/* SPDX-License-Identifier: GPL-3.0-or-later * Copyright © 2022 The TokTok team. */ #include "shared_key_cache.h" #include #include // memcpy(...) #include "ccompat.h" #include "crypto_core.h" #include "logger.h" #include "mem.h" #include "mono_time.h" typedef struct Shared_Key { uint8_t public_key[CRYPTO_PUBLIC_KEY_SIZE]; uint8_t shared_key[CRYPTO_SHARED_KEY_SIZE]; uint64_t time_last_requested; } Shared_Key; struct Shared_Key_Cache { Shared_Key *keys; const uint8_t* self_secret_key; uint64_t timeout; /** After this time (in seconds), a key is erased on the next housekeeping cycle */ const Mono_Time *mono_time; const Memory *mem; const Logger *log; uint8_t keys_per_slot; }; non_null() static bool shared_key_is_empty(const Logger *log, const Shared_Key *k) { LOGGER_ASSERT(log, k != nullptr, "shared key must not be NULL"); /* * Since time can never be 0, we use that to determine if a key slot is empty. * Additionally this allows us to use crypto_memzero and leave the slot in a valid state. */ return k->time_last_requested == 0; } non_null() static void shared_key_set_empty(const Logger *log, Shared_Key *k) { crypto_memzero(k, sizeof (Shared_Key)); LOGGER_ASSERT(log, shared_key_is_empty(log, k), "shared key must be empty after clearing it"); } Shared_Key_Cache *shared_key_cache_new(const Logger *log, const Mono_Time *mono_time, const Memory *mem, const uint8_t *self_secret_key, uint64_t timeout, uint8_t keys_per_slot) { if (mono_time == nullptr || self_secret_key == nullptr || timeout == 0 || keys_per_slot == 0) { return nullptr; } // Time must not be zero, since we use that as special value for empty slots if (mono_time_get(mono_time) == 0) { // Fail loudly in debug environments LOGGER_FATAL(log, "time must not be zero (mono_time not initialised?)"); return nullptr; } Shared_Key_Cache *res = (Shared_Key_Cache *)mem_alloc(mem, sizeof(Shared_Key_Cache)); if (res == nullptr) { return nullptr; } res->self_secret_key = self_secret_key; res->mono_time = mono_time; res->mem = mem; res->log = log; res->keys_per_slot = keys_per_slot; // We take one byte from the public key for each bucket and store keys_per_slot elements there const size_t cache_size = 256 * keys_per_slot; Shared_Key *keys = (Shared_Key *)mem_valloc(mem, cache_size, sizeof(Shared_Key)); if (keys == nullptr) { mem_delete(mem, res); return nullptr; } crypto_memlock(keys, cache_size * sizeof(Shared_Key)); res->keys = keys; return res; } void shared_key_cache_free(Shared_Key_Cache *cache) { if (cache == nullptr) { return; } const size_t cache_size = 256 * cache->keys_per_slot; // Don't leave key material in memory crypto_memzero(cache->keys, cache_size * sizeof (Shared_Key)); crypto_memunlock(cache->keys, cache_size * sizeof (Shared_Key)); mem_delete(cache->mem, cache->keys); mem_delete(cache->mem, cache); } /* NOTE: On each lookup housekeeping is performed to evict keys that did timeout. */ const uint8_t *shared_key_cache_lookup(Shared_Key_Cache *cache, const uint8_t public_key[CRYPTO_PUBLIC_KEY_SIZE]) { // caching the time is not necessary, but calls to mono_time_get(...) are not free const uint64_t cur_time = mono_time_get(cache->mono_time); // We can't use the first and last bytes because they are masked in curve25519. Selected 8 for good alignment. const uint8_t bucket_idx = public_key[8]; Shared_Key* bucket_start = &cache->keys[bucket_idx*cache->keys_per_slot]; const uint8_t* found = nullptr; // Perform lookup for(size_t i = 0; i < cache->keys_per_slot; ++i) { if (shared_key_is_empty(cache->log, &bucket_start[i])) { continue; } if (pk_equal(public_key, bucket_start[i].public_key)) { found = bucket_start[i].shared_key; bucket_start[i].time_last_requested = cur_time; break; } } // Perform housekeeping for this bucket for (size_t i = 0; i < cache->keys_per_slot; ++i) { if (shared_key_is_empty(cache->log, &bucket_start[i])) { continue; } const bool timed_out = (bucket_start[i].time_last_requested + cache->timeout) < cur_time; if (timed_out) { shared_key_set_empty(cache->log, &bucket_start[i]); } } if (found == nullptr) { // Insert into cache uint64_t oldest_timestamp = UINT64_MAX; size_t oldest_index = 0; /* * Find least recently used entry, unused entries are prioritised, * because their time_last_requested field is zeroed. */ for (size_t i = 0; i < cache->keys_per_slot; ++i) { if (bucket_start[i].time_last_requested < oldest_timestamp) { oldest_timestamp = bucket_start[i].time_last_requested; oldest_index = i; } } // Compute the shared key for the cache if (encrypt_precompute(public_key, cache->self_secret_key, bucket_start[oldest_index].shared_key) != 0) { // Don't put anything in the cache on error return nullptr; } // update cache entry memcpy(bucket_start[oldest_index].public_key, public_key, CRYPTO_PUBLIC_KEY_SIZE); bucket_start[oldest_index].time_last_requested = cur_time; found = bucket_start[oldest_index].shared_key; } return found; }