Files
tomato-testing/toxav/audio_test.cc
Green Sky 565efa4f39 Squashed 'external/toxcore/c-toxcore/' changes from 1828c5356..c9cdae001
c9cdae001 fix(toxav): remove extra copy of video frame on encode
4f6d4546b test: Improve the fake network library.
a2581e700 refactor(toxcore): generate `Friend_Request` and `Dht_Nodes_Response`
2aaa11770 refactor(toxcore): use Tox_Memory in generated events
5c367452b test(toxcore): fix incorrect mutex in tox_scenario_get_time
8f92e710f perf: Add a timed limit of number of cookie requests.
695b6417a test: Add some more simulated network support.
815ae9ce9 test(toxcore): fix thread-safety in scenario framework
6d85c754e test(toxcore): add unit tests for net_crypto
9c22e79cc test(support): add SimulatedEnvironment for deterministic testing
f34fcb195 chore: Update windows Dockerfile to debian stable (trixie).
ece0e8980 fix(group_moderation): allow validating unsorted sanction list signatures
a4fa754d7 refactor: rename struct Packet to struct Net_Packet
d6f330f85 cleanup: Fix some warnings from coverity.
e206bffa2 fix(group_chats): fix sync packets reverting topics
0e4715598 test: Add new scenario testing framework.
668291f44 refactor(toxcore): decouple Network_Funcs from sockaddr via IP_Port
fc4396cef fix: potential division by zero in toxav and unsafe hex parsing
8e8b352ab refactor: Add nullable annotations to struct members.
7740bb421 refactor: decouple net_crypto from DHT
1936d4296 test: add benchmark for toxav audio and video
46bfdc2df fix: correct printf format specifiers for unsigned integers
REVERT: 1828c5356 fix(toxav): remove extra copy of video frame on encode

git-subtree-dir: external/toxcore/c-toxcore
git-subtree-split: c9cdae001341e701fca980c9bb9febfeb95d2902
2026-01-11 14:42:31 +01:00

801 lines
29 KiB
C++

#include "audio.h"
#include <gtest/gtest.h>
#include <algorithm>
#include <cmath>
#include <vector>
#include "../toxcore/logger.h"
#include "../toxcore/mono_time.h"
#include "../toxcore/network.h"
#include "../toxcore/os_memory.h"
#include "av_test_support.hh"
#include "rtp.h"
namespace {
using AudioTest = AvTest;
TEST_F(AudioTest, BasicNewKill)
{
AudioTestData data;
ACSession *ac = ac_new(mono_time, log, 123, AudioTestData::receive_frame, &data);
ASSERT_NE(ac, nullptr);
ac_kill(ac);
}
TEST_F(AudioTest, EncodeDecodeLoop)
{
AudioTestData data;
ACSession *ac = ac_new(mono_time, log, 123, AudioTestData::receive_frame, &data);
ASSERT_NE(ac, nullptr);
RtpMock rtp_mock;
RTPSession *send_rtp = rtp_new(log, RTP_TYPE_AUDIO, mono_time, RtpMock::send_packet, &rtp_mock,
nullptr, nullptr, nullptr, ac, RtpMock::audio_cb);
RTPSession *recv_rtp = rtp_new(log, RTP_TYPE_AUDIO, mono_time, RtpMock::send_packet, &rtp_mock,
nullptr, nullptr, nullptr, ac, RtpMock::audio_cb);
rtp_mock.recv_session = recv_rtp;
uint32_t sampling_rate = 48000;
uint8_t channels = 1;
size_t sample_count = 960; // 20ms at 48kHz
// Reconfigure to mono
ASSERT_EQ(ac_reconfigure_encoder(ac, 48000, sampling_rate, channels), 0);
std::vector<int16_t> pcm(sample_count * channels);
for (size_t i = 0; i < pcm.size(); ++i) {
pcm[i] = static_cast<int16_t>(i * 10);
}
std::vector<uint8_t> encoded(2000);
int encoded_size = ac_encode(ac, pcm.data(), sample_count, encoded.data(), encoded.size());
ASSERT_GT(encoded_size, 0);
// Prepare payload: 4 bytes sampling rate + Opus data
std::vector<uint8_t> payload(4 + static_cast<size_t>(encoded_size));
uint32_t net_sr = net_htonl(sampling_rate);
memcpy(payload.data(), &net_sr, 4);
memcpy(payload.data() + 4, encoded.data(), static_cast<size_t>(encoded_size));
// Send via RTP
int rc = rtp_send_data(
log, send_rtp, payload.data(), static_cast<uint32_t>(payload.size()), false);
ASSERT_EQ(rc, 0);
// Decode
ac_iterate(ac);
ASSERT_EQ(data.friend_number, 123u);
ASSERT_EQ(data.sample_count, sample_count);
ASSERT_EQ(data.channels, channels);
ASSERT_EQ(data.sampling_rate, sampling_rate);
ASSERT_EQ(data.last_pcm.size(), pcm.size());
rtp_kill(log, send_rtp);
rtp_kill(log, recv_rtp);
ac_kill(ac);
}
TEST_F(AudioTest, EncodeDecodeRealistic)
{
AudioTestData data;
ACSession *ac = ac_new(mono_time, log, 123, AudioTestData::receive_frame, &data);
ASSERT_NE(ac, nullptr);
RtpMock rtp_mock;
RTPSession *send_rtp = rtp_new(log, RTP_TYPE_AUDIO, mono_time, RtpMock::send_packet, &rtp_mock,
nullptr, nullptr, nullptr, ac, RtpMock::audio_cb);
RTPSession *recv_rtp = rtp_new(log, RTP_TYPE_AUDIO, mono_time, RtpMock::send_packet, &rtp_mock,
nullptr, nullptr, nullptr, ac, RtpMock::audio_cb);
rtp_mock.recv_session = recv_rtp;
uint32_t sampling_rate = 48000;
uint8_t channels = 1;
size_t sample_count = 960; // 20ms at 48kHz
uint32_t bitrate = 48000;
ASSERT_EQ(ac_reconfigure_encoder(ac, bitrate, sampling_rate, channels), 0);
double frequency = 440.0;
double amplitude = 10000.0;
const double pi = std::acos(-1.0);
std::vector<int16_t> all_sent;
std::vector<int16_t> all_recv;
for (int frame = 0; frame < 50; ++frame) {
std::vector<int16_t> pcm(sample_count * channels);
for (size_t i = 0; i < sample_count; ++i) {
double t = static_cast<double>(frame * sample_count + i) / sampling_rate;
pcm[i] = static_cast<int16_t>(std::sin(2.0 * pi * frequency * t) * amplitude);
}
all_sent.insert(all_sent.end(), pcm.begin(), pcm.end());
std::vector<uint8_t> encoded(2000);
int encoded_size = ac_encode(ac, pcm.data(), sample_count, encoded.data(), encoded.size());
ASSERT_GT(encoded_size, 0);
std::vector<uint8_t> payload(4 + static_cast<size_t>(encoded_size));
uint32_t net_sr = net_htonl(sampling_rate);
memcpy(payload.data(), &net_sr, 4);
memcpy(payload.data() + 4, encoded.data(), static_cast<size_t>(encoded_size));
rtp_send_data(log, send_rtp, payload.data(), static_cast<uint32_t>(payload.size()), false);
ac_iterate(ac);
if (data.sample_count > 0) {
all_recv.insert(all_recv.end(), data.last_pcm.begin(), data.last_pcm.end());
}
}
ASSERT_FALSE(all_recv.empty());
// Find the best match by trying different delays.
// Jitter buffer delay (3 frames = 2880 samples) + Opus lookahead (~312 samples) = ~3192.
double min_mse = 1e18;
int best_delay = 0;
// Search around the expected delay
for (int delay = 3000; delay < 3500; ++delay) {
double mse = 0;
int count = 0;
for (size_t i = 0; i < 2000; ++i) { // Compare a decent chunk
if (i + delay < all_sent.size() && i < all_recv.size()) {
int diff = all_sent[i + delay] - all_recv[i];
mse += static_cast<double>(diff) * diff;
count++;
}
}
if (count > 1000) {
mse /= count;
if (mse < min_mse) {
min_mse = mse;
best_delay = delay;
}
}
}
printf("Best audio delay found: %d samples, Min MSE: %f\n", best_delay, min_mse);
// For 48kbps Opus, the MSE for a sine wave should be quite low once aligned.
// 10M is about 20% of the signal power (50M), which is a safe threshold for verification.
EXPECT_LT(min_mse, 10000000.0);
rtp_kill(log, send_rtp);
rtp_kill(log, recv_rtp);
ac_kill(ac);
}
TEST_F(AudioTest, EncodeDecodeSiren)
{
AudioTestData data;
ACSession *ac = ac_new(mono_time, log, 123, AudioTestData::receive_frame, &data);
ASSERT_NE(ac, nullptr);
RtpMock rtp_mock;
RTPSession *send_rtp = rtp_new(log, RTP_TYPE_AUDIO, mono_time, RtpMock::send_packet, &rtp_mock,
nullptr, nullptr, nullptr, ac, RtpMock::audio_cb);
RTPSession *recv_rtp = rtp_new(log, RTP_TYPE_AUDIO, mono_time, RtpMock::send_packet, &rtp_mock,
nullptr, nullptr, nullptr, ac, RtpMock::audio_cb);
rtp_mock.recv_session = recv_rtp;
uint32_t sampling_rate = 48000;
uint8_t channels = 1;
size_t sample_count = 960; // 20ms at 48kHz
uint32_t bitrate = 64000;
ASSERT_EQ(ac_reconfigure_encoder(ac, bitrate, sampling_rate, channels), 0);
double amplitude = 10000.0;
const double pi = std::acos(-1.0);
std::vector<int16_t> all_sent;
std::vector<int16_t> all_recv;
// 1 second of audio (50 frames) is enough for a siren test
for (int frame = 0; frame < 50; ++frame) {
std::vector<int16_t> pcm(sample_count * channels);
for (size_t i = 0; i < sample_count; ++i) {
double t = static_cast<double>(frame * sample_count + i) / sampling_rate;
// Linear frequency sweep from 50Hz to 440Hz over 1 second
// f(t) = 50 + (440-50)/1 * t = 50 + 390t
// phi(t) = 2*pi * integral(f(t)) = 2*pi * (50t + 195t^2)
double phi = 2.0 * pi * (50.0 * t + 195.0 * t * t);
pcm[i] = static_cast<int16_t>(std::sin(phi) * amplitude);
}
all_sent.insert(all_sent.end(), pcm.begin(), pcm.end());
std::vector<uint8_t> encoded(2000);
int encoded_size = ac_encode(ac, pcm.data(), sample_count, encoded.data(), encoded.size());
ASSERT_GT(encoded_size, 0);
std::vector<uint8_t> payload(4 + static_cast<size_t>(encoded_size));
uint32_t net_sr = net_htonl(sampling_rate);
memcpy(payload.data(), &net_sr, 4);
memcpy(payload.data() + 4, encoded.data(), static_cast<size_t>(encoded_size));
rtp_send_data(log, send_rtp, payload.data(), static_cast<uint32_t>(payload.size()), false);
ac_iterate(ac);
if (data.sample_count > 0) {
all_recv.insert(all_recv.end(), data.last_pcm.begin(), data.last_pcm.end());
}
}
ASSERT_FALSE(all_recv.empty());
auto calculate_mse_at = [&](int delay, size_t window) {
double mse = 0;
int count = 0;
for (size_t i = 0; i < window; ++i) {
int sent_idx = static_cast<int>(i) + delay;
if (sent_idx >= 0 && static_cast<size_t>(sent_idx) < all_sent.size()
&& i < all_recv.size()) {
int diff = all_sent[static_cast<size_t>(sent_idx)] - all_recv[i];
mse += static_cast<double>(diff) * diff;
count++;
}
}
return count > 0 ? mse / count : 1e18;
};
// Two-stage search for speed
double min_mse = 1e18;
int coarse_best = 0;
// 1. Coarse search
for (int delay = -5000; delay < 5000; delay += 100) {
double mse = calculate_mse_at(delay, 5000);
if (mse < min_mse) {
min_mse = mse;
coarse_best = delay;
}
}
// 2. Fine search around coarse best
int best_delay = coarse_best;
for (int delay = coarse_best - 100; delay <= coarse_best + 100; ++delay) {
double mse = calculate_mse_at(delay, 10000);
if (mse < min_mse) {
min_mse = mse;
best_delay = delay;
}
}
printf("Best siren audio delay found: %d samples, Min MSE: %f\n", best_delay, min_mse);
// For 64kbps Opus, the MSE for a siren wave should be reasonably low once aligned.
EXPECT_LT(min_mse, 20000000.0);
rtp_kill(log, send_rtp);
rtp_kill(log, recv_rtp);
ac_kill(ac);
}
TEST_F(AudioTest, ReconfigureEncoder)
{
AudioTestData data;
ACSession *ac = ac_new(mono_time, log, 123, AudioTestData::receive_frame, &data);
ASSERT_NE(ac, nullptr);
// Initial state: 48kHz, mono, 48kbps
// Change to 24kHz, stereo, 32kbps
int rc = ac_reconfigure_encoder(ac, 32000, 24000, 2);
ASSERT_EQ(rc, 0);
size_t sample_count = 480; // 20ms at 24kHz
uint8_t channels = 2;
std::vector<int16_t> pcm(sample_count * channels, 0);
std::vector<uint8_t> encoded(1000);
int encoded_size = ac_encode(ac, pcm.data(), sample_count, encoded.data(), encoded.size());
ASSERT_GT(encoded_size, 0);
ac_kill(ac);
}
TEST_F(AudioTest, GetFrameDuration)
{
AudioTestData data;
ACSession *ac = ac_new(mono_time, log, 123, AudioTestData::receive_frame, &data);
ASSERT_NE(ac, nullptr);
// Default duration in audio.c is 120ms (AUDIO_MAX_FRAME_DURATION_MS)
EXPECT_EQ(ac_get_lp_frame_duration(ac), 120u);
ac_kill(ac);
}
TEST_F(AudioTest, QueueInvalidMessage)
{
AudioTestData data;
ACSession *ac = ac_new(mono_time, log, 123, AudioTestData::receive_frame, &data);
ASSERT_NE(ac, nullptr);
RtpMock rtp_mock;
// Create a video RTP session but try to queue to audio session
RTPSession *video_rtp = rtp_new(log, RTP_TYPE_VIDEO, mono_time, RtpMock::send_packet, &rtp_mock,
nullptr, nullptr, nullptr, ac, RtpMock::audio_cb);
RTPSession *audio_recv_rtp = rtp_new(log, RTP_TYPE_AUDIO, mono_time, RtpMock::send_packet,
&rtp_mock, nullptr, nullptr, nullptr, ac, RtpMock::audio_cb);
rtp_mock.recv_session = audio_recv_rtp;
std::vector<uint8_t> dummy_video(100, 0);
int rc = rtp_send_data(
log, video_rtp, dummy_video.data(), static_cast<uint32_t>(dummy_video.size()), true);
ASSERT_EQ(rc, 0);
// Iterate should NOT trigger callback because payload type was wrong
ac_iterate(ac);
EXPECT_EQ(data.sample_count, 0u);
rtp_kill(log, video_rtp);
rtp_kill(log, audio_recv_rtp);
ac_kill(ac);
}
TEST_F(AudioTest, JitterBufferDuplicate)
{
AudioTestData data;
ACSession *ac = ac_new(mono_time, log, 123, AudioTestData::receive_frame, &data);
ASSERT_NE(ac, nullptr);
RtpMock rtp_mock;
rtp_mock.auto_forward = false;
RTPSession *send_rtp = rtp_new(log, RTP_TYPE_AUDIO, mono_time, RtpMock::send_packet, &rtp_mock,
nullptr, nullptr, nullptr, ac, RtpMock::audio_cb);
RTPSession *recv_rtp = rtp_new(log, RTP_TYPE_AUDIO, mono_time, RtpMock::send_packet, &rtp_mock,
nullptr, nullptr, nullptr, ac, RtpMock::audio_cb);
rtp_mock.recv_session = recv_rtp;
uint8_t dummy_data[100] = {0};
uint32_t net_sr = net_htonl(48000);
memcpy(dummy_data, &net_sr, 4);
rtp_send_data(log, send_rtp, dummy_data, sizeof(dummy_data), false);
ASSERT_EQ(rtp_mock.captured_packets.size(), 1u);
// Feed the same packet twice
rtp_receive_packet(
recv_rtp, rtp_mock.captured_packets[0].data(), rtp_mock.captured_packets[0].size());
rtp_receive_packet(
recv_rtp, rtp_mock.captured_packets[0].data(), rtp_mock.captured_packets[0].size());
// First iterate should process the packet
ac_iterate(ac);
EXPECT_GT(data.sample_count, 0u);
data.sample_count = 0;
// Second iterate should NOT process anything (duplicate was dropped in queue)
ac_iterate(ac);
EXPECT_EQ(data.sample_count, 0u);
rtp_kill(log, send_rtp);
rtp_kill(log, recv_rtp);
ac_kill(ac);
}
TEST_F(AudioTest, JitterBufferOutOfOrder)
{
AudioTestData data;
ACSession *ac = ac_new(mono_time, log, 123, AudioTestData::receive_frame, &data);
ASSERT_NE(ac, nullptr);
RtpMock rtp_mock;
rtp_mock.auto_forward = false;
RTPSession *send_rtp = rtp_new(log, RTP_TYPE_AUDIO, mono_time, RtpMock::send_packet, &rtp_mock,
nullptr, nullptr, nullptr, ac, RtpMock::audio_cb);
RTPSession *recv_rtp = rtp_new(log, RTP_TYPE_AUDIO, mono_time, RtpMock::send_packet, &rtp_mock,
nullptr, nullptr, nullptr, ac, RtpMock::audio_cb);
rtp_mock.recv_session = recv_rtp;
uint8_t dummy_data[100] = {0};
uint32_t net_sr = net_htonl(48000);
memcpy(dummy_data, &net_sr, 4);
// Capture 3 packets
rtp_send_data(log, send_rtp, dummy_data, sizeof(dummy_data), false);
rtp_send_data(log, send_rtp, dummy_data, sizeof(dummy_data), false);
rtp_send_data(log, send_rtp, dummy_data, sizeof(dummy_data), false);
ASSERT_EQ(rtp_mock.captured_packets.size(), 3u);
// Receive in order 0, 2, 1
rtp_receive_packet(
recv_rtp, rtp_mock.captured_packets[0].data(), rtp_mock.captured_packets[0].size());
rtp_receive_packet(
recv_rtp, rtp_mock.captured_packets[2].data(), rtp_mock.captured_packets[2].size());
rtp_receive_packet(
recv_rtp, rtp_mock.captured_packets[1].data(), rtp_mock.captured_packets[1].size());
// Iterate once, should process all 3 packets (because ac_iterate now loops)
data.sample_count = 0;
ac_iterate(ac);
EXPECT_GT(data.sample_count, 0u);
// Subsequent iterate should find nothing
data.sample_count = 0;
ac_iterate(ac);
EXPECT_EQ(data.sample_count, 0u);
rtp_kill(log, send_rtp);
rtp_kill(log, recv_rtp);
ac_kill(ac);
}
TEST_F(AudioTest, PacketLossConcealment)
{
AudioTestData data;
ACSession *ac = ac_new(mono_time, log, 123, AudioTestData::receive_frame, &data);
ASSERT_NE(ac, nullptr);
RtpMock rtp_mock;
rtp_mock.auto_forward = false;
RTPSession *send_rtp = rtp_new(log, RTP_TYPE_AUDIO, mono_time, RtpMock::send_packet, &rtp_mock,
nullptr, nullptr, nullptr, ac, RtpMock::audio_cb);
RTPSession *recv_rtp = rtp_new(log, RTP_TYPE_AUDIO, mono_time, RtpMock::send_packet, &rtp_mock,
nullptr, nullptr, nullptr, ac, RtpMock::audio_cb);
rtp_mock.recv_session = recv_rtp;
uint8_t dummy_data[100] = {0};
uint32_t net_sr = net_htonl(48000);
memcpy(dummy_data, &net_sr, 4);
// Send packet 0 and deliver it immediately.
rtp_send_data(log, send_rtp, dummy_data, sizeof(dummy_data), false);
rtp_receive_packet(
recv_rtp, rtp_mock.captured_packets[0].data(), rtp_mock.captured_packets[0].size());
ac_iterate(ac);
EXPECT_GT(data.sample_count, 0u);
data.sample_count = 0;
// Send packets 1 through 5 but do not deliver them, creating a gap in the sequence.
for (int i = 0; i < 5; ++i) {
rtp_send_data(log, send_rtp, dummy_data, sizeof(dummy_data), false);
}
// Send and deliver packet 6. The gap (1-5) exceeds the jitter buffer capacity (3).
rtp_send_data(log, send_rtp, dummy_data, sizeof(dummy_data), false);
rtp_receive_packet(
recv_rtp, rtp_mock.captured_packets[6].data(), rtp_mock.captured_packets[6].size());
// The next iteration should trigger Packet Loss Concealment (PLC) for the missing packets.
// In audio.c, a return code of 2 from jbuf_read indicates that PLC should be performed.
ac_iterate(ac);
EXPECT_GT(data.sample_count, 0u);
rtp_kill(log, send_rtp);
rtp_kill(log, recv_rtp);
ac_kill(ac);
}
TEST_F(AudioTest, JitterBufferReset)
{
AudioTestData data;
ACSession *ac = ac_new(mono_time, log, 123, AudioTestData::receive_frame, &data);
ASSERT_NE(ac, nullptr);
RtpMock rtp_mock;
rtp_mock.auto_forward = false;
RTPSession *send_rtp = rtp_new(log, RTP_TYPE_AUDIO, mono_time, RtpMock::send_packet, &rtp_mock,
nullptr, nullptr, nullptr, ac, RtpMock::audio_cb);
RTPSession *recv_rtp = rtp_new(log, RTP_TYPE_AUDIO, mono_time, RtpMock::send_packet, &rtp_mock,
nullptr, nullptr, nullptr, ac, RtpMock::audio_cb);
rtp_mock.recv_session = recv_rtp;
uint8_t dummy_data[100] = {0};
uint32_t net_sr = net_htonl(48000);
memcpy(dummy_data, &net_sr, 4);
rtp_send_data(log, send_rtp, dummy_data, sizeof(dummy_data), false);
rtp_receive_packet(
recv_rtp, rtp_mock.captured_packets[0].data(), rtp_mock.captured_packets[0].size());
ac_iterate(ac);
// The jitter buffer size is (capacity * 4) rounded up to the next power of 2.
// With AUDIO_JITTERBUFFER_COUNT = 3, the size is 16.
// A jump in sequence number greater than the buffer size triggers a full reset of the jitter
// buffer.
for (int i = 0; i < 20; ++i) {
rtp_send_data(log, send_rtp, dummy_data, sizeof(dummy_data), false);
}
// Deliver the latest packet, which is well beyond the current window.
rtp_receive_packet(
recv_rtp, rtp_mock.captured_packets.back().data(), rtp_mock.captured_packets.back().size());
// The session should recover after the reset and process the new packet normally.
data.sample_count = 0;
ac_iterate(ac);
EXPECT_GT(data.sample_count, 0u);
rtp_kill(log, send_rtp);
rtp_kill(log, recv_rtp);
ac_kill(ac);
}
TEST_F(AudioTest, DecoderReconfigureCooldown)
{
AudioTestData data;
ACSession *ac = ac_new(mono_time, log, 123, AudioTestData::receive_frame, &data);
ASSERT_NE(ac, nullptr);
RtpMock rtp_mock;
rtp_mock.auto_forward = false;
RTPSession *send_rtp = rtp_new(log, RTP_TYPE_AUDIO, mono_time, RtpMock::send_packet, &rtp_mock,
nullptr, nullptr, nullptr, ac, RtpMock::audio_cb);
RTPSession *recv_rtp = rtp_new(log, RTP_TYPE_AUDIO, mono_time, RtpMock::send_packet, &rtp_mock,
nullptr, nullptr, nullptr, ac, RtpMock::audio_cb);
rtp_mock.recv_session = recv_rtp;
uint8_t dummy_data[100] = {0};
uint32_t net_sr_48 = net_htonl(48000);
uint32_t net_sr_24 = net_htonl(24000);
// 1. Reconfigure to 24kHz. The initial sampling rate is 48kHz.
memcpy(dummy_data, &net_sr_24, 4);
rtp_send_data(log, send_rtp, dummy_data, sizeof(dummy_data), false);
rtp_receive_packet(
recv_rtp, rtp_mock.captured_packets.back().data(), rtp_mock.captured_packets.back().size());
ac_iterate(ac);
EXPECT_EQ(data.sampling_rate, 24000u);
data.sampling_rate = 0;
// 2. Advance time by only 100ms. This is less than the 500ms cooldown required for decoder
// reconfiguration.
tm.t += 100;
mono_time_update(mono_time);
// 3. Attempt to reconfigure back to 48kHz.
memcpy(dummy_data, &net_sr_48, 4);
rtp_send_data(log, send_rtp, dummy_data, sizeof(dummy_data), false);
rtp_receive_packet(
recv_rtp, rtp_mock.captured_packets.back().data(), rtp_mock.captured_packets.back().size());
// Reconfiguration should be rejected due to the cooldown, so the callback should not be
// invoked.
ac_iterate(ac);
EXPECT_EQ(data.sampling_rate, 0u);
// 4. Advance time beyond the 500ms cooldown period (measured from the first reconfiguration).
tm.t += 500;
mono_time_update(mono_time);
// 5. Attempt reconfiguration to 48kHz again.
rtp_send_data(log, send_rtp, dummy_data, sizeof(dummy_data), false);
rtp_receive_packet(
recv_rtp, rtp_mock.captured_packets.back().data(), rtp_mock.captured_packets.back().size());
// Reconfiguration should now succeed.
ac_iterate(ac);
EXPECT_EQ(data.sampling_rate, 48000u);
rtp_kill(log, send_rtp);
rtp_kill(log, recv_rtp);
ac_kill(ac);
}
TEST_F(AudioTest, QueueDummyMessage)
{
AudioTestData data;
ACSession *ac = ac_new(mono_time, log, 123, AudioTestData::receive_frame, &data);
ASSERT_NE(ac, nullptr);
RtpMock rtp_mock;
// RTP_TYPE_AUDIO + 2 is the dummy type
RTPSession *dummy_rtp = rtp_new(log, RTP_TYPE_AUDIO + 2, mono_time, RtpMock::send_packet,
&rtp_mock, nullptr, nullptr, nullptr, ac, RtpMock::audio_cb);
RTPSession *audio_recv_rtp = rtp_new(log, RTP_TYPE_AUDIO, mono_time, RtpMock::send_packet,
&rtp_mock, nullptr, nullptr, nullptr, ac, RtpMock::audio_cb);
rtp_mock.recv_session = audio_recv_rtp;
std::vector<uint8_t> dummy_payload(100, 0);
int rc = rtp_send_data(
log, dummy_rtp, dummy_payload.data(), static_cast<uint32_t>(dummy_payload.size()), false);
ASSERT_EQ(rc, 0);
// Iterate should NOT trigger callback because it was a dummy packet
ac_iterate(ac);
EXPECT_EQ(data.sample_count, 0u);
rtp_kill(log, dummy_rtp);
rtp_kill(log, audio_recv_rtp);
ac_kill(ac);
}
TEST_F(AudioTest, LatePacketReset)
{
AudioTestData data;
ACSession *ac = ac_new(mono_time, log, 123, AudioTestData::receive_frame, &data);
ASSERT_NE(ac, nullptr);
RtpMock rtp_mock;
rtp_mock.auto_forward = false;
RTPSession *send_rtp = rtp_new(log, RTP_TYPE_AUDIO, mono_time, RtpMock::send_packet, &rtp_mock,
nullptr, nullptr, nullptr, ac, RtpMock::audio_cb);
RTPSession *recv_rtp = rtp_new(log, RTP_TYPE_AUDIO, mono_time, RtpMock::send_packet, &rtp_mock,
nullptr, nullptr, nullptr, ac, RtpMock::audio_cb);
rtp_mock.recv_session = recv_rtp;
uint8_t dummy_data[100] = {0};
uint32_t net_sr = net_htonl(48000);
memcpy(dummy_data, &net_sr, 4);
// 1. Send and process the first packet.
rtp_send_data(log, send_rtp, dummy_data, sizeof(dummy_data), false); // seq 0
rtp_receive_packet(
recv_rtp, rtp_mock.captured_packets[0].data(), rtp_mock.captured_packets[0].size());
ac_iterate(ac);
ASSERT_GT(data.sample_count, 0u);
data.sample_count = 0;
// 2. Buffer another packet with a different sampling rate (24kHz) but don't process it yet.
uint32_t net_sr_24 = net_htonl(24000);
memcpy(dummy_data, &net_sr_24, 4);
rtp_send_data(log, send_rtp, dummy_data, sizeof(dummy_data), false); // seq 1
rtp_receive_packet(
recv_rtp, rtp_mock.captured_packets[1].data(), rtp_mock.captured_packets[1].size());
// 3. Receive the late packet (seq 0) again.
// This triggers the bug: (uint32_t)(0 - 1) > 16, causing a full jitter buffer reset.
rtp_receive_packet(
recv_rtp, rtp_mock.captured_packets[0].data(), rtp_mock.captured_packets[0].size());
// 4. Try to process the next packet.
// Due to the bug, packet 1 was cleared. We will likely get PLC (48kHz) instead of packet 1
// (24kHz).
ac_iterate(ac);
// If the bug is present, sampling_rate will be 48000 (from PLC) instead of 24000.
EXPECT_EQ(data.sampling_rate, 24000u);
rtp_kill(log, send_rtp);
rtp_kill(log, recv_rtp);
ac_kill(ac);
}
TEST_F(AudioTest, InvalidSamplingRate)
{
AudioTestData data;
ACSession *ac = ac_new(mono_time, log, 123, AudioTestData::receive_frame, &data);
ASSERT_NE(ac, nullptr);
RtpMock rtp_mock;
rtp_mock.auto_forward = false;
RTPSession *send_rtp = rtp_new(log, RTP_TYPE_AUDIO, mono_time, RtpMock::send_packet, &rtp_mock,
nullptr, nullptr, nullptr, ac, RtpMock::audio_cb);
RTPSession *recv_rtp = rtp_new(log, RTP_TYPE_AUDIO, mono_time, RtpMock::send_packet, &rtp_mock,
nullptr, nullptr, nullptr, ac, RtpMock::audio_cb);
rtp_mock.recv_session = recv_rtp;
// 1. Send a packet with an absurdly large sampling rate.
uint8_t malicious_data[100] = {0};
uint32_t net_sr = net_htonl(1000000000); // 1 GHz
memcpy(malicious_data, &net_sr, 4);
// Add some dummy Opus data so it's not too short
malicious_data[4] = 0x08;
rtp_send_data(log, send_rtp, malicious_data, sizeof(malicious_data), false);
rtp_receive_packet(
recv_rtp, rtp_mock.captured_packets.back().data(), rtp_mock.captured_packets.back().size());
// This packet should fail reconfiguration and be discarded.
ac_iterate(ac);
EXPECT_EQ(data.sample_count, 0u);
// 2. Trigger PLC. It should NOT use the malicious sampling rate.
// Send 5 packets to create a gap.
for (int i = 0; i < 5; ++i) {
rtp_send_data(log, send_rtp, malicious_data, sizeof(malicious_data), false);
}
// Deliver the next one.
rtp_send_data(log, send_rtp, malicious_data, sizeof(malicious_data), false);
rtp_receive_packet(
recv_rtp, rtp_mock.captured_packets.back().data(), rtp_mock.captured_packets.back().size());
// Next iterate triggers PLC. If it uses 1GHz, it might overflow/crash.
ac_iterate(ac);
rtp_kill(log, send_rtp);
rtp_kill(log, recv_rtp);
ac_kill(ac);
}
TEST_F(AudioTest, ShortPacket)
{
AudioTestData data;
ACSession *ac = ac_new(mono_time, log, 123, AudioTestData::receive_frame, &data);
ASSERT_NE(ac, nullptr);
RtpMock rtp_mock;
rtp_mock.auto_forward = false;
RTPSession *send_rtp = rtp_new(log, RTP_TYPE_AUDIO, mono_time, RtpMock::send_packet, &rtp_mock,
nullptr, nullptr, nullptr, ac, RtpMock::audio_cb);
RTPSession *recv_rtp = rtp_new(log, RTP_TYPE_AUDIO, mono_time, RtpMock::send_packet, &rtp_mock,
nullptr, nullptr, nullptr, ac, RtpMock::audio_cb);
rtp_mock.recv_session = recv_rtp;
// 1. Send a packet that is too short (only sampling rate, no Opus data).
// The protocol requires 4 bytes SR + at least 1 byte Opus data.
uint8_t short_data[4] = {0, 0, 0xBB, 0x80}; // 48000
// rtp_send_data might not like 4 bytes if it expects more, but let's see.
rtp_send_data(log, send_rtp, short_data, sizeof(short_data), false);
rtp_receive_packet(
recv_rtp, rtp_mock.captured_packets.back().data(), rtp_mock.captured_packets.back().size());
// This should not crash. In debug it might hit an assert.
// In production it might do an OOB read.
ac_iterate(ac);
rtp_kill(log, send_rtp);
rtp_kill(log, recv_rtp);
ac_kill(ac);
}
TEST_F(AudioTest, JitterBufferWrapAround)
{
AudioTestData data;
ACSession *ac = ac_new(mono_time, log, 123, AudioTestData::receive_frame, &data);
ASSERT_NE(ac, nullptr);
RtpMock rtp_mock;
rtp_mock.auto_forward = false;
RTPSession *send_rtp = rtp_new(log, RTP_TYPE_AUDIO, mono_time, RtpMock::send_packet, &rtp_mock,
nullptr, nullptr, nullptr, ac, RtpMock::audio_cb);
RTPSession *recv_rtp = rtp_new(log, RTP_TYPE_AUDIO, mono_time, RtpMock::send_packet, &rtp_mock,
nullptr, nullptr, nullptr, ac, RtpMock::audio_cb);
rtp_mock.recv_session = recv_rtp;
uint8_t dummy_data[100] = {0};
uint32_t net_sr = net_htonl(48000);
memcpy(dummy_data, &net_sr, 4);
// Send enough packets to reach the sequence number wrap-around point (0xFFFF -> 0x0000).
// We detect the current sequence number to minimize the number of iterations.
uint16_t seq = 0;
{
rtp_send_data(log, send_rtp, dummy_data, sizeof(dummy_data), false);
const uint8_t *pkt = rtp_mock.captured_packets.back().data();
seq = (pkt[3] << 8) | pkt[4];
rtp_receive_packet(recv_rtp, pkt, rtp_mock.captured_packets.back().size());
rtp_mock.captured_packets.clear();
ac_iterate(ac);
}
// Aim for sequence number 65532 to be the last processed packet before the gap.
int to_send = (65532 - seq + 65536) % 65536;
for (int i = 0; i < to_send; ++i) {
rtp_send_data(log, send_rtp, dummy_data, sizeof(dummy_data), false);
const uint8_t *pkt = rtp_mock.captured_packets.back().data();
rtp_receive_packet(recv_rtp, pkt, rtp_mock.captured_packets.back().size());
rtp_mock.captured_packets.clear();
ac_iterate(ac);
}
// Now 'bottom' should be at 65533 (next expected).
data.sample_count = 0;
// Create a gap of 2 missing packets: 65533, 65534.
// Packet 65535 is delivered. Gap is 2. Capacity is 3. Should NOT trigger PLC.
rtp_send_data(log, send_rtp, dummy_data, sizeof(dummy_data), false); // 65533 (dropped)
rtp_send_data(log, send_rtp, dummy_data, sizeof(dummy_data), false); // 65534 (dropped)
rtp_send_data(log, send_rtp, dummy_data, sizeof(dummy_data), false); // 65535 (delivered)
rtp_receive_packet(
recv_rtp, rtp_mock.captured_packets.back().data(), rtp_mock.captured_packets.back().size());
// Iteration should result in no frames processed because the gap is within capacity.
// If there is a bug in wrap-around distance calculation, it will trigger PLC here.
ac_iterate(ac);
EXPECT_EQ(data.sample_count, 0u);
rtp_kill(log, send_rtp);
rtp_kill(log, recv_rtp);
ac_kill(ac);
}
} // namespace