tomato-testing/testing/fuzzing/fuzz_support.cc
Green Sky 261d2e53b7 Squashed 'external/toxcore/c-toxcore/' changes from 55752a2e2ef..11ab1d2a723
11ab1d2a723 fix: reduce memory usage in group chats by 75% Significantly reduced the memory usage of groups since all message slots are preallocated for every peer for send and receive buffers of buffer size (hundreds of MiB peak when save contained alot of peers to try to connect to)
4f09f4e147c chore: Fix tsan build by moving it to GitHub CI.
6460c25c9e0 refactor: Use `merge_sort` instead of `qsort` for sorting.
c660bbe8c95 test: Fix crypto_test to initialise its plain text buffer.
0204db6184b cleanup: Fix layering check warnings.
df2211e1548 refactor: Use tox memory allocator for temporary buffers in crypto.
ac812871a2e feat: implement the last 2 missing network struct functions and make use of them
29d1043be0b test: friend request test now tests min/max message sizes
93aafd78c1f fix: friend requests with very long messages are no longer dropped
819aa2b2618 feat: Add option to disable DNS lookups in toxcore.
0ac23cee035 fix: windows use of REUSEADDR
7d2811d302d chore(ci): make bazel server shutdown faster
1dc399ba20d chore: Use vcpkg instead of conan in the MSVC build.
14d823165d9 chore: Migrate to conan 2.
bdd17c16787 cleanup: Allocate logger using tox memory allocator.
b396c061515 chore(deps): bump third_party/cmp from `2ac6bca` to `52bfcfa`
2e94da60d09 feat(net): add missing connect to network struct
41fb1839c7b chore: Add check to ensure version numbers agree.
934a8301113 chore: Release 0.2.20
3acef4bf044 fix: Add missing free in dht_get_nodes_response event.

git-subtree-dir: external/toxcore/c-toxcore
git-subtree-split: 11ab1d2a7232eee19b51ce126ccce267d6578903
2024-12-19 16:27:40 +01:00

463 lines
16 KiB
C++

/* SPDX-License-Identifier: GPL-3.0-or-later
* Copyright © 2021-2022 The TokTok team.
*/
#include "fuzz_support.hh"
#ifdef _WIN32
#include <winsock2.h>
// Comment line here to avoid reordering by source code formatters.
#include <windows.h>
#include <ws2tcpip.h>
#else
#include <arpa/inet.h>
#include <sys/socket.h>
#endif
#include <algorithm>
#include <cassert>
#include <cerrno>
#include <climits>
#include <cstdio>
#include <cstring>
#include <memory>
#include "../../toxcore/crypto_core.h"
#include "../../toxcore/network.h"
#include "../../toxcore/tox_private.h"
#include "func_conversion.hh"
// TODO(iphydf): Put this somewhere shared.
struct Network_Addr {
struct sockaddr_storage addr;
size_t size;
};
System::System(std::unique_ptr<Tox_System> in_sys, std::unique_ptr<Memory> in_mem,
std::unique_ptr<Network> in_ns, std::unique_ptr<Random> in_rng)
: sys(std::move(in_sys))
, mem(std::move(in_mem))
, ns(std::move(in_ns))
, rng(std::move(in_rng))
{
}
System::System(System &&) = default;
System::~System() { }
static int recv_common(Fuzz_Data &input, uint8_t *buf, size_t buf_len)
{
if (input.size() < 2) {
errno = ENOMEM;
return -1;
}
CONSUME_OR_ABORT(const uint8_t *fuzz_len_bytes, input, 2);
const std::size_t fuzz_len = (fuzz_len_bytes[0] << 8) | fuzz_len_bytes[1];
if (fuzz_len == 0xffff) {
errno = EWOULDBLOCK;
if (Fuzz_Data::DEBUG) {
std::printf("recvfrom: no data for tox1\n");
}
return -1;
}
if (Fuzz_Data::DEBUG) {
std::printf(
"recvfrom: %zu (%02x, %02x) for tox1\n", fuzz_len, input.data()[-2], input.data()[-1]);
}
const size_t res = std::min(buf_len, std::min(fuzz_len, input.size()));
CONSUME_OR_ABORT(const uint8_t *data, input, res);
std::copy(data, data + res, buf);
return res;
}
static void *report_alloc(const char *name, const char *func, std::size_t size, void *ptr)
{
if (Fuzz_Data::DEBUG) {
printf("%s: %s(%zu): %s\n", name, func, size, ptr == nullptr ? "false" : "true");
}
return ptr;
}
template <typename F, F Func, typename... Args>
static void *alloc_common(const char *func, std::size_t size, Fuzz_Data &data, Args... args)
{
CONSUME1_OR_RETURN_VAL(
const bool, want_alloc, data, report_alloc("tox1", func, size, Func(args...)));
if (!want_alloc) {
return nullptr;
}
return report_alloc("tox1", func, size, Func(args...));
}
static constexpr Memory_Funcs fuzz_memory_funcs = {
/* .malloc = */
![](Fuzz_System *self, uint32_t size) {
return alloc_common<decltype(std::malloc), std::malloc>("malloc", size, self->data, size);
},
/* .calloc = */
![](Fuzz_System *self, uint32_t nmemb, uint32_t size) {
return alloc_common<decltype(std::calloc), std::calloc>(
"calloc", nmemb * size, self->data, nmemb, size);
},
/* .realloc = */
![](Fuzz_System *self, void *ptr, uint32_t size) {
return alloc_common<decltype(std::realloc), std::realloc>(
"realloc", size, self->data, ptr, size);
},
/* .free = */
![](Fuzz_System *self, void *ptr) { std::free(ptr); },
};
static constexpr Network_Funcs fuzz_network_funcs = {
/* .close = */ ![](Fuzz_System *self, Socket sock) { return 0; },
/* .accept = */ ![](Fuzz_System *self, Socket sock) { return Socket{1337}; },
/* .bind = */ ![](Fuzz_System *self, Socket sock, const Network_Addr *addr) { return 0; },
/* .listen = */ ![](Fuzz_System *self, Socket sock, int backlog) { return 0; },
/* .connect = */ ![](Fuzz_System *self, Socket sock, const Network_Addr *addr) { return 0; },
/* .recvbuf = */
![](Fuzz_System *self, Socket sock) {
assert(sock.value == 42 || sock.value == 1337);
const size_t count = random_u16(self->rng.get());
return static_cast<int>(std::min(count, self->data.size()));
},
/* .recv = */
![](Fuzz_System *self, Socket sock, uint8_t *buf, size_t len) {
assert(sock.value == 42 || sock.value == 1337);
// Receive data from the fuzzer.
return recv_common(self->data, buf, len);
},
/* .recvfrom = */
![](Fuzz_System *self, Socket sock, uint8_t *buf, size_t len, Network_Addr *addr) {
assert(sock.value == 42 || sock.value == 1337);
addr->addr = sockaddr_storage{};
// Dummy Addr
addr->addr.ss_family = AF_INET;
// We want an AF_INET address with dummy values
sockaddr_in *addr_in = reinterpret_cast<sockaddr_in *>(&addr->addr);
addr_in->sin_port = htons(33446);
addr_in->sin_addr.s_addr = htonl(0x7f000002); // 127.0.0.2
addr->size = sizeof(struct sockaddr);
return recv_common(self->data, buf, len);
},
/* .send = */
![](Fuzz_System *self, Socket sock, const uint8_t *buf, size_t len) {
assert(sock.value == 42 || sock.value == 1337);
// Always succeed.
return static_cast<int>(len);
},
/* .sendto = */
![](Fuzz_System *self, Socket sock, const uint8_t *buf, size_t len, const Network_Addr *addr) {
assert(sock.value == 42 || sock.value == 1337);
// Always succeed.
return static_cast<int>(len);
},
/* .socket = */ ![](Fuzz_System *self, int domain, int type, int proto) { return Socket{42}; },
/* .socket_nonblock = */ ![](Fuzz_System *self, Socket sock, bool nonblock) { return 0; },
/* .getsockopt = */
![](Fuzz_System *self, Socket sock, int level, int optname, void *optval, size_t *optlen) {
std::memset(optval, 0, *optlen);
return 0;
},
/* .setsockopt = */
![](Fuzz_System *self, Socket sock, int level, int optname, const void *optval, size_t optlen) {
return 0;
},
};
static constexpr Random_Funcs fuzz_random_funcs = {
/* .random_bytes = */
![](Fuzz_System *self, uint8_t *bytes, size_t length) {
// Amount of data is limited
const size_t bytes_read = std::min(length, self->data.size());
// Initialize everything to make MSAN and others happy
std::memset(bytes, 0, length);
CONSUME_OR_ABORT(const uint8_t *data, self->data, bytes_read);
std::copy(data, data + bytes_read, bytes);
if (Fuzz_Data::DEBUG) {
if (length == 1) {
std::printf("rng: %d (0x%02x)\n", bytes[0], bytes[0]);
} else {
std::printf("rng: %02x..%02x[%zu]\n", bytes[0], bytes[length - 1], length);
}
}
},
/* .random_uniform = */
![](Fuzz_System *self, uint32_t upper_bound) {
uint32_t randnum = 0;
if (upper_bound > 0) {
self->rng->funcs->random_bytes(
self, reinterpret_cast<uint8_t *>(&randnum), sizeof(randnum));
randnum %= upper_bound;
}
return randnum;
},
};
Fuzz_System::Fuzz_System(Fuzz_Data &input)
: System{
std::make_unique<Tox_System>(),
std::make_unique<Memory>(Memory{&fuzz_memory_funcs, this}),
std::make_unique<Network>(Network{&fuzz_network_funcs, this}),
std::make_unique<Random>(Random{&fuzz_random_funcs, this}),
}
, data(input)
{
sys->mono_time_callback = [](void *self) { return static_cast<Fuzz_System *>(self)->clock; };
sys->mono_time_user_data = this;
sys->mem = mem.get();
sys->ns = ns.get();
sys->rng = rng.get();
}
static constexpr Memory_Funcs null_memory_funcs = {
/* .malloc = */
![](Null_System *self, uint32_t size) { return std::malloc(size); },
/* .calloc = */
![](Null_System *self, uint32_t nmemb, uint32_t size) { return std::calloc(nmemb, size); },
/* .realloc = */
![](Null_System *self, void *ptr, uint32_t size) { return std::realloc(ptr, size); },
/* .free = */
![](Null_System *self, void *ptr) { std::free(ptr); },
};
static constexpr Network_Funcs null_network_funcs = {
/* .close = */ ![](Null_System *self, Socket sock) { return 0; },
/* .accept = */ ![](Null_System *self, Socket sock) { return Socket{1337}; },
/* .bind = */ ![](Null_System *self, Socket sock, const Network_Addr *addr) { return 0; },
/* .listen = */ ![](Null_System *self, Socket sock, int backlog) { return 0; },
/* .connect = */ ![](Null_System *self, Socket sock, const Network_Addr *addr) { return 0; },
/* .recvbuf = */ ![](Null_System *self, Socket sock) { return 0; },
/* .recv = */
![](Null_System *self, Socket sock, uint8_t *buf, size_t len) {
// Always fail.
errno = ENOMEM;
return -1;
},
/* .recvfrom = */
![](Null_System *self, Socket sock, uint8_t *buf, size_t len, Network_Addr *addr) {
// Always fail.
errno = ENOMEM;
return -1;
},
/* .send = */
![](Null_System *self, Socket sock, const uint8_t *buf, size_t len) {
// Always succeed.
return static_cast<int>(len);
},
/* .sendto = */
![](Null_System *self, Socket sock, const uint8_t *buf, size_t len, const Network_Addr *addr) {
// Always succeed.
return static_cast<int>(len);
},
/* .socket = */ ![](Null_System *self, int domain, int type, int proto) { return Socket{42}; },
/* .socket_nonblock = */ ![](Null_System *self, Socket sock, bool nonblock) { return 0; },
/* .getsockopt = */
![](Null_System *self, Socket sock, int level, int optname, void *optval, size_t *optlen) {
std::memset(optval, 0, *optlen);
return 0;
},
/* .setsockopt = */
![](Null_System *self, Socket sock, int level, int optname, const void *optval, size_t optlen) {
return 0;
},
};
static uint64_t simple_rng(uint64_t &seed)
{
// https://nuclear.llnl.gov/CNP/rng/rngman/node4.html
seed = 2862933555777941757LL * seed + 3037000493LL;
return seed;
}
static constexpr Random_Funcs null_random_funcs = {
/* .random_bytes = */
![](Null_System *self, uint8_t *bytes, size_t length) {
for (size_t i = 0; i < length; ++i) {
bytes[i] = simple_rng(self->seed) & 0xff;
}
},
/* .random_uniform = */
![](Null_System *self, uint32_t upper_bound) {
return static_cast<uint32_t>(simple_rng(self->seed)) % upper_bound;
},
};
Null_System::Null_System()
: System{
std::make_unique<Tox_System>(),
std::make_unique<Memory>(Memory{&null_memory_funcs, this}),
std::make_unique<Network>(Network{&null_network_funcs, this}),
std::make_unique<Random>(Random{&null_random_funcs, this}),
}
{
sys->mono_time_callback = [](void *self) { return static_cast<Null_System *>(self)->clock; };
sys->mono_time_user_data = this;
sys->mem = mem.get();
sys->ns = ns.get();
sys->rng = rng.get();
}
static uint16_t get_port(const Network_Addr *addr)
{
if (addr->addr.ss_family == AF_INET6) {
return reinterpret_cast<const sockaddr_in6 *>(&addr->addr)->sin6_port;
} else {
assert(addr->addr.ss_family == AF_INET);
return reinterpret_cast<const sockaddr_in *>(&addr->addr)->sin_port;
}
}
static constexpr Memory_Funcs record_memory_funcs = {
/* .malloc = */
![](Record_System *self, uint32_t size) {
self->push(true);
return report_alloc(self->name_, "malloc", size, std::malloc(size));
},
/* .calloc = */
![](Record_System *self, uint32_t nmemb, uint32_t size) {
self->push(true);
return report_alloc(self->name_, "calloc", nmemb * size, std::calloc(nmemb, size));
},
/* .realloc = */
![](Record_System *self, void *ptr, uint32_t size) {
self->push(true);
return report_alloc(self->name_, "realloc", size, std::realloc(ptr, size));
},
/* .free = */
![](Record_System *self, void *ptr) { std::free(ptr); },
};
static constexpr Network_Funcs record_network_funcs = {
/* .close = */ ![](Record_System *self, Socket sock) { return 0; },
/* .accept = */ ![](Record_System *self, Socket sock) { return Socket{2}; },
/* .bind = */
![](Record_System *self, Socket sock, const Network_Addr *addr) {
const uint16_t port = get_port(addr);
if (self->global_.bound.find(port) != self->global_.bound.end()) {
errno = EADDRINUSE;
return -1;
}
self->global_.bound.emplace(port, self);
self->port = port;
return 0;
},
/* .listen = */ ![](Record_System *self, Socket sock, int backlog) { return 0; },
/* .connect = */ ![](Record_System *self, Socket sock, const Network_Addr *addr) { return 0; },
/* .recvbuf = */ ![](Record_System *self, Socket sock) { return 0; },
/* .recv = */
![](Record_System *self, Socket sock, uint8_t *buf, size_t len) {
// Always fail.
errno = ENOMEM;
return -1;
},
/* .recvfrom = */
![](Record_System *self, Socket sock, uint8_t *buf, size_t len, Network_Addr *addr) {
assert(sock.value == 42);
if (self->recvq.empty()) {
self->push("\xff\xff");
errno = EWOULDBLOCK;
if (Fuzz_Data::DEBUG) {
std::printf("%s: recvfrom: no data\n", self->name_);
}
return -1;
}
const auto [from, packet] = std::move(self->recvq.front());
self->recvq.pop_front();
const size_t recvlen = std::min(len, packet.size());
std::copy(packet.begin(), packet.end(), buf);
addr->addr = sockaddr_storage{};
// Dummy Addr
addr->addr.ss_family = AF_INET;
// We want an AF_INET address with dummy values
sockaddr_in *addr_in = reinterpret_cast<sockaddr_in *>(&addr->addr);
addr_in->sin_port = from;
addr_in->sin_addr.s_addr = htonl(0x7f000002); // 127.0.0.2
addr->size = sizeof(struct sockaddr);
assert(recvlen > 0 && recvlen <= INT_MAX);
self->push(uint8_t(recvlen >> 8));
self->push(uint8_t(recvlen & 0xff));
if (Fuzz_Data::DEBUG) {
std::printf("%s: recvfrom: %zu (%02x, %02x)\n", self->name_, recvlen,
self->recording().end()[-2], self->recording().end()[-1]);
}
self->push(buf, recvlen);
return static_cast<int>(recvlen);
},
/* .send = */
![](Record_System *self, Socket sock, const uint8_t *buf, size_t len) {
// Always succeed.
return static_cast<int>(len);
},
/* .sendto = */
![](Record_System *self, Socket sock, const uint8_t *buf, size_t len,
const Network_Addr *addr) {
assert(sock.value == 42);
auto backend = self->global_.bound.find(get_port(addr));
assert(backend != self->global_.bound.end());
backend->second->receive(self->port, buf, len);
return static_cast<int>(len);
},
/* .socket = */
![](Record_System *self, int domain, int type, int proto) { return Socket{42}; },
/* .socket_nonblock = */ ![](Record_System *self, Socket sock, bool nonblock) { return 0; },
/* .getsockopt = */
![](Record_System *self, Socket sock, int level, int optname, void *optval, size_t *optlen) {
std::memset(optval, 0, *optlen);
return 0;
},
/* .setsockopt = */
![](Record_System *self, Socket sock, int level, int optname, const void *optval,
size_t optlen) { return 0; },
};
static constexpr Random_Funcs record_random_funcs = {
/* .random_bytes = */
![](Record_System *self, uint8_t *bytes, size_t length) {
for (size_t i = 0; i < length; ++i) {
bytes[i] = simple_rng(self->seed_) & 0xff;
self->push(bytes[i]);
}
if (Fuzz_Data::DEBUG) {
std::printf(
"%s: rng: %02x..%02x[%zu]\n", self->name_, bytes[0], bytes[length - 1], length);
}
},
/* .random_uniform = */
fuzz_random_funcs.random_uniform,
};
Record_System::Record_System(Global &global, uint64_t seed, const char *name)
: System{
std::make_unique<Tox_System>(),
std::make_unique<Memory>(Memory{&record_memory_funcs, this}),
std::make_unique<Network>(Network{&record_network_funcs, this}),
std::make_unique<Random>(Random{&record_random_funcs, this}),
}
, global_(global)
, seed_(seed)
, name_(name)
{
sys->mono_time_callback = [](void *self) { return static_cast<Record_System *>(self)->clock; };
sys->mono_time_user_data = this;
sys->mem = mem.get();
sys->ns = ns.get();
sys->rng = rng.get();
}
void Record_System::receive(uint16_t send_port, const uint8_t *buf, size_t len)
{
assert(port != 0);
recvq.emplace_back(send_port, std::vector<uint8_t>{buf, buf + len});
}