/* SPDX-License-Identifier: GPL-3.0-or-later * Copyright © 2016-2025 The TokTok team. * Copyright © 2013 Tox project. */ /** * Functions for the core networking. */ #ifdef __APPLE__ #define _DARWIN_C_SOURCE #endif /* __APPLE__ */ // For Solaris. #ifdef __sun #define __EXTENSIONS__ 1 #endif /* __sun */ // For Linux (and some BSDs). #ifndef _XOPEN_SOURCE #define _XOPEN_SOURCE 700 #endif /* _XOPEN_SOURCE */ #if defined(_WIN32) && defined(_WIN32_WINNT) && defined(_WIN32_WINNT_WINXP) && _WIN32_WINNT >= _WIN32_WINNT_WINXP #undef _WIN32_WINNT #define _WIN32_WINNT 0x501 #endif /* defined(_WIN32) && defined(_WIN32_WINNT) && defined(_WIN32_WINNT_WINXP) && _WIN32_WINNT >= _WIN32_WINNT_WINXP */ #if !defined(OS_WIN32) && (defined(_WIN32) || defined(__WIN32__) || defined(WIN32)) #define OS_WIN32 #endif /* !defined(OS_WIN32) && (defined(_WIN32) || defined(__WIN32__) || defined(WIN32)) */ #if defined(OS_WIN32) && !defined(WINVER) // Windows XP #define WINVER 0x0501 #endif /* defined(OS_WIN32) && !defined(WINVER) */ #include "network.h" #ifdef OS_WIN32 // Put win32 includes here // The mingw32/64 Windows library warns about including winsock2.h after // windows.h even though with the above it's a valid thing to do. So, to make // mingw32 headers happy, we include winsock2.h first. #include // Comment line here to avoid reordering by source code formatters. #include #include #endif /* OS_WIN32 */ #ifdef __APPLE__ #include #include #endif /* __APPLE__ */ #if !defined(OS_WIN32) #include #include #include #include #include #include #include #include #include #include #ifdef __sun #include #include #endif /* __sun */ #else #ifndef IPV6_V6ONLY #define IPV6_V6ONLY 27 #endif /* IPV6_V6ONLY */ #endif /* !defined(OS_WIN32) */ #include #include #include #include #include #include "attributes.h" #include "bin_pack.h" #include "ccompat.h" #include "logger.h" #include "mem.h" #include "net_profile.h" #include "util.h" // Disable MSG_NOSIGNAL on systems not supporting it, e.g. Windows, FreeBSD #if !defined(MSG_NOSIGNAL) #define MSG_NOSIGNAL 0 #endif /* !defined(MSG_NOSIGNAL) */ #ifndef IPV6_ADD_MEMBERSHIP #ifdef IPV6_JOIN_GROUP #define IPV6_ADD_MEMBERSHIP IPV6_JOIN_GROUP #endif /* IPV6_JOIN_GROUP */ #endif /* IPV6_ADD_MEMBERSHIP */ static_assert(sizeof(IP4) == SIZE_IP4, "IP4 size must be 4"); // TODO(iphydf): Stop relying on this. We memcpy this struct (and IP4 above) // into packets but really should be serialising it properly. static_assert(sizeof(IP6) == SIZE_IP6, "IP6 size must be 16"); #if !defined(OS_WIN32) static bool should_ignore_recv_error(int err) { return err == EWOULDBLOCK; } static bool should_ignore_connect_error(int err) { return err == EWOULDBLOCK || err == EINPROGRESS; } non_null() static const char *inet_ntop4(const struct in_addr *addr, char *buf, size_t bufsize) { return inet_ntop(AF_INET, addr, buf, bufsize); } non_null() static const char *inet_ntop6(const struct in6_addr *addr, char *buf, size_t bufsize) { return inet_ntop(AF_INET6, addr, buf, bufsize); } non_null() static int inet_pton4(const char *addr_string, struct in_addr *addrbuf) { return inet_pton(AF_INET, addr_string, addrbuf); } non_null() static int inet_pton6(const char *addr_string, struct in6_addr *addrbuf) { return inet_pton(AF_INET6, addr_string, addrbuf); } #else #ifndef IPV6_V6ONLY #define IPV6_V6ONLY 27 #endif /* IPV6_V6ONLY */ static bool should_ignore_recv_error(int err) { // We ignore WSAECONNRESET as Windows helpfully* sends that error if a // previously sent UDP packet wasn't delivered. return err == WSAEWOULDBLOCK || err == WSAECONNRESET; } static bool should_ignore_connect_error(int err) { return err == WSAEWOULDBLOCK || err == WSAEINPROGRESS; } non_null() static const char *inet_ntop4(const struct in_addr *addr, char *buf, size_t bufsize) { struct sockaddr_in saddr = {0}; saddr.sin_family = AF_INET; saddr.sin_addr = *addr; DWORD len = bufsize; if (WSAAddressToString((LPSOCKADDR)&saddr, sizeof(saddr), nullptr, buf, &len)) { return nullptr; } return buf; } non_null() static const char *inet_ntop6(const struct in6_addr *addr, char *buf, size_t bufsize) { struct sockaddr_in6 saddr = {0}; saddr.sin6_family = AF_INET6; saddr.sin6_addr = *addr; DWORD len = bufsize; if (WSAAddressToString((LPSOCKADDR)&saddr, sizeof(saddr), nullptr, buf, &len)) { return nullptr; } return buf; } non_null() static int inet_pton4(const char *addrString, struct in_addr *addrbuf) { struct sockaddr_in saddr = {0}; INT len = sizeof(saddr); if (WSAStringToAddress((LPTSTR)addrString, AF_INET, nullptr, (LPSOCKADDR)&saddr, &len)) { return 0; } *addrbuf = saddr.sin_addr; return 1; } non_null() static int inet_pton6(const char *addrString, struct in6_addr *addrbuf) { struct sockaddr_in6 saddr = {0}; INT len = sizeof(saddr); if (WSAStringToAddress((LPTSTR)addrString, AF_INET6, nullptr, (LPSOCKADDR)&saddr, &len)) { return 0; } *addrbuf = saddr.sin6_addr; return 1; } #endif /* !defined(OS_WIN32) */ static_assert(TOX_INET6_ADDRSTRLEN >= INET6_ADDRSTRLEN, "TOX_INET6_ADDRSTRLEN should be greater or equal to INET6_ADDRSTRLEN (#INET6_ADDRSTRLEN)"); static_assert(TOX_INET_ADDRSTRLEN >= INET_ADDRSTRLEN, "TOX_INET_ADDRSTRLEN should be greater or equal to INET_ADDRSTRLEN (#INET_ADDRSTRLEN)"); static int make_proto(int proto) { switch (proto) { case TOX_PROTO_TCP: return IPPROTO_TCP; case TOX_PROTO_UDP: return IPPROTO_UDP; default: return proto; } } static int make_socktype(int type) { switch (type) { case TOX_SOCK_STREAM: return SOCK_STREAM; case TOX_SOCK_DGRAM: return SOCK_DGRAM; default: return type; } } static int make_family(Family tox_family) { switch (tox_family.value) { case TOX_AF_INET: return AF_INET; case TOX_AF_INET6: return AF_INET6; case TOX_AF_UNSPEC: return AF_UNSPEC; default: return tox_family.value; } } static const Family family_unspec = {TOX_AF_UNSPEC}; static const Family family_ipv4 = {TOX_AF_INET}; static const Family family_ipv6 = {TOX_AF_INET6}; static const Family family_tcp_server = {TCP_SERVER_FAMILY}; static const Family family_tcp_client = {TCP_CLIENT_FAMILY}; static const Family family_tcp_ipv4 = {TCP_INET}; static const Family family_tcp_ipv6 = {TCP_INET6}; static const Family family_tox_tcp_ipv4 = {TOX_TCP_INET}; static const Family family_tox_tcp_ipv6 = {TOX_TCP_INET6}; static const Family *make_tox_family(int family) { switch (family) { case AF_INET: return &family_ipv4; case AF_INET6: return &family_ipv6; case AF_UNSPEC: return &family_unspec; default: return nullptr; } } non_null() static void get_ip4(IP4 *result, const struct in_addr *addr) { static_assert(sizeof(result->uint32) == sizeof(addr->s_addr), "Tox and operating system don't agree on size of IPv4 addresses"); result->uint32 = addr->s_addr; } non_null() static void get_ip6(IP6 *result, const struct in6_addr *addr) { static_assert(sizeof(result->uint8) == sizeof(addr->s6_addr), "Tox and operating system don't agree on size of IPv6 addresses"); memcpy(result->uint8, addr->s6_addr, sizeof(result->uint8)); } non_null() static void fill_addr4(const IP4 *ip, struct in_addr *addr) { addr->s_addr = ip->uint32; } non_null() static void fill_addr6(const IP6 *ip, struct in6_addr *addr) { memcpy(addr->s6_addr, ip->uint8, sizeof(ip->uint8)); } #if !defined(INADDR_LOOPBACK) #define INADDR_LOOPBACK 0x7f000001 #endif /* !defined(INADDR_LOOPBACK) */ IP4 get_ip4_broadcast(void) { const IP4 ip4_broadcast = { INADDR_BROADCAST }; return ip4_broadcast; } IP6 get_ip6_broadcast(void) { const IP6 ip6_broadcast = { { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff } }; return ip6_broadcast; } IP4 get_ip4_loopback(void) { IP4 loopback; loopback.uint32 = htonl(INADDR_LOOPBACK); return loopback; } IP6 get_ip6_loopback(void) { /* in6addr_loopback isn't available everywhere, so we do it ourselves. */ IP6 loopback = {{0}}; loopback.uint8[15] = 1; return loopback; } #ifndef OS_WIN32 #define INVALID_SOCKET (-1) #endif /* OS_WIN32 */ int net_socket_to_native(Socket sock) { return (force int)sock.value; } Socket net_socket_from_native(int sock) { const Socket res = {(force Socket_Value)sock}; return res; } Socket net_invalid_socket(void) { return net_socket_from_native(INVALID_SOCKET); } Family net_family_unspec(void) { return family_unspec; } Family net_family_ipv4(void) { return family_ipv4; } Family net_family_ipv6(void) { return family_ipv6; } Family net_family_tcp_server(void) { return family_tcp_server; } Family net_family_tcp_client(void) { return family_tcp_client; } Family net_family_tcp_ipv4(void) { return family_tcp_ipv4; } Family net_family_tcp_ipv6(void) { return family_tcp_ipv6; } Family net_family_tox_tcp_ipv4(void) { return family_tox_tcp_ipv4; } Family net_family_tox_tcp_ipv6(void) { return family_tox_tcp_ipv6; } bool net_family_is_unspec(Family family) { return family.value == family_unspec.value; } bool net_family_is_ipv4(Family family) { return family.value == family_ipv4.value; } bool net_family_is_ipv6(Family family) { return family.value == family_ipv6.value; } bool net_family_is_tcp_server(Family family) { return family.value == family_tcp_server.value; } bool net_family_is_tcp_client(Family family) { return family.value == family_tcp_client.value; } bool net_family_is_tcp_ipv4(Family family) { return family.value == family_tcp_ipv4.value; } bool net_family_is_tcp_ipv6(Family family) { return family.value == family_tcp_ipv6.value; } bool net_family_is_tox_tcp_ipv4(Family family) { return family.value == family_tox_tcp_ipv4.value; } bool net_family_is_tox_tcp_ipv6(Family family) { return family.value == family_tox_tcp_ipv6.value; } bool sock_valid(Socket sock) { const Socket invalid_socket = net_invalid_socket(); return sock.value != invalid_socket.value; } struct Network_Addr { struct sockaddr_storage addr; size_t size; }; non_null() static int sys_close(void *obj, Socket sock) { #if defined(OS_WIN32) return closesocket(net_socket_to_native(sock)); #else // !OS_WIN32 return close(net_socket_to_native(sock)); #endif /* OS_WIN32 */ } non_null() static Socket sys_accept(void *obj, Socket sock) { return net_socket_from_native(accept(net_socket_to_native(sock), nullptr, nullptr)); } non_null() static int sys_bind(void *obj, Socket sock, const Network_Addr *addr) { return bind(net_socket_to_native(sock), (const struct sockaddr *)&addr->addr, addr->size); } non_null() static int sys_listen(void *obj, Socket sock, int backlog) { return listen(net_socket_to_native(sock), backlog); } non_null() static int sys_connect(void *obj, Socket sock, const Network_Addr *addr) { return connect(net_socket_to_native(sock), (const struct sockaddr *)&addr->addr, addr->size); } non_null() static int sys_recvbuf(void *obj, Socket sock) { #ifdef OS_WIN32 u_long count = 0; ioctlsocket(net_socket_to_native(sock), FIONREAD, &count); #else int count = 0; ioctl(net_socket_to_native(sock), FIONREAD, &count); #endif /* OS_WIN32 */ return count; } non_null() static int sys_recv(void *obj, Socket sock, uint8_t *buf, size_t len) { return recv(net_socket_to_native(sock), (char *)buf, len, MSG_NOSIGNAL); } non_null() static int sys_send(void *obj, Socket sock, const uint8_t *buf, size_t len) { return send(net_socket_to_native(sock), (const char *)buf, len, MSG_NOSIGNAL); } non_null() static int sys_sendto(void *obj, Socket sock, const uint8_t *buf, size_t len, const Network_Addr *addr) { return sendto(net_socket_to_native(sock), (const char *)buf, len, 0, (const struct sockaddr *)&addr->addr, addr->size); } non_null() static int sys_recvfrom(void *obj, Socket sock, uint8_t *buf, size_t len, Network_Addr *addr) { socklen_t size = addr->size; const int ret = recvfrom(net_socket_to_native(sock), (char *)buf, len, 0, (struct sockaddr *)&addr->addr, &size); addr->size = size; return ret; } non_null() static Socket sys_socket(void *obj, int domain, int type, int proto) { return net_socket_from_native(socket(domain, type, proto)); } non_null() static int sys_socket_nonblock(void *obj, Socket sock, bool nonblock) { #ifdef OS_WIN32 u_long mode = nonblock ? 1 : 0; return ioctlsocket(net_socket_to_native(sock), FIONBIO, &mode); #else return fcntl(net_socket_to_native(sock), F_SETFL, O_NONBLOCK, nonblock ? 1 : 0); #endif /* OS_WIN32 */ } non_null() static int sys_getsockopt(void *obj, Socket sock, int level, int optname, void *optval, size_t *optlen) { socklen_t len = *optlen; const int ret = getsockopt(net_socket_to_native(sock), level, optname, (char *)optval, &len); *optlen = len; return ret; } non_null() static int sys_setsockopt(void *obj, Socket sock, int level, int optname, const void *optval, size_t optlen) { return setsockopt(net_socket_to_native(sock), level, optname, (const char *)optval, optlen); } // sets and fills an array of addrs for address // returns the number of entries in addrs non_null() static int sys_getaddrinfo(void *obj, const Memory *mem, const char *address, int family, int sock_type, Network_Addr **addrs) { assert(addrs != nullptr); struct addrinfo hints = {0}; hints.ai_family = family; // different platforms favour a different field // hints.ai_socktype = SOCK_DGRAM; // type of socket Tox uses. hints.ai_socktype = sock_type; // hints.ai_protocol = protocol; struct addrinfo *infos = nullptr; const int rc = getaddrinfo(address, nullptr, &hints, &infos); // Lookup failed. if (rc != 0) { // TODO(Green-Sky): log error return 0; } const int32_t max_count = INT32_MAX / sizeof(Network_Addr); // we count number of "valid" results int result = 0; for (struct addrinfo *walker = infos; walker != nullptr && result < max_count; walker = walker->ai_next) { if (walker->ai_family == family || family == AF_UNSPEC) { ++result; } // do we need to check socktype/protocol? } assert(max_count >= result); Network_Addr *tmp_addrs = (Network_Addr *)mem_valloc(mem, result, sizeof(Network_Addr)); if (tmp_addrs == nullptr) { freeaddrinfo(infos); return 0; } // now we fill in int i = 0; for (struct addrinfo *walker = infos; walker != nullptr; walker = walker->ai_next) { if (walker->ai_family == family || family == AF_UNSPEC) { tmp_addrs[i].size = sizeof(struct sockaddr_storage); tmp_addrs[i].addr.ss_family = walker->ai_family; // according to spec, storage is supposed to be large enough (and source shows they are) // storage is 128 bytes assert(walker->ai_addrlen <= tmp_addrs[i].size); memcpy(&tmp_addrs[i].addr, walker->ai_addr, walker->ai_addrlen); tmp_addrs[i].size = walker->ai_addrlen; ++i; } } assert(i == result); freeaddrinfo(infos); *addrs = tmp_addrs; // number of entries in addrs return result; } non_null() static int sys_freeaddrinfo(void *obj, const Memory *mem, Network_Addr *addrs) { if (addrs == nullptr) { return 0; } mem_delete(mem, addrs); return 0; } static const Network_Funcs os_network_funcs = { sys_close, sys_accept, sys_bind, sys_listen, sys_connect, sys_recvbuf, sys_recv, sys_recvfrom, sys_send, sys_sendto, sys_socket, sys_socket_nonblock, sys_getsockopt, sys_setsockopt, sys_getaddrinfo, sys_freeaddrinfo, }; static const Network os_network_obj = {&os_network_funcs, nullptr}; const Network *os_network(void) { #ifdef FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION if ((true)) { return nullptr; } #endif /* FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION */ #ifdef OS_WIN32 WSADATA wsaData; if (WSAStartup(MAKEWORD(2, 2), &wsaData) != NO_ERROR) { return nullptr; } #endif /* OS_WIN32 */ return &os_network_obj; } #if 0 /* TODO(iphydf): Call this from functions that use `os_network()`. */ void os_network_deinit(const Network *ns) { #ifdef OS_WIN32 WSACleanup(); #endif /* OS_WIN32 */ } #endif /* 0 */ non_null() static int net_setsockopt(const Network *ns, Socket sock, int level, int optname, const void *optval, size_t optlen) { return ns->funcs->setsockopt(ns->obj, sock, level, optname, optval, optlen); } non_null() static int net_getsockopt(const Network *ns, Socket sock, int level, int optname, void *optval, size_t *optlen) { return ns->funcs->getsockopt(ns->obj, sock, level, optname, optval, optlen); } non_null() static uint32_t data_0(uint16_t buflen, const uint8_t *buffer) { uint32_t data = 0; if (buflen > 4) { net_unpack_u32(buffer + 1, &data); } return data; } non_null() static uint32_t data_1(uint16_t buflen, const uint8_t *buffer) { uint32_t data = 0; if (buflen > 8) { net_unpack_u32(buffer + 5, &data); } return data; } static const char *net_packet_type_name(Net_Packet_Type type) { switch (type) { case NET_PACKET_PING_REQUEST: return "PING_REQUEST"; case NET_PACKET_PING_RESPONSE: return "PING_RESPONSE"; case NET_PACKET_GET_NODES: return "GET_NODES"; case NET_PACKET_SEND_NODES_IPV6: return "SEND_NODES_IPV6"; case NET_PACKET_COOKIE_REQUEST: return "COOKIE_REQUEST"; case NET_PACKET_COOKIE_RESPONSE: return "COOKIE_RESPONSE"; case NET_PACKET_CRYPTO_HS: return "CRYPTO_HS"; case NET_PACKET_CRYPTO_DATA: return "CRYPTO_DATA"; case NET_PACKET_CRYPTO: return "CRYPTO"; case NET_PACKET_GC_HANDSHAKE: return "GC_HANDSHAKE"; case NET_PACKET_GC_LOSSLESS: return "GC_LOSSLESS"; case NET_PACKET_GC_LOSSY: return "GC_LOSSY"; case NET_PACKET_LAN_DISCOVERY: return "LAN_DISCOVERY"; case NET_PACKET_ONION_SEND_INITIAL: return "ONION_SEND_INITIAL"; case NET_PACKET_ONION_SEND_1: return "ONION_SEND_1"; case NET_PACKET_ONION_SEND_2: return "ONION_SEND_2"; case NET_PACKET_ANNOUNCE_REQUEST_OLD: return "ANNOUNCE_REQUEST_OLD"; case NET_PACKET_ANNOUNCE_RESPONSE_OLD: return "ANNOUNCE_RESPONSE_OLD"; case NET_PACKET_ONION_DATA_REQUEST: return "ONION_DATA_REQUEST"; case NET_PACKET_ONION_DATA_RESPONSE: return "ONION_DATA_RESPONSE"; case NET_PACKET_ANNOUNCE_REQUEST: return "ANNOUNCE_REQUEST"; case NET_PACKET_ANNOUNCE_RESPONSE: return "ANNOUNCE_RESPONSE"; case NET_PACKET_ONION_RECV_3: return "ONION_RECV_3"; case NET_PACKET_ONION_RECV_2: return "ONION_RECV_2"; case NET_PACKET_ONION_RECV_1: return "ONION_RECV_1"; case NET_PACKET_FORWARD_REQUEST: return "FORWARD_REQUEST"; case NET_PACKET_FORWARDING: return "FORWARDING"; case NET_PACKET_FORWARD_REPLY: return "FORWARD_REPLY"; case NET_PACKET_DATA_SEARCH_REQUEST: return "DATA_SEARCH_REQUEST"; case NET_PACKET_DATA_SEARCH_RESPONSE: return "DATA_SEARCH_RESPONSE"; case NET_PACKET_DATA_RETRIEVE_REQUEST: return "DATA_RETRIEVE_REQUEST"; case NET_PACKET_DATA_RETRIEVE_RESPONSE: return "DATA_RETRIEVE_RESPONSE"; case NET_PACKET_STORE_ANNOUNCE_REQUEST: return "STORE_ANNOUNCE_REQUEST"; case NET_PACKET_STORE_ANNOUNCE_RESPONSE: return "STORE_ANNOUNCE_RESPONSE"; case BOOTSTRAP_INFO_PACKET_ID: return "BOOTSTRAP_INFO"; case NET_PACKET_MAX: return "MAX"; } return ""; } non_null() static void loglogdata(const Logger *log, const char *message, const uint8_t *buffer, uint16_t buflen, const IP_Port *ip_port, long res) { if (res < 0) { /* Windows doesn't necessarily know `%zu` */ Ip_Ntoa ip_str; const int error = net_error(); char *strerror = net_new_strerror(error); LOGGER_TRACE(log, "[%02x = %-21s] %s %3u%c %s:%u (%u: %s) | %08x%08x...%02x", buffer[0], net_packet_type_name((Net_Packet_Type)buffer[0]), message, min_u16(buflen, 999), 'E', net_ip_ntoa(&ip_port->ip, &ip_str), net_ntohs(ip_port->port), error, strerror, data_0(buflen, buffer), data_1(buflen, buffer), buffer[buflen - 1]); net_kill_strerror(strerror); } else if ((res > 0) && ((size_t)res <= buflen)) { Ip_Ntoa ip_str; LOGGER_TRACE(log, "[%02x = %-21s] %s %3u%c %s:%u (%u: %s) | %08x%08x...%02x", buffer[0], net_packet_type_name((Net_Packet_Type)buffer[0]), message, min_u16(res, 999), (size_t)res < buflen ? '<' : '=', net_ip_ntoa(&ip_port->ip, &ip_str), net_ntohs(ip_port->port), 0, "OK", data_0(buflen, buffer), data_1(buflen, buffer), buffer[buflen - 1]); } else { /* empty or overwrite */ Ip_Ntoa ip_str; LOGGER_TRACE(log, "[%02x = %-21s] %s %lu%c%u %s:%u (%u: %s) | %08x%08x...%02x", buffer[0], net_packet_type_name((Net_Packet_Type)buffer[0]), message, res, res == 0 ? '!' : '>', buflen, net_ip_ntoa(&ip_port->ip, &ip_str), net_ntohs(ip_port->port), 0, "OK", data_0(buflen, buffer), data_1(buflen, buffer), buffer[buflen - 1]); } } int net_send(const Network *ns, const Logger *log, Socket sock, const uint8_t *buf, size_t len, const IP_Port *ip_port, Net_Profile *net_profile) { const int res = ns->funcs->send(ns->obj, sock, buf, len); if (res > 0) { netprof_record_packet(net_profile, buf[0], res, PACKET_DIRECTION_SEND); } loglogdata(log, "T=>", buf, len, ip_port, res); return res; } non_null() static int net_sendto( const Network *ns, Socket sock, const uint8_t *buf, size_t len, const Network_Addr *addr, const IP_Port *ip_port) { return ns->funcs->sendto(ns->obj, sock, buf, len, addr); } int net_recv(const Network *ns, const Logger *log, Socket sock, uint8_t *buf, size_t len, const IP_Port *ip_port) { const int res = ns->funcs->recv(ns->obj, sock, buf, len); loglogdata(log, "=>T", buf, len, ip_port, res); return res; } non_null() static int net_recvfrom(const Network *ns, Socket sock, uint8_t *buf, size_t len, Network_Addr *addr) { return ns->funcs->recvfrom(ns->obj, sock, buf, len, addr); } int net_listen(const Network *ns, Socket sock, int backlog) { return ns->funcs->listen(ns->obj, sock, backlog); } non_null() static int net_bind(const Network *ns, Socket sock, const Network_Addr *addr) { return ns->funcs->bind(ns->obj, sock, addr); } Socket net_accept(const Network *ns, Socket sock) { return ns->funcs->accept(ns->obj, sock); } /** Close the socket. */ void kill_sock(const Network *ns, Socket sock) { ns->funcs->close(ns->obj, sock); } bool set_socket_nonblock(const Network *ns, Socket sock) { return ns->funcs->socket_nonblock(ns->obj, sock, true) == 0; } bool set_socket_nosigpipe(const Network *ns, Socket sock) { #if defined(__APPLE__) int set = 1; return net_setsockopt(ns, sock, SOL_SOCKET, SO_NOSIGPIPE, &set, sizeof(int)) == 0; #else return true; #endif /* __APPLE__ */ } bool set_socket_reuseaddr(const Network *ns, Socket sock) { int set = 1; #if defined(OS_WIN32) return net_setsockopt(ns, sock, SOL_SOCKET, SO_EXCLUSIVEADDRUSE, &set, sizeof(set)) == 0; #else return net_setsockopt(ns, sock, SOL_SOCKET, SO_REUSEADDR, &set, sizeof(set)) == 0; #endif /* OS_WIN32 */ } bool set_socket_dualstack(const Network *ns, Socket sock) { int ipv6only = 0; size_t optsize = sizeof(ipv6only); const int res = net_getsockopt(ns, sock, IPPROTO_IPV6, IPV6_V6ONLY, &ipv6only, &optsize); if ((res == 0) && (ipv6only == 0)) { return true; } ipv6only = 0; return net_setsockopt(ns, sock, IPPROTO_IPV6, IPV6_V6ONLY, &ipv6only, sizeof(ipv6only)) == 0; } typedef struct Packet_Handler { packet_handler_cb *function; void *object; } Packet_Handler; struct Networking_Core { const Logger *log; const Memory *mem; Packet_Handler packethandlers[256]; const Network *ns; Family family; uint16_t port; /* Our UDP socket. */ Socket sock; Net_Profile *udp_net_profile; }; Family net_family(const Networking_Core *net) { return net->family; } uint16_t net_port(const Networking_Core *net) { return net->port; } /* Basic network functions: */ int send_packet(const Networking_Core *net, const IP_Port *ip_port, Packet packet) { IP_Port ipp_copy = *ip_port; if (net_family_is_unspec(ip_port->ip.family)) { // TODO(iphydf): Make this an error. Currently this fails sometimes when // called from DHT.c:do_ping_and_sendnode_requests. return -1; } if (net_family_is_unspec(net->family)) { /* Socket not initialized */ // TODO(iphydf): Make this an error. Currently, the onion client calls // this via DHT getnodes. LOGGER_WARNING(net->log, "attempted to send message of length %u on uninitialised socket", packet.length); return -1; } /* socket TOX_AF_INET, but target IP NOT: can't send */ if (net_family_is_ipv4(net->family) && !net_family_is_ipv4(ipp_copy.ip.family)) { // TODO(iphydf): Make this an error. Occasionally we try to send to an // all-zero ip_port. Ip_Ntoa ip_str; LOGGER_WARNING(net->log, "attempted to send message with network family %d (probably IPv6) on IPv4 socket (%s)", ipp_copy.ip.family.value, net_ip_ntoa(&ipp_copy.ip, &ip_str)); return -1; } if (net_family_is_ipv4(ipp_copy.ip.family) && net_family_is_ipv6(net->family)) { /* must convert to IPV4-in-IPV6 address */ IP6 ip6; /* there should be a macro for this in a standards compliant * environment, not found */ ip6.uint32[0] = 0; ip6.uint32[1] = 0; ip6.uint32[2] = net_htonl(0xFFFF); ip6.uint32[3] = ipp_copy.ip.ip.v4.uint32; ipp_copy.ip.family = net_family_ipv6(); ipp_copy.ip.ip.v6 = ip6; } Network_Addr addr; if (net_family_is_ipv4(ipp_copy.ip.family)) { struct sockaddr_in *const addr4 = (struct sockaddr_in *)&addr.addr; addr.size = sizeof(struct sockaddr_in); addr4->sin_family = AF_INET; addr4->sin_port = ipp_copy.port; fill_addr4(&ipp_copy.ip.ip.v4, &addr4->sin_addr); } else if (net_family_is_ipv6(ipp_copy.ip.family)) { struct sockaddr_in6 *const addr6 = (struct sockaddr_in6 *)&addr.addr; addr.size = sizeof(struct sockaddr_in6); addr6->sin6_family = AF_INET6; addr6->sin6_port = ipp_copy.port; fill_addr6(&ipp_copy.ip.ip.v6, &addr6->sin6_addr); addr6->sin6_flowinfo = 0; addr6->sin6_scope_id = 0; } else { LOGGER_ERROR(net->log, "unknown address type: %d", ipp_copy.ip.family.value); return -1; } const long res = net_sendto(net->ns, net->sock, packet.data, packet.length, &addr, &ipp_copy); loglogdata(net->log, "O=>", packet.data, packet.length, ip_port, res); assert(res <= INT_MAX); if (res == packet.length && packet.data != nullptr) { netprof_record_packet(net->udp_net_profile, packet.data[0], packet.length, PACKET_DIRECTION_SEND); } return (int)res; } /** * Function to send packet(data) of length length to ip_port. * * @deprecated Use send_packet instead. */ int sendpacket(const Networking_Core *net, const IP_Port *ip_port, const uint8_t *data, uint16_t length) { const Packet packet = {data, length}; return send_packet(net, ip_port, packet); } /** @brief Function to receive data * ip and port of sender is put into ip_port. * Packet data is put into data. * Packet length is put into length. */ non_null() static int receivepacket(const Network *ns, const Memory *mem, const Logger *log, Socket sock, IP_Port *ip_port, uint8_t *data, uint32_t *length) { memset(ip_port, 0, sizeof(IP_Port)); Network_Addr addr = {{0}}; addr.size = sizeof(addr.addr); *length = 0; const int fail_or_len = net_recvfrom(ns, sock, data, MAX_UDP_PACKET_SIZE, &addr); if (fail_or_len < 0) { const int error = net_error(); if (!should_ignore_recv_error(error)) { char *strerror = net_new_strerror(error); LOGGER_ERROR(log, "unexpected error reading from socket: %u, %s", error, strerror); net_kill_strerror(strerror); } return -1; /* Nothing received. */ } *length = (uint32_t)fail_or_len; if (addr.addr.ss_family == AF_INET) { const struct sockaddr_in *addr_in = (const struct sockaddr_in *)&addr.addr; const Family *const family = make_tox_family(addr_in->sin_family); assert(family != nullptr); if (family == nullptr) { return -1; } ip_port->ip.family = *family; get_ip4(&ip_port->ip.ip.v4, &addr_in->sin_addr); ip_port->port = addr_in->sin_port; } else if (addr.addr.ss_family == AF_INET6) { const struct sockaddr_in6 *addr_in6 = (const struct sockaddr_in6 *)&addr.addr; const Family *const family = make_tox_family(addr_in6->sin6_family); assert(family != nullptr); if (family == nullptr) { return -1; } ip_port->ip.family = *family; get_ip6(&ip_port->ip.ip.v6, &addr_in6->sin6_addr); ip_port->port = addr_in6->sin6_port; if (ipv6_ipv4_in_v6(&ip_port->ip.ip.v6)) { ip_port->ip.family = net_family_ipv4(); ip_port->ip.ip.v4.uint32 = ip_port->ip.ip.v6.uint32[3]; } } else { return -1; } loglogdata(log, "=>O", data, MAX_UDP_PACKET_SIZE, ip_port, *length); return 0; } void networking_registerhandler(Networking_Core *net, uint8_t byte, packet_handler_cb *cb, void *object) { net->packethandlers[byte].function = cb; net->packethandlers[byte].object = object; } void networking_poll(const Networking_Core *net, void *userdata) { if (net_family_is_unspec(net->family)) { /* Socket not initialized */ return; } IP_Port ip_port; uint8_t data[MAX_UDP_PACKET_SIZE] = {0}; uint32_t length; while (receivepacket(net->ns, net->mem, net->log, net->sock, &ip_port, data, &length) != -1) { if (length < 1) { continue; } netprof_record_packet(net->udp_net_profile, data[0], length, PACKET_DIRECTION_RECV); const Packet_Handler *const handler = &net->packethandlers[data[0]]; if (handler->function == nullptr) { // TODO(https://github.com/TokTok/c-toxcore/issues/1115): Make this // a warning or error again. LOGGER_DEBUG(net->log, "[%02u] -- Packet has no handler", data[0]); continue; } handler->function(handler->object, &ip_port, data, length, userdata); } } /** @brief Initialize networking. * Bind to ip and port. * ip must be in network order EX: 127.0.0.1 = (7F000001). * port is in host byte order (this means don't worry about it). * * @return Networking_Core object if no problems * @retval NULL if there are problems. * * If error is non NULL it is set to 0 if no issues, 1 if socket related error, 2 if other. */ Networking_Core *new_networking_ex( const Logger *log, const Memory *mem, const Network *ns, const IP *ip, uint16_t port_from, uint16_t port_to, unsigned int *error) { /* If both from and to are 0, use default port range * If one is 0 and the other is non-0, use the non-0 value as only port * If from > to, swap */ if (port_from == 0 && port_to == 0) { port_from = TOX_PORTRANGE_FROM; port_to = TOX_PORTRANGE_TO; } else if (port_from == 0 && port_to != 0) { port_from = port_to; } else if (port_from != 0 && port_to == 0) { port_to = port_from; } else if (port_from > port_to) { const uint16_t temp_port = port_from; port_from = port_to; port_to = temp_port; } if (error != nullptr) { *error = 2; } /* maybe check for invalid IPs like 224+.x.y.z? if there is any IP set ever */ if (!net_family_is_ipv4(ip->family) && !net_family_is_ipv6(ip->family)) { LOGGER_ERROR(log, "invalid address family: %u", ip->family.value); return nullptr; } Networking_Core *temp = (Networking_Core *)mem_alloc(mem, sizeof(Networking_Core)); if (temp == nullptr) { return nullptr; } Net_Profile *np = netprof_new(log, mem); if (np == nullptr) { free(temp); return nullptr; } temp->udp_net_profile = np; temp->ns = ns; temp->log = log; temp->mem = mem; temp->family = ip->family; temp->port = 0; /* Initialize our socket. */ /* add log message what we're creating */ temp->sock = net_socket(ns, temp->family, TOX_SOCK_DGRAM, TOX_PROTO_UDP); /* Check for socket error. */ if (!sock_valid(temp->sock)) { const int neterror = net_error(); char *strerror = net_new_strerror(neterror); LOGGER_ERROR(log, "failed to get a socket?! %d, %s", neterror, strerror); net_kill_strerror(strerror); netprof_kill(mem, temp->udp_net_profile); mem_delete(mem, temp); if (error != nullptr) { *error = 1; } return nullptr; } /* Functions to increase the size of the send and receive UDP buffers. */ int n = 1024 * 1024 * 2; if (net_setsockopt(ns, temp->sock, SOL_SOCKET, SO_RCVBUF, &n, sizeof(n)) != 0) { LOGGER_WARNING(log, "failed to set socket option %d", SO_RCVBUF); } if (net_setsockopt(ns, temp->sock, SOL_SOCKET, SO_SNDBUF, &n, sizeof(n)) != 0) { LOGGER_WARNING(log, "failed to set socket option %d", SO_SNDBUF); } /* Enable broadcast on socket */ int broadcast = 1; if (net_setsockopt(ns, temp->sock, SOL_SOCKET, SO_BROADCAST, &broadcast, sizeof(broadcast)) != 0) { LOGGER_ERROR(log, "failed to set socket option %d", SO_BROADCAST); } /* iOS UDP sockets are weird and apparently can SIGPIPE */ if (!set_socket_nosigpipe(ns, temp->sock)) { kill_networking(temp); if (error != nullptr) { *error = 1; } return nullptr; } /* Set socket nonblocking. */ if (!set_socket_nonblock(ns, temp->sock)) { kill_networking(temp); if (error != nullptr) { *error = 1; } return nullptr; } /* Bind our socket to port PORT and the given IP address (usually 0.0.0.0 or ::) */ uint16_t *portptr = nullptr; Network_Addr addr = {{0}}; if (net_family_is_ipv4(temp->family)) { struct sockaddr_in *addr4 = (struct sockaddr_in *)&addr.addr; addr.size = sizeof(struct sockaddr_in); addr4->sin_family = AF_INET; addr4->sin_port = 0; fill_addr4(&ip->ip.v4, &addr4->sin_addr); portptr = &addr4->sin_port; } else if (net_family_is_ipv6(temp->family)) { struct sockaddr_in6 *addr6 = (struct sockaddr_in6 *)&addr.addr; addr.size = sizeof(struct sockaddr_in6); addr6->sin6_family = AF_INET6; addr6->sin6_port = 0; fill_addr6(&ip->ip.v6, &addr6->sin6_addr); addr6->sin6_flowinfo = 0; addr6->sin6_scope_id = 0; portptr = &addr6->sin6_port; } else { mem_delete(mem, temp); return nullptr; } if (net_family_is_ipv6(ip->family)) { const bool is_dualstack = set_socket_dualstack(ns, temp->sock); if (is_dualstack) { LOGGER_TRACE(log, "Dual-stack socket: enabled"); } else { LOGGER_ERROR(log, "Dual-stack socket failed to enable, won't be able to receive from/send to IPv4 addresses"); } #ifndef ESP_PLATFORM /* multicast local nodes */ struct ipv6_mreq mreq = {{{{0}}}}; mreq.ipv6mr_multiaddr.s6_addr[0] = 0xFF; mreq.ipv6mr_multiaddr.s6_addr[1] = 0x02; mreq.ipv6mr_multiaddr.s6_addr[15] = 0x01; mreq.ipv6mr_interface = 0; const int res = net_setsockopt(ns, temp->sock, IPPROTO_IPV6, IPV6_ADD_MEMBERSHIP, &mreq, sizeof(mreq)); const int neterror = net_error(); char *strerror = net_new_strerror(neterror); if (res < 0) { LOGGER_INFO(log, "Failed to activate local multicast membership in FF02::1. (%d, %s)", neterror, strerror); } else { LOGGER_TRACE(log, "Local multicast group joined successfully. (%d, %s)", neterror, strerror); } net_kill_strerror(strerror); #endif /* ESP_PLATFORM */ } /* A hanging program or a different user might block the standard port. * As long as it isn't a parameter coming from the commandline, * try a few ports after it, to see if we can find a "free" one. * * If we go on without binding, the first sendto() automatically binds to * a free port chosen by the system (i.e. anything from 1024 to 65535). * * Returning NULL after bind fails has both advantages and disadvantages: * advantage: * we can rely on getting the port in the range 33445..33450, which * enables us to tell joe user to open their firewall to a small range * * disadvantage: * some clients might not test return of tox_new(), blindly assuming that * it worked ok (which it did previously without a successful bind) */ uint16_t port_to_try = port_from; *portptr = net_htons(port_to_try); for (uint16_t tries = port_from; tries <= port_to; ++tries) { const int res = net_bind(ns, temp->sock, &addr); if (res == 0) { temp->port = *portptr; Ip_Ntoa ip_str; LOGGER_DEBUG(log, "Bound successfully to %s:%u", net_ip_ntoa(ip, &ip_str), net_ntohs(temp->port)); /* errno isn't reset on success, only set on failure, the failed * binds with parallel clients yield a -EPERM to the outside if * errno isn't cleared here */ if (tries > 0) { errno = 0; } if (error != nullptr) { *error = 0; } return temp; } ++port_to_try; if (port_to_try > port_to) { port_to_try = port_from; } *portptr = net_htons(port_to_try); } Ip_Ntoa ip_str; const int neterror = net_error(); char *strerror = net_new_strerror(neterror); LOGGER_ERROR(log, "failed to bind socket: %d, %s IP: %s port_from: %u port_to: %u", neterror, strerror, net_ip_ntoa(ip, &ip_str), port_from, port_to); net_kill_strerror(strerror); kill_networking(temp); if (error != nullptr) { *error = 1; } return nullptr; } Networking_Core *new_networking_no_udp(const Logger *log, const Memory *mem, const Network *ns) { /* this is the easiest way to completely disable UDP without changing too much code. */ Networking_Core *net = (Networking_Core *)mem_alloc(mem, sizeof(Networking_Core)); if (net == nullptr) { return nullptr; } net->ns = ns; net->log = log; net->mem = mem; return net; } /** Function to cleanup networking stuff (doesn't do much right now). */ void kill_networking(Networking_Core *net) { if (net == nullptr) { return; } if (!net_family_is_unspec(net->family)) { /* Socket is initialized, so we close it. */ kill_sock(net->ns, net->sock); } netprof_kill(net->mem, net->udp_net_profile); mem_delete(net->mem, net); } bool ip_equal(const IP *a, const IP *b) { if (a == nullptr || b == nullptr) { return false; } /* same family */ if (a->family.value == b->family.value) { if (net_family_is_ipv4(a->family) || net_family_is_tcp_ipv4(a->family)) { struct in_addr addr_a; struct in_addr addr_b; fill_addr4(&a->ip.v4, &addr_a); fill_addr4(&b->ip.v4, &addr_b); return addr_a.s_addr == addr_b.s_addr; } if (net_family_is_ipv6(a->family) || net_family_is_tcp_ipv6(a->family)) { return a->ip.v6.uint64[0] == b->ip.v6.uint64[0] && a->ip.v6.uint64[1] == b->ip.v6.uint64[1]; } return false; } /* different family: check on the IPv6 one if it is the IPv4 one embedded */ if (net_family_is_ipv4(a->family) && net_family_is_ipv6(b->family)) { if (ipv6_ipv4_in_v6(&b->ip.v6)) { struct in_addr addr_a; fill_addr4(&a->ip.v4, &addr_a); return addr_a.s_addr == b->ip.v6.uint32[3]; } } else if (net_family_is_ipv6(a->family) && net_family_is_ipv4(b->family)) { if (ipv6_ipv4_in_v6(&a->ip.v6)) { struct in_addr addr_b; fill_addr4(&b->ip.v4, &addr_b); return a->ip.v6.uint32[3] == addr_b.s_addr; } } return false; } bool ipport_equal(const IP_Port *a, const IP_Port *b) { if (a == nullptr || b == nullptr) { return false; } if (a->port == 0 || (a->port != b->port)) { return false; } return ip_equal(&a->ip, &b->ip); } non_null() static int ip4_cmp(const IP4 *a, const IP4 *b) { return cmp_uint(a->uint32, b->uint32); } non_null() static int ip6_cmp(const IP6 *a, const IP6 *b) { const int res = cmp_uint(a->uint64[0], b->uint64[0]); if (res != 0) { return res; } return cmp_uint(a->uint64[1], b->uint64[1]); } non_null() static int ip_cmp(const IP *a, const IP *b) { const int res = cmp_uint(a->family.value, b->family.value); if (res != 0) { return res; } switch (a->family.value) { case TOX_AF_UNSPEC: return 0; case TOX_AF_INET: case TCP_INET: case TOX_TCP_INET: return ip4_cmp(&a->ip.v4, &b->ip.v4); case TOX_AF_INET6: case TCP_INET6: case TOX_TCP_INET6: case TCP_SERVER_FAMILY: // these happen to be ipv6 according to TCP_server.c. case TCP_CLIENT_FAMILY: return ip6_cmp(&a->ip.v6, &b->ip.v6); } // Invalid, we don't compare any further and consider them equal. return 0; } int ipport_cmp_handler(const void *a, const void *b, size_t size) { const IP_Port *ipp_a = (const IP_Port *)a; const IP_Port *ipp_b = (const IP_Port *)b; assert(size == sizeof(IP_Port)); const int ip_res = ip_cmp(&ipp_a->ip, &ipp_b->ip); if (ip_res != 0) { return ip_res; } return cmp_uint(ipp_a->port, ipp_b->port); } static const IP empty_ip = {{0}}; /** nulls out ip */ void ip_reset(IP *ip) { if (ip == nullptr) { return; } *ip = empty_ip; } static const IP_Port empty_ip_port = {{{0}}}; /** nulls out ip_port */ void ipport_reset(IP_Port *ipport) { if (ipport == nullptr) { return; } *ipport = empty_ip_port; } /** nulls out ip, sets family according to flag */ void ip_init(IP *ip, bool ipv6enabled) { if (ip == nullptr) { return; } ip_reset(ip); ip->family = ipv6enabled ? net_family_ipv6() : net_family_ipv4(); } /** checks if ip is valid */ bool ip_isset(const IP *ip) { if (ip == nullptr) { return false; } return !net_family_is_unspec(ip->family); } /** checks if ip is valid */ bool ipport_isset(const IP_Port *ipport) { if (ipport == nullptr) { return false; } if (ipport->port == 0) { return false; } return ip_isset(&ipport->ip); } /** copies an ip structure (careful about direction) */ void ip_copy(IP *target, const IP *source) { if (source == nullptr || target == nullptr) { return; } *target = *source; } /** copies an ip_port structure (careful about direction) */ void ipport_copy(IP_Port *target, const IP_Port *source) { if (source == nullptr || target == nullptr) { return; } // Write to a temporary object first, so that padding bytes are // uninitialised and msan can catch mistakes in downstream code. IP_Port tmp; tmp.ip.family = source->ip.family; tmp.ip.ip = source->ip.ip; tmp.port = source->port; *target = tmp; } /** @brief Packs an IP structure. * * It's the caller's responsibility to make sure `is_ipv4` tells the truth. This * function is an implementation detail of @ref bin_pack_ip_port. * * @param is_ipv4 whether this IP is an IP4 or IP6. * * @retval true on success. */ non_null() static bool bin_pack_ip(Bin_Pack *bp, const IP *ip, bool is_ipv4) { if (is_ipv4) { return bin_pack_bin_b(bp, ip->ip.v4.uint8, SIZE_IP4); } else { return bin_pack_bin_b(bp, ip->ip.v6.uint8, SIZE_IP6); } } /** @brief Packs an IP_Port structure. * * @retval true on success. */ bool bin_pack_ip_port(Bin_Pack *bp, const Logger *logger, const IP_Port *ip_port) { bool is_ipv4; uint8_t family; if (net_family_is_ipv4(ip_port->ip.family)) { // TODO(irungentoo): use functions to convert endianness is_ipv4 = true; family = TOX_AF_INET; } else if (net_family_is_tcp_ipv4(ip_port->ip.family)) { is_ipv4 = true; family = TOX_TCP_INET; } else if (net_family_is_ipv6(ip_port->ip.family)) { is_ipv4 = false; family = TOX_AF_INET6; } else if (net_family_is_tcp_ipv6(ip_port->ip.family)) { is_ipv4 = false; family = TOX_TCP_INET6; } else { Ip_Ntoa ip_str; // TODO(iphydf): Find out why we're trying to pack invalid IPs, stop // doing that, and turn this into an error. LOGGER_TRACE(logger, "cannot pack invalid IP: %s", net_ip_ntoa(&ip_port->ip, &ip_str)); return false; } return bin_pack_u08_b(bp, family) && bin_pack_ip(bp, &ip_port->ip, is_ipv4) && bin_pack_u16_b(bp, net_ntohs(ip_port->port)); } non_null() static bool bin_pack_ip_port_handler(const void *obj, const Logger *logger, Bin_Pack *bp) { const IP_Port *ip_port = (const IP_Port *)obj; return bin_pack_ip_port(bp, logger, ip_port); } int pack_ip_port(const Logger *logger, uint8_t *data, uint16_t length, const IP_Port *ip_port) { const uint32_t size = bin_pack_obj_size(bin_pack_ip_port_handler, ip_port, logger); if (size > length) { return -1; } if (!bin_pack_obj(bin_pack_ip_port_handler, ip_port, logger, data, length)) { return -1; } assert(size < INT_MAX); return (int)size; } int unpack_ip_port(IP_Port *ip_port, const uint8_t *data, uint16_t length, bool tcp_enabled) { if (data == nullptr) { return -1; } bool is_ipv4; Family host_family; if (data[0] == TOX_AF_INET) { is_ipv4 = true; host_family = net_family_ipv4(); } else if (data[0] == TOX_TCP_INET) { if (!tcp_enabled) { return -1; } is_ipv4 = true; host_family = net_family_tcp_ipv4(); } else if (data[0] == TOX_AF_INET6) { is_ipv4 = false; host_family = net_family_ipv6(); } else if (data[0] == TOX_TCP_INET6) { if (!tcp_enabled) { return -1; } is_ipv4 = false; host_family = net_family_tcp_ipv6(); } else { return -1; } ipport_reset(ip_port); if (is_ipv4) { const uint32_t size = 1 + SIZE_IP4 + sizeof(uint16_t); if (size > length) { return -1; } ip_port->ip.family = host_family; memcpy(ip_port->ip.ip.v4.uint8, data + 1, SIZE_IP4); memcpy(&ip_port->port, data + 1 + SIZE_IP4, sizeof(uint16_t)); return size; } else { const uint32_t size = 1 + SIZE_IP6 + sizeof(uint16_t); if (size > length) { return -1; } ip_port->ip.family = host_family; memcpy(ip_port->ip.ip.v6.uint8, data + 1, SIZE_IP6); memcpy(&ip_port->port, data + 1 + SIZE_IP6, sizeof(uint16_t)); return size; } } const char *net_ip_ntoa(const IP *ip, Ip_Ntoa *ip_str) { assert(ip_str != nullptr); ip_str->ip_is_valid = false; if (ip == nullptr) { snprintf(ip_str->buf, sizeof(ip_str->buf), "(IP invalid: NULL)"); ip_str->length = (uint16_t)strlen(ip_str->buf); return ip_str->buf; } if (!ip_parse_addr(ip, ip_str->buf, sizeof(ip_str->buf))) { snprintf(ip_str->buf, sizeof(ip_str->buf), "(IP invalid, family %u)", ip->family.value); ip_str->length = (uint16_t)strlen(ip_str->buf); return ip_str->buf; } /* brute force protection against lacking termination */ ip_str->buf[sizeof(ip_str->buf) - 1] = '\0'; ip_str->length = (uint16_t)strlen(ip_str->buf); ip_str->ip_is_valid = true; return ip_str->buf; } bool ip_parse_addr(const IP *ip, char *address, size_t length) { if (address == nullptr || ip == nullptr) { return false; } if (net_family_is_ipv4(ip->family)) { struct in_addr addr; assert(make_family(ip->family) == AF_INET); fill_addr4(&ip->ip.v4, &addr); return inet_ntop4(&addr, address, length) != nullptr; } if (net_family_is_ipv6(ip->family)) { struct in6_addr addr; assert(make_family(ip->family) == AF_INET6); fill_addr6(&ip->ip.v6, &addr); return inet_ntop6(&addr, address, length) != nullptr; } return false; } bool addr_parse_ip(const char *address, IP *to) { if (address == nullptr || to == nullptr) { return false; } struct in_addr addr4; if (inet_pton4(address, &addr4) == 1) { to->family = net_family_ipv4(); get_ip4(&to->ip.v4, &addr4); return true; } struct in6_addr addr6; if (inet_pton6(address, &addr6) == 1) { to->family = net_family_ipv6(); get_ip6(&to->ip.v6, &addr6); return true; } return false; } /** addr_resolve return values */ #define TOX_ADDR_RESOLVE_INET 1 #define TOX_ADDR_RESOLVE_INET6 2 /** * Uses getaddrinfo to resolve an address into an IP address. * * Uses the first IPv4/IPv6 addresses returned by getaddrinfo. * * @param address a hostname (or something parseable to an IP address) * @param to to.family MUST be initialized, either set to a specific IP version * (TOX_AF_INET/TOX_AF_INET6) or to the unspecified TOX_AF_UNSPEC (0), if both * IP versions are acceptable * @param extra can be NULL and is only set in special circumstances, see returns * * Returns in `*to` a valid IPAny (v4/v6), * prefers v6 if `ip.family` was TOX_AF_UNSPEC and both available * Returns in `*extra` an IPv4 address, if family was TOX_AF_UNSPEC and `*to` is TOX_AF_INET6 * * @return false on failure, true on success. */ non_null(1, 2, 3, 4) nullable(5) static bool addr_resolve(const Network *ns, const Memory *mem, const char *address, IP *to, IP *extra) { #ifdef FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION if ((true)) { return false; } #endif /* FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION */ if (address == nullptr || to == nullptr) { return false; } const Family tox_family = to->family; const int family = make_family(tox_family); Network_Addr *addrs = nullptr; const int rc = ns->funcs->getaddrinfo(ns->obj, mem, address, family, 0, &addrs); // Lookup failed / empty. if (rc <= 0) { return false; } assert(addrs != nullptr); IP ip4; ip_init(&ip4, false); // ipv6enabled = false IP ip6; ip_init(&ip6, true); // ipv6enabled = true int result = 0; bool done = false; for (int i = 0; i < rc && !done; ++i) { switch (addrs[i].addr.ss_family) { case AF_INET: { if (addrs[i].addr.ss_family == family) { /* AF_INET requested, done */ const struct sockaddr_in *addr = (const struct sockaddr_in *)(const void *)&addrs[i].addr; get_ip4(&to->ip.v4, &addr->sin_addr); result = TOX_ADDR_RESOLVE_INET; done = true; } else if ((result & TOX_ADDR_RESOLVE_INET) == 0) { /* AF_UNSPEC requested, store away */ const struct sockaddr_in *addr = (const struct sockaddr_in *)(const void *)&addrs[i].addr; get_ip4(&ip4.ip.v4, &addr->sin_addr); result |= TOX_ADDR_RESOLVE_INET; } break; /* switch */ } case AF_INET6: { if (addrs[i].addr.ss_family == family) { /* AF_INET6 requested, done */ if (addrs[i].size == sizeof(struct sockaddr_in6)) { const struct sockaddr_in6 *addr = (const struct sockaddr_in6 *)(void *)&addrs[i].addr; get_ip6(&to->ip.v6, &addr->sin6_addr); result = TOX_ADDR_RESOLVE_INET6; done = true; } } else if ((result & TOX_ADDR_RESOLVE_INET6) == 0) { /* AF_UNSPEC requested, store away */ if (addrs[i].size == sizeof(struct sockaddr_in6)) { const struct sockaddr_in6 *addr = (const struct sockaddr_in6 *)(void *)&addrs[i].addr; get_ip6(&ip6.ip.v6, &addr->sin6_addr); result |= TOX_ADDR_RESOLVE_INET6; } } break; /* switch */ } } } if (family == AF_UNSPEC) { if ((result & TOX_ADDR_RESOLVE_INET6) != 0) { ip_copy(to, &ip6); if ((result & TOX_ADDR_RESOLVE_INET) != 0 && (extra != nullptr)) { ip_copy(extra, &ip4); } } else if ((result & TOX_ADDR_RESOLVE_INET) != 0) { ip_copy(to, &ip4); } else { result = 0; } } ns->funcs->freeaddrinfo(ns->obj, mem, addrs); return result != 0; } bool addr_resolve_or_parse_ip(const Network *ns, const Memory *mem, const char *address, IP *to, IP *extra, bool dns_enabled) { if (dns_enabled && addr_resolve(ns, mem, address, to, extra)) { return true; } return addr_parse_ip(address, to); } const char *net_err_connect_to_string(Net_Err_Connect err) { switch (err) { case NET_ERR_CONNECT_OK: return "NET_ERR_CONNECT_OK"; case NET_ERR_CONNECT_INVALID_FAMILY: return "NET_ERR_CONNECT_INVALID_FAMILY"; case NET_ERR_CONNECT_FAILED: return "NET_ERR_CONNECT_FAILED"; } return ""; } bool net_connect(const Network *ns, const Memory *mem, const Logger *log, Socket sock, const IP_Port *ip_port, Net_Err_Connect *err) { Network_Addr addr = {{0}}; if (net_family_is_ipv4(ip_port->ip.family)) { struct sockaddr_in *addr4 = (struct sockaddr_in *)&addr.addr; addr.size = sizeof(struct sockaddr_in); addr4->sin_family = AF_INET; fill_addr4(&ip_port->ip.ip.v4, &addr4->sin_addr); addr4->sin_port = ip_port->port; } else if (net_family_is_ipv6(ip_port->ip.family)) { struct sockaddr_in6 *addr6 = (struct sockaddr_in6 *)&addr.addr; addr.size = sizeof(struct sockaddr_in6); addr6->sin6_family = AF_INET6; fill_addr6(&ip_port->ip.ip.v6, &addr6->sin6_addr); addr6->sin6_port = ip_port->port; } else { Ip_Ntoa ip_str; LOGGER_ERROR(log, "cannot connect to %s:%d which is neither IPv4 nor IPv6", net_ip_ntoa(&ip_port->ip, &ip_str), net_ntohs(ip_port->port)); *err = NET_ERR_CONNECT_INVALID_FAMILY; return false; } #ifdef FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION if ((true)) { *err = NET_ERR_CONNECT_OK; return true; } #endif /* FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION */ Ip_Ntoa ip_str; LOGGER_DEBUG(log, "connecting socket %d to %s:%d", net_socket_to_native(sock), net_ip_ntoa(&ip_port->ip, &ip_str), net_ntohs(ip_port->port)); errno = 0; if (ns->funcs->connect(ns->obj, sock, &addr) == -1) { const int error = net_error(); // Non-blocking socket: "Operation in progress" means it's connecting. if (!should_ignore_connect_error(error)) { char *net_strerror = net_new_strerror(error); LOGGER_WARNING(log, "failed to connect to %s:%d: %d (%s)", net_ip_ntoa(&ip_port->ip, &ip_str), net_ntohs(ip_port->port), error, net_strerror); net_kill_strerror(net_strerror); *err = NET_ERR_CONNECT_FAILED; return false; } } *err = NET_ERR_CONNECT_OK; return true; } int32_t net_getipport(const Network *ns, const Memory *mem, const char *node, IP_Port **res, int tox_type, bool dns_enabled) { assert(node != nullptr); // Try parsing as IP address first. IP_Port parsed = {{{0}}}; // Initialise to nullptr. In error paths, at least we initialise the out // parameter. *res = nullptr; if (addr_parse_ip(node, &parsed.ip)) { IP_Port *tmp = (IP_Port *)mem_alloc(mem, sizeof(IP_Port)); if (tmp == nullptr) { return -1; } tmp[0] = parsed; *res = tmp; return 1; } if (!dns_enabled) { return -1; } #ifdef FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION if ((true)) { IP_Port *ip_port = (IP_Port *)mem_alloc(mem, sizeof(IP_Port)); if (ip_port == nullptr) { abort(); } ip_port->ip.ip.v4.uint32 = net_htonl(0x7F000003); // 127.0.0.3 ip_port->ip.family = *make_tox_family(AF_INET); *res = ip_port; return 1; } #endif /* FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION */ int type = make_socktype(tox_type); // ugly if (tox_type == -1) { type = 0; } // It's not an IP address, so now we try doing a DNS lookup. Network_Addr *addrs = nullptr; const int rc = ns->funcs->getaddrinfo(ns->obj, mem, node, AF_UNSPEC, type, &addrs); // Lookup failed / empty. if (rc <= 0) { return -1; } assert(addrs != nullptr); // Used to avoid calloc parameter overflow const size_t max_count = min_u64(SIZE_MAX, INT32_MAX) / sizeof(IP_Port); size_t count = 0; for (int i = 0; i < rc && count < max_count; ++i) { if (addrs[i].addr.ss_family != AF_INET && addrs[i].addr.ss_family != AF_INET6) { continue; } ++count; } assert(count <= max_count); if (count == 0) { ns->funcs->freeaddrinfo(ns->obj, mem, addrs); return 0; } IP_Port *ip_port = (IP_Port *)mem_valloc(mem, count, sizeof(IP_Port)); if (ip_port == nullptr) { ns->funcs->freeaddrinfo(ns->obj, mem, addrs); *res = nullptr; return -1; } *res = ip_port; for (int i = 0; i < rc && count < max_count; ++i) { if (addrs[i].addr.ss_family == AF_INET) { const struct sockaddr_in *addr = (const struct sockaddr_in *)(const void *)&addrs[i].addr; ip_port->ip.ip.v4.uint32 = addr->sin_addr.s_addr; } else if (addrs[i].addr.ss_family == AF_INET6) { const struct sockaddr_in6 *addr = (const struct sockaddr_in6 *)(const void *)&addrs[i].addr; memcpy(ip_port->ip.ip.v6.uint8, addr->sin6_addr.s6_addr, sizeof(IP6)); } else { continue; } const Family *const family = make_tox_family(addrs[i].addr.ss_family); assert(family != nullptr); if (family == nullptr) { ns->funcs->freeaddrinfo(ns->obj, mem, addrs); return -1; } ip_port->ip.family = *family; ++ip_port; } ns->funcs->freeaddrinfo(ns->obj, mem, addrs); return count; } void net_freeipport(const Memory *mem, IP_Port *ip_ports) { mem_delete(mem, ip_ports); } bool bind_to_port(const Network *ns, Socket sock, Family family, uint16_t port) { Network_Addr addr = {{0}}; if (net_family_is_ipv4(family)) { struct sockaddr_in *addr4 = (struct sockaddr_in *)&addr.addr; addr.size = sizeof(struct sockaddr_in); addr4->sin_family = AF_INET; addr4->sin_port = net_htons(port); } else if (net_family_is_ipv6(family)) { struct sockaddr_in6 *addr6 = (struct sockaddr_in6 *)&addr.addr; addr.size = sizeof(struct sockaddr_in6); addr6->sin6_family = AF_INET6; addr6->sin6_port = net_htons(port); } else { return false; } return net_bind(ns, sock, &addr) == 0; } Socket net_socket(const Network *ns, Family domain, int type, int protocol) { const int platform_domain = make_family(domain); const int platform_type = make_socktype(type); const int platform_prot = make_proto(protocol); return ns->funcs->socket(ns->obj, platform_domain, platform_type, platform_prot); } uint16_t net_socket_data_recv_buffer(const Network *ns, Socket sock) { const int count = ns->funcs->recvbuf(ns->obj, sock); return (uint16_t)max_s32(0, min_s32(count, UINT16_MAX)); } uint32_t net_htonl(uint32_t hostlong) { return htonl(hostlong); } uint16_t net_htons(uint16_t hostshort) { return htons(hostshort); } uint32_t net_ntohl(uint32_t hostlong) { return ntohl(hostlong); } uint16_t net_ntohs(uint16_t hostshort) { return ntohs(hostshort); } size_t net_pack_bool(uint8_t *bytes, bool v) { bytes[0] = v ? 1 : 0; return 1; } size_t net_pack_u16(uint8_t *bytes, uint16_t v) { bytes[0] = (v >> 8) & 0xff; bytes[1] = v & 0xff; return sizeof(v); } size_t net_pack_u32(uint8_t *bytes, uint32_t v) { uint8_t *p = bytes; p += net_pack_u16(p, (v >> 16) & 0xffff); p += net_pack_u16(p, v & 0xffff); return p - bytes; } size_t net_pack_u64(uint8_t *bytes, uint64_t v) { uint8_t *p = bytes; p += net_pack_u32(p, (v >> 32) & 0xffffffff); p += net_pack_u32(p, v & 0xffffffff); return p - bytes; } size_t net_unpack_bool(const uint8_t *bytes, bool *v) { *v = bytes[0] != 0; return 1; } size_t net_unpack_u16(const uint8_t *bytes, uint16_t *v) { const uint8_t hi = bytes[0]; const uint8_t lo = bytes[1]; *v = ((uint16_t)hi << 8) | lo; return sizeof(*v); } size_t net_unpack_u32(const uint8_t *bytes, uint32_t *v) { const uint8_t *p = bytes; uint16_t hi; uint16_t lo; p += net_unpack_u16(p, &hi); p += net_unpack_u16(p, &lo); *v = ((uint32_t)hi << 16) | lo; return p - bytes; } size_t net_unpack_u64(const uint8_t *bytes, uint64_t *v) { const uint8_t *p = bytes; uint32_t hi; uint32_t lo; p += net_unpack_u32(p, &hi); p += net_unpack_u32(p, &lo); *v = ((uint64_t)hi << 32) | lo; return p - bytes; } bool ipv6_ipv4_in_v6(const IP6 *a) { return a->uint64[0] == 0 && a->uint32[2] == net_htonl(0xffff); } int net_error(void) { #ifdef OS_WIN32 return WSAGetLastError(); #else return errno; #endif /* OS_WIN32 */ } #ifdef OS_WIN32 char *net_new_strerror(int error) { char *str = nullptr; // Windows API is weird. The 5th function arg is of char* type, but we // have to pass char** so that it could assign new memory block to our // pointer, so we have to cast our char** to char* for the compilation // not to fail (otherwise it would fail to find a variant of this function // accepting char** as the 5th arg) and Windows inside casts it back // to char** to do the assignment. So no, this cast you see here, although // it looks weird, is not a mistake. FormatMessageA(FORMAT_MESSAGE_ALLOCATE_BUFFER | FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_IGNORE_INSERTS, nullptr, error, 0, (char *)&str, 0, nullptr); return str; } #else #if defined(_GNU_SOURCE) && defined(__GLIBC__) non_null() static const char *net_strerror_r(int error, char *tmp, size_t tmp_size) { const char *retstr = strerror_r(error, tmp, tmp_size); if (errno != 0) { snprintf(tmp, tmp_size, "error %d (strerror_r failed with errno %d)", error, errno); } return retstr; } #else non_null() static const char *net_strerror_r(int error, char *tmp, size_t tmp_size) { const int fmt_error = strerror_r(error, tmp, tmp_size); if (fmt_error != 0) { snprintf(tmp, tmp_size, "error %d (strerror_r failed with error %d, errno %d)", error, fmt_error, errno); } return tmp; } #endif /* GNU */ char *net_new_strerror(int error) { char tmp[256]; errno = 0; const char *retstr = net_strerror_r(error, tmp, sizeof(tmp)); const size_t retstr_len = strlen(retstr); char *str = (char *)malloc(retstr_len + 1); if (str == nullptr) { return nullptr; } memcpy(str, retstr, retstr_len + 1); return str; } #endif /* OS_WIN32 */ void net_kill_strerror(char *strerror) { #ifdef OS_WIN32 LocalFree((char *)strerror); #else free(strerror); #endif /* OS_WIN32 */ } const Net_Profile *net_get_net_profile(const Networking_Core *net) { if (net == nullptr) { return nullptr; } return net->udp_net_profile; }