tomato/auto_tests/crypto_test.c
Green Sky 9ddeea3d06 Squashed 'external/toxcore/c-toxcore/' changes from d4b06edc2a..adbd5b32d8
adbd5b32d8 feat: add ngc events
15ee46d431 add simple test for max sized lossy custom group packet
01e7950c67 increase lossy custom packet size in ngc to the toxcore common max of 1373
9b3c1089f1 Make group saving/loading more forgiving with data errors
55a76003b0 Replace memset(int32_t*, -1, _) with a for-loop
66453439ac fix: also Install header for private/experimental API functions with autotools
3983369103 fix: Enable debug flag for ubsan.
4d1db21102 Update tox-boostrapd hash
e700c31b70 Fix memory leak in group connection
2994441d9c Fix memory leak in save-generator
d0400df13d Fix memory leak in tox-bootstrapd
7a6d50ebe3 Install header for private/experimental API functions
d89677fb5f Remove defunct IRC channel from README.md
26d41fc604 Replace DEFAULT_TCP_RELAY_PORTS_COUNT with a compile-time calculation
63fb2941ca Clarify disabling of static assert checks
65b3375b98 refactor: Use Bin_Pack for packing Node_format.
84ba154f6a group connection queries now return our own connection type
a4df2862ed Replace tabs with spaces
1b6dee7594 Update tox-bootstrapd's base Docker images
a030cdee5c Fix Docker tox-bootstrapd hash update failing when using BuildKit
7cfe35dff2 cleanup: Remove explicit layering_check feature.
d390947245 chore: Upgrade sonar-scan jvm to java 17.
d1e850c56c fix: Add missing `htons` call when adding configured TCP relay.
814090f2b8 chore: Cancel old PR builds on docker and sonar-scan workflows.
83efb17367 perf: Add a KVM FreeBSD build on cirrus ci.
a927183233 test: Add a test for encrypting 100MB of data.
28f39049f6 chore: Retry freebsd tests 2 times.
47e77d1bb0 chore: Use C99 on MSVC instead of C11.
7155f7f60e test: Add an s390x build (on alpine) for CI.
6c35cef63f chore: Add a compcert docker run script.
41e6ea865e cleanup: Use tcc docker image for CI.
e726b197b0 refactor: Store time in Mono_Time in milliseconds.
REVERT: d4b06edc2a feat: add ngc events

git-subtree-dir: external/toxcore/c-toxcore
git-subtree-split: adbd5b32d85d9c13800f5ece17c0a9dce99faacd
2023-12-15 15:21:40 +01:00

373 lines
13 KiB
C

#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#include "../testing/misc_tools.h"
#include "../toxcore/crypto_core.h"
#include "../toxcore/net_crypto.h"
#include "check_compat.h"
static void rand_bytes(const Random *rng, uint8_t *b, size_t blen)
{
for (size_t i = 0; i < blen; i++) {
b[i] = random_u08(rng);
}
}
// These test vectors are from libsodium's test suite
static const uint8_t alicesk[32] = {
0x77, 0x07, 0x6d, 0x0a, 0x73, 0x18, 0xa5, 0x7d,
0x3c, 0x16, 0xc1, 0x72, 0x51, 0xb2, 0x66, 0x45,
0xdf, 0x4c, 0x2f, 0x87, 0xeb, 0xc0, 0x99, 0x2a,
0xb1, 0x77, 0xfb, 0xa5, 0x1d, 0xb9, 0x2c, 0x2a
};
static const uint8_t bobpk[32] = {
0xde, 0x9e, 0xdb, 0x7d, 0x7b, 0x7d, 0xc1, 0xb4,
0xd3, 0x5b, 0x61, 0xc2, 0xec, 0xe4, 0x35, 0x37,
0x3f, 0x83, 0x43, 0xc8, 0x5b, 0x78, 0x67, 0x4d,
0xad, 0xfc, 0x7e, 0x14, 0x6f, 0x88, 0x2b, 0x4f
};
static const uint8_t test_nonce[24] = {
0x69, 0x69, 0x6e, 0xe9, 0x55, 0xb6, 0x2b, 0x73,
0xcd, 0x62, 0xbd, 0xa8, 0x75, 0xfc, 0x73, 0xd6,
0x82, 0x19, 0xe0, 0x03, 0x6b, 0x7a, 0x0b, 0x37
};
static const uint8_t test_m[131] = {
0xbe, 0x07, 0x5f, 0xc5, 0x3c, 0x81, 0xf2, 0xd5,
0xcf, 0x14, 0x13, 0x16, 0xeb, 0xeb, 0x0c, 0x7b,
0x52, 0x28, 0xc5, 0x2a, 0x4c, 0x62, 0xcb, 0xd4,
0x4b, 0x66, 0x84, 0x9b, 0x64, 0x24, 0x4f, 0xfc,
0xe5, 0xec, 0xba, 0xaf, 0x33, 0xbd, 0x75, 0x1a,
0x1a, 0xc7, 0x28, 0xd4, 0x5e, 0x6c, 0x61, 0x29,
0x6c, 0xdc, 0x3c, 0x01, 0x23, 0x35, 0x61, 0xf4,
0x1d, 0xb6, 0x6c, 0xce, 0x31, 0x4a, 0xdb, 0x31,
0x0e, 0x3b, 0xe8, 0x25, 0x0c, 0x46, 0xf0, 0x6d,
0xce, 0xea, 0x3a, 0x7f, 0xa1, 0x34, 0x80, 0x57,
0xe2, 0xf6, 0x55, 0x6a, 0xd6, 0xb1, 0x31, 0x8a,
0x02, 0x4a, 0x83, 0x8f, 0x21, 0xaf, 0x1f, 0xde,
0x04, 0x89, 0x77, 0xeb, 0x48, 0xf5, 0x9f, 0xfd,
0x49, 0x24, 0xca, 0x1c, 0x60, 0x90, 0x2e, 0x52,
0xf0, 0xa0, 0x89, 0xbc, 0x76, 0x89, 0x70, 0x40,
0xe0, 0x82, 0xf9, 0x37, 0x76, 0x38, 0x48, 0x64,
0x5e, 0x07, 0x05
};
static const uint8_t test_c[147] = {
0xf3, 0xff, 0xc7, 0x70, 0x3f, 0x94, 0x00, 0xe5,
0x2a, 0x7d, 0xfb, 0x4b, 0x3d, 0x33, 0x05, 0xd9,
0x8e, 0x99, 0x3b, 0x9f, 0x48, 0x68, 0x12, 0x73,
0xc2, 0x96, 0x50, 0xba, 0x32, 0xfc, 0x76, 0xce,
0x48, 0x33, 0x2e, 0xa7, 0x16, 0x4d, 0x96, 0xa4,
0x47, 0x6f, 0xb8, 0xc5, 0x31, 0xa1, 0x18, 0x6a,
0xc0, 0xdf, 0xc1, 0x7c, 0x98, 0xdc, 0xe8, 0x7b,
0x4d, 0xa7, 0xf0, 0x11, 0xec, 0x48, 0xc9, 0x72,
0x71, 0xd2, 0xc2, 0x0f, 0x9b, 0x92, 0x8f, 0xe2,
0x27, 0x0d, 0x6f, 0xb8, 0x63, 0xd5, 0x17, 0x38,
0xb4, 0x8e, 0xee, 0xe3, 0x14, 0xa7, 0xcc, 0x8a,
0xb9, 0x32, 0x16, 0x45, 0x48, 0xe5, 0x26, 0xae,
0x90, 0x22, 0x43, 0x68, 0x51, 0x7a, 0xcf, 0xea,
0xbd, 0x6b, 0xb3, 0x73, 0x2b, 0xc0, 0xe9, 0xda,
0x99, 0x83, 0x2b, 0x61, 0xca, 0x01, 0xb6, 0xde,
0x56, 0x24, 0x4a, 0x9e, 0x88, 0xd5, 0xf9, 0xb3,
0x79, 0x73, 0xf6, 0x22, 0xa4, 0x3d, 0x14, 0xa6,
0x59, 0x9b, 0x1f, 0x65, 0x4c, 0xb4, 0x5a, 0x74,
0xe3, 0x55, 0xa5
};
static void test_known(void)
{
uint8_t c[147];
uint8_t m[131];
ck_assert_msg(sizeof(c) == sizeof(m) + CRYPTO_MAC_SIZE * sizeof(uint8_t),
"cyphertext should be CRYPTO_MAC_SIZE bytes longer than plaintext");
ck_assert_msg(sizeof(test_c) == sizeof(c), "sanity check failed");
ck_assert_msg(sizeof(test_m) == sizeof(m), "sanity check failed");
const uint16_t clen = encrypt_data(bobpk, alicesk, test_nonce, test_m, sizeof(test_m) / sizeof(uint8_t), c);
ck_assert_msg(memcmp(test_c, c, sizeof(c)) == 0, "cyphertext doesn't match test vector");
ck_assert_msg(clen == sizeof(c) / sizeof(uint8_t), "wrong ciphertext length");
const uint16_t mlen = decrypt_data(bobpk, alicesk, test_nonce, test_c, sizeof(test_c) / sizeof(uint8_t), m);
ck_assert_msg(memcmp(test_m, m, sizeof(m)) == 0, "decrypted text doesn't match test vector");
ck_assert_msg(mlen == sizeof(m) / sizeof(uint8_t), "wrong plaintext length");
}
static void test_fast_known(void)
{
uint8_t k[CRYPTO_SHARED_KEY_SIZE];
uint8_t c[147];
uint8_t m[131];
encrypt_precompute(bobpk, alicesk, k);
ck_assert_msg(sizeof(c) == sizeof(m) + CRYPTO_MAC_SIZE * sizeof(uint8_t),
"cyphertext should be CRYPTO_MAC_SIZE bytes longer than plaintext");
ck_assert_msg(sizeof(test_c) == sizeof(c), "sanity check failed");
ck_assert_msg(sizeof(test_m) == sizeof(m), "sanity check failed");
const uint16_t clen = encrypt_data_symmetric(k, test_nonce, test_m, sizeof(test_m) / sizeof(uint8_t), c);
ck_assert_msg(memcmp(test_c, c, sizeof(c)) == 0, "cyphertext doesn't match test vector");
ck_assert_msg(clen == sizeof(c) / sizeof(uint8_t), "wrong ciphertext length");
const uint16_t mlen = decrypt_data_symmetric(k, test_nonce, test_c, sizeof(test_c) / sizeof(uint8_t), m);
ck_assert_msg(memcmp(test_m, m, sizeof(m)) == 0, "decrypted text doesn't match test vector");
ck_assert_msg(mlen == sizeof(m) / sizeof(uint8_t), "wrong plaintext length");
}
static void test_endtoend(void)
{
const Random *rng = system_random();
ck_assert(rng != nullptr);
// Test 100 random messages and keypairs
for (uint8_t testno = 0; testno < 100; testno++) {
uint8_t pk1[CRYPTO_PUBLIC_KEY_SIZE];
uint8_t sk1[CRYPTO_SECRET_KEY_SIZE];
uint8_t pk2[CRYPTO_PUBLIC_KEY_SIZE];
uint8_t sk2[CRYPTO_SECRET_KEY_SIZE];
uint8_t k1[CRYPTO_SHARED_KEY_SIZE];
uint8_t k2[CRYPTO_SHARED_KEY_SIZE];
uint8_t n[CRYPTO_NONCE_SIZE];
enum { M_SIZE = 50 };
uint8_t m[M_SIZE];
uint8_t c1[sizeof(m) + CRYPTO_MAC_SIZE];
uint8_t c2[sizeof(m) + CRYPTO_MAC_SIZE];
uint8_t c3[sizeof(m) + CRYPTO_MAC_SIZE];
uint8_t c4[sizeof(m) + CRYPTO_MAC_SIZE];
uint8_t m1[sizeof(m)];
uint8_t m2[sizeof(m)];
uint8_t m3[sizeof(m)];
uint8_t m4[sizeof(m)];
//Generate random message (random length from 10 to 50)
const uint16_t mlen = (random_u32(rng) % (M_SIZE - 10)) + 10;
rand_bytes(rng, m, mlen);
rand_bytes(rng, n, CRYPTO_NONCE_SIZE);
//Generate keypairs
crypto_new_keypair(rng, pk1, sk1);
crypto_new_keypair(rng, pk2, sk2);
//Precompute shared keys
encrypt_precompute(pk2, sk1, k1);
encrypt_precompute(pk1, sk2, k2);
ck_assert_msg(memcmp(k1, k2, CRYPTO_SHARED_KEY_SIZE) == 0, "encrypt_precompute: bad");
//Encrypt all four ways
const uint16_t c1len = encrypt_data(pk2, sk1, n, m, mlen, c1);
const uint16_t c2len = encrypt_data(pk1, sk2, n, m, mlen, c2);
const uint16_t c3len = encrypt_data_symmetric(k1, n, m, mlen, c3);
const uint16_t c4len = encrypt_data_symmetric(k2, n, m, mlen, c4);
ck_assert_msg(c1len == c2len && c1len == c3len && c1len == c4len, "cyphertext lengths differ");
ck_assert_msg(c1len == mlen + (uint16_t)CRYPTO_MAC_SIZE, "wrong cyphertext length");
ck_assert_msg(memcmp(c1, c2, c1len) == 0 && memcmp(c1, c3, c1len) == 0
&& memcmp(c1, c4, c1len) == 0, "crypertexts differ");
//Decrypt all four ways
const uint16_t m1len = decrypt_data(pk2, sk1, n, c1, c1len, m1);
const uint16_t m2len = decrypt_data(pk1, sk2, n, c1, c1len, m2);
const uint16_t m3len = decrypt_data_symmetric(k1, n, c1, c1len, m3);
const uint16_t m4len = decrypt_data_symmetric(k2, n, c1, c1len, m4);
ck_assert_msg(m1len == m2len && m1len == m3len && m1len == m4len, "decrypted text lengths differ");
ck_assert_msg(m1len == mlen, "wrong decrypted text length");
ck_assert_msg(memcmp(m1, m2, mlen) == 0 && memcmp(m1, m3, mlen) == 0
&& memcmp(m1, m4, mlen) == 0, "decrypted texts differ");
ck_assert_msg(memcmp(m1, m, mlen) == 0, "wrong decrypted text");
}
}
static void test_large_data(void)
{
const Random *rng = system_random();
ck_assert(rng != nullptr);
uint8_t k[CRYPTO_SHARED_KEY_SIZE];
uint8_t n[CRYPTO_NONCE_SIZE];
const size_t m1_size = MAX_CRYPTO_PACKET_SIZE - CRYPTO_MAC_SIZE;
uint8_t *m1 = (uint8_t *)malloc(m1_size);
uint8_t *c1 = (uint8_t *)malloc(m1_size + CRYPTO_MAC_SIZE);
uint8_t *m1prime = (uint8_t *)malloc(m1_size);
const size_t m2_size = MAX_CRYPTO_PACKET_SIZE - CRYPTO_MAC_SIZE;
uint8_t *m2 = (uint8_t *)malloc(m2_size);
uint8_t *c2 = (uint8_t *)malloc(m2_size + CRYPTO_MAC_SIZE);
ck_assert(m1 != nullptr && c1 != nullptr && m1prime != nullptr && m2 != nullptr && c2 != nullptr);
//Generate random messages
rand_bytes(rng, m1, m1_size);
rand_bytes(rng, m2, m2_size);
rand_bytes(rng, n, CRYPTO_NONCE_SIZE);
//Generate key
rand_bytes(rng, k, CRYPTO_SHARED_KEY_SIZE);
const uint16_t c1len = encrypt_data_symmetric(k, n, m1, m1_size, c1);
const uint16_t c2len = encrypt_data_symmetric(k, n, m2, m2_size, c2);
ck_assert_msg(c1len == m1_size + CRYPTO_MAC_SIZE, "could not encrypt");
ck_assert_msg(c2len == m2_size + CRYPTO_MAC_SIZE, "could not encrypt");
const uint16_t m1plen = decrypt_data_symmetric(k, n, c1, c1len, m1prime);
ck_assert_msg(m1plen == m1_size, "decrypted text lengths differ");
ck_assert_msg(memcmp(m1prime, m1, m1_size) == 0, "decrypted texts differ");
free(c2);
free(m2);
free(m1prime);
free(c1);
free(m1);
}
static void test_large_data_symmetric(void)
{
const Random *rng = system_random();
ck_assert(rng != nullptr);
uint8_t k[CRYPTO_SYMMETRIC_KEY_SIZE];
uint8_t n[CRYPTO_NONCE_SIZE];
const size_t m1_size = 16 * 16 * 16;
uint8_t *m1 = (uint8_t *)malloc(m1_size);
uint8_t *c1 = (uint8_t *)malloc(m1_size + CRYPTO_MAC_SIZE);
uint8_t *m1prime = (uint8_t *)malloc(m1_size);
ck_assert(m1 != nullptr && c1 != nullptr && m1prime != nullptr);
//Generate random messages
rand_bytes(rng, m1, m1_size);
rand_bytes(rng, n, CRYPTO_NONCE_SIZE);
//Generate key
new_symmetric_key(rng, k);
const uint16_t c1len = encrypt_data_symmetric(k, n, m1, m1_size, c1);
ck_assert_msg(c1len == m1_size + CRYPTO_MAC_SIZE, "could not encrypt data");
const uint16_t m1plen = decrypt_data_symmetric(k, n, c1, c1len, m1prime);
ck_assert_msg(m1plen == m1_size, "decrypted text lengths differ");
ck_assert_msg(memcmp(m1prime, m1, m1_size) == 0, "decrypted texts differ");
free(m1prime);
free(c1);
free(m1);
}
static void test_very_large_data(void)
{
const Random *rng = system_random();
ck_assert(rng != nullptr);
uint8_t nonce[CRYPTO_NONCE_SIZE] = {0};
uint8_t pk[CRYPTO_PUBLIC_KEY_SIZE];
uint8_t sk[CRYPTO_SECRET_KEY_SIZE];
crypto_new_keypair(rng, pk, sk);
// 100 MiB of data (all zeroes, doesn't matter what's inside).
const uint32_t plain_size = 100 * 1024 * 1024;
uint8_t *plain = (uint8_t *)malloc(plain_size);
uint8_t *encrypted = (uint8_t *)malloc(plain_size + CRYPTO_MAC_SIZE);
ck_assert(plain != nullptr);
ck_assert(encrypted != nullptr);
encrypt_data(pk, sk, nonce, plain, plain_size, encrypted);
free(encrypted);
free(plain);
}
static void increment_nonce_number_cmp(uint8_t *nonce, uint32_t num)
{
uint32_t num1 = 0;
memcpy(&num1, nonce + (CRYPTO_NONCE_SIZE - sizeof(num1)), sizeof(num1));
num1 = net_ntohl(num1);
uint32_t num2 = num + num1;
if (num2 < num1) {
for (uint16_t i = CRYPTO_NONCE_SIZE - sizeof(num1); i != 0; --i) {
++nonce[i - 1];
if (nonce[i - 1] != 0) {
break;
}
}
}
num2 = net_htonl(num2);
memcpy(nonce + (CRYPTO_NONCE_SIZE - sizeof(num2)), &num2, sizeof(num2));
}
static void test_increment_nonce(void)
{
const Random *rng = system_random();
ck_assert(rng != nullptr);
uint8_t n[CRYPTO_NONCE_SIZE];
for (uint32_t i = 0; i < CRYPTO_NONCE_SIZE; ++i) {
n[i] = random_u08(rng);
}
uint8_t n1[CRYPTO_NONCE_SIZE];
memcpy(n1, n, CRYPTO_NONCE_SIZE);
for (uint32_t i = 0; i < (1 << 18); ++i) {
increment_nonce_number_cmp(n, 1);
increment_nonce(n1);
ck_assert_msg(memcmp(n, n1, CRYPTO_NONCE_SIZE) == 0, "Bad increment_nonce function");
}
for (uint32_t i = 0; i < (1 << 18); ++i) {
const uint32_t r = random_u32(rng);
increment_nonce_number_cmp(n, r);
increment_nonce_number(n1, r);
ck_assert_msg(memcmp(n, n1, CRYPTO_NONCE_SIZE) == 0, "Bad increment_nonce_number function");
}
}
static void test_memzero(void)
{
uint8_t src[sizeof(test_c)];
memcpy(src, test_c, sizeof(test_c));
crypto_memzero(src, sizeof(src));
for (size_t i = 0; i < sizeof(src); i++) {
ck_assert_msg(src[i] == 0, "Memory is not zeroed");
}
}
int main(void)
{
setvbuf(stdout, nullptr, _IONBF, 0);
test_known();
test_fast_known();
test_endtoend(); /* waiting up to 15 seconds */
test_large_data();
test_large_data_symmetric();
test_very_large_data();
test_increment_nonce();
test_memzero();
return 0;
}