Files
tomato/testing/support/doubles/network_universe_test.cc
Green Sky 9b36dd9d99 Squashed 'external/toxcore/c-toxcore/' changes from c9cdae001..9ed2fa80d
9ed2fa80d fix(toxav): remove extra copy of video frame on encode
de30cf3ad docs: Add new file kinds, that should be useful to all clients.
d5b5e879d fix(DHT): Correct node skipping logic timed out nodes.
30e71fe97 refactor: Generate event dispatch functions and add tox_events_dispatch.
8fdbb0b50 style: Format parameter lists in event handlers.
d00dee12b refactor: Add warning logs when losing chat invites.
b144e8db1 feat: Add a way to look up a file number by ID.
849281ea0 feat: Add a way to fetch groups by chat ID.
a2c177396 refactor: Harden event system and improve type safety.
8f5caa656 refactor: Add MessagePack string support to bin_pack.
34e8d5ad5 chore: Add GitHub CodeQL workflow and local Docker runner.
f7b068010 refactor: Add nullability annotations to event headers.
788abe651 refactor(toxav): Use system allocator for mutexes.
2e4b423eb refactor: Use specific typedefs for public API arrays.
2baf34775 docs(toxav): update idle iteration interval see 679444751876fa3882a717772918ebdc8f083354
2f87ac67b feat: Add Event Loop abstraction (Ev).
f8dfc38d8 test: Fix data race in ToxScenario virtual_clock.
38313921e test(TCP): Add regression test for TCP priority queue integrity.
f94a50d9a refactor(toxav): Replace mutable_mutex with dynamically allocated mutex.
ad054511e refactor: Internalize DHT structs and add debug helpers.
8b467cc96 fix: Prevent potential integer overflow in group chat handshake.
4962bdbb8 test: Improve TCP simulation and add tests
5f0227093 refactor: Allow nullable data in group chat handlers.
e97b18ea9 chore: Improve Windows Docker support.
b14943bbd refactor: Move Logger out of Messenger into Tox.
dd3136250 cleanup: Apply nullability qualifiers to C++ codebase.
1849f70fc refactor: Extract low-level networking code to net and os_network.
8fec75421 refactor: Delete tox_random, align on rng and os_random.
a03ae8051 refactor: Delete tox_memory, align on mem and os_memory.
4c88fed2c refactor: Use `std::` prefixes more consistently in C++ code.
72452f2ae test: Add some more tests for onion and shared key cache.
d5a51b09a cleanup: Use tox_attributes.h in tox_private.h and install it.
b6f5b9fc5 test: Add some benchmarks for various high level things.
8a8d02785 test(support): Introduce threaded Tox runner and simulation barrier
d68d1d095 perf(toxav): optimize audio and video intermediate buffers by keeping them around
REVERT: c9cdae001 fix(toxav): remove extra copy of video frame on encode

git-subtree-dir: external/toxcore/c-toxcore
git-subtree-split: 9ed2fa80d582c714d6bdde6a7648220a92cddff8
2026-02-01 14:26:52 +01:00

322 lines
10 KiB
C++

#include "network_universe.hh"
#include <gtest/gtest.h>
#include "fake_sockets.hh"
namespace tox::test {
namespace {
class NetworkUniverseTest : public ::testing::Test {
public:
~NetworkUniverseTest() override;
protected:
NetworkUniverse universe;
FakeUdpSocket s1{universe};
FakeUdpSocket s2{universe};
};
NetworkUniverseTest::~NetworkUniverseTest() = default;
TEST_F(NetworkUniverseTest, LatencySimulation)
{
universe.set_latency(100);
IP_Port s2_addr;
ip_init(&s2_addr.ip, false);
s2_addr.ip.ip.v4.uint32 = net_htonl(0x7F000001);
s2_addr.port = net_htons(9004);
s2.bind(&s2_addr);
uint8_t data[] = "Ping";
s1.sendto(data, 4, &s2_addr);
// Time 0: packet sent but delivery time is 100
universe.process_events(0);
IP_Port from;
uint8_t buf[10];
ASSERT_EQ(s2.recvfrom(buf, 10, &from), -1);
// Time 50: still not delivered
universe.process_events(50);
ASSERT_EQ(s2.recvfrom(buf, 10, &from), -1);
// Time 100: delivered
universe.process_events(100);
ASSERT_EQ(s2.recvfrom(buf, 10, &from), 4);
}
TEST_F(NetworkUniverseTest, RoutesBasedOnIpAndPort)
{
IP ip1{}, ip2{};
ip_init(&ip1, false);
ip1.ip.v4.uint32 = net_htonl(0x01010101);
ip_init(&ip2, false);
ip2.ip.v4.uint32 = net_htonl(0x02020202);
uint16_t port = 33445;
FakeUdpSocket sock1{universe};
FakeUdpSocket sock2{universe};
sock1.set_ip(ip1);
sock2.set_ip(ip2);
IP_Port addr1{ip1, net_htons(port)};
IP_Port addr2{ip2, net_htons(port)};
ASSERT_EQ(sock1.bind(&addr1), 0);
ASSERT_EQ(sock2.bind(&addr2), 0);
const char *msg1 = "To IP 1";
const char *msg2 = "To IP 2";
FakeUdpSocket sender{universe};
sender.sendto(reinterpret_cast<const uint8_t *>(msg1), strlen(msg1), &addr1);
sender.sendto(reinterpret_cast<const uint8_t *>(msg2), strlen(msg2), &addr2);
universe.process_events(0);
uint8_t buf[100];
IP_Port from;
int len1 = sock1.recvfrom(buf, sizeof(buf), &from);
ASSERT_GT(len1, 0);
EXPECT_EQ(std::string(reinterpret_cast<char *>(buf), static_cast<size_t>(len1)), msg1);
int len2 = sock2.recvfrom(buf, sizeof(buf), &from);
ASSERT_GT(len2, 0);
EXPECT_EQ(std::string(reinterpret_cast<char *>(buf), static_cast<size_t>(len2)), msg2);
}
TEST_F(NetworkUniverseTest, FindFreePortIsIpSpecific)
{
IP ip1{}, ip2{};
ip_init(&ip1, false);
ip1.ip.v4.uint32 = net_htonl(0x01010101);
ip_init(&ip2, false);
ip2.ip.v4.uint32 = net_htonl(0x02020202);
FakeUdpSocket sock1{universe};
sock1.set_ip(ip1);
uint16_t port = 33445;
IP_Port addr1{ip1, net_htons(port)};
ASSERT_EQ(sock1.bind(&addr1), 0);
// Port 33445 should be busy for ip1, but free for ip2
EXPECT_EQ(universe.find_free_port(ip1, port), port + 1);
EXPECT_EQ(universe.find_free_port(ip2, port), port);
}
TEST_F(NetworkUniverseTest, IpPortKeyEqualityRobustness)
{
IP ip1{}, ip2{};
ip_init(&ip1, false);
ip1.ip.v4.uint32 = net_htonl(0x7F000001);
ip_init(&ip2, false);
ip2.ip.v4.uint32 = net_htonl(0x7F000001);
uint16_t port = 12345;
// Force different garbage in the union padding for IPv4
// The union is 16 bytes. IP4 is 4 bytes. Trailing 12 bytes are unused.
memset(ip1.ip.v6.uint8 + 4, 0x11, 12);
memset(ip2.ip.v6.uint8 + 4, 0x22, 12);
NetworkUniverse::IP_Port_Key key1{ip1, port};
NetworkUniverse::IP_Port_Key key2{ip2, port};
// They should be considered equal (neither is less than the other)
EXPECT_FALSE(key1 < key2);
EXPECT_FALSE(key2 < key1);
// Now try with different IPv4 but same garbage
ip2.ip.v4.uint32 = net_htonl(0x7F000002);
memset(ip2.ip.v6.uint8 + 4, 0x11, 12); // same garbage as ip1
NetworkUniverse::IP_Port_Key key3{ip2, port};
EXPECT_TRUE(key1 < key3 || key3 < key1);
}
TEST_F(NetworkUniverseTest, IPv4v6Distinction)
{
IP ip1{}, ip2{};
ip_init(&ip1, false); // IPv4
ip1.ip.v4.uint32 = net_htonl(0x01020304);
ip_init(&ip2, true); // IPv6
// Set IPv6 bytes to match IPv4 bytes at the beginning
memset(ip2.ip.v6.uint8, 0, 16);
ip2.ip.v6.uint32[0] = net_htonl(0x01020304);
uint16_t port = 12345;
NetworkUniverse::IP_Port_Key key1{ip1, port};
NetworkUniverse::IP_Port_Key key2{ip2, port};
// Different families must be different even if underlying bytes happen to match
EXPECT_TRUE(key1 < key2 || key2 < key1);
}
TEST_F(NetworkUniverseTest, ManyNodes)
{
const int num_nodes = 5000;
struct NodeInfo {
std::unique_ptr<FakeUdpSocket> sock;
IP_Port addr;
};
std::vector<NodeInfo> nodes;
nodes.reserve(num_nodes);
for (int i = 0; i < num_nodes; ++i) {
auto sock = std::make_unique<FakeUdpSocket>(universe);
IP ip{};
ip_init(&ip, false);
ip.ip.v4.uint32 = net_htonl(0x0A000000 + i); // 10.0.x.y
sock->set_ip(ip);
IP_Port addr{ip, net_htons(33445)};
ASSERT_EQ(sock->bind(&addr), 0);
nodes.push_back({std::move(sock), addr});
}
const int num_messages = 100;
// Send messages from first num_messages to last num_messages nodes
for (int i = 0; i < num_messages; ++i) {
const char *msg = "Stress test";
nodes[i].sock->sendto(reinterpret_cast<const uint8_t *>(msg), strlen(msg),
&nodes[num_nodes - 1 - i].addr);
}
universe.process_events(0);
for (int i = 0; i < num_messages; ++i) {
uint8_t buf[100];
IP_Port from;
int len = nodes[num_nodes - 1 - i].sock->recvfrom(buf, sizeof(buf), &from);
ASSERT_GT(len, 0);
EXPECT_EQ(std::string(reinterpret_cast<char *>(buf), static_cast<size_t>(len)),
"Stress test");
EXPECT_TRUE(ip_equal(&from.ip, &nodes[i].addr.ip));
}
}
TEST_F(NetworkUniverseTest, IpPadding)
{
IP ip1{};
ip_init(&ip1, false);
ip1.ip.v4.uint32 = net_htonl(0x7F000001);
FakeUdpSocket sock{universe};
sock.set_ip(ip1);
IP_Port bind_addr{ip1, net_htons(12345)};
ASSERT_EQ(sock.bind(&bind_addr), 0);
// Create an address with garbage in the padding
IP_Port target_addr;
memset(&target_addr, 0xAA, sizeof(target_addr));
ip_init(&target_addr.ip, false);
target_addr.ip.ip.v4.uint32 = net_htonl(0x7F000001);
target_addr.port = net_htons(12345);
FakeUdpSocket sender{universe};
const char *msg = "Padding test";
sender.sendto(reinterpret_cast<const uint8_t *>(msg), strlen(msg), &target_addr);
universe.process_events(0);
uint8_t buf[100];
IP_Port from;
int len = sock.recvfrom(buf, sizeof(buf), &from);
// If this fails, it means NetworkUniverse is not robust against padding garbage
ASSERT_GT(len, 0);
EXPECT_EQ(
std::string(reinterpret_cast<char *>(buf), static_cast<size_t>(len)), "Padding test");
}
TEST_F(NetworkUniverseTest, TcpRoutingSpecificity)
{
IP ip1{};
ip_init(&ip1, false);
ip1.ip.v4.uint32 = net_htonl(0x0A000001); // 10.0.0.1
uint16_t port = 12345;
IP_Port local_addr{ip1, net_htons(port)};
FakeTcpSocket listen_sock(universe);
listen_sock.set_ip(ip1);
listen_sock.bind(&local_addr);
listen_sock.listen(5);
IP remote_ip{};
ip_init(&remote_ip, false);
remote_ip.ip.v4.uint32 = net_htonl(0x0A000002); // 10.0.0.2
IP_Port remote_addr{remote_ip, net_htons(33445)};
auto established_sock = FakeTcpSocket::create_connected(universe, remote_addr, port);
established_sock->set_ip(ip1);
universe.bind_tcp(ip1, port, established_sock.get());
// Send a data packet from remote to local
Packet p{};
p.from = remote_addr;
p.to = local_addr;
p.is_tcp = true;
p.tcp_flags = 0x10; // ACK (Data)
const char *data = "Specific";
p.data.assign(data, data + strlen(data));
universe.send_packet(p);
universe.process_events(0);
// established_sock should have received it
EXPECT_EQ(established_sock->recv_buffer_size(), strlen(data));
// listen_sock should NOT have received it (it doesn't have a buffer, but it shouldn't have
// been called) We can't easily check listen_sock wasn't called without mocks or checking
// logs, but we can check that it didn't create a new pending connection.
EXPECT_FALSE(listen_sock.is_readable());
}
TEST_F(NetworkUniverseTest, PacketOrdering)
{
IP ip1{}, ip2{};
ip_init(&ip1, false);
ip1.ip.v4.uint32 = net_htonl(0x0A000001);
ip_init(&ip2, false);
ip2.ip.v4.uint32 = net_htonl(0x0A000002);
uint16_t port = 33445;
IP_Port addr1{ip1, net_htons(port)};
IP_Port addr2{ip2, net_htons(port)};
FakeUdpSocket sock1{universe};
sock1.set_ip(ip1);
sock1.bind(&addr1);
FakeUdpSocket sock2{universe};
sock2.set_ip(ip2);
sock2.bind(&addr2);
// Send 10 packets with the same delivery time (global latency = 0)
for (int i = 0; i < 10; ++i) {
uint8_t data = static_cast<uint8_t>(i);
sock1.sendto(&data, 1, &addr2);
}
universe.process_events(0);
// They should be received in the exact order they were sent
for (int i = 0; i < 10; ++i) {
uint8_t buf[1];
IP_Port from;
ASSERT_EQ(sock2.recvfrom(buf, 1, &from), 1);
EXPECT_EQ(buf[0], i) << "Packet " << i << " was delivered out of order";
}
}
} // namespace
} // namespace tox::test