE (ENC_SECRET_KEY_SIZE + SIG_SECRET_KEY_SIZE)
|
|
|
|
/**
|
|
* @brief The number of bytes in an HMAC authenticator.
|
|
*/
|
|
#define CRYPTO_HMAC_SIZE 32
|
|
|
|
/**
|
|
* @brief The number of bytes in an HMAC secret key.
|
|
*/
|
|
#define CRYPTO_HMAC_KEY_SIZE 32
|
|
|
|
/**
|
|
* @brief A `bzero`-like function which won't be optimised away by the compiler.
|
|
*
|
|
* Some compilers will inline `bzero` or `memset` if they can prove that there
|
|
* will be no reads to the written data. Use this function if you want to be
|
|
* sure the memory is indeed zeroed.
|
|
*/
|
|
void crypto_memzero(void *_Nonnull data, size_t length);
|
|
|
|
/**
|
|
* @brief Compute a SHA256 hash (32 bytes).
|
|
*
|
|
* @param[out] hash The SHA256 hash of @p data will be written to this byte array.
|
|
*/
|
|
void crypto_sha256(uint8_t hash[_Nonnull CRYPTO_SHA256_SIZE], const uint8_t *_Nonnull data, size_t length);
|
|
|
|
/**
|
|
* @brief Compute a SHA512 hash (64 bytes).
|
|
*
|
|
* @param[out] hash The SHA512 hash of @p data will be written to this byte array.
|
|
*/
|
|
void crypto_sha512(uint8_t hash[_Nonnull CRYPTO_SHA512_SIZE], const uint8_t *_Nonnull data, size_t length);
|
|
|
|
/**
|
|
* @brief Compute an HMAC authenticator (32 bytes).
|
|
*
|
|
* @param[out] auth Resulting authenticator.
|
|
* @param key Secret key, as generated by `new_hmac_key()`.
|
|
*/
|
|
void crypto_hmac(uint8_t auth[_Nonnull CRYPTO_HMAC_SIZE], const uint8_t key[_Nonnull CRYPTO_HMAC_KEY_SIZE], const uint8_t *_Nonnull data, size_t length);
|
|
|
|
/**
|
|
* @brief Verify an HMAC authenticator.
|
|
*/
|
|
bool crypto_hmac_verify(const uint8_t auth[_Nonnull CRYPTO_HMAC_SIZE], const uint8_t key[_Nonnull CRYPTO_HMAC_KEY_SIZE], const uint8_t *_Nonnull data, size_t length);
|
|
|
|
/**
|
|
* @brief Compare 2 public keys of length @ref CRYPTO_PUBLIC_KEY_SIZE, not vulnerable to
|
|
* timing attacks.
|
|
*
|
|
* @retval true if both mem locations of length are equal
|
|
* @retval false if they are not
|
|
*/
|
|
bool pk_equal(const uint8_t pk1[_Nonnull CRYPTO_PUBLIC_KEY_SIZE], const uint8_t pk2[_Nonnull CRYPTO_PUBLIC_KEY_SIZE]);
|
|
|
|
/**
|
|
* @brief Copy a public key from `src` to `dest`.
|
|
*/
|
|
void pk_copy(uint8_t dest[_Nonnull CRYPTO_PUBLIC_KEY_SIZE], const uint8_t src[_Nonnull CRYPTO_PUBLIC_KEY_SIZE]);
|
|
|
|
/**
|
|
* @brief Compare 2 SHA512 checksums of length CRYPTO_SHA512_SIZE, not vulnerable to
|
|
* timing attacks.
|
|
*
|
|
* @return true if both mem locations of length are equal, false if they are not.
|
|
*/
|
|
bool crypto_sha512_eq(const uint8_t cksum1[_Nonnull CRYPTO_SHA512_SIZE], const uint8_t cksum2[_Nonnull CRYPTO_SHA512_SIZE]);
|
|
|
|
/**
|
|
* @brief Compare 2 SHA256 checksums of length CRYPTO_SHA256_SIZE, not vulnerable to
|
|
* timing attacks.
|
|
*
|
|
* @return true if both mem locations of length are equal, false if they are not.
|
|
*/
|
|
bool crypto_sha256_eq(const uint8_t cksum1[_Nonnull CRYPTO_SHA256_SIZE], const uint8_t cksum2[_Nonnull CRYPTO_SHA256_SIZE]);
|
|
|
|
/**
|
|
* @brief Return a random 8 bit integer.
|
|
*/
|
|
uint8_t random_u08(const Random *_Nonnull rng);
|
|
|
|
/**
|
|
* @brief Return a random 16 bit integer.
|
|
*/
|
|
uint16_t random_u16(const Random *_Nonnull rng);
|
|
|
|
/**
|
|
* @brief Return a random 32 bit integer.
|
|
*/
|
|
uint32_t random_u32(const Random *_Nonnull rng);
|
|
|
|
/**
|
|
* @brief Return a random 64 bit integer.
|
|
*/
|
|
uint64_t random_u64(const Random *_Nonnull rng);
|
|
|
|
/**
|
|
* @brief Return a random 32 bit integer between 0 and upper_bound (excluded).
|
|
*
|
|
* This function guarantees a uniform distribution of possible outputs.
|
|
*/
|
|
uint32_t random_range_u32(const Random *_Nonnull rng, uint32_t upper_bound);
|
|
|
|
/**
|
|
* @brief Cryptographically signs a message using the supplied secret key and puts the resulting signature
|
|
* in the supplied buffer.
|
|
*
|
|
* @param[out] signature The buffer for the resulting signature, which must have room for at
|
|
* least CRYPTO_SIGNATURE_SIZE bytes.
|
|
* @param message The message being signed.
|
|
* @param message_length The length in bytes of the message being signed.
|
|
* @param secret_key The secret key used to create the signature. The key should be
|
|
* produced by either `create_extended_keypair` or the libsodium function `crypto_sign_keypair`.
|
|
*
|
|
* @retval true on success.
|
|
*/
|
|
bool crypto_signature_create(uint8_t signature[_Nonnull CRYPTO_SIGNATURE_SIZE], const uint8_t *_Nonnull message, uint64_t message_length, const uint8_t secret_key[_Nonnull SIG_SECRET_KEY_SIZE]);
|
|
|
|
/** @brief Verifies that the given signature was produced by a given message and public key.
|
|
*
|
|
* @param signature The signature we wish to verify.
|
|
* @param message The message we wish to verify.
|
|
* @param message_length The length of the message.
|
|
* @param public_key The public key counterpart of the secret key that was used to
|
|
* create the signature.
|
|
*
|
|
* @retval true on success.
|
|
*/
|
|
bool crypto_signature_verify(const uint8_t signature[_Nonnull CRYPTO_SIGNATURE_SIZE], const uint8_t *_Nonnull message, uint64_t message_length,
|
|
const uint8_t public_key[_Nonnull SIG_PUBLIC_KEY_SIZE]);
|
|
|
|
/**
|
|
* @brief Fill the given nonce with random bytes.
|
|
*/
|
|
void random_nonce(const Random *_Nonnull rng, uint8_t nonce[_Nonnull CRYPTO_NONCE_SIZE]);
|
|
|
|
/**
|
|
* @brief Fill an array of bytes with random values.
|
|
*/
|
|
void random_bytes(const Random *_Nonnull rng, uint8_t *_Nonnull bytes, size_t length);
|
|
|
|
/**
|
|
* @brief Check if a Tox public key CRYPTO_PUBLIC_KEY_SIZE is valid or not.
|
|
*
|
|
* This should only be used for input validation.
|
|
*
|
|
* @return false if it isn't, true if it is.
|
|
*/
|
|
bool public_key_valid(const uint8_t public_key[_Nonnull CRYPTO_PUBLIC_KEY_SIZE]);
|
|
|
|
typedef struct Extended_Public_Key {
|
|
uint8_t enc[CRYPTO_PUBLIC_KEY_SIZE];
|
|
uint8_t sig[CRYPTO_SIGN_PUBLIC_KEY_SIZE];
|
|
} Extended_Public_Key;
|
|
|
|
typedef struct Extended_Secret_Key {
|
|
uint8_t enc[CRYPTO_SECRET_KEY_SIZE];
|
|
uint8_t sig[CRYPTO_SIGN_SECRET_KEY_SIZE];
|
|
} Extended_Secret_Key;
|
|
|
|
/**
|
|
* @brief Creates an extended keypair: curve25519 and ed25519 for encryption and signing
|
|
* respectively. The Encryption keys are derived from the signature keys.
|
|
*
|
|
* NOTE: This does *not* use Random, so any code using this will not be fuzzable.
|
|
* TODO: Make it use Random.
|
|
*
|
|
* @param[out] pk The buffer where the public key will be stored. Must have room for EXT_PUBLIC_KEY_SIZE bytes.
|
|
* @param[out] sk The buffer where the secret key will be stored. Must have room for EXT_SECRET_KEY_SIZE bytes.
|
|
* @param rng The random number generator to use for the key generator seed.
|
|
*
|
|
* @retval true on success.
|
|
*/
|
|
bool create_extended_keypair(Extended_Public_Key *_Nonnull pk, Extended_Secret_Key *_Nonnull sk, const Random *_Nonnull rng);
|
|
|
|
/** Functions for groupchat extended keys */
|
|
const uint8_t *_Nonnull get_enc_key(const Extended_Public_Key *_Nonnull key);
|
|
const uint8_t *_Nonnull get_sig_pk(const Extended_Public_Key *_Nonnull key);
|
|
void set_sig_pk(Extended_Public_Key *_Nonnull key, const uint8_t *_Nonnull sig_pk);
|
|
const uint8_t *_Nonnull get_sig_sk(const Extended_Secret_Key *_Nonnull key);
|
|
const uint8_t *_Nonnull get_chat_id(const Extended_Public_Key *_Nonnull key);
|
|
|
|
/**
|
|
* @brief Generate a new random keypair.
|
|
*
|
|
* Every call to this function is likely to generate a different keypair.
|
|
*/
|
|
int32_t crypto_new_keypair(const Random *_Nonnull rng, uint8_t public_key[_Nonnull CRYPTO_PUBLIC_KEY_SIZE], uint8_t secret_key[_Nonnull CRYPTO_SECRET_KEY_SIZE]);
|
|
|
|
/**
|
|
* @brief Derive the public key from a given secret key.
|
|
*/
|
|
void crypto_derive_public_key(uint8_t public_key[_Nonnull CRYPTO_PUBLIC_KEY_SIZE], const uint8_t secret_key[_Nonnull CRYPTO_SECRET_KEY_SIZE]);
|
|
|
|
/**
|
|
* @brief Encrypt message to send from secret key to public key.
|
|
*
|
|
* Encrypt plain text of the given length to encrypted of
|
|
* `length + CRYPTO_MAC_SIZE` using the public key (@ref CRYPTO_PUBLIC_KEY_SIZE
|
|
* bytes) of the receiver and the secret key of the sender and a
|
|
* @ref CRYPTO_NONCE_SIZE byte nonce.
|
|
*
|
|
* @retval -1 if there was a problem.
|
|
* @return length of encrypted data if everything was fine.
|
|
*/
|
|
int32_t encrypt_data(const Memory *_Nonnull mem, const uint8_t public_key[_Nonnull CRYPTO_PUBLIC_KEY_SIZE], const uint8_t secret_key[_Nonnull CRYPTO_SECRET_KEY_SIZE],
|
|
const uint8_t nonce[_Nonnull CRYPTO_NONCE_SIZE], const uint8_t *_Nonnull plain, size_t length, uint8_t *_Nonnull encrypted);
|
|
|
|
/**
|
|
* @brief Decrypt message from public key to secret key.
|
|
*
|
|
* Decrypt encrypted text of the given @p length to plain text of the given
|
|
* `length - CRYPTO_MAC_SIZE` using the public key (@ref CRYPTO_PUBLIC_KEY_SIZE
|
|
* bytes) of the sender, the secret key of the receiver and a
|
|
* @ref CRYPTO_NONCE_SIZE byte nonce.
|
|
*
|
|
* @retval -1 if there was a problem (decryption failed).
|
|
* @return length of plain text data if everything was fine.
|
|
*/
|
|
int32_t decrypt_data(const Memory *_Nonnull mem, const uint8_t public_key[_Nonnull CRYPTO_PUBLIC_KEY_SIZE], const uint8_t secret_key[_Nonnull CRYPTO_SECRET_KEY_SIZE],
|
|
const uint8_t nonce[_Nonnull CRYPTO_NONCE_SIZE], const uint8_t *_Nonnull encrypted, size_t length, uint8_t *_Nonnull plain);
|
|
|
|
/**
|
|
* @brief Fast encrypt/decrypt operations.
|
|
*
|
|
* Use if this is not a one-time communication. `encrypt_precompute` does the
|
|
* shared-key generation once so it does not have to be performed on every
|
|
* encrypt/decrypt.
|
|
*/
|
|
int32_t encrypt_precompute(const uint8_t public_key[_Nonnull CRYPTO_PUBLIC_KEY_SIZE], const uint8_t secret_key[_Nonnull CRYPTO_SECRET_KEY_SIZE],
|
|
uint8_t shared_key[_Nonnull CRYPTO_SHARED_KEY_SIZE]);
|
|
|
|
/**
|
|
* @brief Encrypt message with precomputed shared key.
|
|
*
|
|
* Encrypts plain of length length to encrypted of length + @ref CRYPTO_MAC_SIZE
|
|
* using a shared key @ref CRYPTO_SYMMETRIC_KEY_SIZE big and a @ref CRYPTO_NONCE_SIZE
|
|
* byte nonce.
|
|
*
|
|
* @retval -1 if there was a problem.
|
|
* @return length of encrypted data if everything was fine.
|
|
*/
|
|
int32_t encrypt_data_symmetric(const Memory *_Nonnull mem, const uint8_t shared_key[_Nonnull CRYPTO_SHARED_KEY_SIZE], const uint8_t nonce[_Nonnull CRYPTO_NONCE_SIZE],
|
|
const uint8_t *_Nonnull plain, size_t length, uint8_t *_Nonnull encrypted);
|
|
|
|
/**
|
|
* @brief Decrypt message with precomputed shared key.
|
|
*
|
|
* Decrypts encrypted of length length to plain of length
|
|
* `length - CRYPTO_MAC_SIZE` using a shared key @ref CRYPTO_SYMMETRIC_KEY_SIZE
|
|
* big and a @ref CRYPTO_NONCE_SIZE byte nonce.
|
|
*
|
|
* @retval -1 if there was a problem (decryption failed).
|
|
* @return length of plain data if everything was fine.
|
|
*/
|
|
int32_t decrypt_data_symmetric(const Memory *_Nonnull mem, const uint8_t shared_key[_Nonnull CRYPTO_SHARED_KEY_SIZE], const uint8_t nonce[_Nonnull CRYPTO_NONCE_SIZE],
|
|
const uint8_t *_Nonnull encrypted, size_t length, uint8_t *_Nonnull plain);
|
|
|
|
/**
|
|
* @brief Increment the given nonce by 1 in big endian (rightmost byte incremented first).
|
|
*/
|
|
void increment_nonce(uint8_t nonce[_Nonnull CRYPTO_NONCE_SIZE]);
|
|
|
|
/**
|
|
* @brief Increment the given nonce by a given number.
|
|
*
|
|
* The number should be in host byte order.
|
|
*/
|
|
void increment_nonce_number(uint8_t nonce[_Nonnull CRYPTO_NONCE_SIZE], uint32_t increment);
|
|
|
|
/**
|
|
* @brief Fill a key @ref CRYPTO_SYMMETRIC_KEY_SIZE big with random bytes.
|
|
*/
|
|
void new_symmetric_key(const Random *_Nonnull rng, uint8_t key[_Nonnull CRYPTO_SYMMETRIC_KEY_SIZE]);
|
|
|
|
/**
|
|
* @brief Locks `length` bytes of memory pointed to by `data`.
|
|
*
|
|
* This will attempt to prevent the specified memory region from being swapped
|
|
* to disk.
|
|
*
|
|
* @return true on success.
|
|
*/
|
|
bool crypto_memlock(void *_Nonnull data, size_t length);
|
|
|
|
/**
|
|
* @brief Unlocks `length` bytes of memory pointed to by `data`.
|
|
*
|
|
* This allows the specified memory region to be swapped to disk.
|
|
*
|
|
* This function call has the side effect of zeroing the specified memory region
|
|
* whether or not it succeeds. Therefore it should only be used once the memory
|
|
* is no longer in use.
|
|
*
|
|
* @return true on success.
|
|
*/
|
|
bool crypto_memunlock(void *_Nonnull data, size_t length);
|
|
|
|
/**
|
|
* @brief Generate a random secret HMAC key.
|
|
*/
|
|
void new_hmac_key(const Random *_Nonnull rng, uint8_t key[_Nonnull CRYPTO_HMAC_KEY_SIZE]);
|
|
|
|
#ifdef __cplusplus
|
|
} /* extern "C" */
|
|
#endif
|
|
|
|
#endif /* C_TOXCORE_TOXCORE_CRYPTO_CORE_H */
|