2023-07-25 11:53:09 +02:00
|
|
|
#include "DHT.h"
|
|
|
|
|
|
|
|
#include <gtest/gtest.h>
|
|
|
|
|
|
|
|
#include <algorithm>
|
|
|
|
#include <array>
|
|
|
|
|
|
|
|
#include "crypto_core.h"
|
|
|
|
|
|
|
|
namespace {
|
|
|
|
|
|
|
|
using PublicKey = std::array<uint8_t, CRYPTO_PUBLIC_KEY_SIZE>;
|
|
|
|
using SecretKey = std::array<uint8_t, CRYPTO_SECRET_KEY_SIZE>;
|
|
|
|
|
|
|
|
struct KeyPair {
|
|
|
|
PublicKey pk;
|
|
|
|
SecretKey sk;
|
|
|
|
|
|
|
|
explicit KeyPair(const Random *rng) { crypto_new_keypair(rng, pk.data(), sk.data()); }
|
|
|
|
};
|
|
|
|
|
|
|
|
template <typename T, size_t N>
|
|
|
|
std::array<T, N> to_array(T const (&arr)[N])
|
|
|
|
{
|
|
|
|
std::array<T, N> stdarr;
|
|
|
|
std::copy(arr, arr + N, stdarr.begin());
|
|
|
|
return stdarr;
|
|
|
|
}
|
|
|
|
|
|
|
|
PublicKey random_pk(const Random *rng)
|
|
|
|
{
|
|
|
|
PublicKey pk;
|
|
|
|
random_bytes(rng, pk.data(), pk.size());
|
|
|
|
return pk;
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST(IdClosest, IdenticalKeysAreSameDistance)
|
|
|
|
{
|
|
|
|
const Random *rng = system_random();
|
|
|
|
ASSERT_NE(rng, nullptr);
|
|
|
|
|
|
|
|
PublicKey pk0 = random_pk(rng);
|
|
|
|
PublicKey pk1 = random_pk(rng);
|
|
|
|
PublicKey pk2 = pk1;
|
|
|
|
|
|
|
|
EXPECT_EQ(id_closest(pk0.data(), pk1.data(), pk2.data()), 0);
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST(IdClosest, DistanceIsCommutative)
|
|
|
|
{
|
|
|
|
const Random *rng = system_random();
|
|
|
|
ASSERT_NE(rng, nullptr);
|
|
|
|
|
|
|
|
for (uint32_t i = 0; i < 100; ++i) {
|
|
|
|
PublicKey pk0 = random_pk(rng);
|
|
|
|
PublicKey pk1 = random_pk(rng);
|
|
|
|
PublicKey pk2 = random_pk(rng);
|
|
|
|
|
|
|
|
ASSERT_NE(pk1, pk2); // RNG can't produce the same random key twice
|
|
|
|
|
|
|
|
// Two non-equal keys can't have the same distance from any given key.
|
|
|
|
EXPECT_NE(id_closest(pk0.data(), pk1.data(), pk2.data()), 0);
|
|
|
|
|
|
|
|
if (id_closest(pk0.data(), pk1.data(), pk2.data()) == 1) {
|
|
|
|
EXPECT_EQ(id_closest(pk0.data(), pk2.data(), pk1.data()), 2);
|
|
|
|
}
|
|
|
|
|
|
|
|
if (id_closest(pk0.data(), pk1.data(), pk2.data()) == 2) {
|
|
|
|
EXPECT_EQ(id_closest(pk0.data(), pk2.data(), pk1.data()), 1);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST(IdClosest, SmallXorDistanceIsCloser)
|
|
|
|
{
|
|
|
|
PublicKey const pk0 = {{0xaa}};
|
|
|
|
PublicKey const pk1 = {{0xa0}};
|
|
|
|
PublicKey const pk2 = {{0x0a}};
|
|
|
|
|
|
|
|
EXPECT_EQ(id_closest(pk0.data(), pk1.data(), pk2.data()), 1);
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST(IdClosest, DistinctKeysCannotHaveTheSameDistance)
|
|
|
|
{
|
|
|
|
PublicKey const pk0 = {{0x06}};
|
|
|
|
PublicKey const pk1 = {{0x00}};
|
|
|
|
PublicKey pk2 = {{0x00}};
|
|
|
|
|
|
|
|
for (uint8_t i = 1; i < 0xff; ++i) {
|
|
|
|
pk2[0] = i;
|
|
|
|
EXPECT_NE(id_closest(pk0.data(), pk1.data(), pk2.data()), 0);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST(AddToList, OverridesKeysWithCloserKeys)
|
|
|
|
{
|
|
|
|
PublicKey const self_pk = {{0xaa}};
|
|
|
|
PublicKey const keys[] = {
|
|
|
|
{{0xa0}}, // closest
|
|
|
|
{{0x0a}}, //
|
|
|
|
{{0x0b}}, //
|
|
|
|
{{0x0c}}, //
|
|
|
|
{{0x0d}}, //
|
|
|
|
{{0xa1}}, // closer than the 4 keys above
|
|
|
|
};
|
|
|
|
|
|
|
|
std::array<Node_format, 4> nodes{};
|
|
|
|
|
|
|
|
IP_Port ip_port = {0};
|
|
|
|
EXPECT_TRUE(add_to_list(nodes.data(), nodes.size(), keys[0].data(), &ip_port, self_pk.data()));
|
|
|
|
EXPECT_TRUE(add_to_list(nodes.data(), nodes.size(), keys[1].data(), &ip_port, self_pk.data()));
|
|
|
|
EXPECT_TRUE(add_to_list(nodes.data(), nodes.size(), keys[2].data(), &ip_port, self_pk.data()));
|
|
|
|
EXPECT_TRUE(add_to_list(nodes.data(), nodes.size(), keys[3].data(), &ip_port, self_pk.data()));
|
|
|
|
|
|
|
|
EXPECT_EQ(to_array(nodes[0].public_key), keys[0]);
|
|
|
|
EXPECT_EQ(to_array(nodes[1].public_key), keys[1]);
|
|
|
|
EXPECT_EQ(to_array(nodes[2].public_key), keys[2]);
|
|
|
|
EXPECT_EQ(to_array(nodes[3].public_key), keys[3]);
|
|
|
|
|
|
|
|
// key 4 is less close than keys 0-3
|
|
|
|
EXPECT_FALSE(add_to_list(nodes.data(), nodes.size(), keys[4].data(), &ip_port, self_pk.data()));
|
|
|
|
// 5 is closer than all except key 0
|
|
|
|
EXPECT_TRUE(add_to_list(nodes.data(), nodes.size(), keys[5].data(), &ip_port, self_pk.data()));
|
|
|
|
|
|
|
|
EXPECT_EQ(to_array(nodes[0].public_key), keys[0]);
|
|
|
|
EXPECT_EQ(to_array(nodes[1].public_key), keys[5]);
|
|
|
|
EXPECT_EQ(to_array(nodes[2].public_key), keys[1]);
|
|
|
|
EXPECT_EQ(to_array(nodes[3].public_key), keys[2]);
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST(Request, CreateAndParse)
|
|
|
|
{
|
|
|
|
const Random *rng = system_random();
|
|
|
|
ASSERT_NE(rng, nullptr);
|
|
|
|
|
|
|
|
// Peers.
|
|
|
|
const KeyPair sender(rng);
|
|
|
|
const KeyPair receiver(rng);
|
|
|
|
const uint8_t sent_pkt_id = CRYPTO_PACKET_FRIEND_REQ;
|
|
|
|
|
|
|
|
// Encoded packet.
|
|
|
|
std::array<uint8_t, MAX_CRYPTO_REQUEST_SIZE> packet;
|
|
|
|
|
|
|
|
// Received components.
|
|
|
|
PublicKey pk;
|
|
|
|
std::array<uint8_t, MAX_CRYPTO_REQUEST_SIZE> incoming;
|
|
|
|
uint8_t recvd_pkt_id;
|
|
|
|
|
|
|
|
// Request data: maximum payload is 918 bytes, so create a payload 1 byte larger than max.
|
|
|
|
std::vector<uint8_t> outgoing(919);
|
|
|
|
random_bytes(rng, outgoing.data(), outgoing.size());
|
|
|
|
|
|
|
|
EXPECT_LT(create_request(rng, sender.pk.data(), sender.sk.data(), packet.data(),
|
|
|
|
receiver.pk.data(), outgoing.data(), outgoing.size(), sent_pkt_id),
|
|
|
|
0);
|
|
|
|
|
|
|
|
// Pop one element so the payload is 918 bytes. Packing should now succeed.
|
|
|
|
outgoing.pop_back();
|
|
|
|
|
|
|
|
const int max_sent_length = create_request(rng, sender.pk.data(), sender.sk.data(),
|
|
|
|
packet.data(), receiver.pk.data(), outgoing.data(), outgoing.size(), sent_pkt_id);
|
|
|
|
ASSERT_GT(max_sent_length, 0); // success.
|
|
|
|
|
|
|
|
// Check that handle_request rejects packets larger than the maximum created packet size.
|
|
|
|
EXPECT_LT(handle_request(receiver.pk.data(), receiver.sk.data(), pk.data(), incoming.data(),
|
|
|
|
&recvd_pkt_id, packet.data(), max_sent_length + 1),
|
|
|
|
0);
|
|
|
|
|
|
|
|
// Now try all possible packet sizes from max (918) to 0.
|
|
|
|
while (!outgoing.empty()) {
|
|
|
|
// Pack:
|
|
|
|
const int sent_length = create_request(rng, sender.pk.data(), sender.sk.data(),
|
|
|
|
packet.data(), receiver.pk.data(), outgoing.data(), outgoing.size(), sent_pkt_id);
|
|
|
|
ASSERT_GT(sent_length, 0);
|
|
|
|
|
|
|
|
// Unpack:
|
|
|
|
const int recvd_length = handle_request(receiver.pk.data(), receiver.sk.data(), pk.data(),
|
|
|
|
incoming.data(), &recvd_pkt_id, packet.data(), sent_length);
|
|
|
|
ASSERT_GE(recvd_length, 0);
|
|
|
|
|
|
|
|
EXPECT_EQ(
|
|
|
|
std::vector<uint8_t>(incoming.begin(), incoming.begin() + recvd_length), outgoing);
|
|
|
|
|
|
|
|
outgoing.pop_back();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST(AnnounceNodes, SetAndTest)
|
|
|
|
{
|
|
|
|
const Random *rng = system_random();
|
|
|
|
const Network *ns = system_network();
|
2023-10-10 19:37:39 +02:00
|
|
|
const Memory *mem = system_memory();
|
|
|
|
|
|
|
|
Logger *log = logger_new();
|
2023-12-27 12:37:22 +01:00
|
|
|
ASSERT_NE(log, nullptr);
|
2023-10-10 19:37:39 +02:00
|
|
|
Mono_Time *mono_time = mono_time_new(mem, nullptr, nullptr);
|
2023-12-27 12:37:22 +01:00
|
|
|
ASSERT_NE(mono_time, nullptr);
|
2023-10-10 19:37:39 +02:00
|
|
|
Networking_Core *net = new_networking_no_udp(log, mem, ns);
|
2023-12-27 12:37:22 +01:00
|
|
|
ASSERT_NE(net, nullptr);
|
2023-10-10 19:37:39 +02:00
|
|
|
DHT *dht = new_dht(log, mem, rng, ns, mono_time, net, true, true);
|
2023-07-25 11:53:09 +02:00
|
|
|
ASSERT_NE(dht, nullptr);
|
|
|
|
|
|
|
|
uint8_t pk_data[CRYPTO_PUBLIC_KEY_SIZE];
|
|
|
|
memcpy(pk_data, dht_get_self_public_key(dht), sizeof(pk_data));
|
|
|
|
PublicKey self_pk = to_array(pk_data);
|
|
|
|
|
|
|
|
PublicKey pk1 = random_pk(rng);
|
|
|
|
ASSERT_NE(pk1, self_pk);
|
|
|
|
|
|
|
|
// Test with maximally close key to self
|
|
|
|
pk_data[CRYPTO_PUBLIC_KEY_SIZE - 1] = ~pk_data[CRYPTO_PUBLIC_KEY_SIZE - 1];
|
|
|
|
PublicKey pk2 = to_array(pk_data);
|
|
|
|
ASSERT_NE(pk2, pk1);
|
|
|
|
|
|
|
|
IP_Port ip_port = {0};
|
|
|
|
ip_port.ip.family = net_family_ipv4();
|
|
|
|
|
|
|
|
set_announce_node(dht, pk1.data());
|
|
|
|
set_announce_node(dht, pk2.data());
|
|
|
|
|
|
|
|
EXPECT_TRUE(addto_lists(dht, &ip_port, pk1.data()));
|
|
|
|
EXPECT_TRUE(addto_lists(dht, &ip_port, pk2.data()));
|
|
|
|
|
|
|
|
Node_format nodes[MAX_SENT_NODES];
|
|
|
|
EXPECT_EQ(0, get_close_nodes(dht, self_pk.data(), nodes, net_family_unspec(), true, true));
|
|
|
|
set_announce_node(dht, pk1.data());
|
|
|
|
set_announce_node(dht, pk2.data());
|
|
|
|
EXPECT_EQ(2, get_close_nodes(dht, self_pk.data(), nodes, net_family_unspec(), true, true));
|
|
|
|
|
|
|
|
kill_dht(dht);
|
|
|
|
kill_networking(net);
|
2023-10-10 19:37:39 +02:00
|
|
|
mono_time_free(mem, mono_time);
|
2023-07-25 11:53:09 +02:00
|
|
|
logger_kill(log);
|
|
|
|
}
|
|
|
|
|
|
|
|
} // namespace
|