Files
tomato/toxcore/DHT_test.cc
Green Sky 9b36dd9d99 Squashed 'external/toxcore/c-toxcore/' changes from c9cdae001..9ed2fa80d
9ed2fa80d fix(toxav): remove extra copy of video frame on encode
de30cf3ad docs: Add new file kinds, that should be useful to all clients.
d5b5e879d fix(DHT): Correct node skipping logic timed out nodes.
30e71fe97 refactor: Generate event dispatch functions and add tox_events_dispatch.
8fdbb0b50 style: Format parameter lists in event handlers.
d00dee12b refactor: Add warning logs when losing chat invites.
b144e8db1 feat: Add a way to look up a file number by ID.
849281ea0 feat: Add a way to fetch groups by chat ID.
a2c177396 refactor: Harden event system and improve type safety.
8f5caa656 refactor: Add MessagePack string support to bin_pack.
34e8d5ad5 chore: Add GitHub CodeQL workflow and local Docker runner.
f7b068010 refactor: Add nullability annotations to event headers.
788abe651 refactor(toxav): Use system allocator for mutexes.
2e4b423eb refactor: Use specific typedefs for public API arrays.
2baf34775 docs(toxav): update idle iteration interval see 679444751876fa3882a717772918ebdc8f083354
2f87ac67b feat: Add Event Loop abstraction (Ev).
f8dfc38d8 test: Fix data race in ToxScenario virtual_clock.
38313921e test(TCP): Add regression test for TCP priority queue integrity.
f94a50d9a refactor(toxav): Replace mutable_mutex with dynamically allocated mutex.
ad054511e refactor: Internalize DHT structs and add debug helpers.
8b467cc96 fix: Prevent potential integer overflow in group chat handshake.
4962bdbb8 test: Improve TCP simulation and add tests
5f0227093 refactor: Allow nullable data in group chat handlers.
e97b18ea9 chore: Improve Windows Docker support.
b14943bbd refactor: Move Logger out of Messenger into Tox.
dd3136250 cleanup: Apply nullability qualifiers to C++ codebase.
1849f70fc refactor: Extract low-level networking code to net and os_network.
8fec75421 refactor: Delete tox_random, align on rng and os_random.
a03ae8051 refactor: Delete tox_memory, align on mem and os_memory.
4c88fed2c refactor: Use `std::` prefixes more consistently in C++ code.
72452f2ae test: Add some more tests for onion and shared key cache.
d5a51b09a cleanup: Use tox_attributes.h in tox_private.h and install it.
b6f5b9fc5 test: Add some benchmarks for various high level things.
8a8d02785 test(support): Introduce threaded Tox runner and simulation barrier
d68d1d095 perf(toxav): optimize audio and video intermediate buffers by keeping them around
REVERT: c9cdae001 fix(toxav): remove extra copy of video frame on encode

git-subtree-dir: external/toxcore/c-toxcore
git-subtree-split: 9ed2fa80d582c714d6bdde6a7648220a92cddff8
2026-02-01 14:26:52 +01:00

405 lines
14 KiB
C++

#include "DHT.h"
#include <gmock/gmock.h>
#include <gtest/gtest.h>
#include <algorithm>
#include <array>
#include <cstring>
#include <random>
#include "../testing/support/public/simulated_environment.hh"
#include "DHT_test_util.hh"
#include "attributes.h"
#include "crypto_core.h"
#include "crypto_core_test_util.hh"
#include "logger.h"
#include "mono_time.h"
#include "network.h"
#include "network_test_util.hh"
#include "test_util.hh"
namespace {
using ::testing::Each;
using ::testing::ElementsAre;
using ::testing::Eq;
using ::testing::PrintToString;
using ::testing::UnorderedElementsAre;
using namespace tox::test;
using SecretKey = std::array<std::uint8_t, CRYPTO_SECRET_KEY_SIZE>;
struct KeyPair {
PublicKey pk;
SecretKey sk;
explicit KeyPair(const Random *_Nonnull rng) { crypto_new_keypair(rng, pk.data(), sk.data()); }
};
TEST(IdClosest, KeyIsClosestToItself)
{
SimulatedEnvironment env;
auto c_rng = env.fake_random().c_random();
PublicKey pk0 = random_pk(&c_rng);
PublicKey pk1;
do {
// Get a random key that's not the same as pk0.
pk1 = random_pk(&c_rng);
} while (pk0 == pk1);
EXPECT_EQ(id_closest(pk0.data(), pk0.data(), pk1.data()), 1);
}
TEST(IdClosest, IdenticalKeysAreSameDistance)
{
SimulatedEnvironment env;
auto c_rng = env.fake_random().c_random();
PublicKey pk0 = random_pk(&c_rng);
PublicKey pk1 = random_pk(&c_rng);
EXPECT_EQ(id_closest(pk0.data(), pk1.data(), pk1.data()), 0);
}
TEST(IdClosest, DistanceIsCommutative)
{
SimulatedEnvironment env;
auto c_rng = env.fake_random().c_random();
PublicKey pk0 = random_pk(&c_rng);
PublicKey pk1 = random_pk(&c_rng);
PublicKey pk2 = random_pk(&c_rng);
ASSERT_NE(pk1, pk2); // RNG can't produce the same random key twice
// Two non-equal keys can't have the same distance from any given key.
EXPECT_NE(id_closest(pk0.data(), pk1.data(), pk2.data()), 0);
if (id_closest(pk0.data(), pk1.data(), pk2.data()) == 1) {
EXPECT_EQ(id_closest(pk0.data(), pk2.data(), pk1.data()), 2);
}
if (id_closest(pk0.data(), pk1.data(), pk2.data()) == 2) {
EXPECT_EQ(id_closest(pk0.data(), pk2.data(), pk1.data()), 1);
}
}
TEST(IdClosest, SmallXorDistanceIsCloser)
{
PublicKey const pk0 = {0xaa};
PublicKey const pk1 = {0xa0};
PublicKey const pk2 = {0x0a};
EXPECT_EQ(id_closest(pk0.data(), pk1.data(), pk2.data()), 1);
}
TEST(IdClosest, DistinctKeysCannotHaveTheSameDistance)
{
PublicKey const pk0 = {0x06};
PublicKey const pk1 = {0x00};
PublicKey pk2 = {0x00};
for (std::uint8_t i = 1; i < 0xff; ++i) {
pk2[0] = i;
EXPECT_NE(id_closest(pk0.data(), pk1.data(), pk2.data()), 0);
}
}
TEST(AddToList, OverridesKeysWithCloserKeys)
{
PublicKey const self_pk = {0xaa};
PublicKey const keys[] = {
{0xa0}, // closest
{0x0a}, //
{0x0b}, //
{0x0c}, //
{0x0d}, //
{0xa1}, // closer than the 4 keys above
};
std::array<Node_format, 4> nodes{};
IP_Port ip_port = {0};
EXPECT_TRUE(add_to_list(nodes.data(), nodes.size(), keys[0].data(), &ip_port, self_pk.data()));
EXPECT_TRUE(add_to_list(nodes.data(), nodes.size(), keys[1].data(), &ip_port, self_pk.data()));
EXPECT_TRUE(add_to_list(nodes.data(), nodes.size(), keys[2].data(), &ip_port, self_pk.data()));
EXPECT_TRUE(add_to_list(nodes.data(), nodes.size(), keys[3].data(), &ip_port, self_pk.data()));
EXPECT_EQ(to_array(nodes[0].public_key), keys[0]);
EXPECT_EQ(to_array(nodes[1].public_key), keys[1]);
EXPECT_EQ(to_array(nodes[2].public_key), keys[2]);
EXPECT_EQ(to_array(nodes[3].public_key), keys[3]);
// key 4 is less close than keys 0-3
EXPECT_FALSE(add_to_list(nodes.data(), nodes.size(), keys[4].data(), &ip_port, self_pk.data()));
// 5 is closer than all except key 0
EXPECT_TRUE(add_to_list(nodes.data(), nodes.size(), keys[5].data(), &ip_port, self_pk.data()));
EXPECT_EQ(to_array(nodes[0].public_key), keys[0]);
EXPECT_EQ(to_array(nodes[1].public_key), keys[5]);
EXPECT_EQ(to_array(nodes[2].public_key), keys[1]);
EXPECT_EQ(to_array(nodes[3].public_key), keys[2]);
}
Node_format fill(Node_format v, PublicKey const &pk, IP_Port const &ip_port)
{
std::copy(pk.begin(), pk.end(), v.public_key);
v.ip_port = ip_port;
return v;
}
TEST(AddToList, AddsFirstKeysInOrder)
{
SimulatedEnvironment env;
auto c_rng = env.fake_random().c_random();
// Make cmp_key the furthest away from 00000... as possible, so all initial inserts succeed.
PublicKey const cmp_pk{0xff, 0xff, 0xff, 0xff};
// Generate a bunch of other keys, sorted by distance from cmp_pk.
auto const keys
= sorted(array_of<20>(random_pk, &c_rng), [&cmp_pk](auto const &pk1, auto const &pk2) {
return id_closest(cmp_pk.data(), pk1.data(), pk2.data()) == 1;
});
auto const ips = array_of<20>(increasing_ip_port(0, &c_rng));
std::vector<Node_format> nodes(4);
// Add a bunch of nodes.
ASSERT_TRUE(add_to_list(nodes.data(), nodes.size(), keys[2].data(), &ips[2], cmp_pk.data()))
<< "failed to insert\n"
<< " cmp_pk = " << cmp_pk << "\n"
<< " pk = " << keys[2] << "\n"
<< " nodes_list = " << PrintToString(nodes);
ASSERT_TRUE(add_to_list(nodes.data(), nodes.size(), keys[5].data(), &ips[5], cmp_pk.data()))
<< "failed to insert\n"
<< " cmp_pk = " << cmp_pk << "\n"
<< " pk = " << keys[5] << "\n"
<< " nodes_list = " << PrintToString(nodes);
ASSERT_TRUE(add_to_list(nodes.data(), nodes.size(), keys[7].data(), &ips[7], cmp_pk.data()))
<< "failed to insert\n"
<< " cmp_pk = " << cmp_pk << "\n"
<< " pk = " << keys[7] << "\n"
<< " nodes_list = " << PrintToString(nodes);
ASSERT_TRUE(add_to_list(nodes.data(), nodes.size(), keys[9].data(), &ips[9], cmp_pk.data()))
<< "failed to insert\n"
<< " cmp_pk = " << cmp_pk << "\n"
<< " pk = " << keys[9] << "\n"
<< " nodes_list = " << PrintToString(nodes);
// They should all appear in order.
EXPECT_THAT(nodes,
ElementsAre( //
fill(Node_format{}, keys[2], ips[2]), //
fill(Node_format{}, keys[5], ips[5]), //
fill(Node_format{}, keys[7], ips[7]), //
fill(Node_format{}, keys[9], ips[9])));
// Adding another node that's further away will not happen.
ASSERT_FALSE(add_to_list(nodes.data(), nodes.size(), keys[10].data(), &ips[10], cmp_pk.data()))
<< "incorrectly inserted\n"
<< " cmp_pk = " << cmp_pk << "\n"
<< " pk = " << keys[10] << "\n"
<< " nodes_list = " << PrintToString(nodes);
// Now shuffle each time we add a node, which should work fine.
std::minstd_rand mt_rng;
// Adding one that's closer will happen.
std::shuffle(nodes.begin(), nodes.end(), mt_rng);
ASSERT_TRUE(add_to_list(nodes.data(), nodes.size(), keys[8].data(), &ips[8], cmp_pk.data()))
<< "failed to insert\n"
<< " cmp_pk = " << cmp_pk << "\n"
<< " pk = " << keys[8] << "\n"
<< " nodes_list = " << PrintToString(nodes);
EXPECT_THAT(nodes,
UnorderedElementsAre( //
fill(Node_format{}, keys[2], ips[2]), //
fill(Node_format{}, keys[5], ips[5]), //
fill(Node_format{}, keys[7], ips[7]), //
fill(Node_format{}, keys[8], ips[8])));
// Adding one that's closer than almost all of them will happen.
std::shuffle(nodes.begin(), nodes.end(), mt_rng);
ASSERT_TRUE(add_to_list(nodes.data(), nodes.size(), keys[4].data(), &ips[4], cmp_pk.data()))
<< "failed to insert\n"
<< " cmp_pk = " << cmp_pk << "\n"
<< " pk = " << keys[4] << "\n"
<< " nodes_list = " << PrintToString(nodes);
EXPECT_THAT(nodes,
UnorderedElementsAre( //
fill(Node_format{}, keys[2], ips[2]), //
fill(Node_format{}, keys[4], ips[4]), //
fill(Node_format{}, keys[5], ips[5]), //
fill(Node_format{}, keys[7], ips[7])));
// Adding one that's closer than all of them will happen.
std::shuffle(nodes.begin(), nodes.end(), mt_rng);
ASSERT_TRUE(add_to_list(nodes.data(), nodes.size(), keys[1].data(), &ips[1], cmp_pk.data()))
<< "failed to insert\n"
<< " cmp_pk = " << cmp_pk << "\n"
<< " pk = " << keys[1] << "\n"
<< " nodes_list = " << PrintToString(nodes);
EXPECT_THAT(nodes,
UnorderedElementsAre( //
fill(Node_format{}, keys[1], ips[1]), //
fill(Node_format{}, keys[2], ips[2]), //
fill(Node_format{}, keys[4], ips[4]), //
fill(Node_format{}, keys[5], ips[5])));
}
TEST(AddToList, KeepsKeysInOrder)
{
SimulatedEnvironment env;
auto c_rng = env.fake_random().c_random();
// Any random cmp_pk should work, as well as the smallest or (approximately) largest pk.
for (PublicKey const cmp_pk : {random_pk(&c_rng), PublicKey{0x00}, PublicKey{0xff, 0xff}}) {
auto const by_distance = [&cmp_pk](auto const &node1, auto const &node2) {
return id_closest(cmp_pk.data(), node1.public_key, node2.public_key) == 1;
};
// Generate a bunch of other keys, not sorted.
auto const nodes = vector_of(16, random_node_format, &c_rng);
std::vector<Node_format> node_list(4);
// Add all of them.
for (Node_format const &node : nodes) {
add_to_list(
node_list.data(), node_list.size(), node.public_key, &node.ip_port, cmp_pk.data());
// Nodes should always be sorted.
EXPECT_THAT(node_list, Eq(sorted(node_list, by_distance)));
}
}
}
TEST(Request, CreateAndParse)
{
SimulatedEnvironment env;
auto c_mem = env.fake_memory().c_memory();
auto c_rng = env.fake_random().c_random();
// Peers.
const KeyPair sender(&c_rng);
const KeyPair receiver(&c_rng);
const std::uint8_t sent_pkt_id = CRYPTO_PACKET_FRIEND_REQ;
// Encoded packet.
std::array<std::uint8_t, MAX_CRYPTO_REQUEST_SIZE> packet;
// Received components.
PublicKey pk;
std::array<std::uint8_t, MAX_CRYPTO_REQUEST_SIZE> incoming;
std::uint8_t recvd_pkt_id;
// Request data: maximum payload is 918 bytes, so create a payload 1 byte larger than max.
std::vector<std::uint8_t> outgoing(919);
random_bytes(&c_rng, outgoing.data(), outgoing.size());
EXPECT_LT(create_request(&c_mem, &c_rng, sender.pk.data(), sender.sk.data(), packet.data(),
receiver.pk.data(), outgoing.data(), outgoing.size(), sent_pkt_id),
0);
// Pop one element so the payload is 918 bytes. Packing should now succeed.
outgoing.pop_back();
const int max_sent_length = create_request(&c_mem, &c_rng, sender.pk.data(), sender.sk.data(),
packet.data(), receiver.pk.data(), outgoing.data(), outgoing.size(), sent_pkt_id);
ASSERT_GT(max_sent_length, 0); // success.
// Check that handle_request rejects packets larger than the maximum created packet size.
EXPECT_LT(handle_request(&c_mem, receiver.pk.data(), receiver.sk.data(), pk.data(),
incoming.data(), &recvd_pkt_id, packet.data(), max_sent_length + 1),
0);
// Now try all possible packet sizes from max (918) to 0.
while (!outgoing.empty()) {
// Pack:
const int sent_length = create_request(&c_mem, &c_rng, sender.pk.data(), sender.sk.data(),
packet.data(), receiver.pk.data(), outgoing.data(), outgoing.size(), sent_pkt_id);
ASSERT_GT(sent_length, 0);
// Unpack:
const int recvd_length = handle_request(&c_mem, receiver.pk.data(), receiver.sk.data(),
pk.data(), incoming.data(), &recvd_pkt_id, packet.data(), sent_length);
ASSERT_GE(recvd_length, 0);
EXPECT_EQ(
std::vector<std::uint8_t>(incoming.begin(), incoming.begin() + recvd_length), outgoing);
outgoing.pop_back();
}
}
TEST(AnnounceNodes, SetAndTest)
{
SimulatedEnvironment env;
auto c_mem = env.fake_memory().c_memory();
auto c_rng = env.fake_random().c_random();
// Use FakeNetwork instead of Test_Network (which wrapped os_network)
// Create endpoint bound to virtual port
auto node = env.create_node(33445);
struct Network net_struct = node->c_network;
Logger *log = logger_new(&c_mem);
ASSERT_NE(log, nullptr);
Mono_Time *mono_time = mono_time_new(&c_mem, nullptr, nullptr);
ASSERT_NE(mono_time, nullptr);
// Hook up simulation clock to mono_time
mono_time_set_current_time_callback(
mono_time,
[](void *user_data) -> std::uint64_t {
auto *clock = static_cast<FakeClock *>(user_data);
return clock->current_time_ms();
},
&env.fake_clock());
Ptr<Networking_Core> net(new_networking_no_udp(log, &c_mem, &net_struct));
ASSERT_NE(net, nullptr);
Ptr<DHT> dht(new_dht(log, &c_mem, &c_rng, &net_struct, mono_time, net.get(), true, true));
ASSERT_NE(dht, nullptr);
std::uint8_t pk_data[CRYPTO_PUBLIC_KEY_SIZE];
std::memcpy(pk_data, dht_get_self_public_key(dht.get()), sizeof(pk_data));
PublicKey self_pk(to_array(pk_data));
PublicKey pk1 = random_pk(&c_rng);
ASSERT_NE(pk1, self_pk);
// Test with maximally close key to self
pk_data[CRYPTO_PUBLIC_KEY_SIZE - 1] = ~pk_data[CRYPTO_PUBLIC_KEY_SIZE - 1];
PublicKey pk2(to_array(pk_data));
ASSERT_NE(pk2, pk1);
IP_Port ip_port = {0};
ip_port.ip.family = net_family_ipv4();
set_announce_node(dht.get(), pk1.data());
set_announce_node(dht.get(), pk2.data());
EXPECT_TRUE(addto_lists(dht.get(), &ip_port, pk1.data()));
EXPECT_TRUE(addto_lists(dht.get(), &ip_port, pk2.data()));
Node_format nodes[MAX_SENT_NODES];
EXPECT_EQ(
0, get_close_nodes(dht.get(), self_pk.data(), nodes, net_family_unspec(), true, true));
set_announce_node(dht.get(), pk1.data());
set_announce_node(dht.get(), pk2.data());
EXPECT_EQ(
2, get_close_nodes(dht.get(), self_pk.data(), nodes, net_family_unspec(), true, true));
mono_time_free(&c_mem, mono_time);
logger_kill(log);
}
} // namespace