#pragma once #include #include #include #include // LEDBAT: https://www.rfc-editor.org/rfc/rfc6817 // LEDBAT++: https://www.ietf.org/archive/id/draft-irtf-iccrg-ledbat-plus-plus-01.txt // LEDBAT++ implementation struct LEDBAT { public: // config using SeqIDType = std::pair; // tf_id, seq_id static constexpr size_t IPV4_HEADER_SIZE {20}; static constexpr size_t IPV6_HEADER_SIZE {40}; // bru static constexpr size_t UDP_HEADER_SIZE {8}; // TODO: tcp AND IPv6 will be different static constexpr size_t SEGMENT_OVERHEAD { 4+ // ft overhead 46+ // tox? UDP_HEADER_SIZE+ IPV4_HEADER_SIZE }; // TODO: make configurable, set with tox ngc lossy packet size //const size_t MAXIMUM_SEGMENT_DATA_SIZE {1000-4}; const size_t MAXIMUM_SEGMENT_DATA_SIZE {500-4}; //static constexpr size_t maximum_segment_size {496 + segment_overhead}; // tox 500 - 4 from ft const size_t MAXIMUM_SEGMENT_SIZE {MAXIMUM_SEGMENT_DATA_SIZE + SEGMENT_OVERHEAD}; // tox 500 - 4 from ft //static_assert(maximum_segment_size == 574); // mesured in wireshark // ledbat++ says 60ms, we might need other values if relayed //const float target_delay {0.060f}; const float target_delay {0.030f}; //const float target_delay {0.120f}; // 2x if relayed? // TODO: use a factor for multiple of rtt static constexpr size_t current_delay_filter_window {16*4}; //static constexpr size_t rtt_buffer_size_max {2000}; float max_byterate_allowed {10*1024*1024}; // 10MiB/s public: LEDBAT(size_t maximum_segment_data_size); // return the current believed window in bytes of how much data can be inflight, // without overstepping the delay requirement float getCWnD(void) const { return _cwnd; } // TODO: api for how much data we should send // take time since last sent into account // respect max_byterate_allowed size_t canSend(void) const; // get the list of timed out seq_ids std::vector getTimeouts(void) const; public: // callbacks // data size is without overhead void onSent(SeqIDType seq, size_t data_size); void onAck(std::vector seqs); // if discard, not resent, not inflight void onLoss(SeqIDType seq, bool discard); private: using clock = std::chrono::steady_clock; // make values relative to algo start for readability (and precision) // get timestamp in seconds float getTimeNow(void) const { return std::chrono::duration{clock::now() - _time_start_offset}.count(); } // moving avg over the last few delay samples // VERY sensitive to bundling acks float getCurrentDelay(void) const; void addRTT(float new_delay); void updateWindows(void); private: // state //float _cto {2.f}; // congestion timeout value in seconds float _cwnd {2.f * MAXIMUM_SEGMENT_SIZE}; // in bytes float _base_delay {2.f}; // lowest mesured delay in _rtt_buffer in seconds float _last_cwnd {0.f}; // timepoint of last cwnd correction int64_t _recently_acked_data {0}; // reset on _last_cwnd bool _recently_lost_data {false}; int64_t _recently_sent_bytes {0}; // initialize to low value, will get corrected very fast float _fwnd {0.01f * max_byterate_allowed}; // in bytes // ssthresh // spec recomends 10min // TODO: optimize and devide into spans of 1min (spec recom) std::deque _tmp_rtt_buffer; std::deque> _rtt_buffer; // timepoint, delay std::deque _rtt_buffer_minutes; // list of sequence ids and timestamps of when they where sent std::deque> _in_flight; int64_t _in_flight_bytes {0}; private: // helper clock::time_point _time_start_offset; };