tomato-testing/stb_image_resize_test/vf_train.c

1000 lines
28 KiB
C
Raw Normal View History

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#define stop() __debugbreak()
#include <windows.h>
#define int64 __int64
#pragma warning(disable:4127)
#define STBIR__WEIGHT_TABLES
#define STBIR_PROFILE
#define STB_IMAGE_RESIZE_IMPLEMENTATION
#include "stb_image_resize2.h"
static int * file_read( char const * filename )
{
size_t s;
int * m;
FILE * f = fopen( filename, "rb" );
if ( f == 0 ) return 0;
fseek( f, 0, SEEK_END);
s = ftell( f );
fseek( f, 0, SEEK_SET);
m = malloc( s + 4 );
m[0] = (int)s;
fread( m+1, 1, s, f);
fclose(f);
return( m );
}
typedef struct fileinfo
{
int * timings;
int timing_count;
int dimensionx, dimensiony;
int numtypes;
int * types;
int * effective;
int cpu;
int simd;
int numinputrects;
int * inputrects;
int outputscalex, outputscaley;
int milliseconds;
int64 cycles;
double scale_time;
int bitmapx, bitmapy;
char const * filename;
} fileinfo;
int numfileinfo;
fileinfo fi[256];
unsigned char * bitmap;
int bitmapw, bitmaph, bitmapp;
static int use_timing_file( char const * filename, int index )
{
int * base = file_read( filename );
int * file = base;
if ( base == 0 ) return 0;
++file; // skip file image size;
if ( *file++ != 'VFT1' ) return 0;
fi[index].cpu = *file++;
fi[index].simd = *file++;
fi[index].dimensionx = *file++;
fi[index].dimensiony = *file++;
fi[index].numtypes = *file++;
fi[index].types = file; file += fi[index].numtypes;
fi[index].effective = file; file += fi[index].numtypes;
fi[index].numinputrects = *file++;
fi[index].inputrects = file; file += fi[index].numinputrects * 2;
fi[index].outputscalex = *file++;
fi[index].outputscaley = *file++;
fi[index].milliseconds = *file++;
fi[index].cycles = ((int64*)file)[0]; file += 2;
fi[index].filename = filename;
fi[index].timings = file;
fi[index].timing_count = (int) ( ( base[0] - ( ((char*)file - (char*)base - sizeof(int) ) ) ) / (sizeof(int)*2) );
fi[index].scale_time = (double)fi[index].milliseconds / (double)fi[index].cycles;
return 1;
}
static int vert_first( float weights_table[STBIR_RESIZE_CLASSIFICATIONS][4], int ox, int oy, int ix, int iy, int filter, STBIR__V_FIRST_INFO * v_info )
{
float h_scale=(float)ox/(float)(ix);
float v_scale=(float)oy/(float)(iy);
stbir__support_callback * support = stbir__builtin_supports[filter];
int vertical_filter_width = stbir__get_filter_pixel_width(support,v_scale,0);
int vertical_gather = ( v_scale >= ( 1.0f - stbir__small_float ) ) || ( vertical_filter_width <= STBIR_FORCE_GATHER_FILTER_SCANLINES_AMOUNT );
return stbir__should_do_vertical_first( weights_table, stbir__get_filter_pixel_width(support,h_scale,0), h_scale, ox, vertical_filter_width, v_scale, oy, vertical_gather, v_info );
}
#define STB_IMAGE_WRITE_IMPLEMENTATION
#include "stb_image_write.h"
static void alloc_bitmap()
{
int findex;
int x = 0, y = 0;
int w = 0, h = 0;
for( findex = 0 ; findex < numfileinfo ; findex++ )
{
int nx, ny;
int thisw, thish;
thisw = ( fi[findex].dimensionx * fi[findex].numtypes ) + ( fi[findex].numtypes - 1 );
thish = ( fi[findex].dimensiony * fi[findex].numinputrects ) + ( fi[findex].numinputrects - 1 );
for(;;)
{
nx = x + ((x)?4:0) + thisw;
ny = y + ((y)?4:0) + thish;
if ( ( nx <= 3600 ) || ( x == 0 ) )
{
fi[findex].bitmapx = x + ((x)?4:0);
fi[findex].bitmapy = y + ((y)?4:0);
x = nx;
if ( x > w ) w = x;
if ( ny > h ) h = ny;
break;
}
else
{
x = 0;
y = h;
}
}
}
w = (w+3) & ~3;
bitmapw = w;
bitmaph = h;
bitmapp = w * 3; // RGB
bitmap = malloc( bitmapp * bitmaph );
memset( bitmap, 0, bitmapp * bitmaph );
}
static void build_bitmap( float weights[STBIR_RESIZE_CLASSIFICATIONS][4], int do_channel_count_index, int findex )
{
static int colors[STBIR_RESIZE_CLASSIFICATIONS];
STBIR__V_FIRST_INFO v_info = {0};
int * ts;
int ir;
unsigned char * bitm = bitmap + ( fi[findex].bitmapx*3 ) + ( fi[findex].bitmapy*bitmapp) ;
for( ir = 0; ir < STBIR_RESIZE_CLASSIFICATIONS ; ir++ ) colors[ ir ] = 127*ir/STBIR_RESIZE_CLASSIFICATIONS+128;
ts = fi[findex].timings;
for( ir = 0 ; ir < fi[findex].numinputrects ; ir++ )
{
int ix, iy, chanind;
ix = fi[findex].inputrects[ir*2];
iy = fi[findex].inputrects[ir*2+1];
for( chanind = 0 ; chanind < fi[findex].numtypes ; chanind++ )
{
int ofs, h, hh;
// just do the type that we're on
if ( chanind != do_channel_count_index )
{
ts += 2 * fi[findex].dimensionx * fi[findex].dimensiony;
continue;
}
// bitmap offset
ofs=chanind*(fi[findex].dimensionx+1)*3+ir*(fi[findex].dimensiony+1)*bitmapp;
h = 1;
for( hh = 0 ; hh < fi[findex].dimensiony; hh++ )
{
int ww, w = 1;
for( ww = 0 ; ww < fi[findex].dimensionx; ww++ )
{
int good, v_first, VF, HF;
VF = ts[0];
HF = ts[1];
v_first = vert_first( weights, w, h, ix, iy, STBIR_FILTER_MITCHELL, &v_info );
good = ( ((HF<=VF) && (!v_first)) || ((VF<=HF) && (v_first)));
if ( good )
{
bitm[ofs+2] = 0;
bitm[ofs+1] = (unsigned char)colors[v_info.v_resize_classification];
}
else
{
double r;
if ( HF < VF )
r = (double)(VF-HF)/(double)HF;
else
r = (double)(HF-VF)/(double)VF;
if ( r > 0.4f) r = 0.4;
r *= 1.0f/0.4f;
bitm[ofs+2] = (char)(255.0f*r);
bitm[ofs+1] = (char)(((float)colors[v_info.v_resize_classification])*(1.0f-r));
}
bitm[ofs] = 0;
ofs += 3;
ts += 2;
w += fi[findex].outputscalex;
}
ofs += bitmapp - fi[findex].dimensionx*3;
h += fi[findex].outputscaley;
}
}
}
}
static void build_comp_bitmap( float weights[STBIR_RESIZE_CLASSIFICATIONS][4], int do_channel_count_index )
{
int * ts0;
int * ts1;
int ir;
unsigned char * bitm = bitmap + ( fi[0].bitmapx*3 ) + ( fi[0].bitmapy*bitmapp) ;
ts0 = fi[0].timings;
ts1 = fi[1].timings;
for( ir = 0 ; ir < fi[0].numinputrects ; ir++ )
{
int ix, iy, chanind;
ix = fi[0].inputrects[ir*2];
iy = fi[0].inputrects[ir*2+1];
for( chanind = 0 ; chanind < fi[0].numtypes ; chanind++ )
{
int ofs, h, hh;
// just do the type that we're on
if ( chanind != do_channel_count_index )
{
ts0 += 2 * fi[0].dimensionx * fi[0].dimensiony;
ts1 += 2 * fi[0].dimensionx * fi[0].dimensiony;
continue;
}
// bitmap offset
ofs=chanind*(fi[0].dimensionx+1)*3+ir*(fi[0].dimensiony+1)*bitmapp;
h = 1;
for( hh = 0 ; hh < fi[0].dimensiony; hh++ )
{
int ww, w = 1;
for( ww = 0 ; ww < fi[0].dimensionx; ww++ )
{
int v_first, time0, time1;
v_first = vert_first( weights, w, h, ix, iy, STBIR_FILTER_MITCHELL, 0 );
time0 = ( v_first ) ? ts0[0] : ts0[1];
time1 = ( v_first ) ? ts1[0] : ts1[1];
if ( time0 < time1 )
{
double r = (double)(time1-time0)/(double)time0;
if ( r > 0.4f) r = 0.4;
r *= 1.0f/0.4f;
bitm[ofs+2] = 0;
bitm[ofs+1] = (char)(255.0f*r);
bitm[ofs] = (char)(64.0f*(1.0f-r));
}
else
{
double r = (double)(time0-time1)/(double)time1;
if ( r > 0.4f) r = 0.4;
r *= 1.0f/0.4f;
bitm[ofs+2] = (char)(255.0f*r);
bitm[ofs+1] = 0;
bitm[ofs] = (char)(64.0f*(1.0f-r));
}
ofs += 3;
ts0 += 2;
ts1 += 2;
w += fi[0].outputscalex;
}
ofs += bitmapp - fi[0].dimensionx*3;
h += fi[0].outputscaley;
}
}
}
}
static void write_bitmap()
{
stbi_write_png( "results.png", bitmapp / 3, bitmaph, 3|STB_IMAGE_BGR, bitmap, bitmapp );
}
static void calc_errors( float weights_table[STBIR_RESIZE_CLASSIFICATIONS][4], int * curtot, double * curerr, int do_channel_count_index )
{
int th, findex;
STBIR__V_FIRST_INFO v_info = {0};
for(th=0;th<STBIR_RESIZE_CLASSIFICATIONS;th++)
{
curerr[th]=0;
curtot[th]=0;
}
for( findex = 0 ; findex < numfileinfo ; findex++ )
{
int * ts;
int ir;
ts = fi[findex].timings;
for( ir = 0 ; ir < fi[findex].numinputrects ; ir++ )
{
int ix, iy, chanind;
ix = fi[findex].inputrects[ir*2];
iy = fi[findex].inputrects[ir*2+1];
for( chanind = 0 ; chanind < fi[findex].numtypes ; chanind++ )
{
int h, hh;
// just do the type that we're on
if ( chanind != do_channel_count_index )
{
ts += 2 * fi[findex].dimensionx * fi[findex].dimensiony;
continue;
}
h = 1;
for( hh = 0 ; hh < fi[findex].dimensiony; hh++ )
{
int ww, w = 1;
for( ww = 0 ; ww < fi[findex].dimensionx; ww++ )
{
int good, v_first, VF, HF;
VF = ts[0];
HF = ts[1];
v_first = vert_first( weights_table, w, h, ix, iy, STBIR_FILTER_MITCHELL, &v_info );
good = ( ((HF<=VF) && (!v_first)) || ((VF<=HF) && (v_first)));
if ( !good )
{
double diff;
if ( VF < HF )
diff = ((double)HF-(double)VF) * fi[findex].scale_time;
else
diff = ((double)VF-(double)HF) * fi[findex].scale_time;
curtot[v_info.v_resize_classification] += 1;
curerr[v_info.v_resize_classification] += diff;
}
ts += 2;
w += fi[findex].outputscalex;
}
h += fi[findex].outputscaley;
}
}
}
}
}
#define TRIESPERWEIGHT 32
#define MAXRANGE ((TRIESPERWEIGHT+1) * (TRIESPERWEIGHT+1) * (TRIESPERWEIGHT+1) * (TRIESPERWEIGHT+1) - 1)
static void expand_to_floats( float * weights, int range )
{
weights[0] = (float)( range % (TRIESPERWEIGHT+1) ) / (float)TRIESPERWEIGHT;
weights[1] = (float)( range/(TRIESPERWEIGHT+1) % (TRIESPERWEIGHT+1) ) / (float)TRIESPERWEIGHT;
weights[2] = (float)( range/(TRIESPERWEIGHT+1)/(TRIESPERWEIGHT+1) % (TRIESPERWEIGHT+1) ) / (float)TRIESPERWEIGHT;
weights[3] = (float)( range/(TRIESPERWEIGHT+1)/(TRIESPERWEIGHT+1)/(TRIESPERWEIGHT+1) % (TRIESPERWEIGHT+1) ) / (float)TRIESPERWEIGHT;
}
static char const * expand_to_string( int range )
{
static char str[128];
int w0,w1,w2,w3;
w0 = range % (TRIESPERWEIGHT+1);
w1 = range/(TRIESPERWEIGHT+1) % (TRIESPERWEIGHT+1);
w2 = range/(TRIESPERWEIGHT+1)/(TRIESPERWEIGHT+1) % (TRIESPERWEIGHT+1);
w3 = range/(TRIESPERWEIGHT+1)/(TRIESPERWEIGHT+1)/(TRIESPERWEIGHT+1) % (TRIESPERWEIGHT+1);
sprintf( str, "[ %2d/%d %2d/%d %2d/%d %2d/%d ]",w0,TRIESPERWEIGHT,w1,TRIESPERWEIGHT,w2,TRIESPERWEIGHT,w3,TRIESPERWEIGHT );
return str;
}
static void print_weights( float weights[STBIR_RESIZE_CLASSIFICATIONS][4], int channel_count_index, int * tots, double * errs )
{
int th;
printf("ChInd: %d Weights:\n",channel_count_index);
for(th=0;th<STBIR_RESIZE_CLASSIFICATIONS;th++)
{
float * w = weights[th];
printf(" %d: [%1.5f %1.5f %1.5f %1.5f] (%d %.4f)\n",th, w[0], w[1], w[2], w[3], tots[th], errs[th] );
}
printf("\n");
}
static int windowranges[ 16 ];
static int windowstatus = 0;
static DWORD trainstart = 0;
static void opt_channel( float best_output_weights[STBIR_RESIZE_CLASSIFICATIONS][4], int channel_count_index )
{
int newbest = 0;
float weights[STBIR_RESIZE_CLASSIFICATIONS][4] = {0};
double besterr[STBIR_RESIZE_CLASSIFICATIONS];
int besttot[STBIR_RESIZE_CLASSIFICATIONS];
int best[STBIR_RESIZE_CLASSIFICATIONS]={0};
double curerr[STBIR_RESIZE_CLASSIFICATIONS];
int curtot[STBIR_RESIZE_CLASSIFICATIONS];
int th, range;
DWORD lasttick = 0;
for(th=0;th<STBIR_RESIZE_CLASSIFICATIONS;th++)
{
besterr[th]=1000000000000.0;
besttot[th]=0x7fffffff;
}
newbest = 0;
// try the whole range
range = MAXRANGE;
do
{
for(th=0;th<STBIR_RESIZE_CLASSIFICATIONS;th++)
expand_to_floats( weights[th], range );
calc_errors( weights, curtot, curerr, channel_count_index );
for(th=0;th<STBIR_RESIZE_CLASSIFICATIONS;th++)
{
if ( curerr[th] < besterr[th] )
{
besterr[th] = curerr[th];
besttot[th] = curtot[th];
best[th] = range;
expand_to_floats( best_output_weights[th], best[th] );
newbest = 1;
}
}
{
DWORD t = GetTickCount();
if ( range == 0 )
goto do_bitmap;
if ( newbest )
{
if ( ( GetTickCount() - lasttick ) > 200 )
{
int findex;
do_bitmap:
lasttick = t;
newbest = 0;
for( findex = 0 ; findex < numfileinfo ; findex++ )
build_bitmap( best_output_weights, channel_count_index, findex );
lasttick = GetTickCount();
}
}
}
windowranges[ channel_count_index ] = range;
// advance all the weights and loop
--range;
} while( ( range >= 0 ) && ( !windowstatus ) );
// if we hit here, then we tried all weights for this opt, so save them
}
static void print_struct( float weight[5][STBIR_RESIZE_CLASSIFICATIONS][4], char const * name )
{
printf("\n\nstatic float %s[5][STBIR_RESIZE_CLASSIFICATIONS][4]=\n{", name );
{
int i;
for(i=0;i<5;i++)
{
int th;
for(th=0;th<STBIR_RESIZE_CLASSIFICATIONS;th++)
{
int j;
printf("\n ");
for(j=0;j<4;j++)
printf("%1.5ff, ", weight[i][th][j] );
}
printf("\n");
}
printf("\n};\n");
}
}
static float retrain_weights[5][STBIR_RESIZE_CLASSIFICATIONS][4];
static DWORD __stdcall retrain_shim( LPVOID p )
{
int chanind = (int) (size_t)p;
opt_channel( retrain_weights[chanind], chanind );
return 0;
}
static char const * gettime( int ms )
{
static char time[32];
if (ms > 60000)
sprintf( time, "%dm %ds",ms/60000, (ms/1000)%60 );
else
sprintf( time, "%ds",ms/1000 );
return time;
}
static BITMAPINFOHEADER bmiHeader;
static DWORD extrawindoww, extrawindowh;
static HINSTANCE instance;
static int curzoom = 1;
static LRESULT WINAPI WindowProc( HWND window,
UINT message,
WPARAM wparam,
LPARAM lparam )
{
switch( message )
{
case WM_CHAR:
if ( wparam != 27 )
break;
// falls through
case WM_CLOSE:
{
int i;
int max = 0;
for( i = 0 ; i < fi[0].numtypes ; i++ )
if( windowranges[i] > max ) max = windowranges[i];
if ( ( max == 0 ) || ( MessageBox( window, "Cancel before training is finished?", "Vertical First Training", MB_OKCANCEL|MB_ICONSTOP ) == IDOK ) )
{
for( i = 0 ; i < fi[0].numtypes ; i++ )
if( windowranges[i] > max ) max = windowranges[i];
if ( max )
windowstatus = 1;
DestroyWindow( window );
}
}
return 0;
case WM_PAINT:
{
PAINTSTRUCT ps;
HDC dc;
dc = BeginPaint( window, &ps );
StretchDIBits( dc,
0, 0, bitmapw*curzoom, bitmaph*curzoom,
0, 0, bitmapw, bitmaph,
bitmap, (BITMAPINFO*)&bmiHeader, DIB_RGB_COLORS, SRCCOPY );
PatBlt( dc, bitmapw*curzoom, 0, 4096, 4096, WHITENESS );
PatBlt( dc, 0, bitmaph*curzoom, 4096, 4096, WHITENESS );
SetTextColor( dc, RGB(0,0,0) );
SetBkColor( dc, RGB(255,255,255) );
SetBkMode( dc, OPAQUE );
{
int i, l = 0, max = 0;
char buf[1024];
RECT rc;
POINT p;
for( i = 0 ; i < fi[0].numtypes ; i++ )
{
l += sprintf( buf + l, "channels: %d %s\n", fi[0].effective[i], windowranges[i] ? expand_to_string( windowranges[i] ) : "Done." );
if ( windowranges[i] > max ) max = windowranges[i];
}
rc.left = 32; rc.top = bitmaph*curzoom+10;
rc.right = 512; rc.bottom = rc.top + 512;
DrawText( dc, buf, -1, &rc, DT_TOP );
l = 0;
if ( max == 0 )
{
static DWORD traindone = 0;
if ( traindone == 0 ) traindone = GetTickCount();
l = sprintf( buf, "Finished in %s.", gettime( traindone - trainstart ) );
}
else if ( max != MAXRANGE )
l = sprintf( buf, "Done in %s...", gettime( (int) ( ( ( (int64)max * ( (int64)GetTickCount() - (int64)trainstart ) ) ) / (int64) ( MAXRANGE - max ) ) ) );
GetCursorPos( &p );
ScreenToClient( window, &p );
if ( ( p.x >= 0 ) && ( p.y >= 0 ) && ( p.x < (bitmapw*curzoom) ) && ( p.y < (bitmaph*curzoom) ) )
{
int findex;
int x, y, w, h, sx, sy, ix, iy, ox, oy;
int ir, chanind;
int * ts;
char badstr[64];
STBIR__V_FIRST_INFO v_info={0};
p.x /= curzoom;
p.y /= curzoom;
for( findex = 0 ; findex < numfileinfo ; findex++ )
{
x = fi[findex].bitmapx;
y = fi[findex].bitmapy;
w = x + ( fi[findex].dimensionx + 1 ) * fi[findex].numtypes;
h = y + ( fi[findex].dimensiony + 1 ) * fi[findex].numinputrects;
if ( ( p.x >= x ) && ( p.y >= y ) && ( p.x < w ) && ( p.y < h ) )
goto found;
}
goto nope;
found:
ir = ( p.y - y ) / ( fi[findex].dimensiony + 1 );
sy = ( p.y - y ) % ( fi[findex].dimensiony + 1 );
if ( sy >= fi[findex].dimensiony ) goto nope;
chanind = ( p.x - x ) / ( fi[findex].dimensionx + 1 );
sx = ( p.x - x ) % ( fi[findex].dimensionx + 1 );
if ( sx >= fi[findex].dimensionx ) goto nope;
ix = fi[findex].inputrects[ir*2];
iy = fi[findex].inputrects[ir*2+1];
ts = fi[findex].timings + ( ( fi[findex].dimensionx * fi[findex].dimensiony * fi[findex].numtypes * ir ) + ( fi[findex].dimensionx * fi[findex].dimensiony * chanind ) + ( fi[findex].dimensionx * sy ) + sx ) * 2;
ox = 1+fi[findex].outputscalex*sx;
oy = 1+fi[findex].outputscaley*sy;
if ( windowstatus != 2 )
{
int VF, HF, v_first, good;
VF = ts[0];
HF = ts[1];
v_first = vert_first( retrain_weights[chanind], ox, oy, ix, iy, STBIR_FILTER_MITCHELL, &v_info );
good = ( ((HF<=VF) && (!v_first)) || ((VF<=HF) && (v_first)));
if ( good )
badstr[0] = 0;
else
{
double r;
if ( HF < VF )
r = (double)(VF-HF)/(double)HF;
else
r = (double)(HF-VF)/(double)VF;
sprintf( badstr, " %.1f%% off", r*100 );
}
sprintf( buf + l, "\n\n%s\nCh: %d Resize: %dx%d to %dx%d\nV: %d H: %d Order: %c (%s%s)\nClass: %d Scale: %.2f %s", fi[findex].filename,fi[findex].effective[chanind], ix,iy,ox,oy, VF, HF, v_first?'V':'H', good?"Good":"Wrong", badstr, v_info.v_resize_classification, (double)oy/(double)iy, v_info.is_gather ? "Gather" : "Scatter" );
}
else
{
int v_first, time0, time1;
float (* weights)[4] = stbir__compute_weights[chanind];
int * ts1;
char b0[32], b1[32];
ts1 = fi[1].timings + ( ts - fi[0].timings );
v_first = vert_first( weights, ox, oy, ix, iy, STBIR_FILTER_MITCHELL, &v_info );
time0 = ( v_first ) ? ts[0] : ts[1];
time1 = ( v_first ) ? ts1[0] : ts1[1];
b0[0] = b1[0] = 0;
if ( time0 < time1 )
sprintf( b0," (%.f%% better)", ((double)time1-(double)time0)*100.0f/(double)time0);
else
sprintf( b1," (%.f%% better)", ((double)time0-(double)time1)*100.0f/(double)time1);
sprintf( buf + l, "\n\n0: %s\n1: %s\nCh: %d Resize: %dx%d to %dx%d\nClass: %d Scale: %.2f %s\nTime0: %d%s\nTime1: %d%s", fi[0].filename, fi[1].filename, fi[0].effective[chanind], ix,iy,ox,oy, v_info.v_resize_classification, (double)oy/(double)iy, v_info.is_gather ? "Gather" : "Scatter", time0, b0, time1, b1 );
}
}
nope:
rc.left = 32+320; rc.right = 512+320;
SetTextColor( dc, RGB(0,0,128) );
DrawText( dc, buf, -1, &rc, DT_TOP );
}
EndPaint( window, &ps );
return 0;
}
case WM_TIMER:
InvalidateRect( window, 0, 0 );
return 0;
case WM_DESTROY:
PostQuitMessage( 0 );
return 0;
}
return DefWindowProc( window, message, wparam, lparam );
}
static void SetHighDPI(void)
{
typedef HRESULT WINAPI setdpitype(int v);
HMODULE h=LoadLibrary("Shcore.dll");
if (h)
{
setdpitype * sd = (setdpitype*)GetProcAddress(h,"SetProcessDpiAwareness");
if (sd )
sd(1);
}
}
static void draw_window()
{
WNDCLASS wc;
HWND w;
MSG msg;
instance = GetModuleHandle(NULL);
wc.style = 0;
wc.lpfnWndProc = WindowProc;
wc.cbClsExtra = 0;
wc.cbWndExtra = 0;
wc.hInstance = instance;
wc.hIcon = 0;
wc.hCursor = LoadCursor(NULL, IDC_ARROW);
wc.hbrBackground = 0;
wc.lpszMenuName = 0;
wc.lpszClassName = "WHTrain";
if ( !RegisterClass( &wc ) )
exit(1);
SetHighDPI();
bmiHeader.biSize = sizeof(BITMAPINFOHEADER);
bmiHeader.biWidth = bitmapp/3;
bmiHeader.biHeight = -bitmaph;
bmiHeader.biPlanes = 1;
bmiHeader.biBitCount = 24;
bmiHeader.biCompression = BI_RGB;
w = CreateWindow( "WHTrain",
"Vertical First Training",
WS_CAPTION | WS_POPUP| WS_CLIPCHILDREN |
WS_SYSMENU | WS_MINIMIZEBOX | WS_SIZEBOX,
CW_USEDEFAULT,CW_USEDEFAULT,
CW_USEDEFAULT,CW_USEDEFAULT,
0, 0, instance, 0 );
{
RECT r, c;
GetWindowRect( w, &r );
GetClientRect( w, &c );
extrawindoww = ( r.right - r.left ) - ( c.right - c.left );
extrawindowh = ( r.bottom - r.top ) - ( c.bottom - c.top );
SetWindowPos( w, 0, 0, 0, bitmapw * curzoom + extrawindoww, bitmaph * curzoom + extrawindowh + 164, SWP_NOMOVE );
}
ShowWindow( w, SW_SHOWNORMAL );
SetTimer( w, 1, 250, 0 );
{
BOOL ret;
while( ( ret = GetMessage( &msg, w, 0, 0 ) ) != 0 )
{
if ( ret == -1 )
break;
TranslateMessage( &msg );
DispatchMessage( &msg );
}
}
}
static void retrain()
{
HANDLE threads[ 16 ];
int chanind;
trainstart = GetTickCount();
for( chanind = 0 ; chanind < fi[0].numtypes ; chanind++ )
threads[ chanind ] = CreateThread( 0, 2048*1024, retrain_shim, (LPVOID)(size_t)chanind, 0, 0 );
draw_window();
for( chanind = 0 ; chanind < fi[0].numtypes ; chanind++ )
{
WaitForSingleObject( threads[ chanind ], INFINITE );
CloseHandle( threads[ chanind ] );
}
write_bitmap();
print_struct( retrain_weights, "retained_weights" );
if ( windowstatus ) printf( "CANCELLED!\n" );
}
static void info()
{
int findex;
// display info about each input file
for( findex = 0 ; findex < numfileinfo ; findex++ )
{
int i, h,m,s;
if ( findex ) printf( "\n" );
printf( "Timing file: %s\n", fi[findex].filename );
printf( "CPU type: %d %s\n", fi[findex].cpu, fi[findex].simd?(fi[findex].simd==2?"SIMD8":"SIMD4"):"Scalar" );
h = fi[findex].milliseconds/3600000;
m = (fi[findex].milliseconds-h*3600000)/60000;
s = (fi[findex].milliseconds-h*3600000-m*60000)/1000;
printf( "Total time in test: %dh %dm %ds Cycles/sec: %.f\n", h,m,s, 1000.0/fi[findex].scale_time );
printf( "Each tile of samples is %dx%d, and is scaled by %dx%d.\n", fi[findex].dimensionx,fi[findex].dimensiony, fi[findex].outputscalex,fi[findex].outputscaley );
printf( "So the x coords are: " );
for( i=0; i < fi[findex].dimensionx ; i++ ) printf( "%d ",1+i*fi[findex].outputscalex );
printf( "\n" );
printf( "And the y coords are: " );
for( i=0; i < fi[findex].dimensiony ; i++ ) printf( "%d ",1+i*fi[findex].outputscaley );
printf( "\n" );
printf( "There are %d channel counts and they are: ", fi[findex].numtypes );
for( i=0; i < fi[findex].numtypes ; i++ ) printf( "%d ",fi[findex].effective[i] );
printf( "\n" );
printf( "There are %d input rect sizes and they are: ", fi[findex].numinputrects );
for( i=0; i < fi[findex].numtypes ; i++ ) printf( "%dx%d ",fi[findex].inputrects[i*2],fi[findex].inputrects[i*2+1] );
printf( "\n" );
}
}
static void current( int do_win, int do_bitmap )
{
int i, findex;
trainstart = GetTickCount();
// clear progress
memset( windowranges, 0, sizeof( windowranges ) );
// copy in appropriate weights
memcpy( retrain_weights, stbir__compute_weights, sizeof( retrain_weights ) );
// build and print current errors and build current bitmap
for( i = 0 ; i < fi[0].numtypes ; i++ )
{
double curerr[STBIR_RESIZE_CLASSIFICATIONS];
int curtot[STBIR_RESIZE_CLASSIFICATIONS];
float (* weights)[4] = retrain_weights[i];
calc_errors( weights, curtot, curerr, i );
if ( !do_bitmap )
print_weights( weights, i, curtot, curerr );
for( findex = 0 ; findex < numfileinfo ; findex++ )
build_bitmap( weights, i, findex );
}
if ( do_win )
draw_window();
if ( do_bitmap )
write_bitmap();
}
static void compare()
{
int i;
trainstart = GetTickCount();
windowstatus = 2; // comp mode
// clear progress
memset( windowranges, 0, sizeof( windowranges ) );
if ( ( fi[0].numtypes != fi[1].numtypes ) || ( fi[0].numinputrects != fi[1].numinputrects ) ||
( fi[0].dimensionx != fi[1].dimensionx ) || ( fi[0].dimensiony != fi[1].dimensiony ) ||
( fi[0].outputscalex != fi[1].outputscalex ) || ( fi[0].outputscaley != fi[1].outputscaley ) )
{
err:
printf( "Timing files don't match.\n" );
exit(5);
}
for( i=0; i < fi[0].numtypes ; i++ )
{
if ( fi[0].effective[i] != fi[1].effective[i] ) goto err;
if ( fi[0].inputrects[i*2] != fi[1].inputrects[i*2] ) goto err;
if ( fi[0].inputrects[i*2+1] != fi[1].inputrects[i*2+1] ) goto err;
}
alloc_bitmap( 1 );
for( i = 0 ; i < fi[0].numtypes ; i++ )
{
float (* weights)[4] = stbir__compute_weights[i];
build_comp_bitmap( weights, i );
}
draw_window();
}
static void load_files( char ** args, int count )
{
int i;
if ( count == 0 )
{
printf( "No timing files listed!" );
exit(3);
}
for ( i = 0 ; i < count ; i++ )
{
if ( !use_timing_file( args[i], i ) )
{
printf( "Bad timing file %s\n", args[i] );
exit(2);
}
}
numfileinfo = count;
}
int main( int argc, char ** argv )
{
int check;
if ( argc < 3 )
{
err:
printf( "vf_train retrain [timing_filenames....] - recalcs weights for all the files on the command line.\n");
printf( "vf_train info [timing_filenames....] - shows info about each timing file.\n");
printf( "vf_train check [timing_filenames...] - show results for the current weights for all files listed.\n");
printf( "vf_train compare <timing file1> <timing file2> - compare two timing files (must only be two files and same resolution).\n");
printf( "vf_train bitmap [timing_filenames...] - write out results.png, comparing against the current weights for all files listed.\n");
exit(1);
}
check = ( strcmp( argv[1], "check" ) == 0 );
if ( ( check ) || ( strcmp( argv[1], "bitmap" ) == 0 ) )
{
load_files( argv + 2, argc - 2 );
alloc_bitmap( numfileinfo );
current( check, !check );
}
else if ( strcmp( argv[1], "info" ) == 0 )
{
load_files( argv + 2, argc - 2 );
info();
}
else if ( strcmp( argv[1], "compare" ) == 0 )
{
if ( argc != 4 )
{
printf( "You must specify two files to compare.\n" );
exit(4);
}
load_files( argv + 2, argc - 2 );
compare();
}
else if ( strcmp( argv[1], "retrain" ) == 0 )
{
load_files( argv + 2, argc - 2 );
alloc_bitmap( numfileinfo );
retrain();
}
else
{
goto err;
}
return 0;
}