tomato-testing/toxcore/DHT_test.cc

237 lines
7.4 KiB
C++
Raw Normal View History

#include "DHT.h"
#include <gtest/gtest.h>
#include <algorithm>
#include <array>
#include "crypto_core.h"
namespace {
using PublicKey = std::array<uint8_t, CRYPTO_PUBLIC_KEY_SIZE>;
using SecretKey = std::array<uint8_t, CRYPTO_SECRET_KEY_SIZE>;
struct KeyPair {
PublicKey pk;
SecretKey sk;
explicit KeyPair(const Random *rng) { crypto_new_keypair(rng, pk.data(), sk.data()); }
};
template <typename T, size_t N>
std::array<T, N> to_array(T const (&arr)[N])
{
std::array<T, N> stdarr;
std::copy(arr, arr + N, stdarr.begin());
return stdarr;
}
PublicKey random_pk(const Random *rng)
{
PublicKey pk;
random_bytes(rng, pk.data(), pk.size());
return pk;
}
TEST(IdClosest, IdenticalKeysAreSameDistance)
{
const Random *rng = system_random();
ASSERT_NE(rng, nullptr);
PublicKey pk0 = random_pk(rng);
PublicKey pk1 = random_pk(rng);
PublicKey pk2 = pk1;
EXPECT_EQ(id_closest(pk0.data(), pk1.data(), pk2.data()), 0);
}
TEST(IdClosest, DistanceIsCommutative)
{
const Random *rng = system_random();
ASSERT_NE(rng, nullptr);
for (uint32_t i = 0; i < 100; ++i) {
PublicKey pk0 = random_pk(rng);
PublicKey pk1 = random_pk(rng);
PublicKey pk2 = random_pk(rng);
ASSERT_NE(pk1, pk2); // RNG can't produce the same random key twice
// Two non-equal keys can't have the same distance from any given key.
EXPECT_NE(id_closest(pk0.data(), pk1.data(), pk2.data()), 0);
if (id_closest(pk0.data(), pk1.data(), pk2.data()) == 1) {
EXPECT_EQ(id_closest(pk0.data(), pk2.data(), pk1.data()), 2);
}
if (id_closest(pk0.data(), pk1.data(), pk2.data()) == 2) {
EXPECT_EQ(id_closest(pk0.data(), pk2.data(), pk1.data()), 1);
}
}
}
TEST(IdClosest, SmallXorDistanceIsCloser)
{
PublicKey const pk0 = {{0xaa}};
PublicKey const pk1 = {{0xa0}};
PublicKey const pk2 = {{0x0a}};
EXPECT_EQ(id_closest(pk0.data(), pk1.data(), pk2.data()), 1);
}
TEST(IdClosest, DistinctKeysCannotHaveTheSameDistance)
{
PublicKey const pk0 = {{0x06}};
PublicKey const pk1 = {{0x00}};
PublicKey pk2 = {{0x00}};
for (uint8_t i = 1; i < 0xff; ++i) {
pk2[0] = i;
EXPECT_NE(id_closest(pk0.data(), pk1.data(), pk2.data()), 0);
}
}
TEST(AddToList, OverridesKeysWithCloserKeys)
{
PublicKey const self_pk = {{0xaa}};
PublicKey const keys[] = {
{{0xa0}}, // closest
{{0x0a}}, //
{{0x0b}}, //
{{0x0c}}, //
{{0x0d}}, //
{{0xa1}}, // closer than the 4 keys above
};
std::array<Node_format, 4> nodes{};
IP_Port ip_port = {0};
EXPECT_TRUE(add_to_list(nodes.data(), nodes.size(), keys[0].data(), &ip_port, self_pk.data()));
EXPECT_TRUE(add_to_list(nodes.data(), nodes.size(), keys[1].data(), &ip_port, self_pk.data()));
EXPECT_TRUE(add_to_list(nodes.data(), nodes.size(), keys[2].data(), &ip_port, self_pk.data()));
EXPECT_TRUE(add_to_list(nodes.data(), nodes.size(), keys[3].data(), &ip_port, self_pk.data()));
EXPECT_EQ(to_array(nodes[0].public_key), keys[0]);
EXPECT_EQ(to_array(nodes[1].public_key), keys[1]);
EXPECT_EQ(to_array(nodes[2].public_key), keys[2]);
EXPECT_EQ(to_array(nodes[3].public_key), keys[3]);
// key 4 is less close than keys 0-3
EXPECT_FALSE(add_to_list(nodes.data(), nodes.size(), keys[4].data(), &ip_port, self_pk.data()));
// 5 is closer than all except key 0
EXPECT_TRUE(add_to_list(nodes.data(), nodes.size(), keys[5].data(), &ip_port, self_pk.data()));
EXPECT_EQ(to_array(nodes[0].public_key), keys[0]);
EXPECT_EQ(to_array(nodes[1].public_key), keys[5]);
EXPECT_EQ(to_array(nodes[2].public_key), keys[1]);
EXPECT_EQ(to_array(nodes[3].public_key), keys[2]);
}
TEST(Request, CreateAndParse)
{
const Random *rng = system_random();
ASSERT_NE(rng, nullptr);
// Peers.
const KeyPair sender(rng);
const KeyPair receiver(rng);
const uint8_t sent_pkt_id = CRYPTO_PACKET_FRIEND_REQ;
// Encoded packet.
std::array<uint8_t, MAX_CRYPTO_REQUEST_SIZE> packet;
// Received components.
PublicKey pk;
std::array<uint8_t, MAX_CRYPTO_REQUEST_SIZE> incoming;
uint8_t recvd_pkt_id;
// Request data: maximum payload is 918 bytes, so create a payload 1 byte larger than max.
std::vector<uint8_t> outgoing(919);
random_bytes(rng, outgoing.data(), outgoing.size());
EXPECT_LT(create_request(rng, sender.pk.data(), sender.sk.data(), packet.data(),
receiver.pk.data(), outgoing.data(), outgoing.size(), sent_pkt_id),
0);
// Pop one element so the payload is 918 bytes. Packing should now succeed.
outgoing.pop_back();
const int max_sent_length = create_request(rng, sender.pk.data(), sender.sk.data(),
packet.data(), receiver.pk.data(), outgoing.data(), outgoing.size(), sent_pkt_id);
ASSERT_GT(max_sent_length, 0); // success.
// Check that handle_request rejects packets larger than the maximum created packet size.
EXPECT_LT(handle_request(receiver.pk.data(), receiver.sk.data(), pk.data(), incoming.data(),
&recvd_pkt_id, packet.data(), max_sent_length + 1),
0);
// Now try all possible packet sizes from max (918) to 0.
while (!outgoing.empty()) {
// Pack:
const int sent_length = create_request(rng, sender.pk.data(), sender.sk.data(),
packet.data(), receiver.pk.data(), outgoing.data(), outgoing.size(), sent_pkt_id);
ASSERT_GT(sent_length, 0);
// Unpack:
const int recvd_length = handle_request(receiver.pk.data(), receiver.sk.data(), pk.data(),
incoming.data(), &recvd_pkt_id, packet.data(), sent_length);
ASSERT_GE(recvd_length, 0);
EXPECT_EQ(
std::vector<uint8_t>(incoming.begin(), incoming.begin() + recvd_length), outgoing);
outgoing.pop_back();
}
}
TEST(AnnounceNodes, SetAndTest)
{
const Random *rng = system_random();
const Network *ns = system_network();
const Memory *mem = system_memory();
Logger *log = logger_new();
ASSERT_NE(log, nullptr);
Mono_Time *mono_time = mono_time_new(mem, nullptr, nullptr);
ASSERT_NE(mono_time, nullptr);
Networking_Core *net = new_networking_no_udp(log, mem, ns);
ASSERT_NE(net, nullptr);
DHT *dht = new_dht(log, mem, rng, ns, mono_time, net, true, true);
ASSERT_NE(dht, nullptr);
uint8_t pk_data[CRYPTO_PUBLIC_KEY_SIZE];
memcpy(pk_data, dht_get_self_public_key(dht), sizeof(pk_data));
PublicKey self_pk = to_array(pk_data);
PublicKey pk1 = random_pk(rng);
ASSERT_NE(pk1, self_pk);
// Test with maximally close key to self
pk_data[CRYPTO_PUBLIC_KEY_SIZE - 1] = ~pk_data[CRYPTO_PUBLIC_KEY_SIZE - 1];
PublicKey pk2 = to_array(pk_data);
ASSERT_NE(pk2, pk1);
IP_Port ip_port = {0};
ip_port.ip.family = net_family_ipv4();
set_announce_node(dht, pk1.data());
set_announce_node(dht, pk2.data());
EXPECT_TRUE(addto_lists(dht, &ip_port, pk1.data()));
EXPECT_TRUE(addto_lists(dht, &ip_port, pk2.data()));
Node_format nodes[MAX_SENT_NODES];
EXPECT_EQ(0, get_close_nodes(dht, self_pk.data(), nodes, net_family_unspec(), true, true));
set_announce_node(dht, pk1.data());
set_announce_node(dht, pk2.data());
EXPECT_EQ(2, get_close_nodes(dht, self_pk.data(), nodes, net_family_unspec(), true, true));
kill_dht(dht);
kill_networking(net);
mono_time_free(mem, mono_time);
logger_kill(log);
}
} // namespace