Files
tomato-testing/testing/support/doubles/network_universe_test.cc
Green Sky 565efa4f39 Squashed 'external/toxcore/c-toxcore/' changes from 1828c5356..c9cdae001
c9cdae001 fix(toxav): remove extra copy of video frame on encode
4f6d4546b test: Improve the fake network library.
a2581e700 refactor(toxcore): generate `Friend_Request` and `Dht_Nodes_Response`
2aaa11770 refactor(toxcore): use Tox_Memory in generated events
5c367452b test(toxcore): fix incorrect mutex in tox_scenario_get_time
8f92e710f perf: Add a timed limit of number of cookie requests.
695b6417a test: Add some more simulated network support.
815ae9ce9 test(toxcore): fix thread-safety in scenario framework
6d85c754e test(toxcore): add unit tests for net_crypto
9c22e79cc test(support): add SimulatedEnvironment for deterministic testing
f34fcb195 chore: Update windows Dockerfile to debian stable (trixie).
ece0e8980 fix(group_moderation): allow validating unsorted sanction list signatures
a4fa754d7 refactor: rename struct Packet to struct Net_Packet
d6f330f85 cleanup: Fix some warnings from coverity.
e206bffa2 fix(group_chats): fix sync packets reverting topics
0e4715598 test: Add new scenario testing framework.
668291f44 refactor(toxcore): decouple Network_Funcs from sockaddr via IP_Port
fc4396cef fix: potential division by zero in toxav and unsafe hex parsing
8e8b352ab refactor: Add nullable annotations to struct members.
7740bb421 refactor: decouple net_crypto from DHT
1936d4296 test: add benchmark for toxav audio and video
46bfdc2df fix: correct printf format specifiers for unsigned integers
REVERT: 1828c5356 fix(toxav): remove extra copy of video frame on encode

git-subtree-dir: external/toxcore/c-toxcore
git-subtree-split: c9cdae001341e701fca980c9bb9febfeb95d2902
2026-01-11 14:42:31 +01:00

241 lines
7.5 KiB
C++

#include "network_universe.hh"
#include <gtest/gtest.h>
#include "fake_sockets.hh"
namespace tox::test {
namespace {
class NetworkUniverseTest : public ::testing::Test {
public:
~NetworkUniverseTest() override;
protected:
NetworkUniverse universe;
FakeUdpSocket s1{universe};
FakeUdpSocket s2{universe};
};
NetworkUniverseTest::~NetworkUniverseTest() = default;
TEST_F(NetworkUniverseTest, LatencySimulation)
{
universe.set_latency(100);
IP_Port s2_addr;
ip_init(&s2_addr.ip, false);
s2_addr.ip.ip.v4.uint32 = net_htonl(0x7F000001);
s2_addr.port = net_htons(9004);
s2.bind(&s2_addr);
uint8_t data[] = "Ping";
s1.sendto(data, 4, &s2_addr);
// Time 0: packet sent but delivery time is 100
universe.process_events(0);
IP_Port from;
uint8_t buf[10];
ASSERT_EQ(s2.recvfrom(buf, 10, &from), -1);
// Time 50: still not delivered
universe.process_events(50);
ASSERT_EQ(s2.recvfrom(buf, 10, &from), -1);
// Time 100: delivered
universe.process_events(100);
ASSERT_EQ(s2.recvfrom(buf, 10, &from), 4);
}
TEST_F(NetworkUniverseTest, RoutesBasedOnIpAndPort)
{
IP ip1{}, ip2{};
ip_init(&ip1, false);
ip1.ip.v4.uint32 = net_htonl(0x01010101);
ip_init(&ip2, false);
ip2.ip.v4.uint32 = net_htonl(0x02020202);
uint16_t port = 33445;
FakeUdpSocket sock1{universe};
FakeUdpSocket sock2{universe};
sock1.set_ip(ip1);
sock2.set_ip(ip2);
IP_Port addr1{ip1, net_htons(port)};
IP_Port addr2{ip2, net_htons(port)};
ASSERT_EQ(sock1.bind(&addr1), 0);
ASSERT_EQ(sock2.bind(&addr2), 0);
const char *msg1 = "To IP 1";
const char *msg2 = "To IP 2";
FakeUdpSocket sender{universe};
sender.sendto(reinterpret_cast<const uint8_t *>(msg1), strlen(msg1), &addr1);
sender.sendto(reinterpret_cast<const uint8_t *>(msg2), strlen(msg2), &addr2);
universe.process_events(0);
uint8_t buf[100];
IP_Port from;
int len1 = sock1.recvfrom(buf, sizeof(buf), &from);
ASSERT_GT(len1, 0);
EXPECT_EQ(std::string(reinterpret_cast<char *>(buf), static_cast<size_t>(len1)), msg1);
int len2 = sock2.recvfrom(buf, sizeof(buf), &from);
ASSERT_GT(len2, 0);
EXPECT_EQ(std::string(reinterpret_cast<char *>(buf), static_cast<size_t>(len2)), msg2);
}
TEST_F(NetworkUniverseTest, FindFreePortIsIpSpecific)
{
IP ip1{}, ip2{};
ip_init(&ip1, false);
ip1.ip.v4.uint32 = net_htonl(0x01010101);
ip_init(&ip2, false);
ip2.ip.v4.uint32 = net_htonl(0x02020202);
FakeUdpSocket sock1{universe};
sock1.set_ip(ip1);
uint16_t port = 33445;
IP_Port addr1{ip1, net_htons(port)};
ASSERT_EQ(sock1.bind(&addr1), 0);
// Port 33445 should be busy for ip1, but free for ip2
EXPECT_EQ(universe.find_free_port(ip1, port), port + 1);
EXPECT_EQ(universe.find_free_port(ip2, port), port);
}
TEST_F(NetworkUniverseTest, IpPortKeyEqualityRobustness)
{
IP ip1{}, ip2{};
ip_init(&ip1, false);
ip1.ip.v4.uint32 = net_htonl(0x7F000001);
ip_init(&ip2, false);
ip2.ip.v4.uint32 = net_htonl(0x7F000001);
uint16_t port = 12345;
// Force different garbage in the union padding for IPv4
// The union is 16 bytes. IP4 is 4 bytes. Trailing 12 bytes are unused.
memset(ip1.ip.v6.uint8 + 4, 0x11, 12);
memset(ip2.ip.v6.uint8 + 4, 0x22, 12);
NetworkUniverse::IP_Port_Key key1{ip1, port};
NetworkUniverse::IP_Port_Key key2{ip2, port};
// They should be considered equal (neither is less than the other)
EXPECT_FALSE(key1 < key2);
EXPECT_FALSE(key2 < key1);
// Now try with different IPv4 but same garbage
ip2.ip.v4.uint32 = net_htonl(0x7F000002);
memset(ip2.ip.v6.uint8 + 4, 0x11, 12); // same garbage as ip1
NetworkUniverse::IP_Port_Key key3{ip2, port};
EXPECT_TRUE(key1 < key3 || key3 < key1);
}
TEST_F(NetworkUniverseTest, IPv4v6Distinction)
{
IP ip1{}, ip2{};
ip_init(&ip1, false); // IPv4
ip1.ip.v4.uint32 = net_htonl(0x01020304);
ip_init(&ip2, true); // IPv6
// Set IPv6 bytes to match IPv4 bytes at the beginning
memset(ip2.ip.v6.uint8, 0, 16);
ip2.ip.v6.uint32[0] = net_htonl(0x01020304);
uint16_t port = 12345;
NetworkUniverse::IP_Port_Key key1{ip1, port};
NetworkUniverse::IP_Port_Key key2{ip2, port};
// Different families must be different even if underlying bytes happen to match
EXPECT_TRUE(key1 < key2 || key2 < key1);
}
TEST_F(NetworkUniverseTest, ManyNodes)
{
const int num_nodes = 5000;
struct NodeInfo {
std::unique_ptr<FakeUdpSocket> sock;
IP_Port addr;
};
std::vector<NodeInfo> nodes;
nodes.reserve(num_nodes);
for (int i = 0; i < num_nodes; ++i) {
auto sock = std::make_unique<FakeUdpSocket>(universe);
IP ip{};
ip_init(&ip, false);
ip.ip.v4.uint32 = net_htonl(0x0A000000 + i); // 10.0.x.y
sock->set_ip(ip);
IP_Port addr{ip, net_htons(33445)};
ASSERT_EQ(sock->bind(&addr), 0);
nodes.push_back({std::move(sock), addr});
}
const int num_messages = 100;
// Send messages from first num_messages to last num_messages nodes
for (int i = 0; i < num_messages; ++i) {
const char *msg = "Stress test";
nodes[i].sock->sendto(reinterpret_cast<const uint8_t *>(msg), strlen(msg),
&nodes[num_nodes - 1 - i].addr);
}
universe.process_events(0);
for (int i = 0; i < num_messages; ++i) {
uint8_t buf[100];
IP_Port from;
int len = nodes[num_nodes - 1 - i].sock->recvfrom(buf, sizeof(buf), &from);
ASSERT_GT(len, 0);
EXPECT_EQ(std::string(reinterpret_cast<char *>(buf), static_cast<size_t>(len)),
"Stress test");
EXPECT_TRUE(ip_equal(&from.ip, &nodes[i].addr.ip));
}
}
TEST_F(NetworkUniverseTest, IpPadding)
{
IP ip1{};
ip_init(&ip1, false);
ip1.ip.v4.uint32 = net_htonl(0x7F000001);
FakeUdpSocket sock{universe};
sock.set_ip(ip1);
IP_Port bind_addr{ip1, net_htons(12345)};
ASSERT_EQ(sock.bind(&bind_addr), 0);
// Create an address with garbage in the padding
IP_Port target_addr;
memset(&target_addr, 0xAA, sizeof(target_addr));
ip_init(&target_addr.ip, false);
target_addr.ip.ip.v4.uint32 = net_htonl(0x7F000001);
target_addr.port = net_htons(12345);
FakeUdpSocket sender{universe};
const char *msg = "Padding test";
sender.sendto(reinterpret_cast<const uint8_t *>(msg), strlen(msg), &target_addr);
universe.process_events(0);
uint8_t buf[100];
IP_Port from;
int len = sock.recvfrom(buf, sizeof(buf), &from);
// If this fails, it means NetworkUniverse is not robust against padding garbage
ASSERT_GT(len, 0);
EXPECT_EQ(
std::string(reinterpret_cast<char *>(buf), static_cast<size_t>(len)), "Padding test");
}
} // namespace
} // namespace tox::test