#ifdef DS_PERF #define _CRT_SECURE_NO_WARNINGS #define _CRT_NONSTDC_NO_DEPRECATE #define _CRT_NON_CONFORMING_SWPRINTFS //#define STBDS_INTERNAL_SMALL_BUCKET // make 64-bit bucket fit both keys and hash bits //#define STBDS_SIPHASH_2_4 // performance test 1_3 against 2_4 //#define STBDS_INTERNAL_BUCKET_START // don't bother offseting differently within bucket for different hash values //#define STBDS_FLUSH_CACHE (1u<<20) // do this much memory traffic to flush the cache between some benchmarking measurements #include #define WIN32_LEAN_AND_MEAN #include #define STB_DEFINE #define STB_NO_REGISTRY #include "../stb.h" #endif #ifdef DS_TEST #define STBDS_UNIT_TESTS #define STBDS_SMALL_BUCKET #endif #ifdef DS_STATS #define STBDS_STATISTICS #endif #ifndef DS_PERF #define STBDS_ASSERT assert #include #endif #define STB_DS_IMPLEMENTATION #include "../stb_ds.h" size_t churn_inserts, churn_deletes; void churn(int a, int b, int count) { struct { int key,value; } *map=NULL; int i,j,n,k; for (i=0; i < a; ++i) hmput(map,i,i+1); for (n=0; n < count; ++n) { for (j=a; j < b; ++j,++i) { hmput(map,i,i+1); } assert(hmlen(map) == b); for (j=a; j < b; ++j) { k=i-j-1; k = hmdel(map,k); assert(k != 0); } assert(hmlen(map) == a); } hmfree(map); churn_inserts = i; churn_deletes = (b-a) * n; } #ifdef DS_TEST #include int main(int argc, char **argv) { char *temp=NULL; stbds_unit_tests(); arrins(temp, 0, 'a'); arrins(temp, arrlen(temp), 'b'); churn(0,100,1); churn(3,7,50000); churn(3,15,50000); churn(16, 48, 25000); churn(10, 15, 25000); churn(200,500, 5000); churn(2000,5000, 500); churn(20000,50000, 50); printf("Ok!"); return 0; } #endif #ifdef DS_STATS #define MAX(a,b) ((a) > (b) ? (a) : (b)) size_t max_hit_probes, max_miss_probes, total_put_probes, total_miss_probes, churn_misses; void churn_stats(int a, int b, int count) { struct { int key,value; } *map=NULL; int i,j,n,k; churn_misses = 0; for (i=0; i < a; ++i) { hmput(map,i,i+1); max_hit_probes = MAX(max_hit_probes, stbds_hash_probes); total_put_probes += stbds_hash_probes; stbds_hash_probes = 0; } for (n=0; n < count; ++n) { for (j=a; j < b; ++j,++i) { hmput(map,i,i+1); max_hit_probes = MAX(max_hit_probes, stbds_hash_probes); total_put_probes += stbds_hash_probes; stbds_hash_probes = 0; } for (j=0; j < (b-a)*10; ++j) { k=i+j; (void) hmgeti(map,k); // miss max_miss_probes = MAX(max_miss_probes, stbds_hash_probes); total_miss_probes += stbds_hash_probes; stbds_hash_probes = 0; ++churn_misses; } assert(hmlen(map) == b); for (j=a; j < b; ++j) { k=i-j-1; k = hmdel(map,k); stbds_hash_probes = 0; assert(k); } assert(hmlen(map) == a); } hmfree(map); churn_inserts = i; churn_deletes = (b-a) * n; } void reset_stats(void) { stbds_array_grow=0, stbds_hash_grow=0; stbds_hash_shrink=0; stbds_hash_rebuild=0; stbds_hash_probes=0; stbds_hash_alloc=0; stbds_rehash_probes=0; stbds_rehash_items=0; max_hit_probes = 0; max_miss_probes = 0; total_put_probes = 0; total_miss_probes = 0; } void print_churn_probe_stats(char *str) { printf("Probes: %3d max hit, %3d max miss, %4.2f avg hit, %4.2f avg miss: %s\n", (int) max_hit_probes, (int) max_miss_probes, (float) total_put_probes / churn_inserts, (float) total_miss_probes / churn_misses, str); reset_stats(); } int main(int arg, char **argv) { churn_stats(0,500000,1); print_churn_probe_stats("Inserting 500000 items"); churn_stats(0,500000,1); print_churn_probe_stats("Inserting 500000 items"); churn_stats(0,500000,1); print_churn_probe_stats("Inserting 500000 items"); churn_stats(0,500000,1); print_churn_probe_stats("Inserting 500000 items"); churn_stats(49000,50000,500); print_churn_probe_stats("Deleting/Inserting 500000 items"); churn_stats(49000,50000,500); print_churn_probe_stats("Deleting/Inserting 500000 items"); churn_stats(49000,50000,500); print_churn_probe_stats("Deleting/Inserting 500000 items"); churn_stats(49000,50000,500); print_churn_probe_stats("Deleting/Inserting 500000 items"); return 0; } #endif #ifdef DS_PERF //char *strdup(const char *foo) { return 0; } //int stricmp(const char *a, const char *b) { return 0; } //int strnicmp(const char *a, const char *b, size_t n) { return 0; } unsigned __int64 t0, xsum, mn,mx,count; void begin(void) { LARGE_INTEGER m; QueryPerformanceCounter(&m); t0 = m.QuadPart; xsum = 0; count = 0; mx = 0; mn = ~(unsigned __int64) 0; } void measure(void) { unsigned __int64 t1, t; LARGE_INTEGER m; QueryPerformanceCounter(&m); t1 = m.QuadPart; t = t1-t0; if (t1 < t0) printf("ALERT: QueryPerformanceCounter was unordered!\n"); if (t < mn) mn = t; if (t > mx) mx = t; xsum += t; ++count; t0 = t1; } void dont_measure(void) { LARGE_INTEGER m; QueryPerformanceCounter(&m); t0 = m.QuadPart; } double timer; double end(void) { LARGE_INTEGER m; QueryPerformanceFrequency(&m); if (count > 3) { // discard the highest and lowest xsum -= mn; xsum -= mx; count -= 2; } timer = (double) (xsum) / count / m.QuadPart * 1000; return timer; } void build(int a, int b, int count, int step) { struct { int key,value; } *map=NULL; int i,n; for (i=0; i < a; ++i) { n = i*step; hmput(map,n,i+1); } measure(); churn_inserts = i; hmfree(map); dont_measure(); } #ifdef STB__INCLUDE_STB_H void build_stb(int a, int b, int count, int step) { stb_idict *d = stb_idict_new_size(8); int i; for (i=0; i < a; ++i) stb_idict_add(d, i*step, i+1); measure(); churn_inserts = i; stb_idict_destroy(d); dont_measure(); } void multibuild_stb(int a, int b, int count, int step, int tables) { stb_idict *d[50000]; int i,q; for (q=0; q < tables; ++q) d[q] = stb_idict_new_size(8); dont_measure(); for (i=0; i < a; ++i) for (q=0; q < tables; ++q) stb_idict_add(d[q], i*step+q*771, i+1); measure(); churn_inserts = i; for (q=0; q < tables; ++q) stb_idict_destroy(d[q]); dont_measure(); } int multisearch_stb(int a, int start, int end, int step, int tables) { stb_idict *d[50000]; int i,q,total=0,v; for (q=0; q < tables; ++q) d[q] = stb_idict_new_size(8); for (q=0; q < tables; ++q) for (i=0; i < a; ++i) stb_idict_add(d[q], i*step+q*771, i+1); dont_measure(); for (i=start; i < end; ++i) for (q=0; q < tables; ++q) if (stb_idict_get_flag(d[q], i*step+q*771, &v)) total += v; measure(); churn_inserts = i; for (q=0; q < tables; ++q) stb_idict_destroy(d[q]); dont_measure(); return total; } #endif int multisearch(int a, int start, int end, int step, int tables) { struct { int key,value; } *hash[50000]; int i,q,total=0; for (q=0; q < tables; ++q) hash[q] = NULL; for (q=0; q < tables; ++q) for (i=0; i < a; ++i) hmput(hash[q], i*step+q*771, i+1); dont_measure(); for (i=start; i < end; ++i) for (q=0; q < tables; ++q) total += hmget(hash[q], i*step+q*771); measure(); churn_inserts = i; for (q=0; q < tables; ++q) hmfree(hash[q]); dont_measure(); return total; } void churn_skip(unsigned int a, unsigned int b, int count) { struct { unsigned int key,value; } *map=NULL; unsigned int i,j,n,k; for (i=0; i < a; ++i) hmput(map,i,i+1); dont_measure(); for (n=0; n < count; ++n) { for (j=a; j < b; ++j,++i) { hmput(map,i,i+1); } assert(hmlen(map) == b); for (j=a; j < b; ++j) { k=i-j-1; k = hmdel(map,k); assert(k != 0); } assert(hmlen(map) == a); } measure(); churn_inserts = i; churn_deletes = (b-a) * n; hmfree(map); dont_measure(); } typedef struct { int n[8]; } str32; void churn32(int a, int b, int count, int include_startup) { struct { str32 key; int value; } *map=NULL; int i,j,n; str32 key = { 0 }; for (i=0; i < a; ++i) { key.n[0] = i; hmput(map,key,i+1); } if (!include_startup) dont_measure(); for (n=0; n < count; ++n) { for (j=a; j < b; ++j,++i) { key.n[0] = i; hmput(map,key,i+1); } assert(hmlen(map) == b); for (j=a; j < b; ++j) { key.n[0] = i-j-1; hmdel(map,key); } assert(hmlen(map) == a); } measure(); hmfree(map); churn_inserts = i; churn_deletes = (b-a) * n; dont_measure(); } typedef struct { int n[32]; } str256; void churn256(int a, int b, int count, int include_startup) { struct { str256 key; int value; } *map=NULL; int i,j,n; str256 key = { 0 }; for (i=0; i < a; ++i) { key.n[0] = i; hmput(map,key,i+1); } if (!include_startup) dont_measure(); for (n=0; n < count; ++n) { for (j=a; j < b; ++j,++i) { key.n[0] = i; hmput(map,key,i+1); } assert(hmlen(map) == b); for (j=a; j < b; ++j) { key.n[0] = i-j-1; hmdel(map,key); } assert(hmlen(map) == a); } measure(); hmfree(map); churn_inserts = i; churn_deletes = (b-a) * n; dont_measure(); } void churn8(int a, int b, int count, int include_startup) { struct { size_t key,value; } *map=NULL; int i,j,n,k; for (i=0; i < a; ++i) hmput(map,i,i+1); if (!include_startup) dont_measure(); for (n=0; n < count; ++n) { for (j=a; j < b; ++j,++i) { hmput(map,i,i+1); } assert(hmlen(map) == b); for (j=a; j < b; ++j) { k=i-j-1; k = hmdel(map,k); assert(k != 0); } assert(hmlen(map) == a); } measure(); hmfree(map); churn_inserts = i; churn_deletes = (b-a) * n; dont_measure(); } void multichurn4(int a, int b, int count, int include_startup, int tables) { struct { int key,value; } *map[50000]; int i,j,n,k,q; for (q=0; q < tables; ++q) map[q] = NULL; dont_measure(); for (i=0; i < a; ++i) for (q=0; q < tables; ++q) hmput(map[q],i,i+1); if (!include_startup) dont_measure(); for (n=0; n < count; ++n) { for (j=a; j < b; ++j,++i) { for (q=0; q < tables; ++q) hmput(map[q],i,i+1); } assert(hmlen(map[0]) == b); for (j=a; j < b; ++j) { k=i-j-1; for (q=0; q < tables; ++q) k = hmdel(map[q],k); assert(k != 0); } assert(hmlen(map[0]) == a); } measure(); for (q=0; q < tables; ++q) hmfree(map[q]); churn_inserts = i * tables; churn_deletes = (b-a) * n * tables; dont_measure(); } struct { unsigned __int64 start; unsigned __int64 end; int table_size; } mstats[32][4000]; const int first_step = 64; const int last_step = 384-48; // 32M void measure_build4(int step_log2) { double length; int i,j,k=0; int step = 1 << step_log2; unsigned __int64 t0,t1; struct { int key,value; } *map=NULL; double rdtsc_scale; begin(); t0 = __rdtsc(); mstats[0][0].start = __rdtsc(); for (i=0; i < 256; ++i) { hmput(map,k,k+1); k += step; } mstats[0][first_step-1].end = __rdtsc(); mstats[0][first_step-1].table_size = k >> step_log2; for (j=first_step; j < last_step; ++j) { for (i=0; i < (1<<(j>>4)); ++i) { hmput(map, k,k+1); k += step; } mstats[0][j].end = __rdtsc(); mstats[0][j].table_size = k >> step_log2; } t1 = __rdtsc(); measure(); hmfree(map); length = end(); rdtsc_scale = length / (t1-t0) * 1000; for (j=1; j < last_step; ++j) mstats[0][j].start = mstats[0][0].start; for (j=first_step-1; j < last_step; ++j) { printf("%12.4f,%12d,%12d,0,0,0\n", (mstats[0][j].end - mstats[0][j].start) * rdtsc_scale, mstats[0][j].table_size, mstats[0][j].table_size); } } #ifdef STBDS_FLUSH_CACHE static int cache_index; char dummy[8][STBDS_FLUSH_CACHE]; int flush_cache(void) { memmove(dummy[cache_index],dummy[cache_index]+1, sizeof(dummy[cache_index])-1); cache_index = (cache_index+1)%8; return dummy[cache_index][0]; } #else int flush_cache(void) { return 0; } #endif int measure_average_lookup4(int step_log2) { int total; double length; int i,j,k=0,q; int step = 1 << step_log2; unsigned __int64 t0,t1; struct { int key,value; } *map=NULL; double rdtsc_scale; begin(); t0 = __rdtsc(); for (i=0; i < 128; ++i) { hmput(map,k,k+1); k += step; } for (j=first_step; j <= last_step; ++j) { total += flush_cache(); mstats[0][j].start = __rdtsc(); for (q=i=0; i < 50000; ++i) { total += hmget(map, q); // hit if (++q == k) q = 0; } mstats[0][j].end = __rdtsc(); mstats[0][j].table_size = k; total += flush_cache(); mstats[1][j].start = __rdtsc(); for (i=0; i < 50000; ++i) { total += hmget(map, i+k); // miss } mstats[1][j].end = __rdtsc(); mstats[1][j].table_size = k; // expand table for (i=0; i < (1<<(j>>4)); ++i) { hmput(map, k,k+1); k += step; } } t1 = __rdtsc(); measure(); hmfree(map); length = end(); rdtsc_scale = length / (t1-t0) * 1000; for (j=first_step; j <= last_step; ++j) { // time,table_size,numins,numhit,nummiss,numperflush printf("%12.4f,%12d,0,50000,0,0\n", (mstats[0][j].end - mstats[0][j].start) * rdtsc_scale, mstats[0][j].table_size); } for (j=first_step; j <= last_step; ++j) { printf("%12.4f,%12d,0,0,50000,0\n", (mstats[1][j].end - mstats[1][j].start) * rdtsc_scale, mstats[1][j].table_size); } return total; } int measure_worst_lookup4_a(int step_log2) { int total; double length; int i,j,k=0,q,worst_q,n,z,attempts; int step = 1 << step_log2; unsigned __int64 t0,t1; unsigned __int64 m0,m1,worst; struct { int key,value; } *map=NULL; double rdtsc_scale; begin(); t0 = __rdtsc(); memset(mstats, 0, sizeof(mstats)); for (j=first_step; j <= last_step; ++j) mstats[0][j].end = mstats[1][j].end = ~(unsigned __int64) 0; for(attempts=0; attempts < 2; ++attempts) { k = 0; stbds_rand_seed(0); // force us to get the same table every time for (i=0; i < 128; ++i) { hmput(map,k,k+1); k += step; } for (j=first_step; j <= last_step; ++j) { unsigned __int64 times[32]; // find the worst hit time for (z=0; z < 2; ++z) { // try the bisectioning measurement 4 times worst = 0; for (n=0; n < 10; ++n) { // test 400 keys total // find the worst time to hit 20 keys q=0; worst_q = 0; total += flush_cache(); m0 = __rdtsc(); for (i=0; i < 20; ++i) { total += hmget(map, q); // hit if (++q == k) q = 0; } m1 = __rdtsc(); // for each n, check if this is the worst lookup we've seen if (m1 - m0 > worst) { worst = m1-m0; worst_q = q - i; if (worst_q < 0) q += k; } } // after 400 keys, take the worst 20 keys, and try each one worst = 0; q = worst_q; for (i=0; i < 20; ++i) { total += flush_cache(); m0 = __rdtsc(); total += hmget(map, q); // hit m1 = __rdtsc(); if (m1 - m0 > worst) worst = m1-m0; if (++q == k) q = 0; } times[z] = worst; } // find the worst time in the bunch worst = 0; for (i=0; i < z; ++i) if (times[i] > worst) worst = times[i]; // take the best of 'attempts', to discard outliers if (worst < mstats[0][j].end) mstats[0][j].end = worst; mstats[0][j].start = 0; mstats[0][j].table_size = k >> step_log2; // find the worst miss time for (z=0; z < 8; ++z) { // try the bisectioning measurement 8 times worst = 0; for (n=0; n < 20; ++n) { // test 400 keys total // find the worst time to hit 20 keys q=k; worst_q = 0; total += flush_cache(); m0 = __rdtsc(); for (i=0; i < 20; ++i) { total += hmget(map, q); // hit } m1 = __rdtsc(); // for each n, check if this is the worst lookup we've seen if (m1 - m0 > worst) { worst = m1-m0; worst_q = q - i; } } // after 400 keys, take the worst 20 keys, and try each one worst = 0; q = worst_q; for (i=0; i < 20; ++i) { total += flush_cache(); m0 = __rdtsc(); total += hmget(map, q); // hit m1 = __rdtsc(); if (m1 - m0 > worst) worst = m1-m0; } times[z] = worst; } // find the worst time in the bunch worst = 0; for (i=0; i < z; ++i) if (times[i] > worst) worst = times[i]; if (worst < mstats[1][j].end) mstats[1][j].end = worst; mstats[1][j].start = 0; mstats[1][j].table_size = k >> step_log2; // expand table for (i=0; i < (1<<(j>>4)); ++i) { hmput(map, k,k+1); k += step; } } hmfree(map); } t1 = __rdtsc(); measure(); length = end(); rdtsc_scale = length / (t1-t0) * 1000; for (j=first_step; j <= last_step; ++j) { printf("%12.4f,%12d,0,1,0,1\n", (mstats[0][j].end - mstats[0][j].start) * rdtsc_scale, mstats[0][j].table_size); } for (j=first_step; j <= last_step; ++j) { printf("%12.4f,%12d,0,0,1,1\n", (mstats[1][j].end - mstats[1][j].start) * rdtsc_scale, mstats[1][j].table_size); } return total; } int measure_worst_lookup4_b(int step_log2) { int total; double length; int i,j,k=0,q,worst_q,n,z,attempts; int step = 1 << step_log2; unsigned __int64 t0,t1; unsigned __int64 m0,m1,worst; struct { int key,value; } *map=NULL; double rdtsc_scale; begin(); t0 = __rdtsc(); memset(mstats, 0, sizeof(mstats)); for (j=first_step; j <= last_step; ++j) mstats[0][j].end = mstats[1][j].end = ~(unsigned __int64) 0; k = 0; stbds_rand_seed(0); // force us to get the same table every time for (i=0; i < 128; ++i) { hmput(map,k,k+1); k += step; } for (j=first_step; j <= last_step; ++j) { unsigned __int64 times[32]; // find the worst hit time for (z=0; z < 8; ++z) { // try this 8 times worst = 0; q=0; for (i=0; i < 5000; ++i) { total += hmget(map, q); m0 = __rdtsc(); total += hmget(map, q); m1 = __rdtsc(); if (m1 - m0 > worst) { worst = m1-m0; worst_q = q - i; } if (++q == k) q = 0; } // now retry with the worst one, but find the shortest time for it worst = ~(unsigned __int64) 0; for (i=0; i < 4; ++i) { total += flush_cache(); m0 = __rdtsc(); total += hmget(map,worst_q); m1 = __rdtsc(); if (m1-m0 < worst) worst = m1-m0; } times[z] = worst; } // find the worst of those worst = 0; for (i=0; i < z; ++i) if (times[i] > worst) worst = times[i]; mstats[0][j].start = 0; mstats[0][j].end = worst; mstats[0][j].table_size = k; // find the worst miss time for (z=0; z < 8; ++z) { // try this 8 times worst = 0; q=k; for (i=0; i < 5000; ++i) { total += hmget(map, q); m0 = __rdtsc(); total += hmget(map, q); m1 = __rdtsc(); if (m1 - m0 > worst) { worst = m1-m0; worst_q = q - i; } //printf("%6llu ", m1-m0); } // now retry with the worst one, but find the shortest time for it worst = ~(unsigned __int64) 0; for (i=0; i < 4; ++i) { total += flush_cache(); m0 = __rdtsc(); total += hmget(map,worst_q); m1 = __rdtsc(); if (m1-m0 < worst) worst = m1-m0; } times[z] = worst; } // find the worst of those worst = 0; for (i=0; i < z; ++i) if (times[i] > worst) worst = times[i]; mstats[1][j].start = 0; mstats[1][j].end = worst; mstats[1][j].table_size = k; // expand table for (i=0; i < (1<<(j>>4)); ++i) { hmput(map, k,k+1); k += step; } } hmfree(map); t1 = __rdtsc(); measure(); length = end(); rdtsc_scale = length / (t1-t0) * 1000; for (j=first_step+1; j <= last_step; ++j) { printf("%12.4f,%12d,0,1,0,1\n", (mstats[0][j].end - mstats[0][j].start) * rdtsc_scale, mstats[0][j].table_size); } for (j=first_step+1; j <= last_step; ++j) { printf("%12.4f,%12d,0,0,1,1\n", (mstats[1][j].end - mstats[1][j].start) * rdtsc_scale, mstats[1][j].table_size); } return total; } int measure_uncached_lookup4(int step_log2) { int total; double length; int i,j,k=0,q; int step = 1 << step_log2; unsigned __int64 t0,t1; struct { int key,value; } *map=NULL; double rdtsc_scale; begin(); t0 = __rdtsc(); map = NULL; for (i=0; i < 128; ++i) { hmput(map,k,k+1); k += step; } for (j=first_step; j <= last_step; ++j) { mstats[0][j].start = __rdtsc(); mstats[0][j].end = 0; for (q=i=0; i < 512; ++i) { if ((i & 3) == 0) { mstats[0][j].end += __rdtsc(); total += flush_cache(); mstats[0][j].start += __rdtsc(); } total += hmget(map, q); // hit if (++q == k) q = 0; } mstats[0][j].end += __rdtsc(); mstats[0][j].table_size = k; total += flush_cache(); mstats[1][j].end = 0; mstats[1][j].start = __rdtsc(); for (i=0; i < 512; ++i) { if ((i & 3) == 0) { mstats[1][j].end += __rdtsc(); total += flush_cache(); mstats[1][j].start += __rdtsc(); } total += hmget(map, i+k); // miss } mstats[1][j].end += __rdtsc(); mstats[1][j].table_size = k; // expand table for (i=0; i < (1<<(j>>4)); ++i) { hmput(map, k,k+1); k += step; } } hmfree(map); t1 = __rdtsc(); measure(); length = end(); rdtsc_scale = length / (t1-t0) * 1000; for (j=first_step; j <= last_step; ++j) { printf("%12.4f,%12d,0,512,0,4\n", (mstats[0][j].end - mstats[0][j].start) * rdtsc_scale, mstats[0][j].table_size); } for (j=first_step; j <= last_step; ++j) { printf("%12.4f,%12d,0,0,512,4\n", (mstats[1][j].end - mstats[1][j].start) * rdtsc_scale, mstats[1][j].table_size); } return total; } int main(int arg, char **argv) { int n,s,w; double worst = 0; printf("# size_t=%d,", (int) sizeof(size_t)); // number of cache-lines #ifdef STBDS_SMALL_BUCKET printf("cacheline=%d,", 1); #else printf("cacheline=%d,", sizeof(size_t)==8 ? 2 : 1); #endif #ifdef STBDS_FLUSH_CACHE printf("%d,", (int) stbds_log2(STBDS_FLUSH_CACHE)); #else printf("0,"); #endif #ifdef STBDS_BUCKET_START // don't bother offseting differently within bucket for different hash values printf("STBDS_BUCKET_START,"); #else printf(","); #endif #ifdef STBDS_SIPHASH_2_4 printf("STBDS_SIPHASH_2_4,"); #else printf(","); #endif printf("\n"); measure_worst_lookup4_b(0); //measure_worst_lookup4_a(0); measure_average_lookup4(0); measure_uncached_lookup4(0); measure_build4(0); return 0; #if 0 begin(); for (n=0; n < 2000; ++n) { build_stb(2000,0,0,1); } end(); printf(" // %7.2fms : 2,000 inserts creating 2K table\n", timer); begin(); for (n=0; n < 500; ++n) { build_stb(20000,0,0,1); } end(); printf(" // %7.2fms : 20,000 inserts creating 20K table\n", timer); begin(); for (n=0; n < 100; ++n) { build_stb(200000,0,0,1); } end(); printf(" // %7.2fms : 200,000 inserts creating 200K table\n", timer); begin(); for (n=0; n < 10; ++n) { build_stb(2000000,0,0,1); } end(); printf(" // %7.2fms : 2,000,000 inserts creating 2M table\n", timer); begin(); for (n=0; n < 5; ++n) { build_stb(20000000,0,0,1); } end(); printf(" // %7.2fms : 20,000,000 inserts creating 20M table\n", timer); #endif #if 0 begin(); for (n=0; n < 2000; ++n) { churn32(2000,0,0,1); } end(); printf(" // %7.2fms : 2,000 inserts creating 2K table w/ 32-byte key\n", timer); begin(); for (n=0; n < 500; ++n) { churn32(20000,0,0,1); } end(); printf(" // %7.2fms : 20,000 inserts creating 20K table w/ 32-byte key\n", timer); begin(); for (n=0; n < 100; ++n) { churn32(200000,0,0,1); } end(); printf(" // %7.2fms : 200,000 inserts creating 200K table w/ 32-byte key\n", timer); begin(); for (n=0; n < 10; ++n) { churn32(2000000,0,0,1); } end(); printf(" // %7.2fms : 2,000,000 inserts creating 2M table w/ 32-byte key\n", timer); begin(); for (n=0; n < 5; ++n) { churn32(20000000,0,0,1); } end(); printf(" // %7.2fms : 20,000,000 inserts creating 20M table w/ 32-byte key\n", timer); begin(); for (n=0; n < 2000; ++n) { churn256(2000,0,0,1); } end(); printf(" // %7.2fms : 2,000 inserts creating 2K table w/ 256-byte key\n", timer); begin(); for (n=0; n < 500; ++n) { churn256(20000,0,0,1); } end(); printf(" // %7.2fms : 20,000 inserts creating 20K table w/ 256-byte key\n", timer); begin(); for (n=0; n < 100; ++n) { churn256(200000,0,0,1); } end(); printf(" // %7.2fms : 200,000 inserts creating 200K table w/ 256-byte key\n", timer); begin(); for (n=0; n < 10; ++n) { churn256(2000000,0,0,1); } end(); printf(" // %7.2fms : 2,000,000 inserts creating 2M table w/ 256-byte key\n", timer); begin(); for (n=0; n < 5; ++n) { churn256(20000000,0,0,1); } end(); printf(" // %7.2fms : 20,000,000 inserts creating 20M table w/ 256-byte key\n", timer); #endif begin(); for (n=0; n < 20; ++n) { multisearch_stb(2000,0,2000,1,1000); } end(); printf(" // %7.2fms : 2,000,000 hits on 1,000 2K table w/ 4-byte key\n", timer); begin(); for (n=0; n < 10; ++n) { multisearch_stb(20000,0,2000,1,1000); } end(); printf(" // %7.2fms : 2,000,000 hits on 1,000 20K table w/ 4-byte key\n", timer); begin(); for (n=0; n < 6; ++n) { multisearch_stb(200000,0,2000,1,1000); } end(); printf(" // %7.2fms : 2,000,000 hits on 1,000 200K table w/ 4-byte key\n", timer); begin(); for (n=0; n < 2; ++n) { multisearch_stb(2000000,0,20000,1,100); } end(); printf(" // %7.2fms : 2,000,000 hits on 100 2M table w/ 4-byte key\n", timer); begin(); for (n=0; n < 20; ++n) { multisearch (2000,0,2000,1,1000); } end(); printf(" // %7.2fms : 2,000,000 hits on 1,000 2K table w/ 4-byte key\n", timer); begin(); for (n=0; n < 10; ++n) { multisearch (20000,0,2000,1,1000); } end(); printf(" // %7.2fms : 2,000,000 hits on 1,000 20K table w/ 4-byte key\n", timer); begin(); for (n=0; n < 6; ++n) { multisearch (200000,0,2000,1,1000); } end(); printf(" // %7.2fms : 2,000,000 hits on 1,000 200K table w/ 4-byte key\n", timer); begin(); for (n=0; n < 2; ++n) { multisearch (2000000,0,20000,1,100); } end(); printf(" // %7.2fms : 2,000,000 hits on 100 2M table w/ 4-byte key\n", timer); #if 1 begin(); for (n=0; n < 2; ++n) { multibuild_stb(2000,0,0,1,10000); } end(); printf(" // %7.2fms : 20,000,000 inserts creating 10,000 2K table w/ 4-byte key\n", timer); begin(); for (n=0; n < 2; ++n) { multibuild_stb(20000,0,0,1,1000); } end(); printf(" // %7.2fms : 20,000,000 inserts creating 1,000 20K table w/ 4-byte key\n", timer); begin(); for (n=0; n < 2; ++n) { multibuild_stb(200000,0,0,1,100); } end(); printf(" // %7.2fms : 20,000,000 inserts creating 100 200K table w/ 4-byte key\n", timer); begin(); for (n=0; n < 2; ++n) { multibuild_stb(2000000,0,0,1,10); } end(); printf(" // %7.2fms : 20,000,000 inserts creating 10 2M table w/ 4-byte key\n", timer); begin(); for (n=0; n < 2; ++n) { multichurn4(2000,0,0,1,10000); } end(); printf(" // %7.2fms : 20,000,000 inserts creating 10,000 2K table w/ 4-byte key\n", timer); begin(); for (n=0; n < 2; ++n) { multichurn4(20000,0,0,1,1000); } end(); printf(" // %7.2fms : 20,000,000 inserts creating 1,000 20K table w/ 4-byte key\n", timer); begin(); for (n=0; n < 2; ++n) { multichurn4(200000,0,0,1,100); } end(); printf(" // %7.2fms : 20,000,000 inserts creating 100 200K table w/ 4-byte key\n", timer); begin(); for (n=0; n < 2; ++n) { multichurn4(2000000,0,0,1,10); } end(); printf(" // %7.2fms : 20,000,000 inserts creating 10 2M table w/ 4-byte key\n", timer); #endif begin(); for (n=0; n < 2000; ++n) { build(2000,0,0,1); } end(); printf(" // %7.2fms : 2,000 inserts creating 2K table w/ 4-byte key\n", timer); begin(); for (n=0; n < 500; ++n) { build(20000,0,0,1); } end(); printf(" // %7.2fms : 20,000 inserts creating 20K table w/ 4-byte key\n", timer); begin(); for (n=0; n < 100; ++n) { build(200000,0,0,1); } end(); printf(" // %7.2fms : 200,000 inserts creating 200K table w/ 4-byte key\n", timer); begin(); for (n=0; n < 10; ++n) { build(2000000,0,0,1); } end(); printf(" // %7.2fms : 2,000,000 inserts creating 2M table w/ 4-byte key\n", timer); begin(); for (n=0; n < 5; ++n) { build(20000000,0,0,1); } end(); printf(" // %7.2fms : 20,000,000 inserts creating 20M table w/ 4-byte key\n", timer); begin(); for (n=0; n < 2000; ++n) { churn8(2000,0,0,1); } end(); printf(" // %7.2fms : 2,000 inserts creating 2K table w/ 8-byte key\n", timer); begin(); for (n=0; n < 500; ++n) { churn8(20000,0,0,1); } end(); printf(" // %7.2fms : 20,000 inserts creating 20K table w/ 8-byte key\n", timer); begin(); for (n=0; n < 100; ++n) { churn8(200000,0,0,1); } end(); printf(" // %7.2fms : 200,000 inserts creating 200K table w/ 8-byte key\n", timer); begin(); for (n=0; n < 10; ++n) { churn8(2000000,0,0,1); } end(); printf(" // %7.2fms : 2,000,000 inserts creating 2M table w/ 8-byte key\n", timer); begin(); for (n=0; n < 5; ++n) { churn8(20000000,0,0,1); } end(); printf(" // %7.2fms : 20,000,000 inserts creating 20M table w/ 8-byte key\n", timer); begin(); for (n=0; n < 60; ++n) { churn_skip(2000,2100,5000); } end(); printf(" // %7.2fms : 500,000 inserts & deletes in 2K table\n", timer); begin(); for (n=0; n < 30; ++n) { churn_skip(20000,21000,500); } end(); printf(" // %7.2fms : 500,000 inserts & deletes in 20K table\n", timer); begin(); for (n=0; n < 15; ++n) { churn_skip(200000,201000,500); } end(); printf(" // %7.2fms : 500,000 inserts & deletes in 200K table\n", timer); begin(); for (n=0; n < 8; ++n) { churn_skip(2000000,2001000,500); } end(); printf(" // %7.2fms : 500,000 inserts & deletes in 2M table\n", timer); begin(); for (n=0; n < 5; ++n) { churn_skip(20000000,20001000,500); } end(); printf(" // %7.2fms : 500,000 inserts & deletes in 20M table\n", timer); begin(); for (n=0; n < 1; ++n) { churn_skip(200000000u,200001000u,500); } end(); printf(" // %7.2fms : 500,000 inserts & deletes in 200M table\n", timer); // even though the above measures a roughly fixed amount of work, we still have to build the table n times, hence the fewer measurements each time begin(); for (n=0; n < 60; ++n) { churn_skip(1000,3000,250); } end(); printf(" // %7.2fms : 500,000 inserts & deletes in 2K table\n", timer); begin(); for (n=0; n < 15; ++n) { churn_skip(10000,30000,25); } end(); printf(" // %7.2fms : 500,000 inserts & deletes in 20K table\n", timer); begin(); for (n=0; n < 7; ++n) { churn_skip(100000,300000,10); } end(); printf(" // %7.2fms : 2,000,000 inserts & deletes in 200K table\n", timer); begin(); for (n=0; n < 2; ++n) { churn_skip(1000000,3000000,10); } end(); printf(" // %7.2fms : 20,000,000 inserts & deletes in 2M table\n", timer); // search for bad intervals.. in practice this just seems to measure execution variance for (s = 2; s < 64; ++s) { begin(); for (n=0; n < 50; ++n) { build(200000,0,0,s); } end(); if (timer > worst) { worst = timer; w = s; } } for (; s <= 1024; s *= 2) { begin(); for (n=0; n < 50; ++n) { build(200000,0,0,s); } end(); if (timer > worst) { worst = timer; w = s; } } printf(" // %7.2fms(%d) : Worst time from inserting 200,000 items with spacing %d.\n", worst, w, w); return 0; } #endif