tomato-testing/single_include/entt/entt.hpp
Green Sky 5c7231b7a3 Squashed 'external/entt/entt/' content from commit fef92113
git-subtree-dir: external/entt/entt
git-subtree-split: fef921132cae7588213d0f9bcd2fb9c8ffd8b7fc
2023-07-25 11:29:51 +02:00

82839 lines
2.7 MiB
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

// IWYU pragma: begin_exports
// #include "config/config.h"
#ifndef ENTT_CONFIG_CONFIG_H
#define ENTT_CONFIG_CONFIG_H
// #include "version.h"
#ifndef ENTT_CONFIG_VERSION_H
#define ENTT_CONFIG_VERSION_H
// #include "macro.h"
#ifndef ENTT_CONFIG_MACRO_H
#define ENTT_CONFIG_MACRO_H
#define ENTT_STR(arg) #arg
#define ENTT_XSTR(arg) ENTT_STR(arg)
#endif
#define ENTT_VERSION_MAJOR 3
#define ENTT_VERSION_MINOR 11
#define ENTT_VERSION_PATCH 1
#define ENTT_VERSION \
ENTT_XSTR(ENTT_VERSION_MAJOR) \
"." ENTT_XSTR(ENTT_VERSION_MINOR) "." ENTT_XSTR(ENTT_VERSION_PATCH)
#endif
#if defined(__cpp_exceptions) && !defined(ENTT_NOEXCEPTION)
# define ENTT_CONSTEXPR
# define ENTT_THROW throw
# define ENTT_TRY try
# define ENTT_CATCH catch(...)
#else
# define ENTT_CONSTEXPR constexpr // use only with throwing functions (waiting for C++20)
# define ENTT_THROW
# define ENTT_TRY if(true)
# define ENTT_CATCH if(false)
#endif
#ifdef ENTT_USE_ATOMIC
# include <atomic>
# define ENTT_MAYBE_ATOMIC(Type) std::atomic<Type>
#else
# define ENTT_MAYBE_ATOMIC(Type) Type
#endif
#ifndef ENTT_ID_TYPE
# include <cstdint>
# define ENTT_ID_TYPE std::uint32_t
#endif
#ifndef ENTT_SPARSE_PAGE
# define ENTT_SPARSE_PAGE 4096
#endif
#ifndef ENTT_PACKED_PAGE
# define ENTT_PACKED_PAGE 1024
#endif
#ifdef ENTT_DISABLE_ASSERT
# undef ENTT_ASSERT
# define ENTT_ASSERT(condition, msg) (void(0))
#elif !defined ENTT_ASSERT
# include <cassert>
# define ENTT_ASSERT(condition, msg) assert(condition)
#endif
#ifdef ENTT_DISABLE_ASSERT
# undef ENTT_ASSERT_CONSTEXPR
# define ENTT_ASSERT_CONSTEXPR(condition, msg) (void(0))
#elif !defined ENTT_ASSERT_CONSTEXPR
# define ENTT_ASSERT_CONSTEXPR(condition, msg) ENTT_ASSERT(condition, msg)
#endif
#ifdef ENTT_NO_ETO
# define ENTT_ETO_TYPE(Type) void
#else
# define ENTT_ETO_TYPE(Type) Type
#endif
#ifdef ENTT_STANDARD_CPP
# define ENTT_NONSTD false
#else
# define ENTT_NONSTD true
# if defined __clang__ || defined __GNUC__
# define ENTT_PRETTY_FUNCTION __PRETTY_FUNCTION__
# define ENTT_PRETTY_FUNCTION_PREFIX '='
# define ENTT_PRETTY_FUNCTION_SUFFIX ']'
# elif defined _MSC_VER
# define ENTT_PRETTY_FUNCTION __FUNCSIG__
# define ENTT_PRETTY_FUNCTION_PREFIX '<'
# define ENTT_PRETTY_FUNCTION_SUFFIX '>'
# endif
#endif
#if defined _MSC_VER
# pragma detect_mismatch("entt.version", ENTT_VERSION)
# pragma detect_mismatch("entt.noexcept", ENTT_XSTR(ENTT_TRY))
# pragma detect_mismatch("entt.id", ENTT_XSTR(ENTT_ID_TYPE))
# pragma detect_mismatch("entt.nonstd", ENTT_XSTR(ENTT_NONSTD))
#endif
#endif
// #include "config/macro.h"
#ifndef ENTT_CONFIG_MACRO_H
#define ENTT_CONFIG_MACRO_H
#define ENTT_STR(arg) #arg
#define ENTT_XSTR(arg) ENTT_STR(arg)
#endif
// #include "config/version.h"
#ifndef ENTT_CONFIG_VERSION_H
#define ENTT_CONFIG_VERSION_H
// #include "macro.h"
#define ENTT_VERSION_MAJOR 3
#define ENTT_VERSION_MINOR 11
#define ENTT_VERSION_PATCH 1
#define ENTT_VERSION \
ENTT_XSTR(ENTT_VERSION_MAJOR) \
"." ENTT_XSTR(ENTT_VERSION_MINOR) "." ENTT_XSTR(ENTT_VERSION_PATCH)
#endif
// #include "container/dense_map.hpp"
#ifndef ENTT_CONTAINER_DENSE_MAP_HPP
#define ENTT_CONTAINER_DENSE_MAP_HPP
#include <cmath>
#include <cstddef>
#include <functional>
#include <iterator>
#include <limits>
#include <memory>
#include <tuple>
#include <type_traits>
#include <utility>
#include <vector>
// #include "../config/config.h"
#ifndef ENTT_CONFIG_CONFIG_H
#define ENTT_CONFIG_CONFIG_H
// #include "version.h"
#ifndef ENTT_CONFIG_VERSION_H
#define ENTT_CONFIG_VERSION_H
// #include "macro.h"
#ifndef ENTT_CONFIG_MACRO_H
#define ENTT_CONFIG_MACRO_H
#define ENTT_STR(arg) #arg
#define ENTT_XSTR(arg) ENTT_STR(arg)
#endif
#define ENTT_VERSION_MAJOR 3
#define ENTT_VERSION_MINOR 11
#define ENTT_VERSION_PATCH 1
#define ENTT_VERSION \
ENTT_XSTR(ENTT_VERSION_MAJOR) \
"." ENTT_XSTR(ENTT_VERSION_MINOR) "." ENTT_XSTR(ENTT_VERSION_PATCH)
#endif
#if defined(__cpp_exceptions) && !defined(ENTT_NOEXCEPTION)
# define ENTT_CONSTEXPR
# define ENTT_THROW throw
# define ENTT_TRY try
# define ENTT_CATCH catch(...)
#else
# define ENTT_CONSTEXPR constexpr // use only with throwing functions (waiting for C++20)
# define ENTT_THROW
# define ENTT_TRY if(true)
# define ENTT_CATCH if(false)
#endif
#ifdef ENTT_USE_ATOMIC
# include <atomic>
# define ENTT_MAYBE_ATOMIC(Type) std::atomic<Type>
#else
# define ENTT_MAYBE_ATOMIC(Type) Type
#endif
#ifndef ENTT_ID_TYPE
# include <cstdint>
# define ENTT_ID_TYPE std::uint32_t
#endif
#ifndef ENTT_SPARSE_PAGE
# define ENTT_SPARSE_PAGE 4096
#endif
#ifndef ENTT_PACKED_PAGE
# define ENTT_PACKED_PAGE 1024
#endif
#ifdef ENTT_DISABLE_ASSERT
# undef ENTT_ASSERT
# define ENTT_ASSERT(condition, msg) (void(0))
#elif !defined ENTT_ASSERT
# include <cassert>
# define ENTT_ASSERT(condition, msg) assert(condition)
#endif
#ifdef ENTT_DISABLE_ASSERT
# undef ENTT_ASSERT_CONSTEXPR
# define ENTT_ASSERT_CONSTEXPR(condition, msg) (void(0))
#elif !defined ENTT_ASSERT_CONSTEXPR
# define ENTT_ASSERT_CONSTEXPR(condition, msg) ENTT_ASSERT(condition, msg)
#endif
#ifdef ENTT_NO_ETO
# define ENTT_ETO_TYPE(Type) void
#else
# define ENTT_ETO_TYPE(Type) Type
#endif
#ifdef ENTT_STANDARD_CPP
# define ENTT_NONSTD false
#else
# define ENTT_NONSTD true
# if defined __clang__ || defined __GNUC__
# define ENTT_PRETTY_FUNCTION __PRETTY_FUNCTION__
# define ENTT_PRETTY_FUNCTION_PREFIX '='
# define ENTT_PRETTY_FUNCTION_SUFFIX ']'
# elif defined _MSC_VER
# define ENTT_PRETTY_FUNCTION __FUNCSIG__
# define ENTT_PRETTY_FUNCTION_PREFIX '<'
# define ENTT_PRETTY_FUNCTION_SUFFIX '>'
# endif
#endif
#if defined _MSC_VER
# pragma detect_mismatch("entt.version", ENTT_VERSION)
# pragma detect_mismatch("entt.noexcept", ENTT_XSTR(ENTT_TRY))
# pragma detect_mismatch("entt.id", ENTT_XSTR(ENTT_ID_TYPE))
# pragma detect_mismatch("entt.nonstd", ENTT_XSTR(ENTT_NONSTD))
#endif
#endif
// #include "../core/compressed_pair.hpp"
#ifndef ENTT_CORE_COMPRESSED_PAIR_HPP
#define ENTT_CORE_COMPRESSED_PAIR_HPP
#include <cstddef>
#include <tuple>
#include <type_traits>
#include <utility>
// #include "type_traits.hpp"
#ifndef ENTT_CORE_TYPE_TRAITS_HPP
#define ENTT_CORE_TYPE_TRAITS_HPP
#include <cstddef>
#include <iterator>
#include <type_traits>
#include <utility>
// #include "../config/config.h"
#ifndef ENTT_CONFIG_CONFIG_H
#define ENTT_CONFIG_CONFIG_H
// #include "version.h"
#ifndef ENTT_CONFIG_VERSION_H
#define ENTT_CONFIG_VERSION_H
// #include "macro.h"
#ifndef ENTT_CONFIG_MACRO_H
#define ENTT_CONFIG_MACRO_H
#define ENTT_STR(arg) #arg
#define ENTT_XSTR(arg) ENTT_STR(arg)
#endif
#define ENTT_VERSION_MAJOR 3
#define ENTT_VERSION_MINOR 11
#define ENTT_VERSION_PATCH 1
#define ENTT_VERSION \
ENTT_XSTR(ENTT_VERSION_MAJOR) \
"." ENTT_XSTR(ENTT_VERSION_MINOR) "." ENTT_XSTR(ENTT_VERSION_PATCH)
#endif
#if defined(__cpp_exceptions) && !defined(ENTT_NOEXCEPTION)
# define ENTT_CONSTEXPR
# define ENTT_THROW throw
# define ENTT_TRY try
# define ENTT_CATCH catch(...)
#else
# define ENTT_CONSTEXPR constexpr // use only with throwing functions (waiting for C++20)
# define ENTT_THROW
# define ENTT_TRY if(true)
# define ENTT_CATCH if(false)
#endif
#ifdef ENTT_USE_ATOMIC
# include <atomic>
# define ENTT_MAYBE_ATOMIC(Type) std::atomic<Type>
#else
# define ENTT_MAYBE_ATOMIC(Type) Type
#endif
#ifndef ENTT_ID_TYPE
# include <cstdint>
# define ENTT_ID_TYPE std::uint32_t
#endif
#ifndef ENTT_SPARSE_PAGE
# define ENTT_SPARSE_PAGE 4096
#endif
#ifndef ENTT_PACKED_PAGE
# define ENTT_PACKED_PAGE 1024
#endif
#ifdef ENTT_DISABLE_ASSERT
# undef ENTT_ASSERT
# define ENTT_ASSERT(condition, msg) (void(0))
#elif !defined ENTT_ASSERT
# include <cassert>
# define ENTT_ASSERT(condition, msg) assert(condition)
#endif
#ifdef ENTT_DISABLE_ASSERT
# undef ENTT_ASSERT_CONSTEXPR
# define ENTT_ASSERT_CONSTEXPR(condition, msg) (void(0))
#elif !defined ENTT_ASSERT_CONSTEXPR
# define ENTT_ASSERT_CONSTEXPR(condition, msg) ENTT_ASSERT(condition, msg)
#endif
#ifdef ENTT_NO_ETO
# define ENTT_ETO_TYPE(Type) void
#else
# define ENTT_ETO_TYPE(Type) Type
#endif
#ifdef ENTT_STANDARD_CPP
# define ENTT_NONSTD false
#else
# define ENTT_NONSTD true
# if defined __clang__ || defined __GNUC__
# define ENTT_PRETTY_FUNCTION __PRETTY_FUNCTION__
# define ENTT_PRETTY_FUNCTION_PREFIX '='
# define ENTT_PRETTY_FUNCTION_SUFFIX ']'
# elif defined _MSC_VER
# define ENTT_PRETTY_FUNCTION __FUNCSIG__
# define ENTT_PRETTY_FUNCTION_PREFIX '<'
# define ENTT_PRETTY_FUNCTION_SUFFIX '>'
# endif
#endif
#if defined _MSC_VER
# pragma detect_mismatch("entt.version", ENTT_VERSION)
# pragma detect_mismatch("entt.noexcept", ENTT_XSTR(ENTT_TRY))
# pragma detect_mismatch("entt.id", ENTT_XSTR(ENTT_ID_TYPE))
# pragma detect_mismatch("entt.nonstd", ENTT_XSTR(ENTT_NONSTD))
#endif
#endif
// #include "fwd.hpp"
#ifndef ENTT_CORE_FWD_HPP
#define ENTT_CORE_FWD_HPP
#include <cstddef>
// #include "../config/config.h"
namespace entt {
template<std::size_t Len = sizeof(double[2]), std::size_t = alignof(double[2])>
class basic_any;
/*! @brief Alias declaration for type identifiers. */
using id_type = ENTT_ID_TYPE;
/*! @brief Alias declaration for the most common use case. */
using any = basic_any<>;
} // namespace entt
#endif
namespace entt {
/**
* @brief Utility class to disambiguate overloaded functions.
* @tparam N Number of choices available.
*/
template<std::size_t N>
struct choice_t
// Unfortunately, doxygen cannot parse such a construct.
: /*! @cond TURN_OFF_DOXYGEN */ choice_t<N - 1> /*! @endcond */
{};
/*! @copybrief choice_t */
template<>
struct choice_t<0> {};
/**
* @brief Variable template for the choice trick.
* @tparam N Number of choices available.
*/
template<std::size_t N>
inline constexpr choice_t<N> choice{};
/**
* @brief Identity type trait.
*
* Useful to establish non-deduced contexts in template argument deduction
* (waiting for C++20) or to provide types through function arguments.
*
* @tparam Type A type.
*/
template<typename Type>
struct type_identity {
/*! @brief Identity type. */
using type = Type;
};
/**
* @brief Helper type.
* @tparam Type A type.
*/
template<typename Type>
using type_identity_t = typename type_identity<Type>::type;
/**
* @brief A type-only `sizeof` wrapper that returns 0 where `sizeof` complains.
* @tparam Type The type of which to return the size.
* @tparam The size of the type if `sizeof` accepts it, 0 otherwise.
*/
template<typename Type, typename = void>
struct size_of: std::integral_constant<std::size_t, 0u> {};
/*! @copydoc size_of */
template<typename Type>
struct size_of<Type, std::void_t<decltype(sizeof(Type))>>
: std::integral_constant<std::size_t, sizeof(Type)> {};
/**
* @brief Helper variable template.
* @tparam Type The type of which to return the size.
*/
template<typename Type>
inline constexpr std::size_t size_of_v = size_of<Type>::value;
/**
* @brief Using declaration to be used to _repeat_ the same type a number of
* times equal to the size of a given parameter pack.
* @tparam Type A type to repeat.
*/
template<typename Type, typename>
using unpack_as_type = Type;
/**
* @brief Helper variable template to be used to _repeat_ the same value a
* number of times equal to the size of a given parameter pack.
* @tparam Value A value to repeat.
*/
template<auto Value, typename>
inline constexpr auto unpack_as_value = Value;
/**
* @brief Wraps a static constant.
* @tparam Value A static constant.
*/
template<auto Value>
using integral_constant = std::integral_constant<decltype(Value), Value>;
/**
* @brief Alias template to facilitate the creation of named values.
* @tparam Value A constant value at least convertible to `id_type`.
*/
template<id_type Value>
using tag = integral_constant<Value>;
/**
* @brief A class to use to push around lists of types, nothing more.
* @tparam Type Types provided by the type list.
*/
template<typename... Type>
struct type_list {
/*! @brief Type list type. */
using type = type_list;
/*! @brief Compile-time number of elements in the type list. */
static constexpr auto size = sizeof...(Type);
};
/*! @brief Primary template isn't defined on purpose. */
template<std::size_t, typename>
struct type_list_element;
/**
* @brief Provides compile-time indexed access to the types of a type list.
* @tparam Index Index of the type to return.
* @tparam First First type provided by the type list.
* @tparam Other Other types provided by the type list.
*/
template<std::size_t Index, typename First, typename... Other>
struct type_list_element<Index, type_list<First, Other...>>
: type_list_element<Index - 1u, type_list<Other...>> {};
/**
* @brief Provides compile-time indexed access to the types of a type list.
* @tparam First First type provided by the type list.
* @tparam Other Other types provided by the type list.
*/
template<typename First, typename... Other>
struct type_list_element<0u, type_list<First, Other...>> {
/*! @brief Searched type. */
using type = First;
};
/**
* @brief Helper type.
* @tparam Index Index of the type to return.
* @tparam List Type list to search into.
*/
template<std::size_t Index, typename List>
using type_list_element_t = typename type_list_element<Index, List>::type;
/*! @brief Primary template isn't defined on purpose. */
template<typename, typename>
struct type_list_index;
/**
* @brief Provides compile-time type access to the types of a type list.
* @tparam Type Type to look for and for which to return the index.
* @tparam First First type provided by the type list.
* @tparam Other Other types provided by the type list.
*/
template<typename Type, typename First, typename... Other>
struct type_list_index<Type, type_list<First, Other...>> {
/*! @brief Unsigned integer type. */
using value_type = std::size_t;
/*! @brief Compile-time position of the given type in the sublist. */
static constexpr value_type value = 1u + type_list_index<Type, type_list<Other...>>::value;
};
/**
* @brief Provides compile-time type access to the types of a type list.
* @tparam Type Type to look for and for which to return the index.
* @tparam Other Other types provided by the type list.
*/
template<typename Type, typename... Other>
struct type_list_index<Type, type_list<Type, Other...>> {
static_assert(type_list_index<Type, type_list<Other...>>::value == sizeof...(Other), "Non-unique type");
/*! @brief Unsigned integer type. */
using value_type = std::size_t;
/*! @brief Compile-time position of the given type in the sublist. */
static constexpr value_type value = 0u;
};
/**
* @brief Provides compile-time type access to the types of a type list.
* @tparam Type Type to look for and for which to return the index.
*/
template<typename Type>
struct type_list_index<Type, type_list<>> {
/*! @brief Unsigned integer type. */
using value_type = std::size_t;
/*! @brief Compile-time position of the given type in the sublist. */
static constexpr value_type value = 0u;
};
/**
* @brief Helper variable template.
* @tparam List Type list.
* @tparam Type Type to look for and for which to return the index.
*/
template<typename Type, typename List>
inline constexpr std::size_t type_list_index_v = type_list_index<Type, List>::value;
/**
* @brief Concatenates multiple type lists.
* @tparam Type Types provided by the first type list.
* @tparam Other Types provided by the second type list.
* @return A type list composed by the types of both the type lists.
*/
template<typename... Type, typename... Other>
constexpr type_list<Type..., Other...> operator+(type_list<Type...>, type_list<Other...>) {
return {};
}
/*! @brief Primary template isn't defined on purpose. */
template<typename...>
struct type_list_cat;
/*! @brief Concatenates multiple type lists. */
template<>
struct type_list_cat<> {
/*! @brief A type list composed by the types of all the type lists. */
using type = type_list<>;
};
/**
* @brief Concatenates multiple type lists.
* @tparam Type Types provided by the first type list.
* @tparam Other Types provided by the second type list.
* @tparam List Other type lists, if any.
*/
template<typename... Type, typename... Other, typename... List>
struct type_list_cat<type_list<Type...>, type_list<Other...>, List...> {
/*! @brief A type list composed by the types of all the type lists. */
using type = typename type_list_cat<type_list<Type..., Other...>, List...>::type;
};
/**
* @brief Concatenates multiple type lists.
* @tparam Type Types provided by the type list.
*/
template<typename... Type>
struct type_list_cat<type_list<Type...>> {
/*! @brief A type list composed by the types of all the type lists. */
using type = type_list<Type...>;
};
/**
* @brief Helper type.
* @tparam List Type lists to concatenate.
*/
template<typename... List>
using type_list_cat_t = typename type_list_cat<List...>::type;
/*! @brief Primary template isn't defined on purpose. */
template<typename>
struct type_list_unique;
/**
* @brief Removes duplicates types from a type list.
* @tparam Type One of the types provided by the given type list.
* @tparam Other The other types provided by the given type list.
*/
template<typename Type, typename... Other>
struct type_list_unique<type_list<Type, Other...>> {
/*! @brief A type list without duplicate types. */
using type = std::conditional_t<
(std::is_same_v<Type, Other> || ...),
typename type_list_unique<type_list<Other...>>::type,
type_list_cat_t<type_list<Type>, typename type_list_unique<type_list<Other...>>::type>>;
};
/*! @brief Removes duplicates types from a type list. */
template<>
struct type_list_unique<type_list<>> {
/*! @brief A type list without duplicate types. */
using type = type_list<>;
};
/**
* @brief Helper type.
* @tparam Type A type list.
*/
template<typename Type>
using type_list_unique_t = typename type_list_unique<Type>::type;
/**
* @brief Provides the member constant `value` to true if a type list contains a
* given type, false otherwise.
* @tparam List Type list.
* @tparam Type Type to look for.
*/
template<typename List, typename Type>
struct type_list_contains;
/**
* @copybrief type_list_contains
* @tparam Type Types provided by the type list.
* @tparam Other Type to look for.
*/
template<typename... Type, typename Other>
struct type_list_contains<type_list<Type...>, Other>: std::disjunction<std::is_same<Type, Other>...> {};
/**
* @brief Helper variable template.
* @tparam List Type list.
* @tparam Type Type to look for.
*/
template<typename List, typename Type>
inline constexpr bool type_list_contains_v = type_list_contains<List, Type>::value;
/*! @brief Primary template isn't defined on purpose. */
template<typename...>
struct type_list_diff;
/**
* @brief Computes the difference between two type lists.
* @tparam Type Types provided by the first type list.
* @tparam Other Types provided by the second type list.
*/
template<typename... Type, typename... Other>
struct type_list_diff<type_list<Type...>, type_list<Other...>> {
/*! @brief A type list that is the difference between the two type lists. */
using type = type_list_cat_t<std::conditional_t<type_list_contains_v<type_list<Other...>, Type>, type_list<>, type_list<Type>>...>;
};
/**
* @brief Helper type.
* @tparam List Type lists between which to compute the difference.
*/
template<typename... List>
using type_list_diff_t = typename type_list_diff<List...>::type;
/*! @brief Primary template isn't defined on purpose. */
template<typename, template<typename...> class>
struct type_list_transform;
/**
* @brief Applies a given _function_ to a type list and generate a new list.
* @tparam Type Types provided by the type list.
* @tparam Op Unary operation as template class with a type member named `type`.
*/
template<typename... Type, template<typename...> class Op>
struct type_list_transform<type_list<Type...>, Op> {
/*! @brief Resulting type list after applying the transform function. */
using type = type_list<typename Op<Type>::type...>;
};
/**
* @brief Helper type.
* @tparam List Type list.
* @tparam Op Unary operation as template class with a type member named `type`.
*/
template<typename List, template<typename...> class Op>
using type_list_transform_t = typename type_list_transform<List, Op>::type;
/**
* @brief A class to use to push around lists of constant values, nothing more.
* @tparam Value Values provided by the value list.
*/
template<auto... Value>
struct value_list {
/*! @brief Value list type. */
using type = value_list;
/*! @brief Compile-time number of elements in the value list. */
static constexpr auto size = sizeof...(Value);
};
/*! @brief Primary template isn't defined on purpose. */
template<std::size_t, typename>
struct value_list_element;
/**
* @brief Provides compile-time indexed access to the values of a value list.
* @tparam Index Index of the value to return.
* @tparam Value First value provided by the value list.
* @tparam Other Other values provided by the value list.
*/
template<std::size_t Index, auto Value, auto... Other>
struct value_list_element<Index, value_list<Value, Other...>>
: value_list_element<Index - 1u, value_list<Other...>> {};
/**
* @brief Provides compile-time indexed access to the types of a type list.
* @tparam Value First value provided by the value list.
* @tparam Other Other values provided by the value list.
*/
template<auto Value, auto... Other>
struct value_list_element<0u, value_list<Value, Other...>> {
/*! @brief Searched value. */
static constexpr auto value = Value;
};
/**
* @brief Helper type.
* @tparam Index Index of the value to return.
* @tparam List Value list to search into.
*/
template<std::size_t Index, typename List>
inline constexpr auto value_list_element_v = value_list_element<Index, List>::value;
/**
* @brief Concatenates multiple value lists.
* @tparam Value Values provided by the first value list.
* @tparam Other Values provided by the second value list.
* @return A value list composed by the values of both the value lists.
*/
template<auto... Value, auto... Other>
constexpr value_list<Value..., Other...> operator+(value_list<Value...>, value_list<Other...>) {
return {};
}
/*! @brief Primary template isn't defined on purpose. */
template<typename...>
struct value_list_cat;
/*! @brief Concatenates multiple value lists. */
template<>
struct value_list_cat<> {
/*! @brief A value list composed by the values of all the value lists. */
using type = value_list<>;
};
/**
* @brief Concatenates multiple value lists.
* @tparam Value Values provided by the first value list.
* @tparam Other Values provided by the second value list.
* @tparam List Other value lists, if any.
*/
template<auto... Value, auto... Other, typename... List>
struct value_list_cat<value_list<Value...>, value_list<Other...>, List...> {
/*! @brief A value list composed by the values of all the value lists. */
using type = typename value_list_cat<value_list<Value..., Other...>, List...>::type;
};
/**
* @brief Concatenates multiple value lists.
* @tparam Value Values provided by the value list.
*/
template<auto... Value>
struct value_list_cat<value_list<Value...>> {
/*! @brief A value list composed by the values of all the value lists. */
using type = value_list<Value...>;
};
/**
* @brief Helper type.
* @tparam List Value lists to concatenate.
*/
template<typename... List>
using value_list_cat_t = typename value_list_cat<List...>::type;
/*! @brief Same as std::is_invocable, but with tuples. */
template<typename, typename>
struct is_applicable: std::false_type {};
/**
* @copybrief is_applicable
* @tparam Func A valid function type.
* @tparam Tuple Tuple-like type.
* @tparam Args The list of arguments to use to probe the function type.
*/
template<typename Func, template<typename...> class Tuple, typename... Args>
struct is_applicable<Func, Tuple<Args...>>: std::is_invocable<Func, Args...> {};
/**
* @copybrief is_applicable
* @tparam Func A valid function type.
* @tparam Tuple Tuple-like type.
* @tparam Args The list of arguments to use to probe the function type.
*/
template<typename Func, template<typename...> class Tuple, typename... Args>
struct is_applicable<Func, const Tuple<Args...>>: std::is_invocable<Func, Args...> {};
/**
* @brief Helper variable template.
* @tparam Func A valid function type.
* @tparam Args The list of arguments to use to probe the function type.
*/
template<typename Func, typename Args>
inline constexpr bool is_applicable_v = is_applicable<Func, Args>::value;
/*! @brief Same as std::is_invocable_r, but with tuples for arguments. */
template<typename, typename, typename>
struct is_applicable_r: std::false_type {};
/**
* @copybrief is_applicable_r
* @tparam Ret The type to which the return type of the function should be
* convertible.
* @tparam Func A valid function type.
* @tparam Args The list of arguments to use to probe the function type.
*/
template<typename Ret, typename Func, typename... Args>
struct is_applicable_r<Ret, Func, std::tuple<Args...>>: std::is_invocable_r<Ret, Func, Args...> {};
/**
* @brief Helper variable template.
* @tparam Ret The type to which the return type of the function should be
* convertible.
* @tparam Func A valid function type.
* @tparam Args The list of arguments to use to probe the function type.
*/
template<typename Ret, typename Func, typename Args>
inline constexpr bool is_applicable_r_v = is_applicable_r<Ret, Func, Args>::value;
/**
* @brief Provides the member constant `value` to true if a given type is
* complete, false otherwise.
* @tparam Type The type to test.
*/
template<typename Type, typename = void>
struct is_complete: std::false_type {};
/*! @copydoc is_complete */
template<typename Type>
struct is_complete<Type, std::void_t<decltype(sizeof(Type))>>: std::true_type {};
/**
* @brief Helper variable template.
* @tparam Type The type to test.
*/
template<typename Type>
inline constexpr bool is_complete_v = is_complete<Type>::value;
/**
* @brief Provides the member constant `value` to true if a given type is an
* iterator, false otherwise.
* @tparam Type The type to test.
*/
template<typename Type, typename = void>
struct is_iterator: std::false_type {};
/**
* @cond TURN_OFF_DOXYGEN
* Internal details not to be documented.
*/
namespace internal {
template<typename, typename = void>
struct has_iterator_category: std::false_type {};
template<typename Type>
struct has_iterator_category<Type, std::void_t<typename std::iterator_traits<Type>::iterator_category>>: std::true_type {};
} // namespace internal
/**
* Internal details not to be documented.
* @endcond
*/
/*! @copydoc is_iterator */
template<typename Type>
struct is_iterator<Type, std::enable_if_t<!std::is_same_v<std::remove_cv_t<std::remove_pointer_t<Type>>, void>>>
: internal::has_iterator_category<Type> {};
/**
* @brief Helper variable template.
* @tparam Type The type to test.
*/
template<typename Type>
inline constexpr bool is_iterator_v = is_iterator<Type>::value;
/**
* @brief Provides the member constant `value` to true if a given type is both
* an empty and non-final class, false otherwise.
* @tparam Type The type to test
*/
template<typename Type>
struct is_ebco_eligible
: std::conjunction<std::is_empty<Type>, std::negation<std::is_final<Type>>> {};
/**
* @brief Helper variable template.
* @tparam Type The type to test.
*/
template<typename Type>
inline constexpr bool is_ebco_eligible_v = is_ebco_eligible<Type>::value;
/**
* @brief Provides the member constant `value` to true if `Type::is_transparent`
* is valid and denotes a type, false otherwise.
* @tparam Type The type to test.
*/
template<typename Type, typename = void>
struct is_transparent: std::false_type {};
/*! @copydoc is_transparent */
template<typename Type>
struct is_transparent<Type, std::void_t<typename Type::is_transparent>>: std::true_type {};
/**
* @brief Helper variable template.
* @tparam Type The type to test.
*/
template<typename Type>
inline constexpr bool is_transparent_v = is_transparent<Type>::value;
/**
* @brief Provides the member constant `value` to true if a given type is
* equality comparable, false otherwise.
* @tparam Type The type to test.
*/
template<typename Type, typename = void>
struct is_equality_comparable: std::false_type {};
/**
* @cond TURN_OFF_DOXYGEN
* Internal details not to be documented.
*/
namespace internal {
template<typename, typename = void>
struct has_tuple_size_value: std::false_type {};
template<typename Type>
struct has_tuple_size_value<Type, std::void_t<decltype(std::tuple_size<const Type>::value)>>: std::true_type {};
template<typename Type, std::size_t... Index>
[[nodiscard]] constexpr bool unpack_maybe_equality_comparable(std::index_sequence<Index...>) {
return (is_equality_comparable<std::tuple_element_t<Index, Type>>::value && ...);
}
template<typename>
[[nodiscard]] constexpr bool maybe_equality_comparable(choice_t<0>) {
return true;
}
template<typename Type>
[[nodiscard]] constexpr auto maybe_equality_comparable(choice_t<1>) -> decltype(std::declval<typename Type::value_type>(), bool{}) {
if constexpr(is_iterator_v<Type>) {
return true;
} else if constexpr(std::is_same_v<typename Type::value_type, Type>) {
return maybe_equality_comparable<Type>(choice<0>);
} else {
return is_equality_comparable<typename Type::value_type>::value;
}
}
template<typename Type>
[[nodiscard]] constexpr std::enable_if_t<is_complete_v<std::tuple_size<std::remove_cv_t<Type>>>, bool> maybe_equality_comparable(choice_t<2>) {
if constexpr(has_tuple_size_value<Type>::value) {
return unpack_maybe_equality_comparable<Type>(std::make_index_sequence<std::tuple_size<Type>::value>{});
} else {
return maybe_equality_comparable<Type>(choice<1>);
}
}
} // namespace internal
/**
* Internal details not to be documented.
* @endcond
*/
/*! @copydoc is_equality_comparable */
template<typename Type>
struct is_equality_comparable<Type, std::void_t<decltype(std::declval<Type>() == std::declval<Type>())>>
: std::bool_constant<internal::maybe_equality_comparable<Type>(choice<2>)> {};
/**
* @brief Helper variable template.
* @tparam Type The type to test.
*/
template<typename Type>
inline constexpr bool is_equality_comparable_v = is_equality_comparable<Type>::value;
/**
* @brief Transcribes the constness of a type to another type.
* @tparam To The type to which to transcribe the constness.
* @tparam From The type from which to transcribe the constness.
*/
template<typename To, typename From>
struct constness_as {
/*! @brief The type resulting from the transcription of the constness. */
using type = std::remove_const_t<To>;
};
/*! @copydoc constness_as */
template<typename To, typename From>
struct constness_as<To, const From> {
/*! @brief The type resulting from the transcription of the constness. */
using type = const To;
};
/**
* @brief Alias template to facilitate the transcription of the constness.
* @tparam To The type to which to transcribe the constness.
* @tparam From The type from which to transcribe the constness.
*/
template<typename To, typename From>
using constness_as_t = typename constness_as<To, From>::type;
/**
* @brief Extracts the class of a non-static member object or function.
* @tparam Member A pointer to a non-static member object or function.
*/
template<typename Member>
class member_class {
static_assert(std::is_member_pointer_v<Member>, "Invalid pointer type to non-static member object or function");
template<typename Class, typename Ret, typename... Args>
static Class *clazz(Ret (Class::*)(Args...));
template<typename Class, typename Ret, typename... Args>
static Class *clazz(Ret (Class::*)(Args...) const);
template<typename Class, typename Type>
static Class *clazz(Type Class::*);
public:
/*! @brief The class of the given non-static member object or function. */
using type = std::remove_pointer_t<decltype(clazz(std::declval<Member>()))>;
};
/**
* @brief Helper type.
* @tparam Member A pointer to a non-static member object or function.
*/
template<typename Member>
using member_class_t = typename member_class<Member>::type;
/**
* @brief Extracts the n-th argument of a given function or member function.
* @tparam Index The index of the argument to extract.
* @tparam Candidate A valid function, member function or data member.
*/
template<std::size_t Index, auto Candidate>
class nth_argument {
template<typename Ret, typename... Args>
static constexpr type_list<Args...> pick_up(Ret (*)(Args...));
template<typename Ret, typename Class, typename... Args>
static constexpr type_list<Args...> pick_up(Ret (Class ::*)(Args...));
template<typename Ret, typename Class, typename... Args>
static constexpr type_list<Args...> pick_up(Ret (Class ::*)(Args...) const);
template<typename Type, typename Class>
static constexpr type_list<Type> pick_up(Type Class ::*);
public:
/*! @brief N-th argument of the given function or member function. */
using type = type_list_element_t<Index, decltype(pick_up(Candidate))>;
};
/**
* @brief Helper type.
* @tparam Index The index of the argument to extract.
* @tparam Candidate A valid function, member function or data member.
*/
template<std::size_t Index, auto Candidate>
using nth_argument_t = typename nth_argument<Index, Candidate>::type;
} // namespace entt
#endif
namespace entt {
/**
* @cond TURN_OFF_DOXYGEN
* Internal details not to be documented.
*/
namespace internal {
template<typename Type, std::size_t, typename = void>
struct compressed_pair_element {
using reference = Type &;
using const_reference = const Type &;
template<bool Dummy = true, typename = std::enable_if_t<Dummy && std::is_default_constructible_v<Type>>>
constexpr compressed_pair_element() noexcept(std::is_nothrow_default_constructible_v<Type>)
: value{} {}
template<typename Arg, typename = std::enable_if_t<!std::is_same_v<std::remove_cv_t<std::remove_reference_t<Arg>>, compressed_pair_element>>>
constexpr compressed_pair_element(Arg &&arg) noexcept(std::is_nothrow_constructible_v<Type, Arg>)
: value{std::forward<Arg>(arg)} {}
template<typename... Args, std::size_t... Index>
constexpr compressed_pair_element(std::tuple<Args...> args, std::index_sequence<Index...>) noexcept(std::is_nothrow_constructible_v<Type, Args...>)
: value{std::forward<Args>(std::get<Index>(args))...} {}
[[nodiscard]] constexpr reference get() noexcept {
return value;
}
[[nodiscard]] constexpr const_reference get() const noexcept {
return value;
}
private:
Type value;
};
template<typename Type, std::size_t Tag>
struct compressed_pair_element<Type, Tag, std::enable_if_t<is_ebco_eligible_v<Type>>>: Type {
using reference = Type &;
using const_reference = const Type &;
using base_type = Type;
template<bool Dummy = true, typename = std::enable_if_t<Dummy && std::is_default_constructible_v<base_type>>>
constexpr compressed_pair_element() noexcept(std::is_nothrow_default_constructible_v<base_type>)
: base_type{} {}
template<typename Arg, typename = std::enable_if_t<!std::is_same_v<std::remove_cv_t<std::remove_reference_t<Arg>>, compressed_pair_element>>>
constexpr compressed_pair_element(Arg &&arg) noexcept(std::is_nothrow_constructible_v<base_type, Arg>)
: base_type{std::forward<Arg>(arg)} {}
template<typename... Args, std::size_t... Index>
constexpr compressed_pair_element(std::tuple<Args...> args, std::index_sequence<Index...>) noexcept(std::is_nothrow_constructible_v<base_type, Args...>)
: base_type{std::forward<Args>(std::get<Index>(args))...} {}
[[nodiscard]] constexpr reference get() noexcept {
return *this;
}
[[nodiscard]] constexpr const_reference get() const noexcept {
return *this;
}
};
} // namespace internal
/**
* Internal details not to be documented.
* @endcond
*/
/**
* @brief A compressed pair.
*
* A pair that exploits the _Empty Base Class Optimization_ (or _EBCO_) to
* reduce its final size to a minimum.
*
* @tparam First The type of the first element that the pair stores.
* @tparam Second The type of the second element that the pair stores.
*/
template<typename First, typename Second>
class compressed_pair final
: internal::compressed_pair_element<First, 0u>,
internal::compressed_pair_element<Second, 1u> {
using first_base = internal::compressed_pair_element<First, 0u>;
using second_base = internal::compressed_pair_element<Second, 1u>;
public:
/*! @brief The type of the first element that the pair stores. */
using first_type = First;
/*! @brief The type of the second element that the pair stores. */
using second_type = Second;
/**
* @brief Default constructor, conditionally enabled.
*
* This constructor is only available when the types that the pair stores
* are both at least default constructible.
*
* @tparam Dummy Dummy template parameter used for internal purposes.
*/
template<bool Dummy = true, typename = std::enable_if_t<Dummy && std::is_default_constructible_v<first_type> && std::is_default_constructible_v<second_type>>>
constexpr compressed_pair() noexcept(std::is_nothrow_default_constructible_v<first_base> &&std::is_nothrow_default_constructible_v<second_base>)
: first_base{},
second_base{} {}
/**
* @brief Copy constructor.
* @param other The instance to copy from.
*/
constexpr compressed_pair(const compressed_pair &other) noexcept(std::is_nothrow_copy_constructible_v<first_base> &&std::is_nothrow_copy_constructible_v<second_base>) = default;
/**
* @brief Move constructor.
* @param other The instance to move from.
*/
constexpr compressed_pair(compressed_pair &&other) noexcept(std::is_nothrow_move_constructible_v<first_base> &&std::is_nothrow_move_constructible_v<second_base>) = default;
/**
* @brief Constructs a pair from its values.
* @tparam Arg Type of value to use to initialize the first element.
* @tparam Other Type of value to use to initialize the second element.
* @param arg Value to use to initialize the first element.
* @param other Value to use to initialize the second element.
*/
template<typename Arg, typename Other>
constexpr compressed_pair(Arg &&arg, Other &&other) noexcept(std::is_nothrow_constructible_v<first_base, Arg> &&std::is_nothrow_constructible_v<second_base, Other>)
: first_base{std::forward<Arg>(arg)},
second_base{std::forward<Other>(other)} {}
/**
* @brief Constructs a pair by forwarding the arguments to its parts.
* @tparam Args Types of arguments to use to initialize the first element.
* @tparam Other Types of arguments to use to initialize the second element.
* @param args Arguments to use to initialize the first element.
* @param other Arguments to use to initialize the second element.
*/
template<typename... Args, typename... Other>
constexpr compressed_pair(std::piecewise_construct_t, std::tuple<Args...> args, std::tuple<Other...> other) noexcept(std::is_nothrow_constructible_v<first_base, Args...> &&std::is_nothrow_constructible_v<second_base, Other...>)
: first_base{std::move(args), std::index_sequence_for<Args...>{}},
second_base{std::move(other), std::index_sequence_for<Other...>{}} {}
/**
* @brief Copy assignment operator.
* @param other The instance to copy from.
* @return This compressed pair object.
*/
constexpr compressed_pair &operator=(const compressed_pair &other) noexcept(std::is_nothrow_copy_assignable_v<first_base> &&std::is_nothrow_copy_assignable_v<second_base>) = default;
/**
* @brief Move assignment operator.
* @param other The instance to move from.
* @return This compressed pair object.
*/
constexpr compressed_pair &operator=(compressed_pair &&other) noexcept(std::is_nothrow_move_assignable_v<first_base> &&std::is_nothrow_move_assignable_v<second_base>) = default;
/**
* @brief Returns the first element that a pair stores.
* @return The first element that a pair stores.
*/
[[nodiscard]] constexpr first_type &first() noexcept {
return static_cast<first_base &>(*this).get();
}
/*! @copydoc first */
[[nodiscard]] constexpr const first_type &first() const noexcept {
return static_cast<const first_base &>(*this).get();
}
/**
* @brief Returns the second element that a pair stores.
* @return The second element that a pair stores.
*/
[[nodiscard]] constexpr second_type &second() noexcept {
return static_cast<second_base &>(*this).get();
}
/*! @copydoc second */
[[nodiscard]] constexpr const second_type &second() const noexcept {
return static_cast<const second_base &>(*this).get();
}
/**
* @brief Swaps two compressed pair objects.
* @param other The compressed pair to swap with.
*/
constexpr void swap(compressed_pair &other) noexcept(std::is_nothrow_swappable_v<first_type> &&std::is_nothrow_swappable_v<second_type>) {
using std::swap;
swap(first(), other.first());
swap(second(), other.second());
}
/**
* @brief Extracts an element from the compressed pair.
* @tparam Index An integer value that is either 0 or 1.
* @return Returns a reference to the first element if `Index` is 0 and a
* reference to the second element if `Index` is 1.
*/
template<std::size_t Index>
constexpr decltype(auto) get() noexcept {
if constexpr(Index == 0u) {
return first();
} else {
static_assert(Index == 1u, "Index out of bounds");
return second();
}
}
/*! @copydoc get */
template<std::size_t Index>
constexpr decltype(auto) get() const noexcept {
if constexpr(Index == 0u) {
return first();
} else {
static_assert(Index == 1u, "Index out of bounds");
return second();
}
}
};
/**
* @brief Deduction guide.
* @tparam Type Type of value to use to initialize the first element.
* @tparam Other Type of value to use to initialize the second element.
*/
template<typename Type, typename Other>
compressed_pair(Type &&, Other &&) -> compressed_pair<std::decay_t<Type>, std::decay_t<Other>>;
/**
* @brief Swaps two compressed pair objects.
* @tparam First The type of the first element that the pairs store.
* @tparam Second The type of the second element that the pairs store.
* @param lhs A valid compressed pair object.
* @param rhs A valid compressed pair object.
*/
template<typename First, typename Second>
inline constexpr void swap(compressed_pair<First, Second> &lhs, compressed_pair<First, Second> &rhs) {
lhs.swap(rhs);
}
} // namespace entt
// disable structured binding support for clang 6, it messes when specializing tuple_size
#if !defined __clang_major__ || __clang_major__ > 6
namespace std {
/**
* @brief `std::tuple_size` specialization for `compressed_pair`s.
* @tparam First The type of the first element that the pair stores.
* @tparam Second The type of the second element that the pair stores.
*/
template<typename First, typename Second>
struct tuple_size<entt::compressed_pair<First, Second>>: integral_constant<size_t, 2u> {};
/**
* @brief `std::tuple_element` specialization for `compressed_pair`s.
* @tparam Index The index of the type to return.
* @tparam First The type of the first element that the pair stores.
* @tparam Second The type of the second element that the pair stores.
*/
template<size_t Index, typename First, typename Second>
struct tuple_element<Index, entt::compressed_pair<First, Second>>: conditional<Index == 0u, First, Second> {
static_assert(Index < 2u, "Index out of bounds");
};
} // namespace std
#endif
#endif
// #include "../core/iterator.hpp"
#ifndef ENTT_CORE_ITERATOR_HPP
#define ENTT_CORE_ITERATOR_HPP
#include <iterator>
#include <memory>
#include <type_traits>
#include <utility>
namespace entt {
/**
* @brief Helper type to use as pointer with input iterators.
* @tparam Type of wrapped value.
*/
template<typename Type>
struct input_iterator_pointer final {
/*! @brief Value type. */
using value_type = Type;
/*! @brief Pointer type. */
using pointer = Type *;
/*! @brief Reference type. */
using reference = Type &;
/**
* @brief Constructs a proxy object by move.
* @param val Value to use to initialize the proxy object.
*/
constexpr input_iterator_pointer(value_type &&val) noexcept(std::is_nothrow_move_constructible_v<value_type>)
: value{std::move(val)} {}
/**
* @brief Access operator for accessing wrapped values.
* @return A pointer to the wrapped value.
*/
[[nodiscard]] constexpr pointer operator->() noexcept {
return std::addressof(value);
}
/**
* @brief Dereference operator for accessing wrapped values.
* @return A reference to the wrapped value.
*/
[[nodiscard]] constexpr reference operator*() noexcept {
return value;
}
private:
Type value;
};
/**
* @brief Plain iota iterator (waiting for C++20).
* @tparam Type Value type.
*/
template<typename Type>
class iota_iterator final {
static_assert(std::is_integral_v<Type>, "Not an integral type");
public:
/*! @brief Value type, likely an integral one. */
using value_type = Type;
/*! @brief Invalid pointer type. */
using pointer = void;
/*! @brief Non-reference type, same as value type. */
using reference = value_type;
/*! @brief Difference type. */
using difference_type = std::ptrdiff_t;
/*! @brief Iterator category. */
using iterator_category = std::input_iterator_tag;
/*! @brief Default constructor. */
constexpr iota_iterator() noexcept
: current{} {}
/**
* @brief Constructs an iota iterator from a given value.
* @param init The initial value assigned to the iota iterator.
*/
constexpr iota_iterator(const value_type init) noexcept
: current{init} {}
/**
* @brief Pre-increment operator.
* @return This iota iterator.
*/
constexpr iota_iterator &operator++() noexcept {
return ++current, *this;
}
/**
* @brief Post-increment operator.
* @return This iota iterator.
*/
constexpr iota_iterator operator++(int) noexcept {
iota_iterator orig = *this;
return ++(*this), orig;
}
/**
* @brief Dereference operator.
* @return The underlying value.
*/
[[nodiscard]] constexpr reference operator*() const noexcept {
return current;
}
private:
value_type current;
};
/**
* @brief Comparison operator.
* @tparam Type Value type of the iota iterator.
* @param lhs A properly initialized iota iterator.
* @param rhs A properly initialized iota iterator.
* @return True if the two iterators are identical, false otherwise.
*/
template<typename Type>
[[nodiscard]] constexpr bool operator==(const iota_iterator<Type> &lhs, const iota_iterator<Type> &rhs) noexcept {
return *lhs == *rhs;
}
/**
* @brief Comparison operator.
* @tparam Type Value type of the iota iterator.
* @param lhs A properly initialized iota iterator.
* @param rhs A properly initialized iota iterator.
* @return True if the two iterators differ, false otherwise.
*/
template<typename Type>
[[nodiscard]] constexpr bool operator!=(const iota_iterator<Type> &lhs, const iota_iterator<Type> &rhs) noexcept {
return !(lhs == rhs);
}
/**
* @brief Utility class to create an iterable object from a pair of iterators.
* @tparam It Type of iterator.
* @tparam Sentinel Type of sentinel.
*/
template<typename It, typename Sentinel = It>
struct iterable_adaptor final {
/*! @brief Value type. */
using value_type = typename std::iterator_traits<It>::value_type;
/*! @brief Iterator type. */
using iterator = It;
/*! @brief Sentinel type. */
using sentinel = Sentinel;
/*! @brief Default constructor. */
constexpr iterable_adaptor() noexcept(std::is_nothrow_default_constructible_v<iterator> &&std::is_nothrow_default_constructible_v<sentinel>)
: first{},
last{} {}
/**
* @brief Creates an iterable object from a pair of iterators.
* @param from Begin iterator.
* @param to End iterator.
*/
constexpr iterable_adaptor(iterator from, sentinel to) noexcept(std::is_nothrow_move_constructible_v<iterator> &&std::is_nothrow_move_constructible_v<sentinel>)
: first{std::move(from)},
last{std::move(to)} {}
/**
* @brief Returns an iterator to the beginning.
* @return An iterator to the first element of the range.
*/
[[nodiscard]] constexpr iterator begin() const noexcept {
return first;
}
/**
* @brief Returns an iterator to the end.
* @return An iterator to the element following the last element of the
* range.
*/
[[nodiscard]] constexpr sentinel end() const noexcept {
return last;
}
/*! @copydoc begin */
[[nodiscard]] constexpr iterator cbegin() const noexcept {
return begin();
}
/*! @copydoc end */
[[nodiscard]] constexpr sentinel cend() const noexcept {
return end();
}
private:
It first;
Sentinel last;
};
} // namespace entt
#endif
// #include "../core/memory.hpp"
#ifndef ENTT_CORE_MEMORY_HPP
#define ENTT_CORE_MEMORY_HPP
#include <cstddef>
#include <limits>
#include <memory>
#include <tuple>
#include <type_traits>
#include <utility>
// #include "../config/config.h"
namespace entt {
/**
* @brief Checks whether a value is a power of two or not.
* @param value A value that may or may not be a power of two.
* @return True if the value is a power of two, false otherwise.
*/
[[nodiscard]] inline constexpr bool is_power_of_two(const std::size_t value) noexcept {
return value && ((value & (value - 1)) == 0);
}
/**
* @brief Computes the smallest power of two greater than or equal to a value.
* @param value The value to use.
* @return The smallest power of two greater than or equal to the given value.
*/
[[nodiscard]] inline constexpr std::size_t next_power_of_two(const std::size_t value) noexcept {
ENTT_ASSERT_CONSTEXPR(value < (std::size_t{1u} << (std::numeric_limits<std::size_t>::digits - 1)), "Numeric limits exceeded");
std::size_t curr = value - (value != 0u);
for(int next = 1; next < std::numeric_limits<std::size_t>::digits; next = next * 2) {
curr |= curr >> next;
}
return ++curr;
}
/**
* @brief Fast module utility function (powers of two only).
* @param value A value for which to calculate the modulus.
* @param mod _Modulus_, it must be a power of two.
* @return The common remainder.
*/
[[nodiscard]] inline constexpr std::size_t fast_mod(const std::size_t value, const std::size_t mod) noexcept {
ENTT_ASSERT_CONSTEXPR(is_power_of_two(mod), "Value must be a power of two");
return value & (mod - 1u);
}
/**
* @brief Unwraps fancy pointers, does nothing otherwise (waiting for C++20).
* @tparam Type Pointer type.
* @param ptr Fancy or raw pointer.
* @return A raw pointer that represents the address of the original pointer.
*/
template<typename Type>
[[nodiscard]] constexpr auto to_address(Type &&ptr) noexcept {
if constexpr(std::is_pointer_v<std::decay_t<Type>>) {
return ptr;
} else {
return to_address(std::forward<Type>(ptr).operator->());
}
}
/**
* @brief Utility function to design allocation-aware containers.
* @tparam Allocator Type of allocator.
* @param lhs A valid allocator.
* @param rhs Another valid allocator.
*/
template<typename Allocator>
constexpr void propagate_on_container_copy_assignment([[maybe_unused]] Allocator &lhs, [[maybe_unused]] Allocator &rhs) noexcept {
if constexpr(std::allocator_traits<Allocator>::propagate_on_container_copy_assignment::value) {
lhs = rhs;
}
}
/**
* @brief Utility function to design allocation-aware containers.
* @tparam Allocator Type of allocator.
* @param lhs A valid allocator.
* @param rhs Another valid allocator.
*/
template<typename Allocator>
constexpr void propagate_on_container_move_assignment([[maybe_unused]] Allocator &lhs, [[maybe_unused]] Allocator &rhs) noexcept {
if constexpr(std::allocator_traits<Allocator>::propagate_on_container_move_assignment::value) {
lhs = std::move(rhs);
}
}
/**
* @brief Utility function to design allocation-aware containers.
* @tparam Allocator Type of allocator.
* @param lhs A valid allocator.
* @param rhs Another valid allocator.
*/
template<typename Allocator>
constexpr void propagate_on_container_swap([[maybe_unused]] Allocator &lhs, [[maybe_unused]] Allocator &rhs) noexcept {
if constexpr(std::allocator_traits<Allocator>::propagate_on_container_swap::value) {
using std::swap;
swap(lhs, rhs);
} else {
ENTT_ASSERT_CONSTEXPR(lhs == rhs, "Cannot swap the containers");
}
}
/**
* @brief Deleter for allocator-aware unique pointers (waiting for C++20).
* @tparam Args Types of arguments to use to construct the object.
*/
template<typename Allocator>
struct allocation_deleter: private Allocator {
/*! @brief Allocator type. */
using allocator_type = Allocator;
/*! @brief Pointer type. */
using pointer = typename std::allocator_traits<Allocator>::pointer;
/**
* @brief Inherited constructors.
* @param alloc The allocator to use.
*/
constexpr allocation_deleter(const allocator_type &alloc) noexcept(std::is_nothrow_copy_constructible_v<allocator_type>)
: Allocator{alloc} {}
/**
* @brief Destroys the pointed object and deallocates its memory.
* @param ptr A valid pointer to an object of the given type.
*/
constexpr void operator()(pointer ptr) noexcept(std::is_nothrow_destructible_v<typename allocator_type::value_type>) {
using alloc_traits = typename std::allocator_traits<Allocator>;
alloc_traits::destroy(*this, to_address(ptr));
alloc_traits::deallocate(*this, ptr, 1u);
}
};
/**
* @brief Allows `std::unique_ptr` to use allocators (waiting for C++20).
* @tparam Type Type of object to allocate for and to construct.
* @tparam Allocator Type of allocator used to manage memory and elements.
* @tparam Args Types of arguments to use to construct the object.
* @param allocator The allocator to use.
* @param args Parameters to use to construct the object.
* @return A properly initialized unique pointer with a custom deleter.
*/
template<typename Type, typename Allocator, typename... Args>
ENTT_CONSTEXPR auto allocate_unique(Allocator &allocator, Args &&...args) {
static_assert(!std::is_array_v<Type>, "Array types are not supported");
using alloc_traits = typename std::allocator_traits<Allocator>::template rebind_traits<Type>;
using allocator_type = typename alloc_traits::allocator_type;
allocator_type alloc{allocator};
auto ptr = alloc_traits::allocate(alloc, 1u);
ENTT_TRY {
alloc_traits::construct(alloc, to_address(ptr), std::forward<Args>(args)...);
}
ENTT_CATCH {
alloc_traits::deallocate(alloc, ptr, 1u);
ENTT_THROW;
}
return std::unique_ptr<Type, allocation_deleter<allocator_type>>{ptr, alloc};
}
/**
* @cond TURN_OFF_DOXYGEN
* Internal details not to be documented.
*/
namespace internal {
template<typename Type>
struct uses_allocator_construction {
template<typename Allocator, typename... Params>
static constexpr auto args([[maybe_unused]] const Allocator &allocator, Params &&...params) noexcept {
if constexpr(!std::uses_allocator_v<Type, Allocator> && std::is_constructible_v<Type, Params...>) {
return std::forward_as_tuple(std::forward<Params>(params)...);
} else {
static_assert(std::uses_allocator_v<Type, Allocator>, "Ill-formed request");
if constexpr(std::is_constructible_v<Type, std::allocator_arg_t, const Allocator &, Params...>) {
return std::tuple<std::allocator_arg_t, const Allocator &, Params &&...>{std::allocator_arg, allocator, std::forward<Params>(params)...};
} else {
static_assert(std::is_constructible_v<Type, Params..., const Allocator &>, "Ill-formed request");
return std::forward_as_tuple(std::forward<Params>(params)..., allocator);
}
}
}
};
template<typename Type, typename Other>
struct uses_allocator_construction<std::pair<Type, Other>> {
using type = std::pair<Type, Other>;
template<typename Allocator, typename First, typename Second>
static constexpr auto args(const Allocator &allocator, std::piecewise_construct_t, First &&first, Second &&second) noexcept {
return std::make_tuple(
std::piecewise_construct,
std::apply([&allocator](auto &&...curr) { return uses_allocator_construction<Type>::args(allocator, std::forward<decltype(curr)>(curr)...); }, std::forward<First>(first)),
std::apply([&allocator](auto &&...curr) { return uses_allocator_construction<Other>::args(allocator, std::forward<decltype(curr)>(curr)...); }, std::forward<Second>(second)));
}
template<typename Allocator>
static constexpr auto args(const Allocator &allocator) noexcept {
return uses_allocator_construction<type>::args(allocator, std::piecewise_construct, std::tuple<>{}, std::tuple<>{});
}
template<typename Allocator, typename First, typename Second>
static constexpr auto args(const Allocator &allocator, First &&first, Second &&second) noexcept {
return uses_allocator_construction<type>::args(allocator, std::piecewise_construct, std::forward_as_tuple(std::forward<First>(first)), std::forward_as_tuple(std::forward<Second>(second)));
}
template<typename Allocator, typename First, typename Second>
static constexpr auto args(const Allocator &allocator, const std::pair<First, Second> &value) noexcept {
return uses_allocator_construction<type>::args(allocator, std::piecewise_construct, std::forward_as_tuple(value.first), std::forward_as_tuple(value.second));
}
template<typename Allocator, typename First, typename Second>
static constexpr auto args(const Allocator &allocator, std::pair<First, Second> &&value) noexcept {
return uses_allocator_construction<type>::args(allocator, std::piecewise_construct, std::forward_as_tuple(std::move(value.first)), std::forward_as_tuple(std::move(value.second)));
}
};
} // namespace internal
/**
* Internal details not to be documented.
* @endcond
*/
/**
* @brief Uses-allocator construction utility (waiting for C++20).
*
* Primarily intended for internal use. Prepares the argument list needed to
* create an object of a given type by means of uses-allocator construction.
*
* @tparam Type Type to return arguments for.
* @tparam Allocator Type of allocator used to manage memory and elements.
* @tparam Args Types of arguments to use to construct the object.
* @param allocator The allocator to use.
* @param args Parameters to use to construct the object.
* @return The arguments needed to create an object of the given type.
*/
template<typename Type, typename Allocator, typename... Args>
constexpr auto uses_allocator_construction_args(const Allocator &allocator, Args &&...args) noexcept {
return internal::uses_allocator_construction<Type>::args(allocator, std::forward<Args>(args)...);
}
/**
* @brief Uses-allocator construction utility (waiting for C++20).
*
* Primarily intended for internal use. Creates an object of a given type by
* means of uses-allocator construction.
*
* @tparam Type Type of object to create.
* @tparam Allocator Type of allocator used to manage memory and elements.
* @tparam Args Types of arguments to use to construct the object.
* @param allocator The allocator to use.
* @param args Parameters to use to construct the object.
* @return A newly created object of the given type.
*/
template<typename Type, typename Allocator, typename... Args>
constexpr Type make_obj_using_allocator(const Allocator &allocator, Args &&...args) {
return std::make_from_tuple<Type>(internal::uses_allocator_construction<Type>::args(allocator, std::forward<Args>(args)...));
}
/**
* @brief Uses-allocator construction utility (waiting for C++20).
*
* Primarily intended for internal use. Creates an object of a given type by
* means of uses-allocator construction at an uninitialized memory location.
*
* @tparam Type Type of object to create.
* @tparam Allocator Type of allocator used to manage memory and elements.
* @tparam Args Types of arguments to use to construct the object.
* @param value Memory location in which to place the object.
* @param allocator The allocator to use.
* @param args Parameters to use to construct the object.
* @return A pointer to the newly created object of the given type.
*/
template<typename Type, typename Allocator, typename... Args>
constexpr Type *uninitialized_construct_using_allocator(Type *value, const Allocator &allocator, Args &&...args) {
return std::apply([value](auto &&...curr) { return new(value) Type(std::forward<decltype(curr)>(curr)...); }, internal::uses_allocator_construction<Type>::args(allocator, std::forward<Args>(args)...));
}
} // namespace entt
#endif
// #include "../core/type_traits.hpp"
#ifndef ENTT_CORE_TYPE_TRAITS_HPP
#define ENTT_CORE_TYPE_TRAITS_HPP
#include <cstddef>
#include <iterator>
#include <type_traits>
#include <utility>
// #include "../config/config.h"
// #include "fwd.hpp"
namespace entt {
/**
* @brief Utility class to disambiguate overloaded functions.
* @tparam N Number of choices available.
*/
template<std::size_t N>
struct choice_t
// Unfortunately, doxygen cannot parse such a construct.
: /*! @cond TURN_OFF_DOXYGEN */ choice_t<N - 1> /*! @endcond */
{};
/*! @copybrief choice_t */
template<>
struct choice_t<0> {};
/**
* @brief Variable template for the choice trick.
* @tparam N Number of choices available.
*/
template<std::size_t N>
inline constexpr choice_t<N> choice{};
/**
* @brief Identity type trait.
*
* Useful to establish non-deduced contexts in template argument deduction
* (waiting for C++20) or to provide types through function arguments.
*
* @tparam Type A type.
*/
template<typename Type>
struct type_identity {
/*! @brief Identity type. */
using type = Type;
};
/**
* @brief Helper type.
* @tparam Type A type.
*/
template<typename Type>
using type_identity_t = typename type_identity<Type>::type;
/**
* @brief A type-only `sizeof` wrapper that returns 0 where `sizeof` complains.
* @tparam Type The type of which to return the size.
* @tparam The size of the type if `sizeof` accepts it, 0 otherwise.
*/
template<typename Type, typename = void>
struct size_of: std::integral_constant<std::size_t, 0u> {};
/*! @copydoc size_of */
template<typename Type>
struct size_of<Type, std::void_t<decltype(sizeof(Type))>>
: std::integral_constant<std::size_t, sizeof(Type)> {};
/**
* @brief Helper variable template.
* @tparam Type The type of which to return the size.
*/
template<typename Type>
inline constexpr std::size_t size_of_v = size_of<Type>::value;
/**
* @brief Using declaration to be used to _repeat_ the same type a number of
* times equal to the size of a given parameter pack.
* @tparam Type A type to repeat.
*/
template<typename Type, typename>
using unpack_as_type = Type;
/**
* @brief Helper variable template to be used to _repeat_ the same value a
* number of times equal to the size of a given parameter pack.
* @tparam Value A value to repeat.
*/
template<auto Value, typename>
inline constexpr auto unpack_as_value = Value;
/**
* @brief Wraps a static constant.
* @tparam Value A static constant.
*/
template<auto Value>
using integral_constant = std::integral_constant<decltype(Value), Value>;
/**
* @brief Alias template to facilitate the creation of named values.
* @tparam Value A constant value at least convertible to `id_type`.
*/
template<id_type Value>
using tag = integral_constant<Value>;
/**
* @brief A class to use to push around lists of types, nothing more.
* @tparam Type Types provided by the type list.
*/
template<typename... Type>
struct type_list {
/*! @brief Type list type. */
using type = type_list;
/*! @brief Compile-time number of elements in the type list. */
static constexpr auto size = sizeof...(Type);
};
/*! @brief Primary template isn't defined on purpose. */
template<std::size_t, typename>
struct type_list_element;
/**
* @brief Provides compile-time indexed access to the types of a type list.
* @tparam Index Index of the type to return.
* @tparam First First type provided by the type list.
* @tparam Other Other types provided by the type list.
*/
template<std::size_t Index, typename First, typename... Other>
struct type_list_element<Index, type_list<First, Other...>>
: type_list_element<Index - 1u, type_list<Other...>> {};
/**
* @brief Provides compile-time indexed access to the types of a type list.
* @tparam First First type provided by the type list.
* @tparam Other Other types provided by the type list.
*/
template<typename First, typename... Other>
struct type_list_element<0u, type_list<First, Other...>> {
/*! @brief Searched type. */
using type = First;
};
/**
* @brief Helper type.
* @tparam Index Index of the type to return.
* @tparam List Type list to search into.
*/
template<std::size_t Index, typename List>
using type_list_element_t = typename type_list_element<Index, List>::type;
/*! @brief Primary template isn't defined on purpose. */
template<typename, typename>
struct type_list_index;
/**
* @brief Provides compile-time type access to the types of a type list.
* @tparam Type Type to look for and for which to return the index.
* @tparam First First type provided by the type list.
* @tparam Other Other types provided by the type list.
*/
template<typename Type, typename First, typename... Other>
struct type_list_index<Type, type_list<First, Other...>> {
/*! @brief Unsigned integer type. */
using value_type = std::size_t;
/*! @brief Compile-time position of the given type in the sublist. */
static constexpr value_type value = 1u + type_list_index<Type, type_list<Other...>>::value;
};
/**
* @brief Provides compile-time type access to the types of a type list.
* @tparam Type Type to look for and for which to return the index.
* @tparam Other Other types provided by the type list.
*/
template<typename Type, typename... Other>
struct type_list_index<Type, type_list<Type, Other...>> {
static_assert(type_list_index<Type, type_list<Other...>>::value == sizeof...(Other), "Non-unique type");
/*! @brief Unsigned integer type. */
using value_type = std::size_t;
/*! @brief Compile-time position of the given type in the sublist. */
static constexpr value_type value = 0u;
};
/**
* @brief Provides compile-time type access to the types of a type list.
* @tparam Type Type to look for and for which to return the index.
*/
template<typename Type>
struct type_list_index<Type, type_list<>> {
/*! @brief Unsigned integer type. */
using value_type = std::size_t;
/*! @brief Compile-time position of the given type in the sublist. */
static constexpr value_type value = 0u;
};
/**
* @brief Helper variable template.
* @tparam List Type list.
* @tparam Type Type to look for and for which to return the index.
*/
template<typename Type, typename List>
inline constexpr std::size_t type_list_index_v = type_list_index<Type, List>::value;
/**
* @brief Concatenates multiple type lists.
* @tparam Type Types provided by the first type list.
* @tparam Other Types provided by the second type list.
* @return A type list composed by the types of both the type lists.
*/
template<typename... Type, typename... Other>
constexpr type_list<Type..., Other...> operator+(type_list<Type...>, type_list<Other...>) {
return {};
}
/*! @brief Primary template isn't defined on purpose. */
template<typename...>
struct type_list_cat;
/*! @brief Concatenates multiple type lists. */
template<>
struct type_list_cat<> {
/*! @brief A type list composed by the types of all the type lists. */
using type = type_list<>;
};
/**
* @brief Concatenates multiple type lists.
* @tparam Type Types provided by the first type list.
* @tparam Other Types provided by the second type list.
* @tparam List Other type lists, if any.
*/
template<typename... Type, typename... Other, typename... List>
struct type_list_cat<type_list<Type...>, type_list<Other...>, List...> {
/*! @brief A type list composed by the types of all the type lists. */
using type = typename type_list_cat<type_list<Type..., Other...>, List...>::type;
};
/**
* @brief Concatenates multiple type lists.
* @tparam Type Types provided by the type list.
*/
template<typename... Type>
struct type_list_cat<type_list<Type...>> {
/*! @brief A type list composed by the types of all the type lists. */
using type = type_list<Type...>;
};
/**
* @brief Helper type.
* @tparam List Type lists to concatenate.
*/
template<typename... List>
using type_list_cat_t = typename type_list_cat<List...>::type;
/*! @brief Primary template isn't defined on purpose. */
template<typename>
struct type_list_unique;
/**
* @brief Removes duplicates types from a type list.
* @tparam Type One of the types provided by the given type list.
* @tparam Other The other types provided by the given type list.
*/
template<typename Type, typename... Other>
struct type_list_unique<type_list<Type, Other...>> {
/*! @brief A type list without duplicate types. */
using type = std::conditional_t<
(std::is_same_v<Type, Other> || ...),
typename type_list_unique<type_list<Other...>>::type,
type_list_cat_t<type_list<Type>, typename type_list_unique<type_list<Other...>>::type>>;
};
/*! @brief Removes duplicates types from a type list. */
template<>
struct type_list_unique<type_list<>> {
/*! @brief A type list without duplicate types. */
using type = type_list<>;
};
/**
* @brief Helper type.
* @tparam Type A type list.
*/
template<typename Type>
using type_list_unique_t = typename type_list_unique<Type>::type;
/**
* @brief Provides the member constant `value` to true if a type list contains a
* given type, false otherwise.
* @tparam List Type list.
* @tparam Type Type to look for.
*/
template<typename List, typename Type>
struct type_list_contains;
/**
* @copybrief type_list_contains
* @tparam Type Types provided by the type list.
* @tparam Other Type to look for.
*/
template<typename... Type, typename Other>
struct type_list_contains<type_list<Type...>, Other>: std::disjunction<std::is_same<Type, Other>...> {};
/**
* @brief Helper variable template.
* @tparam List Type list.
* @tparam Type Type to look for.
*/
template<typename List, typename Type>
inline constexpr bool type_list_contains_v = type_list_contains<List, Type>::value;
/*! @brief Primary template isn't defined on purpose. */
template<typename...>
struct type_list_diff;
/**
* @brief Computes the difference between two type lists.
* @tparam Type Types provided by the first type list.
* @tparam Other Types provided by the second type list.
*/
template<typename... Type, typename... Other>
struct type_list_diff<type_list<Type...>, type_list<Other...>> {
/*! @brief A type list that is the difference between the two type lists. */
using type = type_list_cat_t<std::conditional_t<type_list_contains_v<type_list<Other...>, Type>, type_list<>, type_list<Type>>...>;
};
/**
* @brief Helper type.
* @tparam List Type lists between which to compute the difference.
*/
template<typename... List>
using type_list_diff_t = typename type_list_diff<List...>::type;
/*! @brief Primary template isn't defined on purpose. */
template<typename, template<typename...> class>
struct type_list_transform;
/**
* @brief Applies a given _function_ to a type list and generate a new list.
* @tparam Type Types provided by the type list.
* @tparam Op Unary operation as template class with a type member named `type`.
*/
template<typename... Type, template<typename...> class Op>
struct type_list_transform<type_list<Type...>, Op> {
/*! @brief Resulting type list after applying the transform function. */
using type = type_list<typename Op<Type>::type...>;
};
/**
* @brief Helper type.
* @tparam List Type list.
* @tparam Op Unary operation as template class with a type member named `type`.
*/
template<typename List, template<typename...> class Op>
using type_list_transform_t = typename type_list_transform<List, Op>::type;
/**
* @brief A class to use to push around lists of constant values, nothing more.
* @tparam Value Values provided by the value list.
*/
template<auto... Value>
struct value_list {
/*! @brief Value list type. */
using type = value_list;
/*! @brief Compile-time number of elements in the value list. */
static constexpr auto size = sizeof...(Value);
};
/*! @brief Primary template isn't defined on purpose. */
template<std::size_t, typename>
struct value_list_element;
/**
* @brief Provides compile-time indexed access to the values of a value list.
* @tparam Index Index of the value to return.
* @tparam Value First value provided by the value list.
* @tparam Other Other values provided by the value list.
*/
template<std::size_t Index, auto Value, auto... Other>
struct value_list_element<Index, value_list<Value, Other...>>
: value_list_element<Index - 1u, value_list<Other...>> {};
/**
* @brief Provides compile-time indexed access to the types of a type list.
* @tparam Value First value provided by the value list.
* @tparam Other Other values provided by the value list.
*/
template<auto Value, auto... Other>
struct value_list_element<0u, value_list<Value, Other...>> {
/*! @brief Searched value. */
static constexpr auto value = Value;
};
/**
* @brief Helper type.
* @tparam Index Index of the value to return.
* @tparam List Value list to search into.
*/
template<std::size_t Index, typename List>
inline constexpr auto value_list_element_v = value_list_element<Index, List>::value;
/**
* @brief Concatenates multiple value lists.
* @tparam Value Values provided by the first value list.
* @tparam Other Values provided by the second value list.
* @return A value list composed by the values of both the value lists.
*/
template<auto... Value, auto... Other>
constexpr value_list<Value..., Other...> operator+(value_list<Value...>, value_list<Other...>) {
return {};
}
/*! @brief Primary template isn't defined on purpose. */
template<typename...>
struct value_list_cat;
/*! @brief Concatenates multiple value lists. */
template<>
struct value_list_cat<> {
/*! @brief A value list composed by the values of all the value lists. */
using type = value_list<>;
};
/**
* @brief Concatenates multiple value lists.
* @tparam Value Values provided by the first value list.
* @tparam Other Values provided by the second value list.
* @tparam List Other value lists, if any.
*/
template<auto... Value, auto... Other, typename... List>
struct value_list_cat<value_list<Value...>, value_list<Other...>, List...> {
/*! @brief A value list composed by the values of all the value lists. */
using type = typename value_list_cat<value_list<Value..., Other...>, List...>::type;
};
/**
* @brief Concatenates multiple value lists.
* @tparam Value Values provided by the value list.
*/
template<auto... Value>
struct value_list_cat<value_list<Value...>> {
/*! @brief A value list composed by the values of all the value lists. */
using type = value_list<Value...>;
};
/**
* @brief Helper type.
* @tparam List Value lists to concatenate.
*/
template<typename... List>
using value_list_cat_t = typename value_list_cat<List...>::type;
/*! @brief Same as std::is_invocable, but with tuples. */
template<typename, typename>
struct is_applicable: std::false_type {};
/**
* @copybrief is_applicable
* @tparam Func A valid function type.
* @tparam Tuple Tuple-like type.
* @tparam Args The list of arguments to use to probe the function type.
*/
template<typename Func, template<typename...> class Tuple, typename... Args>
struct is_applicable<Func, Tuple<Args...>>: std::is_invocable<Func, Args...> {};
/**
* @copybrief is_applicable
* @tparam Func A valid function type.
* @tparam Tuple Tuple-like type.
* @tparam Args The list of arguments to use to probe the function type.
*/
template<typename Func, template<typename...> class Tuple, typename... Args>
struct is_applicable<Func, const Tuple<Args...>>: std::is_invocable<Func, Args...> {};
/**
* @brief Helper variable template.
* @tparam Func A valid function type.
* @tparam Args The list of arguments to use to probe the function type.
*/
template<typename Func, typename Args>
inline constexpr bool is_applicable_v = is_applicable<Func, Args>::value;
/*! @brief Same as std::is_invocable_r, but with tuples for arguments. */
template<typename, typename, typename>
struct is_applicable_r: std::false_type {};
/**
* @copybrief is_applicable_r
* @tparam Ret The type to which the return type of the function should be
* convertible.
* @tparam Func A valid function type.
* @tparam Args The list of arguments to use to probe the function type.
*/
template<typename Ret, typename Func, typename... Args>
struct is_applicable_r<Ret, Func, std::tuple<Args...>>: std::is_invocable_r<Ret, Func, Args...> {};
/**
* @brief Helper variable template.
* @tparam Ret The type to which the return type of the function should be
* convertible.
* @tparam Func A valid function type.
* @tparam Args The list of arguments to use to probe the function type.
*/
template<typename Ret, typename Func, typename Args>
inline constexpr bool is_applicable_r_v = is_applicable_r<Ret, Func, Args>::value;
/**
* @brief Provides the member constant `value` to true if a given type is
* complete, false otherwise.
* @tparam Type The type to test.
*/
template<typename Type, typename = void>
struct is_complete: std::false_type {};
/*! @copydoc is_complete */
template<typename Type>
struct is_complete<Type, std::void_t<decltype(sizeof(Type))>>: std::true_type {};
/**
* @brief Helper variable template.
* @tparam Type The type to test.
*/
template<typename Type>
inline constexpr bool is_complete_v = is_complete<Type>::value;
/**
* @brief Provides the member constant `value` to true if a given type is an
* iterator, false otherwise.
* @tparam Type The type to test.
*/
template<typename Type, typename = void>
struct is_iterator: std::false_type {};
/**
* @cond TURN_OFF_DOXYGEN
* Internal details not to be documented.
*/
namespace internal {
template<typename, typename = void>
struct has_iterator_category: std::false_type {};
template<typename Type>
struct has_iterator_category<Type, std::void_t<typename std::iterator_traits<Type>::iterator_category>>: std::true_type {};
} // namespace internal
/**
* Internal details not to be documented.
* @endcond
*/
/*! @copydoc is_iterator */
template<typename Type>
struct is_iterator<Type, std::enable_if_t<!std::is_same_v<std::remove_cv_t<std::remove_pointer_t<Type>>, void>>>
: internal::has_iterator_category<Type> {};
/**
* @brief Helper variable template.
* @tparam Type The type to test.
*/
template<typename Type>
inline constexpr bool is_iterator_v = is_iterator<Type>::value;
/**
* @brief Provides the member constant `value` to true if a given type is both
* an empty and non-final class, false otherwise.
* @tparam Type The type to test
*/
template<typename Type>
struct is_ebco_eligible
: std::conjunction<std::is_empty<Type>, std::negation<std::is_final<Type>>> {};
/**
* @brief Helper variable template.
* @tparam Type The type to test.
*/
template<typename Type>
inline constexpr bool is_ebco_eligible_v = is_ebco_eligible<Type>::value;
/**
* @brief Provides the member constant `value` to true if `Type::is_transparent`
* is valid and denotes a type, false otherwise.
* @tparam Type The type to test.
*/
template<typename Type, typename = void>
struct is_transparent: std::false_type {};
/*! @copydoc is_transparent */
template<typename Type>
struct is_transparent<Type, std::void_t<typename Type::is_transparent>>: std::true_type {};
/**
* @brief Helper variable template.
* @tparam Type The type to test.
*/
template<typename Type>
inline constexpr bool is_transparent_v = is_transparent<Type>::value;
/**
* @brief Provides the member constant `value` to true if a given type is
* equality comparable, false otherwise.
* @tparam Type The type to test.
*/
template<typename Type, typename = void>
struct is_equality_comparable: std::false_type {};
/**
* @cond TURN_OFF_DOXYGEN
* Internal details not to be documented.
*/
namespace internal {
template<typename, typename = void>
struct has_tuple_size_value: std::false_type {};
template<typename Type>
struct has_tuple_size_value<Type, std::void_t<decltype(std::tuple_size<const Type>::value)>>: std::true_type {};
template<typename Type, std::size_t... Index>
[[nodiscard]] constexpr bool unpack_maybe_equality_comparable(std::index_sequence<Index...>) {
return (is_equality_comparable<std::tuple_element_t<Index, Type>>::value && ...);
}
template<typename>
[[nodiscard]] constexpr bool maybe_equality_comparable(choice_t<0>) {
return true;
}
template<typename Type>
[[nodiscard]] constexpr auto maybe_equality_comparable(choice_t<1>) -> decltype(std::declval<typename Type::value_type>(), bool{}) {
if constexpr(is_iterator_v<Type>) {
return true;
} else if constexpr(std::is_same_v<typename Type::value_type, Type>) {
return maybe_equality_comparable<Type>(choice<0>);
} else {
return is_equality_comparable<typename Type::value_type>::value;
}
}
template<typename Type>
[[nodiscard]] constexpr std::enable_if_t<is_complete_v<std::tuple_size<std::remove_cv_t<Type>>>, bool> maybe_equality_comparable(choice_t<2>) {
if constexpr(has_tuple_size_value<Type>::value) {
return unpack_maybe_equality_comparable<Type>(std::make_index_sequence<std::tuple_size<Type>::value>{});
} else {
return maybe_equality_comparable<Type>(choice<1>);
}
}
} // namespace internal
/**
* Internal details not to be documented.
* @endcond
*/
/*! @copydoc is_equality_comparable */
template<typename Type>
struct is_equality_comparable<Type, std::void_t<decltype(std::declval<Type>() == std::declval<Type>())>>
: std::bool_constant<internal::maybe_equality_comparable<Type>(choice<2>)> {};
/**
* @brief Helper variable template.
* @tparam Type The type to test.
*/
template<typename Type>
inline constexpr bool is_equality_comparable_v = is_equality_comparable<Type>::value;
/**
* @brief Transcribes the constness of a type to another type.
* @tparam To The type to which to transcribe the constness.
* @tparam From The type from which to transcribe the constness.
*/
template<typename To, typename From>
struct constness_as {
/*! @brief The type resulting from the transcription of the constness. */
using type = std::remove_const_t<To>;
};
/*! @copydoc constness_as */
template<typename To, typename From>
struct constness_as<To, const From> {
/*! @brief The type resulting from the transcription of the constness. */
using type = const To;
};
/**
* @brief Alias template to facilitate the transcription of the constness.
* @tparam To The type to which to transcribe the constness.
* @tparam From The type from which to transcribe the constness.
*/
template<typename To, typename From>
using constness_as_t = typename constness_as<To, From>::type;
/**
* @brief Extracts the class of a non-static member object or function.
* @tparam Member A pointer to a non-static member object or function.
*/
template<typename Member>
class member_class {
static_assert(std::is_member_pointer_v<Member>, "Invalid pointer type to non-static member object or function");
template<typename Class, typename Ret, typename... Args>
static Class *clazz(Ret (Class::*)(Args...));
template<typename Class, typename Ret, typename... Args>
static Class *clazz(Ret (Class::*)(Args...) const);
template<typename Class, typename Type>
static Class *clazz(Type Class::*);
public:
/*! @brief The class of the given non-static member object or function. */
using type = std::remove_pointer_t<decltype(clazz(std::declval<Member>()))>;
};
/**
* @brief Helper type.
* @tparam Member A pointer to a non-static member object or function.
*/
template<typename Member>
using member_class_t = typename member_class<Member>::type;
/**
* @brief Extracts the n-th argument of a given function or member function.
* @tparam Index The index of the argument to extract.
* @tparam Candidate A valid function, member function or data member.
*/
template<std::size_t Index, auto Candidate>
class nth_argument {
template<typename Ret, typename... Args>
static constexpr type_list<Args...> pick_up(Ret (*)(Args...));
template<typename Ret, typename Class, typename... Args>
static constexpr type_list<Args...> pick_up(Ret (Class ::*)(Args...));
template<typename Ret, typename Class, typename... Args>
static constexpr type_list<Args...> pick_up(Ret (Class ::*)(Args...) const);
template<typename Type, typename Class>
static constexpr type_list<Type> pick_up(Type Class ::*);
public:
/*! @brief N-th argument of the given function or member function. */
using type = type_list_element_t<Index, decltype(pick_up(Candidate))>;
};
/**
* @brief Helper type.
* @tparam Index The index of the argument to extract.
* @tparam Candidate A valid function, member function or data member.
*/
template<std::size_t Index, auto Candidate>
using nth_argument_t = typename nth_argument<Index, Candidate>::type;
} // namespace entt
#endif
// #include "fwd.hpp"
#ifndef ENTT_CONTAINER_FWD_HPP
#define ENTT_CONTAINER_FWD_HPP
#include <functional>
#include <memory>
namespace entt {
template<
typename Key,
typename Type,
typename = std::hash<Key>,
typename = std::equal_to<Key>,
typename = std::allocator<std::pair<const Key, Type>>>
class dense_map;
template<
typename Type,
typename = std::hash<Type>,
typename = std::equal_to<Type>,
typename = std::allocator<Type>>
class dense_set;
} // namespace entt
#endif
namespace entt {
/**
* @cond TURN_OFF_DOXYGEN
* Internal details not to be documented.
*/
namespace internal {
template<typename Key, typename Type>
struct dense_map_node final {
using value_type = std::pair<Key, Type>;
template<typename... Args>
dense_map_node(const std::size_t pos, Args &&...args)
: next{pos},
element{std::forward<Args>(args)...} {}
template<typename Allocator, typename... Args>
dense_map_node(std::allocator_arg_t, const Allocator &allocator, const std::size_t pos, Args &&...args)
: next{pos},
element{entt::make_obj_using_allocator<value_type>(allocator, std::forward<Args>(args)...)} {}
template<typename Allocator>
dense_map_node(std::allocator_arg_t, const Allocator &allocator, const dense_map_node &other)
: next{other.next},
element{entt::make_obj_using_allocator<value_type>(allocator, other.element)} {}
template<typename Allocator>
dense_map_node(std::allocator_arg_t, const Allocator &allocator, dense_map_node &&other)
: next{other.next},
element{entt::make_obj_using_allocator<value_type>(allocator, std::move(other.element))} {}
std::size_t next;
value_type element;
};
template<typename It>
class dense_map_iterator final {
template<typename>
friend class dense_map_iterator;
using first_type = decltype(std::as_const(std::declval<It>()->element.first));
using second_type = decltype((std::declval<It>()->element.second));
public:
using value_type = std::pair<first_type, second_type>;
using pointer = input_iterator_pointer<value_type>;
using reference = value_type;
using difference_type = std::ptrdiff_t;
using iterator_category = std::input_iterator_tag;
constexpr dense_map_iterator() noexcept
: it{} {}
constexpr dense_map_iterator(const It iter) noexcept
: it{iter} {}
template<typename Other, typename = std::enable_if_t<!std::is_same_v<It, Other> && std::is_constructible_v<It, Other>>>
constexpr dense_map_iterator(const dense_map_iterator<Other> &other) noexcept
: it{other.it} {}
constexpr dense_map_iterator &operator++() noexcept {
return ++it, *this;
}
constexpr dense_map_iterator operator++(int) noexcept {
dense_map_iterator orig = *this;
return ++(*this), orig;
}
constexpr dense_map_iterator &operator--() noexcept {
return --it, *this;
}
constexpr dense_map_iterator operator--(int) noexcept {
dense_map_iterator orig = *this;
return operator--(), orig;
}
constexpr dense_map_iterator &operator+=(const difference_type value) noexcept {
it += value;
return *this;
}
constexpr dense_map_iterator operator+(const difference_type value) const noexcept {
dense_map_iterator copy = *this;
return (copy += value);
}
constexpr dense_map_iterator &operator-=(const difference_type value) noexcept {
return (*this += -value);
}
constexpr dense_map_iterator operator-(const difference_type value) const noexcept {
return (*this + -value);
}
[[nodiscard]] constexpr reference operator[](const difference_type value) const noexcept {
return {it[value].element.first, it[value].element.second};
}
[[nodiscard]] constexpr pointer operator->() const noexcept {
return operator*();
}
[[nodiscard]] constexpr reference operator*() const noexcept {
return {it->element.first, it->element.second};
}
template<typename ILhs, typename IRhs>
friend constexpr std::ptrdiff_t operator-(const dense_map_iterator<ILhs> &, const dense_map_iterator<IRhs> &) noexcept;
template<typename ILhs, typename IRhs>
friend constexpr bool operator==(const dense_map_iterator<ILhs> &, const dense_map_iterator<IRhs> &) noexcept;
template<typename ILhs, typename IRhs>
friend constexpr bool operator<(const dense_map_iterator<ILhs> &, const dense_map_iterator<IRhs> &) noexcept;
private:
It it;
};
template<typename ILhs, typename IRhs>
[[nodiscard]] constexpr std::ptrdiff_t operator-(const dense_map_iterator<ILhs> &lhs, const dense_map_iterator<IRhs> &rhs) noexcept {
return lhs.it - rhs.it;
}
template<typename ILhs, typename IRhs>
[[nodiscard]] constexpr bool operator==(const dense_map_iterator<ILhs> &lhs, const dense_map_iterator<IRhs> &rhs) noexcept {
return lhs.it == rhs.it;
}
template<typename ILhs, typename IRhs>
[[nodiscard]] constexpr bool operator!=(const dense_map_iterator<ILhs> &lhs, const dense_map_iterator<IRhs> &rhs) noexcept {
return !(lhs == rhs);
}
template<typename ILhs, typename IRhs>
[[nodiscard]] constexpr bool operator<(const dense_map_iterator<ILhs> &lhs, const dense_map_iterator<IRhs> &rhs) noexcept {
return lhs.it < rhs.it;
}
template<typename ILhs, typename IRhs>
[[nodiscard]] constexpr bool operator>(const dense_map_iterator<ILhs> &lhs, const dense_map_iterator<IRhs> &rhs) noexcept {
return rhs < lhs;
}
template<typename ILhs, typename IRhs>
[[nodiscard]] constexpr bool operator<=(const dense_map_iterator<ILhs> &lhs, const dense_map_iterator<IRhs> &rhs) noexcept {
return !(lhs > rhs);
}
template<typename ILhs, typename IRhs>
[[nodiscard]] constexpr bool operator>=(const dense_map_iterator<ILhs> &lhs, const dense_map_iterator<IRhs> &rhs) noexcept {
return !(lhs < rhs);
}
template<typename It>
class dense_map_local_iterator final {
template<typename>
friend class dense_map_local_iterator;
using first_type = decltype(std::as_const(std::declval<It>()->element.first));
using second_type = decltype((std::declval<It>()->element.second));
public:
using value_type = std::pair<first_type, second_type>;
using pointer = input_iterator_pointer<value_type>;
using reference = value_type;
using difference_type = std::ptrdiff_t;
using iterator_category = std::input_iterator_tag;
constexpr dense_map_local_iterator() noexcept
: it{},
offset{} {}
constexpr dense_map_local_iterator(It iter, const std::size_t pos) noexcept
: it{iter},
offset{pos} {}
template<typename Other, typename = std::enable_if_t<!std::is_same_v<It, Other> && std::is_constructible_v<It, Other>>>
constexpr dense_map_local_iterator(const dense_map_local_iterator<Other> &other) noexcept
: it{other.it},
offset{other.offset} {}
constexpr dense_map_local_iterator &operator++() noexcept {
return offset = it[offset].next, *this;
}
constexpr dense_map_local_iterator operator++(int) noexcept {
dense_map_local_iterator orig = *this;
return ++(*this), orig;
}
[[nodiscard]] constexpr pointer operator->() const noexcept {
return operator*();
}
[[nodiscard]] constexpr reference operator*() const noexcept {
return {it[offset].element.first, it[offset].element.second};
}
[[nodiscard]] constexpr std::size_t index() const noexcept {
return offset;
}
private:
It it;
std::size_t offset;
};
template<typename ILhs, typename IRhs>
[[nodiscard]] constexpr bool operator==(const dense_map_local_iterator<ILhs> &lhs, const dense_map_local_iterator<IRhs> &rhs) noexcept {
return lhs.index() == rhs.index();
}
template<typename ILhs, typename IRhs>
[[nodiscard]] constexpr bool operator!=(const dense_map_local_iterator<ILhs> &lhs, const dense_map_local_iterator<IRhs> &rhs) noexcept {
return !(lhs == rhs);
}
} // namespace internal
/**
* Internal details not to be documented.
* @endcond
*/
/**
* @brief Associative container for key-value pairs with unique keys.
*
* Internally, elements are organized into buckets. Which bucket an element is
* placed into depends entirely on the hash of its key. Keys with the same hash
* code appear in the same bucket.
*
* @tparam Key Key type of the associative container.
* @tparam Type Mapped type of the associative container.
* @tparam Hash Type of function to use to hash the keys.
* @tparam KeyEqual Type of function to use to compare the keys for equality.
* @tparam Allocator Type of allocator used to manage memory and elements.
*/
template<typename Key, typename Type, typename Hash, typename KeyEqual, typename Allocator>
class dense_map {
static constexpr float default_threshold = 0.875f;
static constexpr std::size_t minimum_capacity = 8u;
using node_type = internal::dense_map_node<Key, Type>;
using alloc_traits = typename std::allocator_traits<Allocator>;
static_assert(std::is_same_v<typename alloc_traits::value_type, std::pair<const Key, Type>>, "Invalid value type");
using sparse_container_type = std::vector<std::size_t, typename alloc_traits::template rebind_alloc<std::size_t>>;
using packed_container_type = std::vector<node_type, typename alloc_traits::template rebind_alloc<node_type>>;
template<typename Other>
[[nodiscard]] std::size_t key_to_bucket(const Other &key) const noexcept {
return fast_mod(static_cast<size_type>(sparse.second()(key)), bucket_count());
}
template<typename Other>
[[nodiscard]] auto constrained_find(const Other &key, std::size_t bucket) {
for(auto it = begin(bucket), last = end(bucket); it != last; ++it) {
if(packed.second()(it->first, key)) {
return begin() + static_cast<typename iterator::difference_type>(it.index());
}
}
return end();
}
template<typename Other>
[[nodiscard]] auto constrained_find(const Other &key, std::size_t bucket) const {
for(auto it = cbegin(bucket), last = cend(bucket); it != last; ++it) {
if(packed.second()(it->first, key)) {
return cbegin() + static_cast<typename iterator::difference_type>(it.index());
}
}
return cend();
}
template<typename Other, typename... Args>
[[nodiscard]] auto insert_or_do_nothing(Other &&key, Args &&...args) {
const auto index = key_to_bucket(key);
if(auto it = constrained_find(key, index); it != end()) {
return std::make_pair(it, false);
}
packed.first().emplace_back(sparse.first()[index], std::piecewise_construct, std::forward_as_tuple(std::forward<Other>(key)), std::forward_as_tuple(std::forward<Args>(args)...));
sparse.first()[index] = packed.first().size() - 1u;
rehash_if_required();
return std::make_pair(--end(), true);
}
template<typename Other, typename Arg>
[[nodiscard]] auto insert_or_overwrite(Other &&key, Arg &&value) {
const auto index = key_to_bucket(key);
if(auto it = constrained_find(key, index); it != end()) {
it->second = std::forward<Arg>(value);
return std::make_pair(it, false);
}
packed.first().emplace_back(sparse.first()[index], std::forward<Other>(key), std::forward<Arg>(value));
sparse.first()[index] = packed.first().size() - 1u;
rehash_if_required();
return std::make_pair(--end(), true);
}
void move_and_pop(const std::size_t pos) {
if(const auto last = size() - 1u; pos != last) {
size_type *curr = sparse.first().data() + key_to_bucket(packed.first().back().element.first);
packed.first()[pos] = std::move(packed.first().back());
for(; *curr != last; curr = &packed.first()[*curr].next) {}
*curr = pos;
}
packed.first().pop_back();
}
void rehash_if_required() {
if(size() > (bucket_count() * max_load_factor())) {
rehash(bucket_count() * 2u);
}
}
public:
/*! @brief Key type of the container. */
using key_type = Key;
/*! @brief Mapped type of the container. */
using mapped_type = Type;
/*! @brief Key-value type of the container. */
using value_type = std::pair<const Key, Type>;
/*! @brief Unsigned integer type. */
using size_type = std::size_t;
/*! @brief Type of function to use to hash the keys. */
using hasher = Hash;
/*! @brief Type of function to use to compare the keys for equality. */
using key_equal = KeyEqual;
/*! @brief Allocator type. */
using allocator_type = Allocator;
/*! @brief Input iterator type. */
using iterator = internal::dense_map_iterator<typename packed_container_type::iterator>;
/*! @brief Constant input iterator type. */
using const_iterator = internal::dense_map_iterator<typename packed_container_type::const_iterator>;
/*! @brief Input iterator type. */
using local_iterator = internal::dense_map_local_iterator<typename packed_container_type::iterator>;
/*! @brief Constant input iterator type. */
using const_local_iterator = internal::dense_map_local_iterator<typename packed_container_type::const_iterator>;
/*! @brief Default constructor. */
dense_map()
: dense_map{minimum_capacity} {}
/**
* @brief Constructs an empty container with a given allocator.
* @param allocator The allocator to use.
*/
explicit dense_map(const allocator_type &allocator)
: dense_map{minimum_capacity, hasher{}, key_equal{}, allocator} {}
/**
* @brief Constructs an empty container with a given allocator and user
* supplied minimal number of buckets.
* @param cnt Minimal number of buckets.
* @param allocator The allocator to use.
*/
dense_map(const size_type cnt, const allocator_type &allocator)
: dense_map{cnt, hasher{}, key_equal{}, allocator} {}
/**
* @brief Constructs an empty container with a given allocator, hash
* function and user supplied minimal number of buckets.
* @param cnt Minimal number of buckets.
* @param hash Hash function to use.
* @param allocator The allocator to use.
*/
dense_map(const size_type cnt, const hasher &hash, const allocator_type &allocator)
: dense_map{cnt, hash, key_equal{}, allocator} {}
/**
* @brief Constructs an empty container with a given allocator, hash
* function, compare function and user supplied minimal number of buckets.
* @param cnt Minimal number of buckets.
* @param hash Hash function to use.
* @param equal Compare function to use.
* @param allocator The allocator to use.
*/
explicit dense_map(const size_type cnt, const hasher &hash = hasher{}, const key_equal &equal = key_equal{}, const allocator_type &allocator = allocator_type{})
: sparse{allocator, hash},
packed{allocator, equal},
threshold{default_threshold} {
rehash(cnt);
}
/*! @brief Default copy constructor. */
dense_map(const dense_map &) = default;
/**
* @brief Allocator-extended copy constructor.
* @param other The instance to copy from.
* @param allocator The allocator to use.
*/
dense_map(const dense_map &other, const allocator_type &allocator)
: sparse{std::piecewise_construct, std::forward_as_tuple(other.sparse.first(), allocator), std::forward_as_tuple(other.sparse.second())},
packed{std::piecewise_construct, std::forward_as_tuple(other.packed.first(), allocator), std::forward_as_tuple(other.packed.second())},
threshold{other.threshold} {}
/*! @brief Default move constructor. */
dense_map(dense_map &&) noexcept(std::is_nothrow_move_constructible_v<compressed_pair<sparse_container_type, hasher>> &&std::is_nothrow_move_constructible_v<compressed_pair<packed_container_type, key_equal>>) = default;
/**
* @brief Allocator-extended move constructor.
* @param other The instance to move from.
* @param allocator The allocator to use.
*/
dense_map(dense_map &&other, const allocator_type &allocator)
: sparse{std::piecewise_construct, std::forward_as_tuple(std::move(other.sparse.first()), allocator), std::forward_as_tuple(std::move(other.sparse.second()))},
packed{std::piecewise_construct, std::forward_as_tuple(std::move(other.packed.first()), allocator), std::forward_as_tuple(std::move(other.packed.second()))},
threshold{other.threshold} {}
/**
* @brief Default copy assignment operator.
* @return This container.
*/
dense_map &operator=(const dense_map &) = default;
/**
* @brief Default move assignment operator.
* @return This container.
*/
dense_map &operator=(dense_map &&) noexcept(std::is_nothrow_move_assignable_v<compressed_pair<sparse_container_type, hasher>> &&std::is_nothrow_move_assignable_v<compressed_pair<packed_container_type, key_equal>>) = default;
/**
* @brief Returns the associated allocator.
* @return The associated allocator.
*/
[[nodiscard]] constexpr allocator_type get_allocator() const noexcept {
return sparse.first().get_allocator();
}
/**
* @brief Returns an iterator to the beginning.
*
* The returned iterator points to the first instance of the internal array.
* If the array is empty, the returned iterator will be equal to `end()`.
*
* @return An iterator to the first instance of the internal array.
*/
[[nodiscard]] const_iterator cbegin() const noexcept {
return packed.first().begin();
}
/*! @copydoc cbegin */
[[nodiscard]] const_iterator begin() const noexcept {
return cbegin();
}
/*! @copydoc begin */
[[nodiscard]] iterator begin() noexcept {
return packed.first().begin();
}
/**
* @brief Returns an iterator to the end.
*
* The returned iterator points to the element following the last instance
* of the internal array. Attempting to dereference the returned iterator
* results in undefined behavior.
*
* @return An iterator to the element following the last instance of the
* internal array.
*/
[[nodiscard]] const_iterator cend() const noexcept {
return packed.first().end();
}
/*! @copydoc cend */
[[nodiscard]] const_iterator end() const noexcept {
return cend();
}
/*! @copydoc end */
[[nodiscard]] iterator end() noexcept {
return packed.first().end();
}
/**
* @brief Checks whether a container is empty.
* @return True if the container is empty, false otherwise.
*/
[[nodiscard]] bool empty() const noexcept {
return packed.first().empty();
}
/**
* @brief Returns the number of elements in a container.
* @return Number of elements in a container.
*/
[[nodiscard]] size_type size() const noexcept {
return packed.first().size();
}
/**
* @brief Returns the maximum possible number of elements.
* @return Maximum possible number of elements.
*/
[[nodiscard]] size_type max_size() const noexcept {
return packed.first().max_size();
}
/*! @brief Clears the container. */
void clear() noexcept {
sparse.first().clear();
packed.first().clear();
rehash(0u);
}
/**
* @brief Inserts an element into the container, if the key does not exist.
* @param value A key-value pair eventually convertible to the value type.
* @return A pair consisting of an iterator to the inserted element (or to
* the element that prevented the insertion) and a bool denoting whether the
* insertion took place.
*/
std::pair<iterator, bool> insert(const value_type &value) {
return insert_or_do_nothing(value.first, value.second);
}
/*! @copydoc insert */
std::pair<iterator, bool> insert(value_type &&value) {
return insert_or_do_nothing(std::move(value.first), std::move(value.second));
}
/**
* @copydoc insert
* @tparam Arg Type of the key-value pair to insert into the container.
*/
template<typename Arg>
std::enable_if_t<std::is_constructible_v<value_type, Arg &&>, std::pair<iterator, bool>>
insert(Arg &&value) {
return insert_or_do_nothing(std::forward<Arg>(value).first, std::forward<Arg>(value).second);
}
/**
* @brief Inserts elements into the container, if their keys do not exist.
* @tparam It Type of input iterator.
* @param first An iterator to the first element of the range of elements.
* @param last An iterator past the last element of the range of elements.
*/
template<typename It>
void insert(It first, It last) {
for(; first != last; ++first) {
insert(*first);
}
}
/**
* @brief Inserts an element into the container or assigns to the current
* element if the key already exists.
* @tparam Arg Type of the value to insert or assign.
* @param key A key used both to look up and to insert if not found.
* @param value A value to insert or assign.
* @return A pair consisting of an iterator to the element and a bool
* denoting whether the insertion took place.
*/
template<typename Arg>
std::pair<iterator, bool> insert_or_assign(const key_type &key, Arg &&value) {
return insert_or_overwrite(key, std::forward<Arg>(value));
}
/*! @copydoc insert_or_assign */
template<typename Arg>
std::pair<iterator, bool> insert_or_assign(key_type &&key, Arg &&value) {
return insert_or_overwrite(std::move(key), std::forward<Arg>(value));
}
/**
* @brief Constructs an element in-place, if the key does not exist.
*
* The element is also constructed when the container already has the key,
* in which case the newly constructed object is destroyed immediately.
*
* @tparam Args Types of arguments to forward to the constructor of the
* element.
* @param args Arguments to forward to the constructor of the element.
* @return A pair consisting of an iterator to the inserted element (or to
* the element that prevented the insertion) and a bool denoting whether the
* insertion took place.
*/
template<typename... Args>
std::pair<iterator, bool> emplace([[maybe_unused]] Args &&...args) {
if constexpr(sizeof...(Args) == 0u) {
return insert_or_do_nothing(key_type{});
} else if constexpr(sizeof...(Args) == 1u) {
return insert_or_do_nothing(std::forward<Args>(args).first..., std::forward<Args>(args).second...);
} else if constexpr(sizeof...(Args) == 2u) {
return insert_or_do_nothing(std::forward<Args>(args)...);
} else {
auto &node = packed.first().emplace_back(packed.first().size(), std::forward<Args>(args)...);
const auto index = key_to_bucket(node.element.first);
if(auto it = constrained_find(node.element.first, index); it != end()) {
packed.first().pop_back();
return std::make_pair(it, false);
}
std::swap(node.next, sparse.first()[index]);
rehash_if_required();
return std::make_pair(--end(), true);
}
}
/**
* @brief Inserts in-place if the key does not exist, does nothing if the
* key exists.
* @tparam Args Types of arguments to forward to the constructor of the
* element.
* @param key A key used both to look up and to insert if not found.
* @param args Arguments to forward to the constructor of the element.
* @return A pair consisting of an iterator to the inserted element (or to
* the element that prevented the insertion) and a bool denoting whether the
* insertion took place.
*/
template<typename... Args>
std::pair<iterator, bool> try_emplace(const key_type &key, Args &&...args) {
return insert_or_do_nothing(key, std::forward<Args>(args)...);
}
/*! @copydoc try_emplace */
template<typename... Args>
std::pair<iterator, bool> try_emplace(key_type &&key, Args &&...args) {
return insert_or_do_nothing(std::move(key), std::forward<Args>(args)...);
}
/**
* @brief Removes an element from a given position.
* @param pos An iterator to the element to remove.
* @return An iterator following the removed element.
*/
iterator erase(const_iterator pos) {
const auto diff = pos - cbegin();
erase(pos->first);
return begin() + diff;
}
/**
* @brief Removes the given elements from a container.
* @param first An iterator to the first element of the range of elements.
* @param last An iterator past the last element of the range of elements.
* @return An iterator following the last removed element.
*/
iterator erase(const_iterator first, const_iterator last) {
const auto dist = first - cbegin();
for(auto from = last - cbegin(); from != dist; --from) {
erase(packed.first()[from - 1u].element.first);
}
return (begin() + dist);
}
/**
* @brief Removes the element associated with a given key.
* @param key A key value of an element to remove.
* @return Number of elements removed (either 0 or 1).
*/
size_type erase(const key_type &key) {
for(size_type *curr = sparse.first().data() + key_to_bucket(key); *curr != (std::numeric_limits<size_type>::max)(); curr = &packed.first()[*curr].next) {
if(packed.second()(packed.first()[*curr].element.first, key)) {
const auto index = *curr;
*curr = packed.first()[*curr].next;
move_and_pop(index);
return 1u;
}
}
return 0u;
}
/**
* @brief Exchanges the contents with those of a given container.
* @param other Container to exchange the content with.
*/
void swap(dense_map &other) {
using std::swap;
swap(sparse, other.sparse);
swap(packed, other.packed);
swap(threshold, other.threshold);
}
/**
* @brief Accesses a given element with bounds checking.
* @param key A key of an element to find.
* @return A reference to the mapped value of the requested element.
*/
[[nodiscard]] mapped_type &at(const key_type &key) {
auto it = find(key);
ENTT_ASSERT(it != end(), "Invalid key");
return it->second;
}
/*! @copydoc at */
[[nodiscard]] const mapped_type &at(const key_type &key) const {
auto it = find(key);
ENTT_ASSERT(it != cend(), "Invalid key");
return it->second;
}
/**
* @brief Accesses or inserts a given element.
* @param key A key of an element to find or insert.
* @return A reference to the mapped value of the requested element.
*/
[[nodiscard]] mapped_type &operator[](const key_type &key) {
return insert_or_do_nothing(key).first->second;
}
/**
* @brief Accesses or inserts a given element.
* @param key A key of an element to find or insert.
* @return A reference to the mapped value of the requested element.
*/
[[nodiscard]] mapped_type &operator[](key_type &&key) {
return insert_or_do_nothing(std::move(key)).first->second;
}
/**
* @brief Returns the number of elements matching a key (either 1 or 0).
* @param key Key value of an element to search for.
* @return Number of elements matching the key (either 1 or 0).
*/
[[nodiscard]] size_type count(const key_type &key) const {
return find(key) != end();
}
/**
* @brief Returns the number of elements matching a key (either 1 or 0).
* @tparam Other Type of the key value of an element to search for.
* @param key Key value of an element to search for.
* @return Number of elements matching the key (either 1 or 0).
*/
template<typename Other>
[[nodiscard]] std::enable_if_t<is_transparent_v<hasher> && is_transparent_v<key_equal>, std::conditional_t<false, Other, size_type>>
count(const Other &key) const {
return find(key) != end();
}
/**
* @brief Finds an element with a given key.
* @param key Key value of an element to search for.
* @return An iterator to an element with the given key. If no such element
* is found, a past-the-end iterator is returned.
*/
[[nodiscard]] iterator find(const key_type &key) {
return constrained_find(key, key_to_bucket(key));
}
/*! @copydoc find */
[[nodiscard]] const_iterator find(const key_type &key) const {
return constrained_find(key, key_to_bucket(key));
}
/**
* @brief Finds an element with a key that compares _equivalent_ to a given
* key.
* @tparam Other Type of the key value of an element to search for.
* @param key Key value of an element to search for.
* @return An iterator to an element with the given key. If no such element
* is found, a past-the-end iterator is returned.
*/
template<typename Other>
[[nodiscard]] std::enable_if_t<is_transparent_v<hasher> && is_transparent_v<key_equal>, std::conditional_t<false, Other, iterator>>
find(const Other &key) {
return constrained_find(key, key_to_bucket(key));
}
/*! @copydoc find */
template<typename Other>
[[nodiscard]] std::enable_if_t<is_transparent_v<hasher> && is_transparent_v<key_equal>, std::conditional_t<false, Other, const_iterator>>
find(const Other &key) const {
return constrained_find(key, key_to_bucket(key));
}
/**
* @brief Returns a range containing all elements with a given key.
* @param key Key value of an element to search for.
* @return A pair of iterators pointing to the first element and past the
* last element of the range.
*/
[[nodiscard]] std::pair<iterator, iterator> equal_range(const key_type &key) {
const auto it = find(key);
return {it, it + !(it == end())};
}
/*! @copydoc equal_range */
[[nodiscard]] std::pair<const_iterator, const_iterator> equal_range(const key_type &key) const {
const auto it = find(key);
return {it, it + !(it == cend())};
}
/**
* @brief Returns a range containing all elements that compare _equivalent_
* to a given key.
* @tparam Other Type of an element to search for.
* @param key Key value of an element to search for.
* @return A pair of iterators pointing to the first element and past the
* last element of the range.
*/
template<typename Other>
[[nodiscard]] std::enable_if_t<is_transparent_v<hasher> && is_transparent_v<key_equal>, std::conditional_t<false, Other, std::pair<iterator, iterator>>>
equal_range(const Other &key) {
const auto it = find(key);
return {it, it + !(it == end())};
}
/*! @copydoc equal_range */
template<class Other>
[[nodiscard]] std::enable_if_t<is_transparent_v<hasher> && is_transparent_v<key_equal>, std::conditional_t<false, Other, std::pair<const_iterator, const_iterator>>>
equal_range(const Other &key) const {
const auto it = find(key);
return {it, it + !(it == cend())};
}
/**
* @brief Checks if the container contains an element with a given key.
* @param key Key value of an element to search for.
* @return True if there is such an element, false otherwise.
*/
[[nodiscard]] bool contains(const key_type &key) const {
return (find(key) != cend());
}
/**
* @brief Checks if the container contains an element with a key that
* compares _equivalent_ to a given value.
* @tparam Other Type of the key value of an element to search for.
* @param key Key value of an element to search for.
* @return True if there is such an element, false otherwise.
*/
template<typename Other>
[[nodiscard]] std::enable_if_t<is_transparent_v<hasher> && is_transparent_v<key_equal>, std::conditional_t<false, Other, bool>>
contains(const Other &key) const {
return (find(key) != cend());
}
/**
* @brief Returns an iterator to the beginning of a given bucket.
* @param index An index of a bucket to access.
* @return An iterator to the beginning of the given bucket.
*/
[[nodiscard]] const_local_iterator cbegin(const size_type index) const {
return {packed.first().begin(), sparse.first()[index]};
}
/**
* @brief Returns an iterator to the beginning of a given bucket.
* @param index An index of a bucket to access.
* @return An iterator to the beginning of the given bucket.
*/
[[nodiscard]] const_local_iterator begin(const size_type index) const {
return cbegin(index);
}
/**
* @brief Returns an iterator to the beginning of a given bucket.
* @param index An index of a bucket to access.
* @return An iterator to the beginning of the given bucket.
*/
[[nodiscard]] local_iterator begin(const size_type index) {
return {packed.first().begin(), sparse.first()[index]};
}
/**
* @brief Returns an iterator to the end of a given bucket.
* @param index An index of a bucket to access.
* @return An iterator to the end of the given bucket.
*/
[[nodiscard]] const_local_iterator cend([[maybe_unused]] const size_type index) const {
return {packed.first().begin(), (std::numeric_limits<size_type>::max)()};
}
/**
* @brief Returns an iterator to the end of a given bucket.
* @param index An index of a bucket to access.
* @return An iterator to the end of the given bucket.
*/
[[nodiscard]] const_local_iterator end(const size_type index) const {
return cend(index);
}
/**
* @brief Returns an iterator to the end of a given bucket.
* @param index An index of a bucket to access.
* @return An iterator to the end of the given bucket.
*/
[[nodiscard]] local_iterator end([[maybe_unused]] const size_type index) {
return {packed.first().begin(), (std::numeric_limits<size_type>::max)()};
}
/**
* @brief Returns the number of buckets.
* @return The number of buckets.
*/
[[nodiscard]] size_type bucket_count() const {
return sparse.first().size();
}
/**
* @brief Returns the maximum number of buckets.
* @return The maximum number of buckets.
*/
[[nodiscard]] size_type max_bucket_count() const {
return sparse.first().max_size();
}
/**
* @brief Returns the number of elements in a given bucket.
* @param index The index of the bucket to examine.
* @return The number of elements in the given bucket.
*/
[[nodiscard]] size_type bucket_size(const size_type index) const {
return static_cast<size_type>(std::distance(begin(index), end(index)));
}
/**
* @brief Returns the bucket for a given key.
* @param key The value of the key to examine.
* @return The bucket for the given key.
*/
[[nodiscard]] size_type bucket(const key_type &key) const {
return key_to_bucket(key);
}
/**
* @brief Returns the average number of elements per bucket.
* @return The average number of elements per bucket.
*/
[[nodiscard]] float load_factor() const {
return size() / static_cast<float>(bucket_count());
}
/**
* @brief Returns the maximum average number of elements per bucket.
* @return The maximum average number of elements per bucket.
*/
[[nodiscard]] float max_load_factor() const {
return threshold;
}
/**
* @brief Sets the desired maximum average number of elements per bucket.
* @param value A desired maximum average number of elements per bucket.
*/
void max_load_factor(const float value) {
ENTT_ASSERT(value > 0.f, "Invalid load factor");
threshold = value;
rehash(0u);
}
/**
* @brief Reserves at least the specified number of buckets and regenerates
* the hash table.
* @param cnt New number of buckets.
*/
void rehash(const size_type cnt) {
auto value = cnt > minimum_capacity ? cnt : minimum_capacity;
const auto cap = static_cast<size_type>(size() / max_load_factor());
value = value > cap ? value : cap;
if(const auto sz = next_power_of_two(value); sz != bucket_count()) {
sparse.first().resize(sz);
for(auto &&elem: sparse.first()) {
elem = std::numeric_limits<size_type>::max();
}
for(size_type pos{}, last = size(); pos < last; ++pos) {
const auto index = key_to_bucket(packed.first()[pos].element.first);
packed.first()[pos].next = std::exchange(sparse.first()[index], pos);
}
}
}
/**
* @brief Reserves space for at least the specified number of elements and
* regenerates the hash table.
* @param cnt New number of elements.
*/
void reserve(const size_type cnt) {
packed.first().reserve(cnt);
rehash(static_cast<size_type>(std::ceil(cnt / max_load_factor())));
}
/**
* @brief Returns the function used to hash the keys.
* @return The function used to hash the keys.
*/
[[nodiscard]] hasher hash_function() const {
return sparse.second();
}
/**
* @brief Returns the function used to compare keys for equality.
* @return The function used to compare keys for equality.
*/
[[nodiscard]] key_equal key_eq() const {
return packed.second();
}
private:
compressed_pair<sparse_container_type, hasher> sparse;
compressed_pair<packed_container_type, key_equal> packed;
float threshold;
};
} // namespace entt
/**
* @cond TURN_OFF_DOXYGEN
* Internal details not to be documented.
*/
namespace std {
template<typename Key, typename Value, typename Allocator>
struct uses_allocator<entt::internal::dense_map_node<Key, Value>, Allocator>
: std::true_type {};
} // namespace std
/**
* Internal details not to be documented.
* @endcond
*/
#endif
// #include "container/dense_set.hpp"
#ifndef ENTT_CONTAINER_DENSE_SET_HPP
#define ENTT_CONTAINER_DENSE_SET_HPP
#include <cmath>
#include <cstddef>
#include <functional>
#include <iterator>
#include <limits>
#include <memory>
#include <tuple>
#include <type_traits>
#include <utility>
#include <vector>
// #include "../config/config.h"
// #include "../core/compressed_pair.hpp"
// #include "../core/memory.hpp"
// #include "../core/type_traits.hpp"
// #include "fwd.hpp"
namespace entt {
/**
* @cond TURN_OFF_DOXYGEN
* Internal details not to be documented.
*/
namespace internal {
template<typename It>
class dense_set_iterator final {
template<typename>
friend class dense_set_iterator;
public:
using value_type = typename It::value_type::second_type;
using pointer = const value_type *;
using reference = const value_type &;
using difference_type = std::ptrdiff_t;
using iterator_category = std::random_access_iterator_tag;
constexpr dense_set_iterator() noexcept
: it{} {}
constexpr dense_set_iterator(const It iter) noexcept
: it{iter} {}
template<typename Other, typename = std::enable_if_t<!std::is_same_v<It, Other> && std::is_constructible_v<It, Other>>>
constexpr dense_set_iterator(const dense_set_iterator<Other> &other) noexcept
: it{other.it} {}
constexpr dense_set_iterator &operator++() noexcept {
return ++it, *this;
}
constexpr dense_set_iterator operator++(int) noexcept {
dense_set_iterator orig = *this;
return ++(*this), orig;
}
constexpr dense_set_iterator &operator--() noexcept {
return --it, *this;
}
constexpr dense_set_iterator operator--(int) noexcept {
dense_set_iterator orig = *this;
return operator--(), orig;
}
constexpr dense_set_iterator &operator+=(const difference_type value) noexcept {
it += value;
return *this;
}
constexpr dense_set_iterator operator+(const difference_type value) const noexcept {
dense_set_iterator copy = *this;
return (copy += value);
}
constexpr dense_set_iterator &operator-=(const difference_type value) noexcept {
return (*this += -value);
}
constexpr dense_set_iterator operator-(const difference_type value) const noexcept {
return (*this + -value);
}
[[nodiscard]] constexpr reference operator[](const difference_type value) const noexcept {
return it[value].second;
}
[[nodiscard]] constexpr pointer operator->() const noexcept {
return std::addressof(it->second);
}
[[nodiscard]] constexpr reference operator*() const noexcept {
return *operator->();
}
template<typename ILhs, typename IRhs>
friend constexpr std::ptrdiff_t operator-(const dense_set_iterator<ILhs> &, const dense_set_iterator<IRhs> &) noexcept;
template<typename ILhs, typename IRhs>
friend constexpr bool operator==(const dense_set_iterator<ILhs> &, const dense_set_iterator<IRhs> &) noexcept;
template<typename ILhs, typename IRhs>
friend constexpr bool operator<(const dense_set_iterator<ILhs> &, const dense_set_iterator<IRhs> &) noexcept;
private:
It it;
};
template<typename ILhs, typename IRhs>
[[nodiscard]] constexpr std::ptrdiff_t operator-(const dense_set_iterator<ILhs> &lhs, const dense_set_iterator<IRhs> &rhs) noexcept {
return lhs.it - rhs.it;
}
template<typename ILhs, typename IRhs>
[[nodiscard]] constexpr bool operator==(const dense_set_iterator<ILhs> &lhs, const dense_set_iterator<IRhs> &rhs) noexcept {
return lhs.it == rhs.it;
}
template<typename ILhs, typename IRhs>
[[nodiscard]] constexpr bool operator!=(const dense_set_iterator<ILhs> &lhs, const dense_set_iterator<IRhs> &rhs) noexcept {
return !(lhs == rhs);
}
template<typename ILhs, typename IRhs>
[[nodiscard]] constexpr bool operator<(const dense_set_iterator<ILhs> &lhs, const dense_set_iterator<IRhs> &rhs) noexcept {
return lhs.it < rhs.it;
}
template<typename ILhs, typename IRhs>
[[nodiscard]] constexpr bool operator>(const dense_set_iterator<ILhs> &lhs, const dense_set_iterator<IRhs> &rhs) noexcept {
return rhs < lhs;
}
template<typename ILhs, typename IRhs>
[[nodiscard]] constexpr bool operator<=(const dense_set_iterator<ILhs> &lhs, const dense_set_iterator<IRhs> &rhs) noexcept {
return !(lhs > rhs);
}
template<typename ILhs, typename IRhs>
[[nodiscard]] constexpr bool operator>=(const dense_set_iterator<ILhs> &lhs, const dense_set_iterator<IRhs> &rhs) noexcept {
return !(lhs < rhs);
}
template<typename It>
class dense_set_local_iterator final {
template<typename>
friend class dense_set_local_iterator;
public:
using value_type = typename It::value_type::second_type;
using pointer = const value_type *;
using reference = const value_type &;
using difference_type = std::ptrdiff_t;
using iterator_category = std::forward_iterator_tag;
constexpr dense_set_local_iterator() noexcept
: it{},
offset{} {}
constexpr dense_set_local_iterator(It iter, const std::size_t pos) noexcept
: it{iter},
offset{pos} {}
template<typename Other, typename = std::enable_if_t<!std::is_same_v<It, Other> && std::is_constructible_v<It, Other>>>
constexpr dense_set_local_iterator(const dense_set_local_iterator<Other> &other) noexcept
: it{other.it},
offset{other.offset} {}
constexpr dense_set_local_iterator &operator++() noexcept {
return offset = it[offset].first, *this;
}
constexpr dense_set_local_iterator operator++(int) noexcept {
dense_set_local_iterator orig = *this;
return ++(*this), orig;
}
[[nodiscard]] constexpr pointer operator->() const noexcept {
return std::addressof(it[offset].second);
}
[[nodiscard]] constexpr reference operator*() const noexcept {
return *operator->();
}
[[nodiscard]] constexpr std::size_t index() const noexcept {
return offset;
}
private:
It it;
std::size_t offset;
};
template<typename ILhs, typename IRhs>
[[nodiscard]] constexpr bool operator==(const dense_set_local_iterator<ILhs> &lhs, const dense_set_local_iterator<IRhs> &rhs) noexcept {
return lhs.index() == rhs.index();
}
template<typename ILhs, typename IRhs>
[[nodiscard]] constexpr bool operator!=(const dense_set_local_iterator<ILhs> &lhs, const dense_set_local_iterator<IRhs> &rhs) noexcept {
return !(lhs == rhs);
}
} // namespace internal
/**
* Internal details not to be documented.
* @endcond
*/
/**
* @brief Associative container for unique objects of a given type.
*
* Internally, elements are organized into buckets. Which bucket an element is
* placed into depends entirely on its hash. Elements with the same hash code
* appear in the same bucket.
*
* @tparam Type Value type of the associative container.
* @tparam Hash Type of function to use to hash the values.
* @tparam KeyEqual Type of function to use to compare the values for equality.
* @tparam Allocator Type of allocator used to manage memory and elements.
*/
template<typename Type, typename Hash, typename KeyEqual, typename Allocator>
class dense_set {
static constexpr float default_threshold = 0.875f;
static constexpr std::size_t minimum_capacity = 8u;
using node_type = std::pair<std::size_t, Type>;
using alloc_traits = std::allocator_traits<Allocator>;
static_assert(std::is_same_v<typename alloc_traits::value_type, Type>, "Invalid value type");
using sparse_container_type = std::vector<std::size_t, typename alloc_traits::template rebind_alloc<std::size_t>>;
using packed_container_type = std::vector<node_type, typename alloc_traits::template rebind_alloc<node_type>>;
template<typename Other>
[[nodiscard]] std::size_t value_to_bucket(const Other &value) const noexcept {
return fast_mod(static_cast<size_type>(sparse.second()(value)), bucket_count());
}
template<typename Other>
[[nodiscard]] auto constrained_find(const Other &value, std::size_t bucket) {
for(auto it = begin(bucket), last = end(bucket); it != last; ++it) {
if(packed.second()(*it, value)) {
return begin() + static_cast<typename iterator::difference_type>(it.index());
}
}
return end();
}
template<typename Other>
[[nodiscard]] auto constrained_find(const Other &value, std::size_t bucket) const {
for(auto it = cbegin(bucket), last = cend(bucket); it != last; ++it) {
if(packed.second()(*it, value)) {
return cbegin() + static_cast<typename iterator::difference_type>(it.index());
}
}
return cend();
}
template<typename Other>
[[nodiscard]] auto insert_or_do_nothing(Other &&value) {
const auto index = value_to_bucket(value);
if(auto it = constrained_find(value, index); it != end()) {
return std::make_pair(it, false);
}
packed.first().emplace_back(sparse.first()[index], std::forward<Other>(value));
sparse.first()[index] = packed.first().size() - 1u;
rehash_if_required();
return std::make_pair(--end(), true);
}
void move_and_pop(const std::size_t pos) {
if(const auto last = size() - 1u; pos != last) {
size_type *curr = sparse.first().data() + value_to_bucket(packed.first().back().second);
packed.first()[pos] = std::move(packed.first().back());
for(; *curr != last; curr = &packed.first()[*curr].first) {}
*curr = pos;
}
packed.first().pop_back();
}
void rehash_if_required() {
if(size() > (bucket_count() * max_load_factor())) {
rehash(bucket_count() * 2u);
}
}
public:
/*! @brief Key type of the container. */
using key_type = Type;
/*! @brief Value type of the container. */
using value_type = Type;
/*! @brief Unsigned integer type. */
using size_type = std::size_t;
/*! @brief Type of function to use to hash the elements. */
using hasher = Hash;
/*! @brief Type of function to use to compare the elements for equality. */
using key_equal = KeyEqual;
/*! @brief Allocator type. */
using allocator_type = Allocator;
/*! @brief Random access iterator type. */
using iterator = internal::dense_set_iterator<typename packed_container_type::iterator>;
/*! @brief Constant random access iterator type. */
using const_iterator = internal::dense_set_iterator<typename packed_container_type::const_iterator>;
/*! @brief Forward iterator type. */
using local_iterator = internal::dense_set_local_iterator<typename packed_container_type::iterator>;
/*! @brief Constant forward iterator type. */
using const_local_iterator = internal::dense_set_local_iterator<typename packed_container_type::const_iterator>;
/*! @brief Default constructor. */
dense_set()
: dense_set{minimum_capacity} {}
/**
* @brief Constructs an empty container with a given allocator.
* @param allocator The allocator to use.
*/
explicit dense_set(const allocator_type &allocator)
: dense_set{minimum_capacity, hasher{}, key_equal{}, allocator} {}
/**
* @brief Constructs an empty container with a given allocator and user
* supplied minimal number of buckets.
* @param cnt Minimal number of buckets.
* @param allocator The allocator to use.
*/
dense_set(const size_type cnt, const allocator_type &allocator)
: dense_set{cnt, hasher{}, key_equal{}, allocator} {}
/**
* @brief Constructs an empty container with a given allocator, hash
* function and user supplied minimal number of buckets.
* @param cnt Minimal number of buckets.
* @param hash Hash function to use.
* @param allocator The allocator to use.
*/
dense_set(const size_type cnt, const hasher &hash, const allocator_type &allocator)
: dense_set{cnt, hash, key_equal{}, allocator} {}
/**
* @brief Constructs an empty container with a given allocator, hash
* function, compare function and user supplied minimal number of buckets.
* @param cnt Minimal number of buckets.
* @param hash Hash function to use.
* @param equal Compare function to use.
* @param allocator The allocator to use.
*/
explicit dense_set(const size_type cnt, const hasher &hash = hasher{}, const key_equal &equal = key_equal{}, const allocator_type &allocator = allocator_type{})
: sparse{allocator, hash},
packed{allocator, equal},
threshold{default_threshold} {
rehash(cnt);
}
/*! @brief Default copy constructor. */
dense_set(const dense_set &) = default;
/**
* @brief Allocator-extended copy constructor.
* @param other The instance to copy from.
* @param allocator The allocator to use.
*/
dense_set(const dense_set &other, const allocator_type &allocator)
: sparse{std::piecewise_construct, std::forward_as_tuple(other.sparse.first(), allocator), std::forward_as_tuple(other.sparse.second())},
packed{std::piecewise_construct, std::forward_as_tuple(other.packed.first(), allocator), std::forward_as_tuple(other.packed.second())},
threshold{other.threshold} {}
/*! @brief Default move constructor. */
dense_set(dense_set &&) noexcept(std::is_nothrow_move_constructible_v<compressed_pair<sparse_container_type, hasher>> &&std::is_nothrow_move_constructible_v<compressed_pair<packed_container_type, key_equal>>) = default;
/**
* @brief Allocator-extended move constructor.
* @param other The instance to move from.
* @param allocator The allocator to use.
*/
dense_set(dense_set &&other, const allocator_type &allocator)
: sparse{std::piecewise_construct, std::forward_as_tuple(std::move(other.sparse.first()), allocator), std::forward_as_tuple(std::move(other.sparse.second()))},
packed{std::piecewise_construct, std::forward_as_tuple(std::move(other.packed.first()), allocator), std::forward_as_tuple(std::move(other.packed.second()))},
threshold{other.threshold} {}
/**
* @brief Default copy assignment operator.
* @return This container.
*/
dense_set &operator=(const dense_set &) = default;
/**
* @brief Default move assignment operator.
* @return This container.
*/
dense_set &operator=(dense_set &&) noexcept(std::is_nothrow_move_assignable_v<compressed_pair<sparse_container_type, hasher>> &&std::is_nothrow_move_assignable_v<compressed_pair<packed_container_type, key_equal>>) = default;
/**
* @brief Returns the associated allocator.
* @return The associated allocator.
*/
[[nodiscard]] constexpr allocator_type get_allocator() const noexcept {
return sparse.first().get_allocator();
}
/**
* @brief Returns an iterator to the beginning.
*
* The returned iterator points to the first instance of the internal array.
* If the array is empty, the returned iterator will be equal to `end()`.
*
* @return An iterator to the first instance of the internal array.
*/
[[nodiscard]] const_iterator cbegin() const noexcept {
return packed.first().begin();
}
/*! @copydoc cbegin */
[[nodiscard]] const_iterator begin() const noexcept {
return cbegin();
}
/*! @copydoc begin */
[[nodiscard]] iterator begin() noexcept {
return packed.first().begin();
}
/**
* @brief Returns an iterator to the end.
*
* The returned iterator points to the element following the last instance
* of the internal array. Attempting to dereference the returned iterator
* results in undefined behavior.
*
* @return An iterator to the element following the last instance of the
* internal array.
*/
[[nodiscard]] const_iterator cend() const noexcept {
return packed.first().end();
}
/*! @copydoc cend */
[[nodiscard]] const_iterator end() const noexcept {
return cend();
}
/*! @copydoc end */
[[nodiscard]] iterator end() noexcept {
return packed.first().end();
}
/**
* @brief Checks whether a container is empty.
* @return True if the container is empty, false otherwise.
*/
[[nodiscard]] bool empty() const noexcept {
return packed.first().empty();
}
/**
* @brief Returns the number of elements in a container.
* @return Number of elements in a container.
*/
[[nodiscard]] size_type size() const noexcept {
return packed.first().size();
}
/**
* @brief Returns the maximum possible number of elements.
* @return Maximum possible number of elements.
*/
[[nodiscard]] size_type max_size() const noexcept {
return packed.first().max_size();
}
/*! @brief Clears the container. */
void clear() noexcept {
sparse.first().clear();
packed.first().clear();
rehash(0u);
}
/**
* @brief Inserts an element into the container, if it does not exist.
* @param value An element to insert into the container.
* @return A pair consisting of an iterator to the inserted element (or to
* the element that prevented the insertion) and a bool denoting whether the
* insertion took place.
*/
std::pair<iterator, bool> insert(const value_type &value) {
return insert_or_do_nothing(value);
}
/*! @copydoc insert */
std::pair<iterator, bool> insert(value_type &&value) {
return insert_or_do_nothing(std::move(value));
}
/**
* @brief Inserts elements into the container, if they do not exist.
* @tparam It Type of input iterator.
* @param first An iterator to the first element of the range of elements.
* @param last An iterator past the last element of the range of elements.
*/
template<typename It>
void insert(It first, It last) {
for(; first != last; ++first) {
insert(*first);
}
}
/**
* @brief Constructs an element in-place, if it does not exist.
*
* The element is also constructed when the container already has the key,
* in which case the newly constructed object is destroyed immediately.
*
* @tparam Args Types of arguments to forward to the constructor of the
* element.
* @param args Arguments to forward to the constructor of the element.
* @return A pair consisting of an iterator to the inserted element (or to
* the element that prevented the insertion) and a bool denoting whether the
* insertion took place.
*/
template<typename... Args>
std::pair<iterator, bool> emplace(Args &&...args) {
if constexpr(((sizeof...(Args) == 1u) && ... && std::is_same_v<std::decay_t<Args>, value_type>)) {
return insert_or_do_nothing(std::forward<Args>(args)...);
} else {
auto &node = packed.first().emplace_back(std::piecewise_construct, std::make_tuple(packed.first().size()), std::forward_as_tuple(std::forward<Args>(args)...));
const auto index = value_to_bucket(node.second);
if(auto it = constrained_find(node.second, index); it != end()) {
packed.first().pop_back();
return std::make_pair(it, false);
}
std::swap(node.first, sparse.first()[index]);
rehash_if_required();
return std::make_pair(--end(), true);
}
}
/**
* @brief Removes an element from a given position.
* @param pos An iterator to the element to remove.
* @return An iterator following the removed element.
*/
iterator erase(const_iterator pos) {
const auto diff = pos - cbegin();
erase(*pos);
return begin() + diff;
}
/**
* @brief Removes the given elements from a container.
* @param first An iterator to the first element of the range of elements.
* @param last An iterator past the last element of the range of elements.
* @return An iterator following the last removed element.
*/
iterator erase(const_iterator first, const_iterator last) {
const auto dist = first - cbegin();
for(auto from = last - cbegin(); from != dist; --from) {
erase(packed.first()[from - 1u].second);
}
return (begin() + dist);
}
/**
* @brief Removes the element associated with a given value.
* @param value Value of an element to remove.
* @return Number of elements removed (either 0 or 1).
*/
size_type erase(const value_type &value) {
for(size_type *curr = sparse.first().data() + value_to_bucket(value); *curr != (std::numeric_limits<size_type>::max)(); curr = &packed.first()[*curr].first) {
if(packed.second()(packed.first()[*curr].second, value)) {
const auto index = *curr;
*curr = packed.first()[*curr].first;
move_and_pop(index);
return 1u;
}
}
return 0u;
}
/**
* @brief Exchanges the contents with those of a given container.
* @param other Container to exchange the content with.
*/
void swap(dense_set &other) {
using std::swap;
swap(sparse, other.sparse);
swap(packed, other.packed);
swap(threshold, other.threshold);
}
/**
* @brief Returns the number of elements matching a value (either 1 or 0).
* @param key Key value of an element to search for.
* @return Number of elements matching the key (either 1 or 0).
*/
[[nodiscard]] size_type count(const value_type &key) const {
return find(key) != end();
}
/**
* @brief Returns the number of elements matching a key (either 1 or 0).
* @tparam Other Type of the key value of an element to search for.
* @param key Key value of an element to search for.
* @return Number of elements matching the key (either 1 or 0).
*/
template<typename Other>
[[nodiscard]] std::enable_if_t<is_transparent_v<hasher> && is_transparent_v<key_equal>, std::conditional_t<false, Other, size_type>>
count(const Other &key) const {
return find(key) != end();
}
/**
* @brief Finds an element with a given value.
* @param value Value of an element to search for.
* @return An iterator to an element with the given value. If no such
* element is found, a past-the-end iterator is returned.
*/
[[nodiscard]] iterator find(const value_type &value) {
return constrained_find(value, value_to_bucket(value));
}
/*! @copydoc find */
[[nodiscard]] const_iterator find(const value_type &value) const {
return constrained_find(value, value_to_bucket(value));
}
/**
* @brief Finds an element that compares _equivalent_ to a given value.
* @tparam Other Type of an element to search for.
* @param value Value of an element to search for.
* @return An iterator to an element with the given value. If no such
* element is found, a past-the-end iterator is returned.
*/
template<typename Other>
[[nodiscard]] std::enable_if_t<is_transparent_v<hasher> && is_transparent_v<key_equal>, std::conditional_t<false, Other, iterator>>
find(const Other &value) {
return constrained_find(value, value_to_bucket(value));
}
/*! @copydoc find */
template<typename Other>
[[nodiscard]] std::enable_if_t<is_transparent_v<hasher> && is_transparent_v<key_equal>, std::conditional_t<false, Other, const_iterator>>
find(const Other &value) const {
return constrained_find(value, value_to_bucket(value));
}
/**
* @brief Returns a range containing all elements with a given value.
* @param value Value of an element to search for.
* @return A pair of iterators pointing to the first element and past the
* last element of the range.
*/
[[nodiscard]] std::pair<iterator, iterator> equal_range(const value_type &value) {
const auto it = find(value);
return {it, it + !(it == end())};
}
/*! @copydoc equal_range */
[[nodiscard]] std::pair<const_iterator, const_iterator> equal_range(const value_type &value) const {
const auto it = find(value);
return {it, it + !(it == cend())};
}
/**
* @brief Returns a range containing all elements that compare _equivalent_
* to a given value.
* @tparam Other Type of an element to search for.
* @param value Value of an element to search for.
* @return A pair of iterators pointing to the first element and past the
* last element of the range.
*/
template<typename Other>
[[nodiscard]] std::enable_if_t<is_transparent_v<hasher> && is_transparent_v<key_equal>, std::conditional_t<false, Other, std::pair<iterator, iterator>>>
equal_range(const Other &value) {
const auto it = find(value);
return {it, it + !(it == end())};
}
/*! @copydoc equal_range */
template<class Other>
[[nodiscard]] std::enable_if_t<is_transparent_v<hasher> && is_transparent_v<key_equal>, std::conditional_t<false, Other, std::pair<const_iterator, const_iterator>>>
equal_range(const Other &value) const {
const auto it = find(value);
return {it, it + !(it == cend())};
}
/**
* @brief Checks if the container contains an element with a given value.
* @param value Value of an element to search for.
* @return True if there is such an element, false otherwise.
*/
[[nodiscard]] bool contains(const value_type &value) const {
return (find(value) != cend());
}
/**
* @brief Checks if the container contains an element that compares
* _equivalent_ to a given value.
* @tparam Other Type of an element to search for.
* @param value Value of an element to search for.
* @return True if there is such an element, false otherwise.
*/
template<typename Other>
[[nodiscard]] std::enable_if_t<is_transparent_v<hasher> && is_transparent_v<key_equal>, std::conditional_t<false, Other, bool>>
contains(const Other &value) const {
return (find(value) != cend());
}
/**
* @brief Returns an iterator to the beginning of a given bucket.
* @param index An index of a bucket to access.
* @return An iterator to the beginning of the given bucket.
*/
[[nodiscard]] const_local_iterator cbegin(const size_type index) const {
return {packed.first().begin(), sparse.first()[index]};
}
/**
* @brief Returns an iterator to the beginning of a given bucket.
* @param index An index of a bucket to access.
* @return An iterator to the beginning of the given bucket.
*/
[[nodiscard]] const_local_iterator begin(const size_type index) const {
return cbegin(index);
}
/**
* @brief Returns an iterator to the beginning of a given bucket.
* @param index An index of a bucket to access.
* @return An iterator to the beginning of the given bucket.
*/
[[nodiscard]] local_iterator begin(const size_type index) {
return {packed.first().begin(), sparse.first()[index]};
}
/**
* @brief Returns an iterator to the end of a given bucket.
* @param index An index of a bucket to access.
* @return An iterator to the end of the given bucket.
*/
[[nodiscard]] const_local_iterator cend([[maybe_unused]] const size_type index) const {
return {packed.first().begin(), (std::numeric_limits<size_type>::max)()};
}
/**
* @brief Returns an iterator to the end of a given bucket.
* @param index An index of a bucket to access.
* @return An iterator to the end of the given bucket.
*/
[[nodiscard]] const_local_iterator end(const size_type index) const {
return cend(index);
}
/**
* @brief Returns an iterator to the end of a given bucket.
* @param index An index of a bucket to access.
* @return An iterator to the end of the given bucket.
*/
[[nodiscard]] local_iterator end([[maybe_unused]] const size_type index) {
return {packed.first().begin(), (std::numeric_limits<size_type>::max)()};
}
/**
* @brief Returns the number of buckets.
* @return The number of buckets.
*/
[[nodiscard]] size_type bucket_count() const {
return sparse.first().size();
}
/**
* @brief Returns the maximum number of buckets.
* @return The maximum number of buckets.
*/
[[nodiscard]] size_type max_bucket_count() const {
return sparse.first().max_size();
}
/**
* @brief Returns the number of elements in a given bucket.
* @param index The index of the bucket to examine.
* @return The number of elements in the given bucket.
*/
[[nodiscard]] size_type bucket_size(const size_type index) const {
return static_cast<size_type>(std::distance(begin(index), end(index)));
}
/**
* @brief Returns the bucket for a given element.
* @param value The value of the element to examine.
* @return The bucket for the given element.
*/
[[nodiscard]] size_type bucket(const value_type &value) const {
return value_to_bucket(value);
}
/**
* @brief Returns the average number of elements per bucket.
* @return The average number of elements per bucket.
*/
[[nodiscard]] float load_factor() const {
return size() / static_cast<float>(bucket_count());
}
/**
* @brief Returns the maximum average number of elements per bucket.
* @return The maximum average number of elements per bucket.
*/
[[nodiscard]] float max_load_factor() const {
return threshold;
}
/**
* @brief Sets the desired maximum average number of elements per bucket.
* @param value A desired maximum average number of elements per bucket.
*/
void max_load_factor(const float value) {
ENTT_ASSERT(value > 0.f, "Invalid load factor");
threshold = value;
rehash(0u);
}
/**
* @brief Reserves at least the specified number of buckets and regenerates
* the hash table.
* @param cnt New number of buckets.
*/
void rehash(const size_type cnt) {
auto value = cnt > minimum_capacity ? cnt : minimum_capacity;
const auto cap = static_cast<size_type>(size() / max_load_factor());
value = value > cap ? value : cap;
if(const auto sz = next_power_of_two(value); sz != bucket_count()) {
sparse.first().resize(sz);
for(auto &&elem: sparse.first()) {
elem = std::numeric_limits<size_type>::max();
}
for(size_type pos{}, last = size(); pos < last; ++pos) {
const auto index = value_to_bucket(packed.first()[pos].second);
packed.first()[pos].first = std::exchange(sparse.first()[index], pos);
}
}
}
/**
* @brief Reserves space for at least the specified number of elements and
* regenerates the hash table.
* @param cnt New number of elements.
*/
void reserve(const size_type cnt) {
packed.first().reserve(cnt);
rehash(static_cast<size_type>(std::ceil(cnt / max_load_factor())));
}
/**
* @brief Returns the function used to hash the elements.
* @return The function used to hash the elements.
*/
[[nodiscard]] hasher hash_function() const {
return sparse.second();
}
/**
* @brief Returns the function used to compare elements for equality.
* @return The function used to compare elements for equality.
*/
[[nodiscard]] key_equal key_eq() const {
return packed.second();
}
private:
compressed_pair<sparse_container_type, hasher> sparse;
compressed_pair<packed_container_type, key_equal> packed;
float threshold;
};
} // namespace entt
#endif
// #include "core/algorithm.hpp"
#ifndef ENTT_CORE_ALGORITHM_HPP
#define ENTT_CORE_ALGORITHM_HPP
#include <algorithm>
#include <functional>
#include <iterator>
#include <utility>
#include <vector>
// #include "utility.hpp"
#ifndef ENTT_CORE_UTILITY_HPP
#define ENTT_CORE_UTILITY_HPP
#include <type_traits>
#include <utility>
namespace entt {
/*! @brief Identity function object (waiting for C++20). */
struct identity {
/*! @brief Indicates that this is a transparent function object. */
using is_transparent = void;
/**
* @brief Returns its argument unchanged.
* @tparam Type Type of the argument.
* @param value The actual argument.
* @return The submitted value as-is.
*/
template<class Type>
[[nodiscard]] constexpr Type &&operator()(Type &&value) const noexcept {
return std::forward<Type>(value);
}
};
/**
* @brief Constant utility to disambiguate overloaded members of a class.
* @tparam Type Type of the desired overload.
* @tparam Class Type of class to which the member belongs.
* @param member A valid pointer to a member.
* @return Pointer to the member.
*/
template<typename Type, typename Class>
[[nodiscard]] constexpr auto overload(Type Class::*member) noexcept {
return member;
}
/**
* @brief Constant utility to disambiguate overloaded functions.
* @tparam Func Function type of the desired overload.
* @param func A valid pointer to a function.
* @return Pointer to the function.
*/
template<typename Func>
[[nodiscard]] constexpr auto overload(Func *func) noexcept {
return func;
}
/**
* @brief Helper type for visitors.
* @tparam Func Types of function objects.
*/
template<class... Func>
struct overloaded: Func... {
using Func::operator()...;
};
/**
* @brief Deduction guide.
* @tparam Func Types of function objects.
*/
template<class... Func>
overloaded(Func...) -> overloaded<Func...>;
/**
* @brief Basic implementation of a y-combinator.
* @tparam Func Type of a potentially recursive function.
*/
template<class Func>
struct y_combinator {
/**
* @brief Constructs a y-combinator from a given function.
* @param recursive A potentially recursive function.
*/
constexpr y_combinator(Func recursive) noexcept(std::is_nothrow_move_constructible_v<Func>)
: func{std::move(recursive)} {}
/**
* @brief Invokes a y-combinator and therefore its underlying function.
* @tparam Args Types of arguments to use to invoke the underlying function.
* @param args Parameters to use to invoke the underlying function.
* @return Return value of the underlying function, if any.
*/
template<class... Args>
constexpr decltype(auto) operator()(Args &&...args) const noexcept(std::is_nothrow_invocable_v<Func, const y_combinator &, Args...>) {
return func(*this, std::forward<Args>(args)...);
}
/*! @copydoc operator()() */
template<class... Args>
constexpr decltype(auto) operator()(Args &&...args) noexcept(std::is_nothrow_invocable_v<Func, y_combinator &, Args...>) {
return func(*this, std::forward<Args>(args)...);
}
private:
Func func;
};
} // namespace entt
#endif
namespace entt {
/**
* @brief Function object to wrap `std::sort` in a class type.
*
* Unfortunately, `std::sort` cannot be passed as template argument to a class
* template or a function template.<br/>
* This class fills the gap by wrapping some flavors of `std::sort` in a
* function object.
*/
struct std_sort {
/**
* @brief Sorts the elements in a range.
*
* Sorts the elements in a range using the given binary comparison function.
*
* @tparam It Type of random access iterator.
* @tparam Compare Type of comparison function object.
* @tparam Args Types of arguments to forward to the sort function.
* @param first An iterator to the first element of the range to sort.
* @param last An iterator past the last element of the range to sort.
* @param compare A valid comparison function object.
* @param args Arguments to forward to the sort function, if any.
*/
template<typename It, typename Compare = std::less<>, typename... Args>
void operator()(It first, It last, Compare compare = Compare{}, Args &&...args) const {
std::sort(std::forward<Args>(args)..., std::move(first), std::move(last), std::move(compare));
}
};
/*! @brief Function object for performing insertion sort. */
struct insertion_sort {
/**
* @brief Sorts the elements in a range.
*
* Sorts the elements in a range using the given binary comparison function.
*
* @tparam It Type of random access iterator.
* @tparam Compare Type of comparison function object.
* @param first An iterator to the first element of the range to sort.
* @param last An iterator past the last element of the range to sort.
* @param compare A valid comparison function object.
*/
template<typename It, typename Compare = std::less<>>
void operator()(It first, It last, Compare compare = Compare{}) const {
if(first < last) {
for(auto it = first + 1; it < last; ++it) {
auto value = std::move(*it);
auto pre = it;
for(; pre > first && compare(value, *(pre - 1)); --pre) {
*pre = std::move(*(pre - 1));
}
*pre = std::move(value);
}
}
}
};
/**
* @brief Function object for performing LSD radix sort.
* @tparam Bit Number of bits processed per pass.
* @tparam N Maximum number of bits to sort.
*/
template<std::size_t Bit, std::size_t N>
struct radix_sort {
static_assert((N % Bit) == 0, "The maximum number of bits to sort must be a multiple of the number of bits processed per pass");
/**
* @brief Sorts the elements in a range.
*
* Sorts the elements in a range using the given _getter_ to access the
* actual data to be sorted.
*
* This implementation is inspired by the online book
* [Physically Based Rendering](http://www.pbr-book.org/3ed-2018/Primitives_and_Intersection_Acceleration/Bounding_Volume_Hierarchies.html#RadixSort).
*
* @tparam It Type of random access iterator.
* @tparam Getter Type of _getter_ function object.
* @param first An iterator to the first element of the range to sort.
* @param last An iterator past the last element of the range to sort.
* @param getter A valid _getter_ function object.
*/
template<typename It, typename Getter = identity>
void operator()(It first, It last, Getter getter = Getter{}) const {
if(first < last) {
static constexpr auto mask = (1 << Bit) - 1;
static constexpr auto buckets = 1 << Bit;
static constexpr auto passes = N / Bit;
using value_type = typename std::iterator_traits<It>::value_type;
std::vector<value_type> aux(std::distance(first, last));
auto part = [getter = std::move(getter)](auto from, auto to, auto out, auto start) {
std::size_t index[buckets]{};
std::size_t count[buckets]{};
for(auto it = from; it != to; ++it) {
++count[(getter(*it) >> start) & mask];
}
for(std::size_t pos{}, end = buckets - 1u; pos < end; ++pos) {
index[pos + 1u] = index[pos] + count[pos];
}
for(auto it = from; it != to; ++it) {
out[index[(getter(*it) >> start) & mask]++] = std::move(*it);
}
};
for(std::size_t pass = 0; pass < (passes & ~1); pass += 2) {
part(first, last, aux.begin(), pass * Bit);
part(aux.begin(), aux.end(), first, (pass + 1) * Bit);
}
if constexpr(passes & 1) {
part(first, last, aux.begin(), (passes - 1) * Bit);
std::move(aux.begin(), aux.end(), first);
}
}
}
};
} // namespace entt
#endif
// #include "core/any.hpp"
#ifndef ENTT_CORE_ANY_HPP
#define ENTT_CORE_ANY_HPP
#include <cstddef>
#include <memory>
#include <type_traits>
#include <utility>
// #include "../config/config.h"
#ifndef ENTT_CONFIG_CONFIG_H
#define ENTT_CONFIG_CONFIG_H
// #include "version.h"
#ifndef ENTT_CONFIG_VERSION_H
#define ENTT_CONFIG_VERSION_H
// #include "macro.h"
#ifndef ENTT_CONFIG_MACRO_H
#define ENTT_CONFIG_MACRO_H
#define ENTT_STR(arg) #arg
#define ENTT_XSTR(arg) ENTT_STR(arg)
#endif
#define ENTT_VERSION_MAJOR 3
#define ENTT_VERSION_MINOR 11
#define ENTT_VERSION_PATCH 1
#define ENTT_VERSION \
ENTT_XSTR(ENTT_VERSION_MAJOR) \
"." ENTT_XSTR(ENTT_VERSION_MINOR) "." ENTT_XSTR(ENTT_VERSION_PATCH)
#endif
#if defined(__cpp_exceptions) && !defined(ENTT_NOEXCEPTION)
# define ENTT_CONSTEXPR
# define ENTT_THROW throw
# define ENTT_TRY try
# define ENTT_CATCH catch(...)
#else
# define ENTT_CONSTEXPR constexpr // use only with throwing functions (waiting for C++20)
# define ENTT_THROW
# define ENTT_TRY if(true)
# define ENTT_CATCH if(false)
#endif
#ifdef ENTT_USE_ATOMIC
# include <atomic>
# define ENTT_MAYBE_ATOMIC(Type) std::atomic<Type>
#else
# define ENTT_MAYBE_ATOMIC(Type) Type
#endif
#ifndef ENTT_ID_TYPE
# include <cstdint>
# define ENTT_ID_TYPE std::uint32_t
#endif
#ifndef ENTT_SPARSE_PAGE
# define ENTT_SPARSE_PAGE 4096
#endif
#ifndef ENTT_PACKED_PAGE
# define ENTT_PACKED_PAGE 1024
#endif
#ifdef ENTT_DISABLE_ASSERT
# undef ENTT_ASSERT
# define ENTT_ASSERT(condition, msg) (void(0))
#elif !defined ENTT_ASSERT
# include <cassert>
# define ENTT_ASSERT(condition, msg) assert(condition)
#endif
#ifdef ENTT_DISABLE_ASSERT
# undef ENTT_ASSERT_CONSTEXPR
# define ENTT_ASSERT_CONSTEXPR(condition, msg) (void(0))
#elif !defined ENTT_ASSERT_CONSTEXPR
# define ENTT_ASSERT_CONSTEXPR(condition, msg) ENTT_ASSERT(condition, msg)
#endif
#ifdef ENTT_NO_ETO
# define ENTT_ETO_TYPE(Type) void
#else
# define ENTT_ETO_TYPE(Type) Type
#endif
#ifdef ENTT_STANDARD_CPP
# define ENTT_NONSTD false
#else
# define ENTT_NONSTD true
# if defined __clang__ || defined __GNUC__
# define ENTT_PRETTY_FUNCTION __PRETTY_FUNCTION__
# define ENTT_PRETTY_FUNCTION_PREFIX '='
# define ENTT_PRETTY_FUNCTION_SUFFIX ']'
# elif defined _MSC_VER
# define ENTT_PRETTY_FUNCTION __FUNCSIG__
# define ENTT_PRETTY_FUNCTION_PREFIX '<'
# define ENTT_PRETTY_FUNCTION_SUFFIX '>'
# endif
#endif
#if defined _MSC_VER
# pragma detect_mismatch("entt.version", ENTT_VERSION)
# pragma detect_mismatch("entt.noexcept", ENTT_XSTR(ENTT_TRY))
# pragma detect_mismatch("entt.id", ENTT_XSTR(ENTT_ID_TYPE))
# pragma detect_mismatch("entt.nonstd", ENTT_XSTR(ENTT_NONSTD))
#endif
#endif
// #include "../core/utility.hpp"
#ifndef ENTT_CORE_UTILITY_HPP
#define ENTT_CORE_UTILITY_HPP
#include <type_traits>
#include <utility>
namespace entt {
/*! @brief Identity function object (waiting for C++20). */
struct identity {
/*! @brief Indicates that this is a transparent function object. */
using is_transparent = void;
/**
* @brief Returns its argument unchanged.
* @tparam Type Type of the argument.
* @param value The actual argument.
* @return The submitted value as-is.
*/
template<class Type>
[[nodiscard]] constexpr Type &&operator()(Type &&value) const noexcept {
return std::forward<Type>(value);
}
};
/**
* @brief Constant utility to disambiguate overloaded members of a class.
* @tparam Type Type of the desired overload.
* @tparam Class Type of class to which the member belongs.
* @param member A valid pointer to a member.
* @return Pointer to the member.
*/
template<typename Type, typename Class>
[[nodiscard]] constexpr auto overload(Type Class::*member) noexcept {
return member;
}
/**
* @brief Constant utility to disambiguate overloaded functions.
* @tparam Func Function type of the desired overload.
* @param func A valid pointer to a function.
* @return Pointer to the function.
*/
template<typename Func>
[[nodiscard]] constexpr auto overload(Func *func) noexcept {
return func;
}
/**
* @brief Helper type for visitors.
* @tparam Func Types of function objects.
*/
template<class... Func>
struct overloaded: Func... {
using Func::operator()...;
};
/**
* @brief Deduction guide.
* @tparam Func Types of function objects.
*/
template<class... Func>
overloaded(Func...) -> overloaded<Func...>;
/**
* @brief Basic implementation of a y-combinator.
* @tparam Func Type of a potentially recursive function.
*/
template<class Func>
struct y_combinator {
/**
* @brief Constructs a y-combinator from a given function.
* @param recursive A potentially recursive function.
*/
constexpr y_combinator(Func recursive) noexcept(std::is_nothrow_move_constructible_v<Func>)
: func{std::move(recursive)} {}
/**
* @brief Invokes a y-combinator and therefore its underlying function.
* @tparam Args Types of arguments to use to invoke the underlying function.
* @param args Parameters to use to invoke the underlying function.
* @return Return value of the underlying function, if any.
*/
template<class... Args>
constexpr decltype(auto) operator()(Args &&...args) const noexcept(std::is_nothrow_invocable_v<Func, const y_combinator &, Args...>) {
return func(*this, std::forward<Args>(args)...);
}
/*! @copydoc operator()() */
template<class... Args>
constexpr decltype(auto) operator()(Args &&...args) noexcept(std::is_nothrow_invocable_v<Func, y_combinator &, Args...>) {
return func(*this, std::forward<Args>(args)...);
}
private:
Func func;
};
} // namespace entt
#endif
// #include "fwd.hpp"
#ifndef ENTT_CORE_FWD_HPP
#define ENTT_CORE_FWD_HPP
#include <cstddef>
// #include "../config/config.h"
namespace entt {
template<std::size_t Len = sizeof(double[2]), std::size_t = alignof(double[2])>
class basic_any;
/*! @brief Alias declaration for type identifiers. */
using id_type = ENTT_ID_TYPE;
/*! @brief Alias declaration for the most common use case. */
using any = basic_any<>;
} // namespace entt
#endif
// #include "type_info.hpp"
#ifndef ENTT_CORE_TYPE_INFO_HPP
#define ENTT_CORE_TYPE_INFO_HPP
#include <string_view>
#include <type_traits>
#include <utility>
// #include "../config/config.h"
// #include "../core/attribute.h"
#ifndef ENTT_CORE_ATTRIBUTE_H
#define ENTT_CORE_ATTRIBUTE_H
#ifndef ENTT_EXPORT
# if defined _WIN32 || defined __CYGWIN__ || defined _MSC_VER
# define ENTT_EXPORT __declspec(dllexport)
# define ENTT_IMPORT __declspec(dllimport)
# define ENTT_HIDDEN
# elif defined __GNUC__ && __GNUC__ >= 4
# define ENTT_EXPORT __attribute__((visibility("default")))
# define ENTT_IMPORT __attribute__((visibility("default")))
# define ENTT_HIDDEN __attribute__((visibility("hidden")))
# else /* Unsupported compiler */
# define ENTT_EXPORT
# define ENTT_IMPORT
# define ENTT_HIDDEN
# endif
#endif
#ifndef ENTT_API
# if defined ENTT_API_EXPORT
# define ENTT_API ENTT_EXPORT
# elif defined ENTT_API_IMPORT
# define ENTT_API ENTT_IMPORT
# else /* No API */
# define ENTT_API
# endif
#endif
#endif
// #include "fwd.hpp"
// #include "hashed_string.hpp"
#ifndef ENTT_CORE_HASHED_STRING_HPP
#define ENTT_CORE_HASHED_STRING_HPP
#include <cstddef>
#include <cstdint>
// #include "fwd.hpp"
namespace entt {
/**
* @cond TURN_OFF_DOXYGEN
* Internal details not to be documented.
*/
namespace internal {
template<typename>
struct fnv1a_traits;
template<>
struct fnv1a_traits<std::uint32_t> {
using type = std::uint32_t;
static constexpr std::uint32_t offset = 2166136261;
static constexpr std::uint32_t prime = 16777619;
};
template<>
struct fnv1a_traits<std::uint64_t> {
using type = std::uint64_t;
static constexpr std::uint64_t offset = 14695981039346656037ull;
static constexpr std::uint64_t prime = 1099511628211ull;
};
template<typename Char>
struct basic_hashed_string {
using value_type = Char;
using size_type = std::size_t;
using hash_type = id_type;
const value_type *repr;
size_type length;
hash_type hash;
};
} // namespace internal
/**
* Internal details not to be documented.
* @endcond
*/
/**
* @brief Zero overhead unique identifier.
*
* A hashed string is a compile-time tool that allows users to use
* human-readable identifiers in the codebase while using their numeric
* counterparts at runtime.<br/>
* Because of that, a hashed string can also be used in constant expressions if
* required.
*
* @warning
* This class doesn't take ownership of user-supplied strings nor does it make a
* copy of them.
*
* @tparam Char Character type.
*/
template<typename Char>
class basic_hashed_string: internal::basic_hashed_string<Char> {
using base_type = internal::basic_hashed_string<Char>;
using hs_traits = internal::fnv1a_traits<id_type>;
struct const_wrapper {
// non-explicit constructor on purpose
constexpr const_wrapper(const Char *str) noexcept
: repr{str} {}
const Char *repr;
};
// FowlerNollVo hash function v. 1a - the good
[[nodiscard]] static constexpr auto helper(const Char *str) noexcept {
base_type base{str, 0u, hs_traits::offset};
for(; str[base.length]; ++base.length) {
base.hash = (base.hash ^ static_cast<hs_traits::type>(str[base.length])) * hs_traits::prime;
}
return base;
}
// FowlerNollVo hash function v. 1a - the good
[[nodiscard]] static constexpr auto helper(const Char *str, const std::size_t len) noexcept {
base_type base{str, len, hs_traits::offset};
for(size_type pos{}; pos < len; ++pos) {
base.hash = (base.hash ^ static_cast<hs_traits::type>(str[pos])) * hs_traits::prime;
}
return base;
}
public:
/*! @brief Character type. */
using value_type = typename base_type::value_type;
/*! @brief Unsigned integer type. */
using size_type = typename base_type::size_type;
/*! @brief Unsigned integer type. */
using hash_type = typename base_type::hash_type;
/**
* @brief Returns directly the numeric representation of a string view.
* @param str Human-readable identifier.
* @param len Length of the string to hash.
* @return The numeric representation of the string.
*/
[[nodiscard]] static constexpr hash_type value(const value_type *str, const size_type len) noexcept {
return basic_hashed_string{str, len};
}
/**
* @brief Returns directly the numeric representation of a string.
* @tparam N Number of characters of the identifier.
* @param str Human-readable identifier.
* @return The numeric representation of the string.
*/
template<std::size_t N>
[[nodiscard]] static constexpr hash_type value(const value_type (&str)[N]) noexcept {
return basic_hashed_string{str};
}
/**
* @brief Returns directly the numeric representation of a string.
* @param wrapper Helps achieving the purpose by relying on overloading.
* @return The numeric representation of the string.
*/
[[nodiscard]] static constexpr hash_type value(const_wrapper wrapper) noexcept {
return basic_hashed_string{wrapper};
}
/*! @brief Constructs an empty hashed string. */
constexpr basic_hashed_string() noexcept
: base_type{} {}
/**
* @brief Constructs a hashed string from a string view.
* @param str Human-readable identifier.
* @param len Length of the string to hash.
*/
constexpr basic_hashed_string(const value_type *str, const size_type len) noexcept
: base_type{helper(str, len)} {}
/**
* @brief Constructs a hashed string from an array of const characters.
* @tparam N Number of characters of the identifier.
* @param str Human-readable identifier.
*/
template<std::size_t N>
constexpr basic_hashed_string(const value_type (&str)[N]) noexcept
: base_type{helper(str)} {}
/**
* @brief Explicit constructor on purpose to avoid constructing a hashed
* string directly from a `const value_type *`.
*
* @warning
* The lifetime of the string is not extended nor is it copied.
*
* @param wrapper Helps achieving the purpose by relying on overloading.
*/
explicit constexpr basic_hashed_string(const_wrapper wrapper) noexcept
: base_type{helper(wrapper.repr)} {}
/**
* @brief Returns the size a hashed string.
* @return The size of the hashed string.
*/
[[nodiscard]] constexpr size_type size() const noexcept {
return base_type::length;
}
/**
* @brief Returns the human-readable representation of a hashed string.
* @return The string used to initialize the hashed string.
*/
[[nodiscard]] constexpr const value_type *data() const noexcept {
return base_type::repr;
}
/**
* @brief Returns the numeric representation of a hashed string.
* @return The numeric representation of the hashed string.
*/
[[nodiscard]] constexpr hash_type value() const noexcept {
return base_type::hash;
}
/*! @copydoc data */
[[nodiscard]] constexpr operator const value_type *() const noexcept {
return data();
}
/**
* @brief Returns the numeric representation of a hashed string.
* @return The numeric representation of the hashed string.
*/
[[nodiscard]] constexpr operator hash_type() const noexcept {
return value();
}
};
/**
* @brief Deduction guide.
* @tparam Char Character type.
* @param str Human-readable identifier.
* @param len Length of the string to hash.
*/
template<typename Char>
basic_hashed_string(const Char *str, const std::size_t len) -> basic_hashed_string<Char>;
/**
* @brief Deduction guide.
* @tparam Char Character type.
* @tparam N Number of characters of the identifier.
* @param str Human-readable identifier.
*/
template<typename Char, std::size_t N>
basic_hashed_string(const Char (&str)[N]) -> basic_hashed_string<Char>;
/**
* @brief Compares two hashed strings.
* @tparam Char Character type.
* @param lhs A valid hashed string.
* @param rhs A valid hashed string.
* @return True if the two hashed strings are identical, false otherwise.
*/
template<typename Char>
[[nodiscard]] constexpr bool operator==(const basic_hashed_string<Char> &lhs, const basic_hashed_string<Char> &rhs) noexcept {
return lhs.value() == rhs.value();
}
/**
* @brief Compares two hashed strings.
* @tparam Char Character type.
* @param lhs A valid hashed string.
* @param rhs A valid hashed string.
* @return True if the two hashed strings differ, false otherwise.
*/
template<typename Char>
[[nodiscard]] constexpr bool operator!=(const basic_hashed_string<Char> &lhs, const basic_hashed_string<Char> &rhs) noexcept {
return !(lhs == rhs);
}
/**
* @brief Compares two hashed strings.
* @tparam Char Character type.
* @param lhs A valid hashed string.
* @param rhs A valid hashed string.
* @return True if the first element is less than the second, false otherwise.
*/
template<typename Char>
[[nodiscard]] constexpr bool operator<(const basic_hashed_string<Char> &lhs, const basic_hashed_string<Char> &rhs) noexcept {
return lhs.value() < rhs.value();
}
/**
* @brief Compares two hashed strings.
* @tparam Char Character type.
* @param lhs A valid hashed string.
* @param rhs A valid hashed string.
* @return True if the first element is less than or equal to the second, false
* otherwise.
*/
template<typename Char>
[[nodiscard]] constexpr bool operator<=(const basic_hashed_string<Char> &lhs, const basic_hashed_string<Char> &rhs) noexcept {
return !(rhs < lhs);
}
/**
* @brief Compares two hashed strings.
* @tparam Char Character type.
* @param lhs A valid hashed string.
* @param rhs A valid hashed string.
* @return True if the first element is greater than the second, false
* otherwise.
*/
template<typename Char>
[[nodiscard]] constexpr bool operator>(const basic_hashed_string<Char> &lhs, const basic_hashed_string<Char> &rhs) noexcept {
return rhs < lhs;
}
/**
* @brief Compares two hashed strings.
* @tparam Char Character type.
* @param lhs A valid hashed string.
* @param rhs A valid hashed string.
* @return True if the first element is greater than or equal to the second,
* false otherwise.
*/
template<typename Char>
[[nodiscard]] constexpr bool operator>=(const basic_hashed_string<Char> &lhs, const basic_hashed_string<Char> &rhs) noexcept {
return !(lhs < rhs);
}
/*! @brief Aliases for common character types. */
using hashed_string = basic_hashed_string<char>;
/*! @brief Aliases for common character types. */
using hashed_wstring = basic_hashed_string<wchar_t>;
inline namespace literals {
/**
* @brief User defined literal for hashed strings.
* @param str The literal without its suffix.
* @return A properly initialized hashed string.
*/
[[nodiscard]] constexpr hashed_string operator"" _hs(const char *str, std::size_t) noexcept {
return hashed_string{str};
}
/**
* @brief User defined literal for hashed wstrings.
* @param str The literal without its suffix.
* @return A properly initialized hashed wstring.
*/
[[nodiscard]] constexpr hashed_wstring operator"" _hws(const wchar_t *str, std::size_t) noexcept {
return hashed_wstring{str};
}
} // namespace literals
} // namespace entt
#endif
namespace entt {
/**
* @cond TURN_OFF_DOXYGEN
* Internal details not to be documented.
*/
namespace internal {
struct ENTT_API type_index final {
[[nodiscard]] static id_type next() noexcept {
static ENTT_MAYBE_ATOMIC(id_type) value{};
return value++;
}
};
template<typename Type>
[[nodiscard]] constexpr auto stripped_type_name() noexcept {
#if defined ENTT_PRETTY_FUNCTION
std::string_view pretty_function{ENTT_PRETTY_FUNCTION};
auto first = pretty_function.find_first_not_of(' ', pretty_function.find_first_of(ENTT_PRETTY_FUNCTION_PREFIX) + 1);
auto value = pretty_function.substr(first, pretty_function.find_last_of(ENTT_PRETTY_FUNCTION_SUFFIX) - first);
return value;
#else
return std::string_view{""};
#endif
}
template<typename Type, auto = stripped_type_name<Type>().find_first_of('.')>
[[nodiscard]] static constexpr std::string_view type_name(int) noexcept {
constexpr auto value = stripped_type_name<Type>();
return value;
}
template<typename Type>
[[nodiscard]] static std::string_view type_name(char) noexcept {
static const auto value = stripped_type_name<Type>();
return value;
}
template<typename Type, auto = stripped_type_name<Type>().find_first_of('.')>
[[nodiscard]] static constexpr id_type type_hash(int) noexcept {
constexpr auto stripped = stripped_type_name<Type>();
constexpr auto value = hashed_string::value(stripped.data(), stripped.size());
return value;
}
template<typename Type>
[[nodiscard]] static id_type type_hash(char) noexcept {
static const auto value = [](const auto stripped) {
return hashed_string::value(stripped.data(), stripped.size());
}(stripped_type_name<Type>());
return value;
}
} // namespace internal
/**
* Internal details not to be documented.
* @endcond
*/
/**
* @brief Type sequential identifier.
* @tparam Type Type for which to generate a sequential identifier.
*/
template<typename Type, typename = void>
struct ENTT_API type_index final {
/**
* @brief Returns the sequential identifier of a given type.
* @return The sequential identifier of a given type.
*/
[[nodiscard]] static id_type value() noexcept {
static const id_type value = internal::type_index::next();
return value;
}
/*! @copydoc value */
[[nodiscard]] constexpr operator id_type() const noexcept {
return value();
}
};
/**
* @brief Type hash.
* @tparam Type Type for which to generate a hash value.
*/
template<typename Type, typename = void>
struct type_hash final {
/**
* @brief Returns the numeric representation of a given type.
* @return The numeric representation of the given type.
*/
#if defined ENTT_PRETTY_FUNCTION
[[nodiscard]] static constexpr id_type value() noexcept {
return internal::type_hash<Type>(0);
#else
[[nodiscard]] static constexpr id_type value() noexcept {
return type_index<Type>::value();
#endif
}
/*! @copydoc value */
[[nodiscard]] constexpr operator id_type() const noexcept {
return value();
}
};
/**
* @brief Type name.
* @tparam Type Type for which to generate a name.
*/
template<typename Type, typename = void>
struct type_name final {
/**
* @brief Returns the name of a given type.
* @return The name of the given type.
*/
[[nodiscard]] static constexpr std::string_view value() noexcept {
return internal::type_name<Type>(0);
}
/*! @copydoc value */
[[nodiscard]] constexpr operator std::string_view() const noexcept {
return value();
}
};
/*! @brief Implementation specific information about a type. */
struct type_info final {
/**
* @brief Constructs a type info object for a given type.
* @tparam Type Type for which to construct a type info object.
*/
template<typename Type>
constexpr type_info(std::in_place_type_t<Type>) noexcept
: seq{type_index<std::remove_cv_t<std::remove_reference_t<Type>>>::value()},
identifier{type_hash<std::remove_cv_t<std::remove_reference_t<Type>>>::value()},
alias{type_name<std::remove_cv_t<std::remove_reference_t<Type>>>::value()} {}
/**
* @brief Type index.
* @return Type index.
*/
[[nodiscard]] constexpr id_type index() const noexcept {
return seq;
}
/**
* @brief Type hash.
* @return Type hash.
*/
[[nodiscard]] constexpr id_type hash() const noexcept {
return identifier;
}
/**
* @brief Type name.
* @return Type name.
*/
[[nodiscard]] constexpr std::string_view name() const noexcept {
return alias;
}
private:
id_type seq;
id_type identifier;
std::string_view alias;
};
/**
* @brief Compares the contents of two type info objects.
* @param lhs A type info object.
* @param rhs A type info object.
* @return True if the two type info objects are identical, false otherwise.
*/
[[nodiscard]] inline constexpr bool operator==(const type_info &lhs, const type_info &rhs) noexcept {
return lhs.hash() == rhs.hash();
}
/**
* @brief Compares the contents of two type info objects.
* @param lhs A type info object.
* @param rhs A type info object.
* @return True if the two type info objects differ, false otherwise.
*/
[[nodiscard]] inline constexpr bool operator!=(const type_info &lhs, const type_info &rhs) noexcept {
return !(lhs == rhs);
}
/**
* @brief Compares two type info objects.
* @param lhs A valid type info object.
* @param rhs A valid type info object.
* @return True if the first element is less than the second, false otherwise.
*/
[[nodiscard]] constexpr bool operator<(const type_info &lhs, const type_info &rhs) noexcept {
return lhs.index() < rhs.index();
}
/**
* @brief Compares two type info objects.
* @param lhs A valid type info object.
* @param rhs A valid type info object.
* @return True if the first element is less than or equal to the second, false
* otherwise.
*/
[[nodiscard]] constexpr bool operator<=(const type_info &lhs, const type_info &rhs) noexcept {
return !(rhs < lhs);
}
/**
* @brief Compares two type info objects.
* @param lhs A valid type info object.
* @param rhs A valid type info object.
* @return True if the first element is greater than the second, false
* otherwise.
*/
[[nodiscard]] constexpr bool operator>(const type_info &lhs, const type_info &rhs) noexcept {
return rhs < lhs;
}
/**
* @brief Compares two type info objects.
* @param lhs A valid type info object.
* @param rhs A valid type info object.
* @return True if the first element is greater than or equal to the second,
* false otherwise.
*/
[[nodiscard]] constexpr bool operator>=(const type_info &lhs, const type_info &rhs) noexcept {
return !(lhs < rhs);
}
/**
* @brief Returns the type info object associated to a given type.
*
* The returned element refers to an object with static storage duration.<br/>
* The type doesn't need to be a complete type. If the type is a reference, the
* result refers to the referenced type. In all cases, top-level cv-qualifiers
* are ignored.
*
* @tparam Type Type for which to generate a type info object.
* @return A reference to a properly initialized type info object.
*/
template<typename Type>
[[nodiscard]] const type_info &type_id() noexcept {
if constexpr(std::is_same_v<Type, std::remove_cv_t<std::remove_reference_t<Type>>>) {
static type_info instance{std::in_place_type<Type>};
return instance;
} else {
return type_id<std::remove_cv_t<std::remove_reference_t<Type>>>();
}
}
/*! @copydoc type_id */
template<typename Type>
[[nodiscard]] const type_info &type_id(Type &&) noexcept {
return type_id<std::remove_cv_t<std::remove_reference_t<Type>>>();
}
} // namespace entt
#endif
// #include "type_traits.hpp"
#ifndef ENTT_CORE_TYPE_TRAITS_HPP
#define ENTT_CORE_TYPE_TRAITS_HPP
#include <cstddef>
#include <iterator>
#include <type_traits>
#include <utility>
// #include "../config/config.h"
// #include "fwd.hpp"
namespace entt {
/**
* @brief Utility class to disambiguate overloaded functions.
* @tparam N Number of choices available.
*/
template<std::size_t N>
struct choice_t
// Unfortunately, doxygen cannot parse such a construct.
: /*! @cond TURN_OFF_DOXYGEN */ choice_t<N - 1> /*! @endcond */
{};
/*! @copybrief choice_t */
template<>
struct choice_t<0> {};
/**
* @brief Variable template for the choice trick.
* @tparam N Number of choices available.
*/
template<std::size_t N>
inline constexpr choice_t<N> choice{};
/**
* @brief Identity type trait.
*
* Useful to establish non-deduced contexts in template argument deduction
* (waiting for C++20) or to provide types through function arguments.
*
* @tparam Type A type.
*/
template<typename Type>
struct type_identity {
/*! @brief Identity type. */
using type = Type;
};
/**
* @brief Helper type.
* @tparam Type A type.
*/
template<typename Type>
using type_identity_t = typename type_identity<Type>::type;
/**
* @brief A type-only `sizeof` wrapper that returns 0 where `sizeof` complains.
* @tparam Type The type of which to return the size.
* @tparam The size of the type if `sizeof` accepts it, 0 otherwise.
*/
template<typename Type, typename = void>
struct size_of: std::integral_constant<std::size_t, 0u> {};
/*! @copydoc size_of */
template<typename Type>
struct size_of<Type, std::void_t<decltype(sizeof(Type))>>
: std::integral_constant<std::size_t, sizeof(Type)> {};
/**
* @brief Helper variable template.
* @tparam Type The type of which to return the size.
*/
template<typename Type>
inline constexpr std::size_t size_of_v = size_of<Type>::value;
/**
* @brief Using declaration to be used to _repeat_ the same type a number of
* times equal to the size of a given parameter pack.
* @tparam Type A type to repeat.
*/
template<typename Type, typename>
using unpack_as_type = Type;
/**
* @brief Helper variable template to be used to _repeat_ the same value a
* number of times equal to the size of a given parameter pack.
* @tparam Value A value to repeat.
*/
template<auto Value, typename>
inline constexpr auto unpack_as_value = Value;
/**
* @brief Wraps a static constant.
* @tparam Value A static constant.
*/
template<auto Value>
using integral_constant = std::integral_constant<decltype(Value), Value>;
/**
* @brief Alias template to facilitate the creation of named values.
* @tparam Value A constant value at least convertible to `id_type`.
*/
template<id_type Value>
using tag = integral_constant<Value>;
/**
* @brief A class to use to push around lists of types, nothing more.
* @tparam Type Types provided by the type list.
*/
template<typename... Type>
struct type_list {
/*! @brief Type list type. */
using type = type_list;
/*! @brief Compile-time number of elements in the type list. */
static constexpr auto size = sizeof...(Type);
};
/*! @brief Primary template isn't defined on purpose. */
template<std::size_t, typename>
struct type_list_element;
/**
* @brief Provides compile-time indexed access to the types of a type list.
* @tparam Index Index of the type to return.
* @tparam First First type provided by the type list.
* @tparam Other Other types provided by the type list.
*/
template<std::size_t Index, typename First, typename... Other>
struct type_list_element<Index, type_list<First, Other...>>
: type_list_element<Index - 1u, type_list<Other...>> {};
/**
* @brief Provides compile-time indexed access to the types of a type list.
* @tparam First First type provided by the type list.
* @tparam Other Other types provided by the type list.
*/
template<typename First, typename... Other>
struct type_list_element<0u, type_list<First, Other...>> {
/*! @brief Searched type. */
using type = First;
};
/**
* @brief Helper type.
* @tparam Index Index of the type to return.
* @tparam List Type list to search into.
*/
template<std::size_t Index, typename List>
using type_list_element_t = typename type_list_element<Index, List>::type;
/*! @brief Primary template isn't defined on purpose. */
template<typename, typename>
struct type_list_index;
/**
* @brief Provides compile-time type access to the types of a type list.
* @tparam Type Type to look for and for which to return the index.
* @tparam First First type provided by the type list.
* @tparam Other Other types provided by the type list.
*/
template<typename Type, typename First, typename... Other>
struct type_list_index<Type, type_list<First, Other...>> {
/*! @brief Unsigned integer type. */
using value_type = std::size_t;
/*! @brief Compile-time position of the given type in the sublist. */
static constexpr value_type value = 1u + type_list_index<Type, type_list<Other...>>::value;
};
/**
* @brief Provides compile-time type access to the types of a type list.
* @tparam Type Type to look for and for which to return the index.
* @tparam Other Other types provided by the type list.
*/
template<typename Type, typename... Other>
struct type_list_index<Type, type_list<Type, Other...>> {
static_assert(type_list_index<Type, type_list<Other...>>::value == sizeof...(Other), "Non-unique type");
/*! @brief Unsigned integer type. */
using value_type = std::size_t;
/*! @brief Compile-time position of the given type in the sublist. */
static constexpr value_type value = 0u;
};
/**
* @brief Provides compile-time type access to the types of a type list.
* @tparam Type Type to look for and for which to return the index.
*/
template<typename Type>
struct type_list_index<Type, type_list<>> {
/*! @brief Unsigned integer type. */
using value_type = std::size_t;
/*! @brief Compile-time position of the given type in the sublist. */
static constexpr value_type value = 0u;
};
/**
* @brief Helper variable template.
* @tparam List Type list.
* @tparam Type Type to look for and for which to return the index.
*/
template<typename Type, typename List>
inline constexpr std::size_t type_list_index_v = type_list_index<Type, List>::value;
/**
* @brief Concatenates multiple type lists.
* @tparam Type Types provided by the first type list.
* @tparam Other Types provided by the second type list.
* @return A type list composed by the types of both the type lists.
*/
template<typename... Type, typename... Other>
constexpr type_list<Type..., Other...> operator+(type_list<Type...>, type_list<Other...>) {
return {};
}
/*! @brief Primary template isn't defined on purpose. */
template<typename...>
struct type_list_cat;
/*! @brief Concatenates multiple type lists. */
template<>
struct type_list_cat<> {
/*! @brief A type list composed by the types of all the type lists. */
using type = type_list<>;
};
/**
* @brief Concatenates multiple type lists.
* @tparam Type Types provided by the first type list.
* @tparam Other Types provided by the second type list.
* @tparam List Other type lists, if any.
*/
template<typename... Type, typename... Other, typename... List>
struct type_list_cat<type_list<Type...>, type_list<Other...>, List...> {
/*! @brief A type list composed by the types of all the type lists. */
using type = typename type_list_cat<type_list<Type..., Other...>, List...>::type;
};
/**
* @brief Concatenates multiple type lists.
* @tparam Type Types provided by the type list.
*/
template<typename... Type>
struct type_list_cat<type_list<Type...>> {
/*! @brief A type list composed by the types of all the type lists. */
using type = type_list<Type...>;
};
/**
* @brief Helper type.
* @tparam List Type lists to concatenate.
*/
template<typename... List>
using type_list_cat_t = typename type_list_cat<List...>::type;
/*! @brief Primary template isn't defined on purpose. */
template<typename>
struct type_list_unique;
/**
* @brief Removes duplicates types from a type list.
* @tparam Type One of the types provided by the given type list.
* @tparam Other The other types provided by the given type list.
*/
template<typename Type, typename... Other>
struct type_list_unique<type_list<Type, Other...>> {
/*! @brief A type list without duplicate types. */
using type = std::conditional_t<
(std::is_same_v<Type, Other> || ...),
typename type_list_unique<type_list<Other...>>::type,
type_list_cat_t<type_list<Type>, typename type_list_unique<type_list<Other...>>::type>>;
};
/*! @brief Removes duplicates types from a type list. */
template<>
struct type_list_unique<type_list<>> {
/*! @brief A type list without duplicate types. */
using type = type_list<>;
};
/**
* @brief Helper type.
* @tparam Type A type list.
*/
template<typename Type>
using type_list_unique_t = typename type_list_unique<Type>::type;
/**
* @brief Provides the member constant `value` to true if a type list contains a
* given type, false otherwise.
* @tparam List Type list.
* @tparam Type Type to look for.
*/
template<typename List, typename Type>
struct type_list_contains;
/**
* @copybrief type_list_contains
* @tparam Type Types provided by the type list.
* @tparam Other Type to look for.
*/
template<typename... Type, typename Other>
struct type_list_contains<type_list<Type...>, Other>: std::disjunction<std::is_same<Type, Other>...> {};
/**
* @brief Helper variable template.
* @tparam List Type list.
* @tparam Type Type to look for.
*/
template<typename List, typename Type>
inline constexpr bool type_list_contains_v = type_list_contains<List, Type>::value;
/*! @brief Primary template isn't defined on purpose. */
template<typename...>
struct type_list_diff;
/**
* @brief Computes the difference between two type lists.
* @tparam Type Types provided by the first type list.
* @tparam Other Types provided by the second type list.
*/
template<typename... Type, typename... Other>
struct type_list_diff<type_list<Type...>, type_list<Other...>> {
/*! @brief A type list that is the difference between the two type lists. */
using type = type_list_cat_t<std::conditional_t<type_list_contains_v<type_list<Other...>, Type>, type_list<>, type_list<Type>>...>;
};
/**
* @brief Helper type.
* @tparam List Type lists between which to compute the difference.
*/
template<typename... List>
using type_list_diff_t = typename type_list_diff<List...>::type;
/*! @brief Primary template isn't defined on purpose. */
template<typename, template<typename...> class>
struct type_list_transform;
/**
* @brief Applies a given _function_ to a type list and generate a new list.
* @tparam Type Types provided by the type list.
* @tparam Op Unary operation as template class with a type member named `type`.
*/
template<typename... Type, template<typename...> class Op>
struct type_list_transform<type_list<Type...>, Op> {
/*! @brief Resulting type list after applying the transform function. */
using type = type_list<typename Op<Type>::type...>;
};
/**
* @brief Helper type.
* @tparam List Type list.
* @tparam Op Unary operation as template class with a type member named `type`.
*/
template<typename List, template<typename...> class Op>
using type_list_transform_t = typename type_list_transform<List, Op>::type;
/**
* @brief A class to use to push around lists of constant values, nothing more.
* @tparam Value Values provided by the value list.
*/
template<auto... Value>
struct value_list {
/*! @brief Value list type. */
using type = value_list;
/*! @brief Compile-time number of elements in the value list. */
static constexpr auto size = sizeof...(Value);
};
/*! @brief Primary template isn't defined on purpose. */
template<std::size_t, typename>
struct value_list_element;
/**
* @brief Provides compile-time indexed access to the values of a value list.
* @tparam Index Index of the value to return.
* @tparam Value First value provided by the value list.
* @tparam Other Other values provided by the value list.
*/
template<std::size_t Index, auto Value, auto... Other>
struct value_list_element<Index, value_list<Value, Other...>>
: value_list_element<Index - 1u, value_list<Other...>> {};
/**
* @brief Provides compile-time indexed access to the types of a type list.
* @tparam Value First value provided by the value list.
* @tparam Other Other values provided by the value list.
*/
template<auto Value, auto... Other>
struct value_list_element<0u, value_list<Value, Other...>> {
/*! @brief Searched value. */
static constexpr auto value = Value;
};
/**
* @brief Helper type.
* @tparam Index Index of the value to return.
* @tparam List Value list to search into.
*/
template<std::size_t Index, typename List>
inline constexpr auto value_list_element_v = value_list_element<Index, List>::value;
/**
* @brief Concatenates multiple value lists.
* @tparam Value Values provided by the first value list.
* @tparam Other Values provided by the second value list.
* @return A value list composed by the values of both the value lists.
*/
template<auto... Value, auto... Other>
constexpr value_list<Value..., Other...> operator+(value_list<Value...>, value_list<Other...>) {
return {};
}
/*! @brief Primary template isn't defined on purpose. */
template<typename...>
struct value_list_cat;
/*! @brief Concatenates multiple value lists. */
template<>
struct value_list_cat<> {
/*! @brief A value list composed by the values of all the value lists. */
using type = value_list<>;
};
/**
* @brief Concatenates multiple value lists.
* @tparam Value Values provided by the first value list.
* @tparam Other Values provided by the second value list.
* @tparam List Other value lists, if any.
*/
template<auto... Value, auto... Other, typename... List>
struct value_list_cat<value_list<Value...>, value_list<Other...>, List...> {
/*! @brief A value list composed by the values of all the value lists. */
using type = typename value_list_cat<value_list<Value..., Other...>, List...>::type;
};
/**
* @brief Concatenates multiple value lists.
* @tparam Value Values provided by the value list.
*/
template<auto... Value>
struct value_list_cat<value_list<Value...>> {
/*! @brief A value list composed by the values of all the value lists. */
using type = value_list<Value...>;
};
/**
* @brief Helper type.
* @tparam List Value lists to concatenate.
*/
template<typename... List>
using value_list_cat_t = typename value_list_cat<List...>::type;
/*! @brief Same as std::is_invocable, but with tuples. */
template<typename, typename>
struct is_applicable: std::false_type {};
/**
* @copybrief is_applicable
* @tparam Func A valid function type.
* @tparam Tuple Tuple-like type.
* @tparam Args The list of arguments to use to probe the function type.
*/
template<typename Func, template<typename...> class Tuple, typename... Args>
struct is_applicable<Func, Tuple<Args...>>: std::is_invocable<Func, Args...> {};
/**
* @copybrief is_applicable
* @tparam Func A valid function type.
* @tparam Tuple Tuple-like type.
* @tparam Args The list of arguments to use to probe the function type.
*/
template<typename Func, template<typename...> class Tuple, typename... Args>
struct is_applicable<Func, const Tuple<Args...>>: std::is_invocable<Func, Args...> {};
/**
* @brief Helper variable template.
* @tparam Func A valid function type.
* @tparam Args The list of arguments to use to probe the function type.
*/
template<typename Func, typename Args>
inline constexpr bool is_applicable_v = is_applicable<Func, Args>::value;
/*! @brief Same as std::is_invocable_r, but with tuples for arguments. */
template<typename, typename, typename>
struct is_applicable_r: std::false_type {};
/**
* @copybrief is_applicable_r
* @tparam Ret The type to which the return type of the function should be
* convertible.
* @tparam Func A valid function type.
* @tparam Args The list of arguments to use to probe the function type.
*/
template<typename Ret, typename Func, typename... Args>
struct is_applicable_r<Ret, Func, std::tuple<Args...>>: std::is_invocable_r<Ret, Func, Args...> {};
/**
* @brief Helper variable template.
* @tparam Ret The type to which the return type of the function should be
* convertible.
* @tparam Func A valid function type.
* @tparam Args The list of arguments to use to probe the function type.
*/
template<typename Ret, typename Func, typename Args>
inline constexpr bool is_applicable_r_v = is_applicable_r<Ret, Func, Args>::value;
/**
* @brief Provides the member constant `value` to true if a given type is
* complete, false otherwise.
* @tparam Type The type to test.
*/
template<typename Type, typename = void>
struct is_complete: std::false_type {};
/*! @copydoc is_complete */
template<typename Type>
struct is_complete<Type, std::void_t<decltype(sizeof(Type))>>: std::true_type {};
/**
* @brief Helper variable template.
* @tparam Type The type to test.
*/
template<typename Type>
inline constexpr bool is_complete_v = is_complete<Type>::value;
/**
* @brief Provides the member constant `value` to true if a given type is an
* iterator, false otherwise.
* @tparam Type The type to test.
*/
template<typename Type, typename = void>
struct is_iterator: std::false_type {};
/**
* @cond TURN_OFF_DOXYGEN
* Internal details not to be documented.
*/
namespace internal {
template<typename, typename = void>
struct has_iterator_category: std::false_type {};
template<typename Type>
struct has_iterator_category<Type, std::void_t<typename std::iterator_traits<Type>::iterator_category>>: std::true_type {};
} // namespace internal
/**
* Internal details not to be documented.
* @endcond
*/
/*! @copydoc is_iterator */
template<typename Type>
struct is_iterator<Type, std::enable_if_t<!std::is_same_v<std::remove_cv_t<std::remove_pointer_t<Type>>, void>>>
: internal::has_iterator_category<Type> {};
/**
* @brief Helper variable template.
* @tparam Type The type to test.
*/
template<typename Type>
inline constexpr bool is_iterator_v = is_iterator<Type>::value;
/**
* @brief Provides the member constant `value` to true if a given type is both
* an empty and non-final class, false otherwise.
* @tparam Type The type to test
*/
template<typename Type>
struct is_ebco_eligible
: std::conjunction<std::is_empty<Type>, std::negation<std::is_final<Type>>> {};
/**
* @brief Helper variable template.
* @tparam Type The type to test.
*/
template<typename Type>
inline constexpr bool is_ebco_eligible_v = is_ebco_eligible<Type>::value;
/**
* @brief Provides the member constant `value` to true if `Type::is_transparent`
* is valid and denotes a type, false otherwise.
* @tparam Type The type to test.
*/
template<typename Type, typename = void>
struct is_transparent: std::false_type {};
/*! @copydoc is_transparent */
template<typename Type>
struct is_transparent<Type, std::void_t<typename Type::is_transparent>>: std::true_type {};
/**
* @brief Helper variable template.
* @tparam Type The type to test.
*/
template<typename Type>
inline constexpr bool is_transparent_v = is_transparent<Type>::value;
/**
* @brief Provides the member constant `value` to true if a given type is
* equality comparable, false otherwise.
* @tparam Type The type to test.
*/
template<typename Type, typename = void>
struct is_equality_comparable: std::false_type {};
/**
* @cond TURN_OFF_DOXYGEN
* Internal details not to be documented.
*/
namespace internal {
template<typename, typename = void>
struct has_tuple_size_value: std::false_type {};
template<typename Type>
struct has_tuple_size_value<Type, std::void_t<decltype(std::tuple_size<const Type>::value)>>: std::true_type {};
template<typename Type, std::size_t... Index>
[[nodiscard]] constexpr bool unpack_maybe_equality_comparable(std::index_sequence<Index...>) {
return (is_equality_comparable<std::tuple_element_t<Index, Type>>::value && ...);
}
template<typename>
[[nodiscard]] constexpr bool maybe_equality_comparable(choice_t<0>) {
return true;
}
template<typename Type>
[[nodiscard]] constexpr auto maybe_equality_comparable(choice_t<1>) -> decltype(std::declval<typename Type::value_type>(), bool{}) {
if constexpr(is_iterator_v<Type>) {
return true;
} else if constexpr(std::is_same_v<typename Type::value_type, Type>) {
return maybe_equality_comparable<Type>(choice<0>);
} else {
return is_equality_comparable<typename Type::value_type>::value;
}
}
template<typename Type>
[[nodiscard]] constexpr std::enable_if_t<is_complete_v<std::tuple_size<std::remove_cv_t<Type>>>, bool> maybe_equality_comparable(choice_t<2>) {
if constexpr(has_tuple_size_value<Type>::value) {
return unpack_maybe_equality_comparable<Type>(std::make_index_sequence<std::tuple_size<Type>::value>{});
} else {
return maybe_equality_comparable<Type>(choice<1>);
}
}
} // namespace internal
/**
* Internal details not to be documented.
* @endcond
*/
/*! @copydoc is_equality_comparable */
template<typename Type>
struct is_equality_comparable<Type, std::void_t<decltype(std::declval<Type>() == std::declval<Type>())>>
: std::bool_constant<internal::maybe_equality_comparable<Type>(choice<2>)> {};
/**
* @brief Helper variable template.
* @tparam Type The type to test.
*/
template<typename Type>
inline constexpr bool is_equality_comparable_v = is_equality_comparable<Type>::value;
/**
* @brief Transcribes the constness of a type to another type.
* @tparam To The type to which to transcribe the constness.
* @tparam From The type from which to transcribe the constness.
*/
template<typename To, typename From>
struct constness_as {
/*! @brief The type resulting from the transcription of the constness. */
using type = std::remove_const_t<To>;
};
/*! @copydoc constness_as */
template<typename To, typename From>
struct constness_as<To, const From> {
/*! @brief The type resulting from the transcription of the constness. */
using type = const To;
};
/**
* @brief Alias template to facilitate the transcription of the constness.
* @tparam To The type to which to transcribe the constness.
* @tparam From The type from which to transcribe the constness.
*/
template<typename To, typename From>
using constness_as_t = typename constness_as<To, From>::type;
/**
* @brief Extracts the class of a non-static member object or function.
* @tparam Member A pointer to a non-static member object or function.
*/
template<typename Member>
class member_class {
static_assert(std::is_member_pointer_v<Member>, "Invalid pointer type to non-static member object or function");
template<typename Class, typename Ret, typename... Args>
static Class *clazz(Ret (Class::*)(Args...));
template<typename Class, typename Ret, typename... Args>
static Class *clazz(Ret (Class::*)(Args...) const);
template<typename Class, typename Type>
static Class *clazz(Type Class::*);
public:
/*! @brief The class of the given non-static member object or function. */
using type = std::remove_pointer_t<decltype(clazz(std::declval<Member>()))>;
};
/**
* @brief Helper type.
* @tparam Member A pointer to a non-static member object or function.
*/
template<typename Member>
using member_class_t = typename member_class<Member>::type;
/**
* @brief Extracts the n-th argument of a given function or member function.
* @tparam Index The index of the argument to extract.
* @tparam Candidate A valid function, member function or data member.
*/
template<std::size_t Index, auto Candidate>
class nth_argument {
template<typename Ret, typename... Args>
static constexpr type_list<Args...> pick_up(Ret (*)(Args...));
template<typename Ret, typename Class, typename... Args>
static constexpr type_list<Args...> pick_up(Ret (Class ::*)(Args...));
template<typename Ret, typename Class, typename... Args>
static constexpr type_list<Args...> pick_up(Ret (Class ::*)(Args...) const);
template<typename Type, typename Class>
static constexpr type_list<Type> pick_up(Type Class ::*);
public:
/*! @brief N-th argument of the given function or member function. */
using type = type_list_element_t<Index, decltype(pick_up(Candidate))>;
};
/**
* @brief Helper type.
* @tparam Index The index of the argument to extract.
* @tparam Candidate A valid function, member function or data member.
*/
template<std::size_t Index, auto Candidate>
using nth_argument_t = typename nth_argument<Index, Candidate>::type;
} // namespace entt
#endif
namespace entt {
/**
* @cond TURN_OFF_DOXYGEN
* Internal details not to be documented.
*/
namespace internal {
enum class any_operation : std::uint8_t {
copy,
move,
transfer,
assign,
destroy,
compare,
get
};
enum class any_policy : std::uint8_t {
owner,
ref,
cref
};
} // namespace internal
/**
* Internal details not to be documented.
* @endcond
*/
/**
* @brief A SBO friendly, type-safe container for single values of any type.
* @tparam Len Size of the storage reserved for the small buffer optimization.
* @tparam Align Optional alignment requirement.
*/
template<std::size_t Len, std::size_t Align>
class basic_any {
using operation = internal::any_operation;
using policy = internal::any_policy;
using vtable_type = const void *(const operation, const basic_any &, const void *);
struct storage_type {
alignas(Align) std::byte data[Len + !Len];
};
template<typename Type>
static constexpr bool in_situ = Len && alignof(Type) <= Align && sizeof(Type) <= Len &&std::is_nothrow_move_constructible_v<Type>;
template<typename Type>
static const void *basic_vtable(const operation op, const basic_any &value, const void *other) {
static_assert(!std::is_same_v<Type, void> && std::is_same_v<std::remove_cv_t<std::remove_reference_t<Type>>, Type>, "Invalid type");
const Type *element = nullptr;
if constexpr(in_situ<Type>) {
element = value.owner() ? reinterpret_cast<const Type *>(&value.storage) : static_cast<const Type *>(value.instance);
} else {
element = static_cast<const Type *>(value.instance);
}
switch(op) {
case operation::copy:
if constexpr(std::is_copy_constructible_v<Type>) {
static_cast<basic_any *>(const_cast<void *>(other))->initialize<Type>(*element);
}
break;
case operation::move:
if constexpr(in_situ<Type>) {
if(value.owner()) {
return new(&static_cast<basic_any *>(const_cast<void *>(other))->storage) Type{std::move(*const_cast<Type *>(element))};
}
}
return (static_cast<basic_any *>(const_cast<void *>(other))->instance = std::exchange(const_cast<basic_any &>(value).instance, nullptr));
case operation::transfer:
if constexpr(std::is_move_assignable_v<Type>) {
*const_cast<Type *>(element) = std::move(*static_cast<Type *>(const_cast<void *>(other)));
return other;
}
[[fallthrough]];
case operation::assign:
if constexpr(std::is_copy_assignable_v<Type>) {
*const_cast<Type *>(element) = *static_cast<const Type *>(other);
return other;
}
break;
case operation::destroy:
if constexpr(in_situ<Type>) {
element->~Type();
} else if constexpr(std::is_array_v<Type>) {
delete[] element;
} else {
delete element;
}
break;
case operation::compare:
if constexpr(!std::is_function_v<Type> && !std::is_array_v<Type> && is_equality_comparable_v<Type>) {
return *element == *static_cast<const Type *>(other) ? other : nullptr;
} else {
return (element == other) ? other : nullptr;
}
case operation::get:
return element;
}
return nullptr;
}
template<typename Type, typename... Args>
void initialize([[maybe_unused]] Args &&...args) {
info = &type_id<std::remove_cv_t<std::remove_reference_t<Type>>>();
if constexpr(!std::is_void_v<Type>) {
vtable = basic_vtable<std::remove_cv_t<std::remove_reference_t<Type>>>;
if constexpr(std::is_lvalue_reference_v<Type>) {
static_assert(sizeof...(Args) == 1u && (std::is_lvalue_reference_v<Args> && ...), "Invalid arguments");
mode = std::is_const_v<std::remove_reference_t<Type>> ? policy::cref : policy::ref;
instance = (std::addressof(args), ...);
} else if constexpr(in_situ<std::remove_cv_t<std::remove_reference_t<Type>>>) {
if constexpr(sizeof...(Args) != 0u && std::is_aggregate_v<std::remove_cv_t<std::remove_reference_t<Type>>>) {
new(&storage) std::remove_cv_t<std::remove_reference_t<Type>>{std::forward<Args>(args)...};
} else {
new(&storage) std::remove_cv_t<std::remove_reference_t<Type>>(std::forward<Args>(args)...);
}
} else {
if constexpr(sizeof...(Args) != 0u && std::is_aggregate_v<std::remove_cv_t<std::remove_reference_t<Type>>>) {
instance = new std::remove_cv_t<std::remove_reference_t<Type>>{std::forward<Args>(args)...};
} else {
instance = new std::remove_cv_t<std::remove_reference_t<Type>>(std::forward<Args>(args)...);
}
}
}
}
basic_any(const basic_any &other, const policy pol) noexcept
: instance{other.data()},
info{other.info},
vtable{other.vtable},
mode{pol} {}
public:
/*! @brief Size of the internal storage. */
static constexpr auto length = Len;
/*! @brief Alignment requirement. */
static constexpr auto alignment = Align;
/*! @brief Default constructor. */
constexpr basic_any() noexcept
: basic_any{std::in_place_type<void>} {}
/**
* @brief Constructs a wrapper by directly initializing the new object.
* @tparam Type Type of object to use to initialize the wrapper.
* @tparam Args Types of arguments to use to construct the new instance.
* @param args Parameters to use to construct the instance.
*/
template<typename Type, typename... Args>
explicit basic_any(std::in_place_type_t<Type>, Args &&...args)
: instance{},
info{},
vtable{},
mode{policy::owner} {
initialize<Type>(std::forward<Args>(args)...);
}
/**
* @brief Constructs a wrapper from a given value.
* @tparam Type Type of object to use to initialize the wrapper.
* @param value An instance of an object to use to initialize the wrapper.
*/
template<typename Type, typename = std::enable_if_t<!std::is_same_v<std::decay_t<Type>, basic_any>>>
basic_any(Type &&value)
: basic_any{std::in_place_type<std::decay_t<Type>>, std::forward<Type>(value)} {}
/**
* @brief Copy constructor.
* @param other The instance to copy from.
*/
basic_any(const basic_any &other)
: basic_any{} {
if(other.vtable) {
other.vtable(operation::copy, other, this);
}
}
/**
* @brief Move constructor.
* @param other The instance to move from.
*/
basic_any(basic_any &&other) noexcept
: instance{},
info{other.info},
vtable{other.vtable},
mode{other.mode} {
if(other.vtable) {
other.vtable(operation::move, other, this);
}
}
/*! @brief Frees the internal storage, whatever it means. */
~basic_any() {
if(vtable && owner()) {
vtable(operation::destroy, *this, nullptr);
}
}
/**
* @brief Copy assignment operator.
* @param other The instance to copy from.
* @return This any object.
*/
basic_any &operator=(const basic_any &other) {
reset();
if(other.vtable) {
other.vtable(operation::copy, other, this);
}
return *this;
}
/**
* @brief Move assignment operator.
* @param other The instance to move from.
* @return This any object.
*/
basic_any &operator=(basic_any &&other) noexcept {
reset();
if(other.vtable) {
other.vtable(operation::move, other, this);
info = other.info;
vtable = other.vtable;
mode = other.mode;
}
return *this;
}
/**
* @brief Value assignment operator.
* @tparam Type Type of object to use to initialize the wrapper.
* @param value An instance of an object to use to initialize the wrapper.
* @return This any object.
*/
template<typename Type>
std::enable_if_t<!std::is_same_v<std::decay_t<Type>, basic_any>, basic_any &>
operator=(Type &&value) {
emplace<std::decay_t<Type>>(std::forward<Type>(value));
return *this;
}
/**
* @brief Returns the object type if any, `type_id<void>()` otherwise.
* @return The object type if any, `type_id<void>()` otherwise.
*/
[[nodiscard]] const type_info &type() const noexcept {
return *info;
}
/**
* @brief Returns an opaque pointer to the contained instance.
* @return An opaque pointer the contained instance, if any.
*/
[[nodiscard]] const void *data() const noexcept {
return vtable ? vtable(operation::get, *this, nullptr) : nullptr;
}
/**
* @brief Returns an opaque pointer to the contained instance.
* @param req Expected type.
* @return An opaque pointer the contained instance, if any.
*/
[[nodiscard]] const void *data(const type_info &req) const noexcept {
return *info == req ? data() : nullptr;
}
/**
* @brief Returns an opaque pointer to the contained instance.
* @return An opaque pointer the contained instance, if any.
*/
[[nodiscard]] void *data() noexcept {
return mode == policy::cref ? nullptr : const_cast<void *>(std::as_const(*this).data());
}
/**
* @brief Returns an opaque pointer to the contained instance.
* @param req Expected type.
* @return An opaque pointer the contained instance, if any.
*/
[[nodiscard]] void *data(const type_info &req) noexcept {
return mode == policy::cref ? nullptr : const_cast<void *>(std::as_const(*this).data(req));
}
/**
* @brief Replaces the contained object by creating a new instance directly.
* @tparam Type Type of object to use to initialize the wrapper.
* @tparam Args Types of arguments to use to construct the new instance.
* @param args Parameters to use to construct the instance.
*/
template<typename Type, typename... Args>
void emplace(Args &&...args) {
reset();
initialize<Type>(std::forward<Args>(args)...);
}
/**
* @brief Assigns a value to the contained object without replacing it.
* @param other The value to assign to the contained object.
* @return True in case of success, false otherwise.
*/
bool assign(const basic_any &other) {
if(vtable && mode != policy::cref && *info == *other.info) {
return (vtable(operation::assign, *this, other.data()) != nullptr);
}
return false;
}
/*! @copydoc assign */
bool assign(basic_any &&other) {
if(vtable && mode != policy::cref && *info == *other.info) {
if(auto *val = other.data(); val) {
return (vtable(operation::transfer, *this, val) != nullptr);
} else {
return (vtable(operation::assign, *this, std::as_const(other).data()) != nullptr);
}
}
return false;
}
/*! @brief Destroys contained object */
void reset() {
if(vtable && owner()) {
vtable(operation::destroy, *this, nullptr);
}
// unnecessary but it helps to detect nasty bugs
ENTT_ASSERT((instance = nullptr) == nullptr, "");
info = &type_id<void>();
vtable = nullptr;
mode = policy::owner;
}
/**
* @brief Returns false if a wrapper is empty, true otherwise.
* @return False if the wrapper is empty, true otherwise.
*/
[[nodiscard]] explicit operator bool() const noexcept {
return vtable != nullptr;
}
/**
* @brief Checks if two wrappers differ in their content.
* @param other Wrapper with which to compare.
* @return False if the two objects differ in their content, true otherwise.
*/
[[nodiscard]] bool operator==(const basic_any &other) const noexcept {
if(vtable && *info == *other.info) {
return (vtable(operation::compare, *this, other.data()) != nullptr);
}
return (!vtable && !other.vtable);
}
/**
* @brief Checks if two wrappers differ in their content.
* @param other Wrapper with which to compare.
* @return True if the two objects differ in their content, false otherwise.
*/
[[nodiscard]] bool operator!=(const basic_any &other) const noexcept {
return !(*this == other);
}
/**
* @brief Aliasing constructor.
* @return A wrapper that shares a reference to an unmanaged object.
*/
[[nodiscard]] basic_any as_ref() noexcept {
return basic_any{*this, (mode == policy::cref ? policy::cref : policy::ref)};
}
/*! @copydoc as_ref */
[[nodiscard]] basic_any as_ref() const noexcept {
return basic_any{*this, policy::cref};
}
/**
* @brief Returns true if a wrapper owns its object, false otherwise.
* @return True if the wrapper owns its object, false otherwise.
*/
[[nodiscard]] bool owner() const noexcept {
return (mode == policy::owner);
}
private:
union {
const void *instance;
storage_type storage;
};
const type_info *info;
vtable_type *vtable;
policy mode;
};
/**
* @brief Performs type-safe access to the contained object.
* @tparam Type Type to which conversion is required.
* @tparam Len Size of the storage reserved for the small buffer optimization.
* @tparam Align Alignment requirement.
* @param data Target any object.
* @return The element converted to the requested type.
*/
template<typename Type, std::size_t Len, std::size_t Align>
Type any_cast(const basic_any<Len, Align> &data) noexcept {
const auto *const instance = any_cast<std::remove_reference_t<Type>>(&data);
ENTT_ASSERT(instance, "Invalid instance");
return static_cast<Type>(*instance);
}
/*! @copydoc any_cast */
template<typename Type, std::size_t Len, std::size_t Align>
Type any_cast(basic_any<Len, Align> &data) noexcept {
// forces const on non-reference types to make them work also with wrappers for const references
auto *const instance = any_cast<std::remove_reference_t<const Type>>(&data);
ENTT_ASSERT(instance, "Invalid instance");
return static_cast<Type>(*instance);
}
/*! @copydoc any_cast */
template<typename Type, std::size_t Len, std::size_t Align>
Type any_cast(basic_any<Len, Align> &&data) noexcept {
if constexpr(std::is_copy_constructible_v<std::remove_cv_t<std::remove_reference_t<Type>>>) {
if(auto *const instance = any_cast<std::remove_reference_t<Type>>(&data); instance) {
return static_cast<Type>(std::move(*instance));
} else {
return any_cast<Type>(data);
}
} else {
auto *const instance = any_cast<std::remove_reference_t<Type>>(&data);
ENTT_ASSERT(instance, "Invalid instance");
return static_cast<Type>(std::move(*instance));
}
}
/*! @copydoc any_cast */
template<typename Type, std::size_t Len, std::size_t Align>
const Type *any_cast(const basic_any<Len, Align> *data) noexcept {
const auto &info = type_id<std::remove_cv_t<Type>>();
return static_cast<const Type *>(data->data(info));
}
/*! @copydoc any_cast */
template<typename Type, std::size_t Len, std::size_t Align>
Type *any_cast(basic_any<Len, Align> *data) noexcept {
if constexpr(std::is_const_v<Type>) {
// last attempt to make wrappers for const references return their values
return any_cast<Type>(&std::as_const(*data));
} else {
const auto &info = type_id<std::remove_cv_t<Type>>();
return static_cast<Type *>(data->data(info));
}
}
/**
* @brief Constructs a wrapper from a given type, passing it all arguments.
* @tparam Type Type of object to use to initialize the wrapper.
* @tparam Len Size of the storage reserved for the small buffer optimization.
* @tparam Align Optional alignment requirement.
* @tparam Args Types of arguments to use to construct the new instance.
* @param args Parameters to use to construct the instance.
* @return A properly initialized wrapper for an object of the given type.
*/
template<typename Type, std::size_t Len = basic_any<>::length, std::size_t Align = basic_any<Len>::alignment, typename... Args>
basic_any<Len, Align> make_any(Args &&...args) {
return basic_any<Len, Align>{std::in_place_type<Type>, std::forward<Args>(args)...};
}
/**
* @brief Forwards its argument and avoids copies for lvalue references.
* @tparam Len Size of the storage reserved for the small buffer optimization.
* @tparam Align Optional alignment requirement.
* @tparam Type Type of argument to use to construct the new instance.
* @param value Parameter to use to construct the instance.
* @return A properly initialized and not necessarily owning wrapper.
*/
template<std::size_t Len = basic_any<>::length, std::size_t Align = basic_any<Len>::alignment, typename Type>
basic_any<Len, Align> forward_as_any(Type &&value) {
return basic_any<Len, Align>{std::in_place_type<Type &&>, std::forward<Type>(value)};
}
} // namespace entt
#endif
// #include "core/attribute.h"
#ifndef ENTT_CORE_ATTRIBUTE_H
#define ENTT_CORE_ATTRIBUTE_H
#ifndef ENTT_EXPORT
# if defined _WIN32 || defined __CYGWIN__ || defined _MSC_VER
# define ENTT_EXPORT __declspec(dllexport)
# define ENTT_IMPORT __declspec(dllimport)
# define ENTT_HIDDEN
# elif defined __GNUC__ && __GNUC__ >= 4
# define ENTT_EXPORT __attribute__((visibility("default")))
# define ENTT_IMPORT __attribute__((visibility("default")))
# define ENTT_HIDDEN __attribute__((visibility("hidden")))
# else /* Unsupported compiler */
# define ENTT_EXPORT
# define ENTT_IMPORT
# define ENTT_HIDDEN
# endif
#endif
#ifndef ENTT_API
# if defined ENTT_API_EXPORT
# define ENTT_API ENTT_EXPORT
# elif defined ENTT_API_IMPORT
# define ENTT_API ENTT_IMPORT
# else /* No API */
# define ENTT_API
# endif
#endif
#endif
// #include "core/compressed_pair.hpp"
#ifndef ENTT_CORE_COMPRESSED_PAIR_HPP
#define ENTT_CORE_COMPRESSED_PAIR_HPP
#include <cstddef>
#include <tuple>
#include <type_traits>
#include <utility>
// #include "type_traits.hpp"
namespace entt {
/**
* @cond TURN_OFF_DOXYGEN
* Internal details not to be documented.
*/
namespace internal {
template<typename Type, std::size_t, typename = void>
struct compressed_pair_element {
using reference = Type &;
using const_reference = const Type &;
template<bool Dummy = true, typename = std::enable_if_t<Dummy && std::is_default_constructible_v<Type>>>
constexpr compressed_pair_element() noexcept(std::is_nothrow_default_constructible_v<Type>)
: value{} {}
template<typename Arg, typename = std::enable_if_t<!std::is_same_v<std::remove_cv_t<std::remove_reference_t<Arg>>, compressed_pair_element>>>
constexpr compressed_pair_element(Arg &&arg) noexcept(std::is_nothrow_constructible_v<Type, Arg>)
: value{std::forward<Arg>(arg)} {}
template<typename... Args, std::size_t... Index>
constexpr compressed_pair_element(std::tuple<Args...> args, std::index_sequence<Index...>) noexcept(std::is_nothrow_constructible_v<Type, Args...>)
: value{std::forward<Args>(std::get<Index>(args))...} {}
[[nodiscard]] constexpr reference get() noexcept {
return value;
}
[[nodiscard]] constexpr const_reference get() const noexcept {
return value;
}
private:
Type value;
};
template<typename Type, std::size_t Tag>
struct compressed_pair_element<Type, Tag, std::enable_if_t<is_ebco_eligible_v<Type>>>: Type {
using reference = Type &;
using const_reference = const Type &;
using base_type = Type;
template<bool Dummy = true, typename = std::enable_if_t<Dummy && std::is_default_constructible_v<base_type>>>
constexpr compressed_pair_element() noexcept(std::is_nothrow_default_constructible_v<base_type>)
: base_type{} {}
template<typename Arg, typename = std::enable_if_t<!std::is_same_v<std::remove_cv_t<std::remove_reference_t<Arg>>, compressed_pair_element>>>
constexpr compressed_pair_element(Arg &&arg) noexcept(std::is_nothrow_constructible_v<base_type, Arg>)
: base_type{std::forward<Arg>(arg)} {}
template<typename... Args, std::size_t... Index>
constexpr compressed_pair_element(std::tuple<Args...> args, std::index_sequence<Index...>) noexcept(std::is_nothrow_constructible_v<base_type, Args...>)
: base_type{std::forward<Args>(std::get<Index>(args))...} {}
[[nodiscard]] constexpr reference get() noexcept {
return *this;
}
[[nodiscard]] constexpr const_reference get() const noexcept {
return *this;
}
};
} // namespace internal
/**
* Internal details not to be documented.
* @endcond
*/
/**
* @brief A compressed pair.
*
* A pair that exploits the _Empty Base Class Optimization_ (or _EBCO_) to
* reduce its final size to a minimum.
*
* @tparam First The type of the first element that the pair stores.
* @tparam Second The type of the second element that the pair stores.
*/
template<typename First, typename Second>
class compressed_pair final
: internal::compressed_pair_element<First, 0u>,
internal::compressed_pair_element<Second, 1u> {
using first_base = internal::compressed_pair_element<First, 0u>;
using second_base = internal::compressed_pair_element<Second, 1u>;
public:
/*! @brief The type of the first element that the pair stores. */
using first_type = First;
/*! @brief The type of the second element that the pair stores. */
using second_type = Second;
/**
* @brief Default constructor, conditionally enabled.
*
* This constructor is only available when the types that the pair stores
* are both at least default constructible.
*
* @tparam Dummy Dummy template parameter used for internal purposes.
*/
template<bool Dummy = true, typename = std::enable_if_t<Dummy && std::is_default_constructible_v<first_type> && std::is_default_constructible_v<second_type>>>
constexpr compressed_pair() noexcept(std::is_nothrow_default_constructible_v<first_base> &&std::is_nothrow_default_constructible_v<second_base>)
: first_base{},
second_base{} {}
/**
* @brief Copy constructor.
* @param other The instance to copy from.
*/
constexpr compressed_pair(const compressed_pair &other) noexcept(std::is_nothrow_copy_constructible_v<first_base> &&std::is_nothrow_copy_constructible_v<second_base>) = default;
/**
* @brief Move constructor.
* @param other The instance to move from.
*/
constexpr compressed_pair(compressed_pair &&other) noexcept(std::is_nothrow_move_constructible_v<first_base> &&std::is_nothrow_move_constructible_v<second_base>) = default;
/**
* @brief Constructs a pair from its values.
* @tparam Arg Type of value to use to initialize the first element.
* @tparam Other Type of value to use to initialize the second element.
* @param arg Value to use to initialize the first element.
* @param other Value to use to initialize the second element.
*/
template<typename Arg, typename Other>
constexpr compressed_pair(Arg &&arg, Other &&other) noexcept(std::is_nothrow_constructible_v<first_base, Arg> &&std::is_nothrow_constructible_v<second_base, Other>)
: first_base{std::forward<Arg>(arg)},
second_base{std::forward<Other>(other)} {}
/**
* @brief Constructs a pair by forwarding the arguments to its parts.
* @tparam Args Types of arguments to use to initialize the first element.
* @tparam Other Types of arguments to use to initialize the second element.
* @param args Arguments to use to initialize the first element.
* @param other Arguments to use to initialize the second element.
*/
template<typename... Args, typename... Other>
constexpr compressed_pair(std::piecewise_construct_t, std::tuple<Args...> args, std::tuple<Other...> other) noexcept(std::is_nothrow_constructible_v<first_base, Args...> &&std::is_nothrow_constructible_v<second_base, Other...>)
: first_base{std::move(args), std::index_sequence_for<Args...>{}},
second_base{std::move(other), std::index_sequence_for<Other...>{}} {}
/**
* @brief Copy assignment operator.
* @param other The instance to copy from.
* @return This compressed pair object.
*/
constexpr compressed_pair &operator=(const compressed_pair &other) noexcept(std::is_nothrow_copy_assignable_v<first_base> &&std::is_nothrow_copy_assignable_v<second_base>) = default;
/**
* @brief Move assignment operator.
* @param other The instance to move from.
* @return This compressed pair object.
*/
constexpr compressed_pair &operator=(compressed_pair &&other) noexcept(std::is_nothrow_move_assignable_v<first_base> &&std::is_nothrow_move_assignable_v<second_base>) = default;
/**
* @brief Returns the first element that a pair stores.
* @return The first element that a pair stores.
*/
[[nodiscard]] constexpr first_type &first() noexcept {
return static_cast<first_base &>(*this).get();
}
/*! @copydoc first */
[[nodiscard]] constexpr const first_type &first() const noexcept {
return static_cast<const first_base &>(*this).get();
}
/**
* @brief Returns the second element that a pair stores.
* @return The second element that a pair stores.
*/
[[nodiscard]] constexpr second_type &second() noexcept {
return static_cast<second_base &>(*this).get();
}
/*! @copydoc second */
[[nodiscard]] constexpr const second_type &second() const noexcept {
return static_cast<const second_base &>(*this).get();
}
/**
* @brief Swaps two compressed pair objects.
* @param other The compressed pair to swap with.
*/
constexpr void swap(compressed_pair &other) noexcept(std::is_nothrow_swappable_v<first_type> &&std::is_nothrow_swappable_v<second_type>) {
using std::swap;
swap(first(), other.first());
swap(second(), other.second());
}
/**
* @brief Extracts an element from the compressed pair.
* @tparam Index An integer value that is either 0 or 1.
* @return Returns a reference to the first element if `Index` is 0 and a
* reference to the second element if `Index` is 1.
*/
template<std::size_t Index>
constexpr decltype(auto) get() noexcept {
if constexpr(Index == 0u) {
return first();
} else {
static_assert(Index == 1u, "Index out of bounds");
return second();
}
}
/*! @copydoc get */
template<std::size_t Index>
constexpr decltype(auto) get() const noexcept {
if constexpr(Index == 0u) {
return first();
} else {
static_assert(Index == 1u, "Index out of bounds");
return second();
}
}
};
/**
* @brief Deduction guide.
* @tparam Type Type of value to use to initialize the first element.
* @tparam Other Type of value to use to initialize the second element.
*/
template<typename Type, typename Other>
compressed_pair(Type &&, Other &&) -> compressed_pair<std::decay_t<Type>, std::decay_t<Other>>;
/**
* @brief Swaps two compressed pair objects.
* @tparam First The type of the first element that the pairs store.
* @tparam Second The type of the second element that the pairs store.
* @param lhs A valid compressed pair object.
* @param rhs A valid compressed pair object.
*/
template<typename First, typename Second>
inline constexpr void swap(compressed_pair<First, Second> &lhs, compressed_pair<First, Second> &rhs) {
lhs.swap(rhs);
}
} // namespace entt
// disable structured binding support for clang 6, it messes when specializing tuple_size
#if !defined __clang_major__ || __clang_major__ > 6
namespace std {
/**
* @brief `std::tuple_size` specialization for `compressed_pair`s.
* @tparam First The type of the first element that the pair stores.
* @tparam Second The type of the second element that the pair stores.
*/
template<typename First, typename Second>
struct tuple_size<entt::compressed_pair<First, Second>>: integral_constant<size_t, 2u> {};
/**
* @brief `std::tuple_element` specialization for `compressed_pair`s.
* @tparam Index The index of the type to return.
* @tparam First The type of the first element that the pair stores.
* @tparam Second The type of the second element that the pair stores.
*/
template<size_t Index, typename First, typename Second>
struct tuple_element<Index, entt::compressed_pair<First, Second>>: conditional<Index == 0u, First, Second> {
static_assert(Index < 2u, "Index out of bounds");
};
} // namespace std
#endif
#endif
// #include "core/enum.hpp"
#ifndef ENTT_CORE_ENUM_HPP
#define ENTT_CORE_ENUM_HPP
#include <type_traits>
namespace entt {
/**
* @brief Enable bitmask support for enum classes.
* @tparam Type The enum type for which to enable bitmask support.
*/
template<typename Type, typename = void>
struct enum_as_bitmask: std::false_type {};
/*! @copydoc enum_as_bitmask */
template<typename Type>
struct enum_as_bitmask<Type, std::void_t<decltype(Type::_entt_enum_as_bitmask)>>: std::is_enum<Type> {};
/**
* @brief Helper variable template.
* @tparam Type The enum class type for which to enable bitmask support.
*/
template<typename Type>
inline constexpr bool enum_as_bitmask_v = enum_as_bitmask<Type>::value;
} // namespace entt
/**
* @brief Operator available for enums for which bitmask support is enabled.
* @tparam Type Enum class type.
* @param lhs The first value to use.
* @param rhs The second value to use.
* @return The result of invoking the operator on the underlying types of the
* two values provided.
*/
template<typename Type>
[[nodiscard]] constexpr std::enable_if_t<entt::enum_as_bitmask_v<Type>, Type>
operator|(const Type lhs, const Type rhs) noexcept {
return static_cast<Type>(static_cast<std::underlying_type_t<Type>>(lhs) | static_cast<std::underlying_type_t<Type>>(rhs));
}
/*! @copydoc operator| */
template<typename Type>
[[nodiscard]] constexpr std::enable_if_t<entt::enum_as_bitmask_v<Type>, Type>
operator&(const Type lhs, const Type rhs) noexcept {
return static_cast<Type>(static_cast<std::underlying_type_t<Type>>(lhs) & static_cast<std::underlying_type_t<Type>>(rhs));
}
/*! @copydoc operator| */
template<typename Type>
[[nodiscard]] constexpr std::enable_if_t<entt::enum_as_bitmask_v<Type>, Type>
operator^(const Type lhs, const Type rhs) noexcept {
return static_cast<Type>(static_cast<std::underlying_type_t<Type>>(lhs) ^ static_cast<std::underlying_type_t<Type>>(rhs));
}
/**
* @brief Operator available for enums for which bitmask support is enabled.
* @tparam Type Enum class type.
* @param value The value to use.
* @return The result of invoking the operator on the underlying types of the
* value provided.
*/
template<typename Type>
[[nodiscard]] constexpr std::enable_if_t<entt::enum_as_bitmask_v<Type>, Type>
operator~(const Type value) noexcept {
return static_cast<Type>(~static_cast<std::underlying_type_t<Type>>(value));
}
/*! @copydoc operator~ */
template<typename Type>
[[nodiscard]] constexpr std::enable_if_t<entt::enum_as_bitmask_v<Type>, bool>
operator!(const Type value) noexcept {
return !static_cast<std::underlying_type_t<Type>>(value);
}
/*! @copydoc operator| */
template<typename Type>
constexpr std::enable_if_t<entt::enum_as_bitmask_v<Type>, Type &>
operator|=(Type &lhs, const Type rhs) noexcept {
return (lhs = (lhs | rhs));
}
/*! @copydoc operator| */
template<typename Type>
constexpr std::enable_if_t<entt::enum_as_bitmask_v<Type>, Type &>
operator&=(Type &lhs, const Type rhs) noexcept {
return (lhs = (lhs & rhs));
}
/*! @copydoc operator| */
template<typename Type>
constexpr std::enable_if_t<entt::enum_as_bitmask_v<Type>, Type &>
operator^=(Type &lhs, const Type rhs) noexcept {
return (lhs = (lhs ^ rhs));
}
#endif
// #include "core/family.hpp"
#ifndef ENTT_CORE_FAMILY_HPP
#define ENTT_CORE_FAMILY_HPP
// #include "../config/config.h"
// #include "fwd.hpp"
namespace entt {
/**
* @brief Dynamic identifier generator.
*
* Utility class template that can be used to assign unique identifiers to types
* at runtime. Use different specializations to create separate sets of
* identifiers.
*/
template<typename...>
class family {
inline static ENTT_MAYBE_ATOMIC(id_type) identifier{};
public:
/*! @brief Unsigned integer type. */
using value_type = id_type;
/*! @brief Statically generated unique identifier for the given type. */
template<typename... Type>
// at the time I'm writing, clang crashes during compilation if auto is used instead of family_type
inline static const value_type value = identifier++;
};
} // namespace entt
#endif
// #include "core/hashed_string.hpp"
#ifndef ENTT_CORE_HASHED_STRING_HPP
#define ENTT_CORE_HASHED_STRING_HPP
#include <cstddef>
#include <cstdint>
// #include "fwd.hpp"
namespace entt {
/**
* @cond TURN_OFF_DOXYGEN
* Internal details not to be documented.
*/
namespace internal {
template<typename>
struct fnv1a_traits;
template<>
struct fnv1a_traits<std::uint32_t> {
using type = std::uint32_t;
static constexpr std::uint32_t offset = 2166136261;
static constexpr std::uint32_t prime = 16777619;
};
template<>
struct fnv1a_traits<std::uint64_t> {
using type = std::uint64_t;
static constexpr std::uint64_t offset = 14695981039346656037ull;
static constexpr std::uint64_t prime = 1099511628211ull;
};
template<typename Char>
struct basic_hashed_string {
using value_type = Char;
using size_type = std::size_t;
using hash_type = id_type;
const value_type *repr;
size_type length;
hash_type hash;
};
} // namespace internal
/**
* Internal details not to be documented.
* @endcond
*/
/**
* @brief Zero overhead unique identifier.
*
* A hashed string is a compile-time tool that allows users to use
* human-readable identifiers in the codebase while using their numeric
* counterparts at runtime.<br/>
* Because of that, a hashed string can also be used in constant expressions if
* required.
*
* @warning
* This class doesn't take ownership of user-supplied strings nor does it make a
* copy of them.
*
* @tparam Char Character type.
*/
template<typename Char>
class basic_hashed_string: internal::basic_hashed_string<Char> {
using base_type = internal::basic_hashed_string<Char>;
using hs_traits = internal::fnv1a_traits<id_type>;
struct const_wrapper {
// non-explicit constructor on purpose
constexpr const_wrapper(const Char *str) noexcept
: repr{str} {}
const Char *repr;
};
// FowlerNollVo hash function v. 1a - the good
[[nodiscard]] static constexpr auto helper(const Char *str) noexcept {
base_type base{str, 0u, hs_traits::offset};
for(; str[base.length]; ++base.length) {
base.hash = (base.hash ^ static_cast<hs_traits::type>(str[base.length])) * hs_traits::prime;
}
return base;
}
// FowlerNollVo hash function v. 1a - the good
[[nodiscard]] static constexpr auto helper(const Char *str, const std::size_t len) noexcept {
base_type base{str, len, hs_traits::offset};
for(size_type pos{}; pos < len; ++pos) {
base.hash = (base.hash ^ static_cast<hs_traits::type>(str[pos])) * hs_traits::prime;
}
return base;
}
public:
/*! @brief Character type. */
using value_type = typename base_type::value_type;
/*! @brief Unsigned integer type. */
using size_type = typename base_type::size_type;
/*! @brief Unsigned integer type. */
using hash_type = typename base_type::hash_type;
/**
* @brief Returns directly the numeric representation of a string view.
* @param str Human-readable identifier.
* @param len Length of the string to hash.
* @return The numeric representation of the string.
*/
[[nodiscard]] static constexpr hash_type value(const value_type *str, const size_type len) noexcept {
return basic_hashed_string{str, len};
}
/**
* @brief Returns directly the numeric representation of a string.
* @tparam N Number of characters of the identifier.
* @param str Human-readable identifier.
* @return The numeric representation of the string.
*/
template<std::size_t N>
[[nodiscard]] static constexpr hash_type value(const value_type (&str)[N]) noexcept {
return basic_hashed_string{str};
}
/**
* @brief Returns directly the numeric representation of a string.
* @param wrapper Helps achieving the purpose by relying on overloading.
* @return The numeric representation of the string.
*/
[[nodiscard]] static constexpr hash_type value(const_wrapper wrapper) noexcept {
return basic_hashed_string{wrapper};
}
/*! @brief Constructs an empty hashed string. */
constexpr basic_hashed_string() noexcept
: base_type{} {}
/**
* @brief Constructs a hashed string from a string view.
* @param str Human-readable identifier.
* @param len Length of the string to hash.
*/
constexpr basic_hashed_string(const value_type *str, const size_type len) noexcept
: base_type{helper(str, len)} {}
/**
* @brief Constructs a hashed string from an array of const characters.
* @tparam N Number of characters of the identifier.
* @param str Human-readable identifier.
*/
template<std::size_t N>
constexpr basic_hashed_string(const value_type (&str)[N]) noexcept
: base_type{helper(str)} {}
/**
* @brief Explicit constructor on purpose to avoid constructing a hashed
* string directly from a `const value_type *`.
*
* @warning
* The lifetime of the string is not extended nor is it copied.
*
* @param wrapper Helps achieving the purpose by relying on overloading.
*/
explicit constexpr basic_hashed_string(const_wrapper wrapper) noexcept
: base_type{helper(wrapper.repr)} {}
/**
* @brief Returns the size a hashed string.
* @return The size of the hashed string.
*/
[[nodiscard]] constexpr size_type size() const noexcept {
return base_type::length;
}
/**
* @brief Returns the human-readable representation of a hashed string.
* @return The string used to initialize the hashed string.
*/
[[nodiscard]] constexpr const value_type *data() const noexcept {
return base_type::repr;
}
/**
* @brief Returns the numeric representation of a hashed string.
* @return The numeric representation of the hashed string.
*/
[[nodiscard]] constexpr hash_type value() const noexcept {
return base_type::hash;
}
/*! @copydoc data */
[[nodiscard]] constexpr operator const value_type *() const noexcept {
return data();
}
/**
* @brief Returns the numeric representation of a hashed string.
* @return The numeric representation of the hashed string.
*/
[[nodiscard]] constexpr operator hash_type() const noexcept {
return value();
}
};
/**
* @brief Deduction guide.
* @tparam Char Character type.
* @param str Human-readable identifier.
* @param len Length of the string to hash.
*/
template<typename Char>
basic_hashed_string(const Char *str, const std::size_t len) -> basic_hashed_string<Char>;
/**
* @brief Deduction guide.
* @tparam Char Character type.
* @tparam N Number of characters of the identifier.
* @param str Human-readable identifier.
*/
template<typename Char, std::size_t N>
basic_hashed_string(const Char (&str)[N]) -> basic_hashed_string<Char>;
/**
* @brief Compares two hashed strings.
* @tparam Char Character type.
* @param lhs A valid hashed string.
* @param rhs A valid hashed string.
* @return True if the two hashed strings are identical, false otherwise.
*/
template<typename Char>
[[nodiscard]] constexpr bool operator==(const basic_hashed_string<Char> &lhs, const basic_hashed_string<Char> &rhs) noexcept {
return lhs.value() == rhs.value();
}
/**
* @brief Compares two hashed strings.
* @tparam Char Character type.
* @param lhs A valid hashed string.
* @param rhs A valid hashed string.
* @return True if the two hashed strings differ, false otherwise.
*/
template<typename Char>
[[nodiscard]] constexpr bool operator!=(const basic_hashed_string<Char> &lhs, const basic_hashed_string<Char> &rhs) noexcept {
return !(lhs == rhs);
}
/**
* @brief Compares two hashed strings.
* @tparam Char Character type.
* @param lhs A valid hashed string.
* @param rhs A valid hashed string.
* @return True if the first element is less than the second, false otherwise.
*/
template<typename Char>
[[nodiscard]] constexpr bool operator<(const basic_hashed_string<Char> &lhs, const basic_hashed_string<Char> &rhs) noexcept {
return lhs.value() < rhs.value();
}
/**
* @brief Compares two hashed strings.
* @tparam Char Character type.
* @param lhs A valid hashed string.
* @param rhs A valid hashed string.
* @return True if the first element is less than or equal to the second, false
* otherwise.
*/
template<typename Char>
[[nodiscard]] constexpr bool operator<=(const basic_hashed_string<Char> &lhs, const basic_hashed_string<Char> &rhs) noexcept {
return !(rhs < lhs);
}
/**
* @brief Compares two hashed strings.
* @tparam Char Character type.
* @param lhs A valid hashed string.
* @param rhs A valid hashed string.
* @return True if the first element is greater than the second, false
* otherwise.
*/
template<typename Char>
[[nodiscard]] constexpr bool operator>(const basic_hashed_string<Char> &lhs, const basic_hashed_string<Char> &rhs) noexcept {
return rhs < lhs;
}
/**
* @brief Compares two hashed strings.
* @tparam Char Character type.
* @param lhs A valid hashed string.
* @param rhs A valid hashed string.
* @return True if the first element is greater than or equal to the second,
* false otherwise.
*/
template<typename Char>
[[nodiscard]] constexpr bool operator>=(const basic_hashed_string<Char> &lhs, const basic_hashed_string<Char> &rhs) noexcept {
return !(lhs < rhs);
}
/*! @brief Aliases for common character types. */
using hashed_string = basic_hashed_string<char>;
/*! @brief Aliases for common character types. */
using hashed_wstring = basic_hashed_string<wchar_t>;
inline namespace literals {
/**
* @brief User defined literal for hashed strings.
* @param str The literal without its suffix.
* @return A properly initialized hashed string.
*/
[[nodiscard]] constexpr hashed_string operator"" _hs(const char *str, std::size_t) noexcept {
return hashed_string{str};
}
/**
* @brief User defined literal for hashed wstrings.
* @param str The literal without its suffix.
* @return A properly initialized hashed wstring.
*/
[[nodiscard]] constexpr hashed_wstring operator"" _hws(const wchar_t *str, std::size_t) noexcept {
return hashed_wstring{str};
}
} // namespace literals
} // namespace entt
#endif
// #include "core/ident.hpp"
#ifndef ENTT_CORE_IDENT_HPP
#define ENTT_CORE_IDENT_HPP
#include <cstddef>
#include <type_traits>
#include <utility>
// #include "fwd.hpp"
// #include "type_traits.hpp"
namespace entt {
/**
* @brief Type integral identifiers.
* @tparam Type List of types for which to generate identifiers.
*/
template<typename... Type>
class ident {
template<typename Curr, std::size_t... Index>
[[nodiscard]] static constexpr id_type get(std::index_sequence<Index...>) noexcept {
static_assert((std::is_same_v<Curr, Type> || ...), "Invalid type");
return (0 + ... + (std::is_same_v<Curr, type_list_element_t<Index, type_list<std::decay_t<Type>...>>> ? id_type{Index} : id_type{}));
}
public:
/*! @brief Unsigned integer type. */
using value_type = id_type;
/*! @brief Statically generated unique identifier for the given type. */
template<typename Curr>
static constexpr value_type value = get<std::decay_t<Curr>>(std::index_sequence_for<Type...>{});
};
} // namespace entt
#endif
// #include "core/iterator.hpp"
#ifndef ENTT_CORE_ITERATOR_HPP
#define ENTT_CORE_ITERATOR_HPP
#include <iterator>
#include <memory>
#include <type_traits>
#include <utility>
namespace entt {
/**
* @brief Helper type to use as pointer with input iterators.
* @tparam Type of wrapped value.
*/
template<typename Type>
struct input_iterator_pointer final {
/*! @brief Value type. */
using value_type = Type;
/*! @brief Pointer type. */
using pointer = Type *;
/*! @brief Reference type. */
using reference = Type &;
/**
* @brief Constructs a proxy object by move.
* @param val Value to use to initialize the proxy object.
*/
constexpr input_iterator_pointer(value_type &&val) noexcept(std::is_nothrow_move_constructible_v<value_type>)
: value{std::move(val)} {}
/**
* @brief Access operator for accessing wrapped values.
* @return A pointer to the wrapped value.
*/
[[nodiscard]] constexpr pointer operator->() noexcept {
return std::addressof(value);
}
/**
* @brief Dereference operator for accessing wrapped values.
* @return A reference to the wrapped value.
*/
[[nodiscard]] constexpr reference operator*() noexcept {
return value;
}
private:
Type value;
};
/**
* @brief Plain iota iterator (waiting for C++20).
* @tparam Type Value type.
*/
template<typename Type>
class iota_iterator final {
static_assert(std::is_integral_v<Type>, "Not an integral type");
public:
/*! @brief Value type, likely an integral one. */
using value_type = Type;
/*! @brief Invalid pointer type. */
using pointer = void;
/*! @brief Non-reference type, same as value type. */
using reference = value_type;
/*! @brief Difference type. */
using difference_type = std::ptrdiff_t;
/*! @brief Iterator category. */
using iterator_category = std::input_iterator_tag;
/*! @brief Default constructor. */
constexpr iota_iterator() noexcept
: current{} {}
/**
* @brief Constructs an iota iterator from a given value.
* @param init The initial value assigned to the iota iterator.
*/
constexpr iota_iterator(const value_type init) noexcept
: current{init} {}
/**
* @brief Pre-increment operator.
* @return This iota iterator.
*/
constexpr iota_iterator &operator++() noexcept {
return ++current, *this;
}
/**
* @brief Post-increment operator.
* @return This iota iterator.
*/
constexpr iota_iterator operator++(int) noexcept {
iota_iterator orig = *this;
return ++(*this), orig;
}
/**
* @brief Dereference operator.
* @return The underlying value.
*/
[[nodiscard]] constexpr reference operator*() const noexcept {
return current;
}
private:
value_type current;
};
/**
* @brief Comparison operator.
* @tparam Type Value type of the iota iterator.
* @param lhs A properly initialized iota iterator.
* @param rhs A properly initialized iota iterator.
* @return True if the two iterators are identical, false otherwise.
*/
template<typename Type>
[[nodiscard]] constexpr bool operator==(const iota_iterator<Type> &lhs, const iota_iterator<Type> &rhs) noexcept {
return *lhs == *rhs;
}
/**
* @brief Comparison operator.
* @tparam Type Value type of the iota iterator.
* @param lhs A properly initialized iota iterator.
* @param rhs A properly initialized iota iterator.
* @return True if the two iterators differ, false otherwise.
*/
template<typename Type>
[[nodiscard]] constexpr bool operator!=(const iota_iterator<Type> &lhs, const iota_iterator<Type> &rhs) noexcept {
return !(lhs == rhs);
}
/**
* @brief Utility class to create an iterable object from a pair of iterators.
* @tparam It Type of iterator.
* @tparam Sentinel Type of sentinel.
*/
template<typename It, typename Sentinel = It>
struct iterable_adaptor final {
/*! @brief Value type. */
using value_type = typename std::iterator_traits<It>::value_type;
/*! @brief Iterator type. */
using iterator = It;
/*! @brief Sentinel type. */
using sentinel = Sentinel;
/*! @brief Default constructor. */
constexpr iterable_adaptor() noexcept(std::is_nothrow_default_constructible_v<iterator> &&std::is_nothrow_default_constructible_v<sentinel>)
: first{},
last{} {}
/**
* @brief Creates an iterable object from a pair of iterators.
* @param from Begin iterator.
* @param to End iterator.
*/
constexpr iterable_adaptor(iterator from, sentinel to) noexcept(std::is_nothrow_move_constructible_v<iterator> &&std::is_nothrow_move_constructible_v<sentinel>)
: first{std::move(from)},
last{std::move(to)} {}
/**
* @brief Returns an iterator to the beginning.
* @return An iterator to the first element of the range.
*/
[[nodiscard]] constexpr iterator begin() const noexcept {
return first;
}
/**
* @brief Returns an iterator to the end.
* @return An iterator to the element following the last element of the
* range.
*/
[[nodiscard]] constexpr sentinel end() const noexcept {
return last;
}
/*! @copydoc begin */
[[nodiscard]] constexpr iterator cbegin() const noexcept {
return begin();
}
/*! @copydoc end */
[[nodiscard]] constexpr sentinel cend() const noexcept {
return end();
}
private:
It first;
Sentinel last;
};
} // namespace entt
#endif
// #include "core/memory.hpp"
#ifndef ENTT_CORE_MEMORY_HPP
#define ENTT_CORE_MEMORY_HPP
#include <cstddef>
#include <limits>
#include <memory>
#include <tuple>
#include <type_traits>
#include <utility>
// #include "../config/config.h"
namespace entt {
/**
* @brief Checks whether a value is a power of two or not.
* @param value A value that may or may not be a power of two.
* @return True if the value is a power of two, false otherwise.
*/
[[nodiscard]] inline constexpr bool is_power_of_two(const std::size_t value) noexcept {
return value && ((value & (value - 1)) == 0);
}
/**
* @brief Computes the smallest power of two greater than or equal to a value.
* @param value The value to use.
* @return The smallest power of two greater than or equal to the given value.
*/
[[nodiscard]] inline constexpr std::size_t next_power_of_two(const std::size_t value) noexcept {
ENTT_ASSERT_CONSTEXPR(value < (std::size_t{1u} << (std::numeric_limits<std::size_t>::digits - 1)), "Numeric limits exceeded");
std::size_t curr = value - (value != 0u);
for(int next = 1; next < std::numeric_limits<std::size_t>::digits; next = next * 2) {
curr |= curr >> next;
}
return ++curr;
}
/**
* @brief Fast module utility function (powers of two only).
* @param value A value for which to calculate the modulus.
* @param mod _Modulus_, it must be a power of two.
* @return The common remainder.
*/
[[nodiscard]] inline constexpr std::size_t fast_mod(const std::size_t value, const std::size_t mod) noexcept {
ENTT_ASSERT_CONSTEXPR(is_power_of_two(mod), "Value must be a power of two");
return value & (mod - 1u);
}
/**
* @brief Unwraps fancy pointers, does nothing otherwise (waiting for C++20).
* @tparam Type Pointer type.
* @param ptr Fancy or raw pointer.
* @return A raw pointer that represents the address of the original pointer.
*/
template<typename Type>
[[nodiscard]] constexpr auto to_address(Type &&ptr) noexcept {
if constexpr(std::is_pointer_v<std::decay_t<Type>>) {
return ptr;
} else {
return to_address(std::forward<Type>(ptr).operator->());
}
}
/**
* @brief Utility function to design allocation-aware containers.
* @tparam Allocator Type of allocator.
* @param lhs A valid allocator.
* @param rhs Another valid allocator.
*/
template<typename Allocator>
constexpr void propagate_on_container_copy_assignment([[maybe_unused]] Allocator &lhs, [[maybe_unused]] Allocator &rhs) noexcept {
if constexpr(std::allocator_traits<Allocator>::propagate_on_container_copy_assignment::value) {
lhs = rhs;
}
}
/**
* @brief Utility function to design allocation-aware containers.
* @tparam Allocator Type of allocator.
* @param lhs A valid allocator.
* @param rhs Another valid allocator.
*/
template<typename Allocator>
constexpr void propagate_on_container_move_assignment([[maybe_unused]] Allocator &lhs, [[maybe_unused]] Allocator &rhs) noexcept {
if constexpr(std::allocator_traits<Allocator>::propagate_on_container_move_assignment::value) {
lhs = std::move(rhs);
}
}
/**
* @brief Utility function to design allocation-aware containers.
* @tparam Allocator Type of allocator.
* @param lhs A valid allocator.
* @param rhs Another valid allocator.
*/
template<typename Allocator>
constexpr void propagate_on_container_swap([[maybe_unused]] Allocator &lhs, [[maybe_unused]] Allocator &rhs) noexcept {
if constexpr(std::allocator_traits<Allocator>::propagate_on_container_swap::value) {
using std::swap;
swap(lhs, rhs);
} else {
ENTT_ASSERT_CONSTEXPR(lhs == rhs, "Cannot swap the containers");
}
}
/**
* @brief Deleter for allocator-aware unique pointers (waiting for C++20).
* @tparam Args Types of arguments to use to construct the object.
*/
template<typename Allocator>
struct allocation_deleter: private Allocator {
/*! @brief Allocator type. */
using allocator_type = Allocator;
/*! @brief Pointer type. */
using pointer = typename std::allocator_traits<Allocator>::pointer;
/**
* @brief Inherited constructors.
* @param alloc The allocator to use.
*/
constexpr allocation_deleter(const allocator_type &alloc) noexcept(std::is_nothrow_copy_constructible_v<allocator_type>)
: Allocator{alloc} {}
/**
* @brief Destroys the pointed object and deallocates its memory.
* @param ptr A valid pointer to an object of the given type.
*/
constexpr void operator()(pointer ptr) noexcept(std::is_nothrow_destructible_v<typename allocator_type::value_type>) {
using alloc_traits = typename std::allocator_traits<Allocator>;
alloc_traits::destroy(*this, to_address(ptr));
alloc_traits::deallocate(*this, ptr, 1u);
}
};
/**
* @brief Allows `std::unique_ptr` to use allocators (waiting for C++20).
* @tparam Type Type of object to allocate for and to construct.
* @tparam Allocator Type of allocator used to manage memory and elements.
* @tparam Args Types of arguments to use to construct the object.
* @param allocator The allocator to use.
* @param args Parameters to use to construct the object.
* @return A properly initialized unique pointer with a custom deleter.
*/
template<typename Type, typename Allocator, typename... Args>
ENTT_CONSTEXPR auto allocate_unique(Allocator &allocator, Args &&...args) {
static_assert(!std::is_array_v<Type>, "Array types are not supported");
using alloc_traits = typename std::allocator_traits<Allocator>::template rebind_traits<Type>;
using allocator_type = typename alloc_traits::allocator_type;
allocator_type alloc{allocator};
auto ptr = alloc_traits::allocate(alloc, 1u);
ENTT_TRY {
alloc_traits::construct(alloc, to_address(ptr), std::forward<Args>(args)...);
}
ENTT_CATCH {
alloc_traits::deallocate(alloc, ptr, 1u);
ENTT_THROW;
}
return std::unique_ptr<Type, allocation_deleter<allocator_type>>{ptr, alloc};
}
/**
* @cond TURN_OFF_DOXYGEN
* Internal details not to be documented.
*/
namespace internal {
template<typename Type>
struct uses_allocator_construction {
template<typename Allocator, typename... Params>
static constexpr auto args([[maybe_unused]] const Allocator &allocator, Params &&...params) noexcept {
if constexpr(!std::uses_allocator_v<Type, Allocator> && std::is_constructible_v<Type, Params...>) {
return std::forward_as_tuple(std::forward<Params>(params)...);
} else {
static_assert(std::uses_allocator_v<Type, Allocator>, "Ill-formed request");
if constexpr(std::is_constructible_v<Type, std::allocator_arg_t, const Allocator &, Params...>) {
return std::tuple<std::allocator_arg_t, const Allocator &, Params &&...>{std::allocator_arg, allocator, std::forward<Params>(params)...};
} else {
static_assert(std::is_constructible_v<Type, Params..., const Allocator &>, "Ill-formed request");
return std::forward_as_tuple(std::forward<Params>(params)..., allocator);
}
}
}
};
template<typename Type, typename Other>
struct uses_allocator_construction<std::pair<Type, Other>> {
using type = std::pair<Type, Other>;
template<typename Allocator, typename First, typename Second>
static constexpr auto args(const Allocator &allocator, std::piecewise_construct_t, First &&first, Second &&second) noexcept {
return std::make_tuple(
std::piecewise_construct,
std::apply([&allocator](auto &&...curr) { return uses_allocator_construction<Type>::args(allocator, std::forward<decltype(curr)>(curr)...); }, std::forward<First>(first)),
std::apply([&allocator](auto &&...curr) { return uses_allocator_construction<Other>::args(allocator, std::forward<decltype(curr)>(curr)...); }, std::forward<Second>(second)));
}
template<typename Allocator>
static constexpr auto args(const Allocator &allocator) noexcept {
return uses_allocator_construction<type>::args(allocator, std::piecewise_construct, std::tuple<>{}, std::tuple<>{});
}
template<typename Allocator, typename First, typename Second>
static constexpr auto args(const Allocator &allocator, First &&first, Second &&second) noexcept {
return uses_allocator_construction<type>::args(allocator, std::piecewise_construct, std::forward_as_tuple(std::forward<First>(first)), std::forward_as_tuple(std::forward<Second>(second)));
}
template<typename Allocator, typename First, typename Second>
static constexpr auto args(const Allocator &allocator, const std::pair<First, Second> &value) noexcept {
return uses_allocator_construction<type>::args(allocator, std::piecewise_construct, std::forward_as_tuple(value.first), std::forward_as_tuple(value.second));
}
template<typename Allocator, typename First, typename Second>
static constexpr auto args(const Allocator &allocator, std::pair<First, Second> &&value) noexcept {
return uses_allocator_construction<type>::args(allocator, std::piecewise_construct, std::forward_as_tuple(std::move(value.first)), std::forward_as_tuple(std::move(value.second)));
}
};
} // namespace internal
/**
* Internal details not to be documented.
* @endcond
*/
/**
* @brief Uses-allocator construction utility (waiting for C++20).
*
* Primarily intended for internal use. Prepares the argument list needed to
* create an object of a given type by means of uses-allocator construction.
*
* @tparam Type Type to return arguments for.
* @tparam Allocator Type of allocator used to manage memory and elements.
* @tparam Args Types of arguments to use to construct the object.
* @param allocator The allocator to use.
* @param args Parameters to use to construct the object.
* @return The arguments needed to create an object of the given type.
*/
template<typename Type, typename Allocator, typename... Args>
constexpr auto uses_allocator_construction_args(const Allocator &allocator, Args &&...args) noexcept {
return internal::uses_allocator_construction<Type>::args(allocator, std::forward<Args>(args)...);
}
/**
* @brief Uses-allocator construction utility (waiting for C++20).
*
* Primarily intended for internal use. Creates an object of a given type by
* means of uses-allocator construction.
*
* @tparam Type Type of object to create.
* @tparam Allocator Type of allocator used to manage memory and elements.
* @tparam Args Types of arguments to use to construct the object.
* @param allocator The allocator to use.
* @param args Parameters to use to construct the object.
* @return A newly created object of the given type.
*/
template<typename Type, typename Allocator, typename... Args>
constexpr Type make_obj_using_allocator(const Allocator &allocator, Args &&...args) {
return std::make_from_tuple<Type>(internal::uses_allocator_construction<Type>::args(allocator, std::forward<Args>(args)...));
}
/**
* @brief Uses-allocator construction utility (waiting for C++20).
*
* Primarily intended for internal use. Creates an object of a given type by
* means of uses-allocator construction at an uninitialized memory location.
*
* @tparam Type Type of object to create.
* @tparam Allocator Type of allocator used to manage memory and elements.
* @tparam Args Types of arguments to use to construct the object.
* @param value Memory location in which to place the object.
* @param allocator The allocator to use.
* @param args Parameters to use to construct the object.
* @return A pointer to the newly created object of the given type.
*/
template<typename Type, typename Allocator, typename... Args>
constexpr Type *uninitialized_construct_using_allocator(Type *value, const Allocator &allocator, Args &&...args) {
return std::apply([value](auto &&...curr) { return new(value) Type(std::forward<decltype(curr)>(curr)...); }, internal::uses_allocator_construction<Type>::args(allocator, std::forward<Args>(args)...));
}
} // namespace entt
#endif
// #include "core/monostate.hpp"
#ifndef ENTT_CORE_MONOSTATE_HPP
#define ENTT_CORE_MONOSTATE_HPP
// #include "../config/config.h"
// #include "fwd.hpp"
namespace entt {
/**
* @brief Minimal implementation of the monostate pattern.
*
* A minimal, yet complete configuration system built on top of the monostate
* pattern. Thread safe by design, it works only with basic types like `int`s or
* `bool`s.<br/>
* Multiple types and therefore more than one value can be associated with a
* single key. Because of this, users must pay attention to use the same type
* both during an assignment and when they try to read back their data.
* Otherwise, they can incur in unexpected results.
*/
template<id_type>
struct monostate {
/**
* @brief Assigns a value of a specific type to a given key.
* @tparam Type Type of the value to assign.
* @param val User data to assign to the given key.
*/
template<typename Type>
void operator=(Type val) const noexcept {
value<Type> = val;
}
/**
* @brief Gets a value of a specific type for a given key.
* @tparam Type Type of the value to get.
* @return Stored value, if any.
*/
template<typename Type>
operator Type() const noexcept {
return value<Type>;
}
private:
template<typename Type>
inline static ENTT_MAYBE_ATOMIC(Type) value{};
};
/**
* @brief Helper variable template.
* @tparam Value Value used to differentiate between different variables.
*/
template<id_type Value>
inline monostate<Value> monostate_v = {};
} // namespace entt
#endif
// #include "core/tuple.hpp"
#ifndef ENTT_CORE_TUPLE_HPP
#define ENTT_CORE_TUPLE_HPP
#include <tuple>
#include <type_traits>
#include <utility>
namespace entt {
/**
* @cond TURN_OFF_DOXYGEN
* Internal details not to be documented.
*/
namespace internal {
template<typename>
struct is_tuple_impl: std::false_type {};
template<typename... Args>
struct is_tuple_impl<std::tuple<Args...>>: std::true_type {};
} // namespace internal
/**
* Internal details not to be documented.
* @endcond
*/
/**
* @brief Provides the member constant `value` to true if a given type is a
* tuple, false otherwise.
* @tparam Type The type to test.
*/
template<typename Type>
struct is_tuple: internal::is_tuple_impl<std::remove_cv_t<Type>> {};
/**
* @brief Helper variable template.
* @tparam Type The type to test.
*/
template<typename Type>
inline constexpr bool is_tuple_v = is_tuple<Type>::value;
/**
* @brief Utility function to unwrap tuples of a single element.
* @tparam Type Tuple type of any sizes.
* @param value A tuple object of the given type.
* @return The tuple itself if it contains more than one element, the first
* element otherwise.
*/
template<typename Type>
constexpr decltype(auto) unwrap_tuple(Type &&value) noexcept {
if constexpr(std::tuple_size_v<std::remove_reference_t<Type>> == 1u) {
return std::get<0>(std::forward<Type>(value));
} else {
return std::forward<Type>(value);
}
}
/**
* @brief Utility class to forward-and-apply tuple objects.
* @tparam Func Type of underlying invocable object.
*/
template<typename Func>
struct forward_apply: private Func {
/**
* @brief Constructs a forward-and-apply object.
* @tparam Args Types of arguments to use to construct the new instance.
* @param args Parameters to use to construct the instance.
*/
template<class... Args>
constexpr forward_apply(Args &&...args) noexcept(std::is_nothrow_constructible_v<Func, Args...>)
: Func{std::forward<Args>(args)...} {}
/**
* @brief Forwards and applies the arguments with the underlying function.
* @tparam Type Tuple-like type to forward to the underlying function.
* @param args Parameters to forward to the underlying function.
* @return Return value of the underlying function, if any.
*/
template<class Type>
constexpr decltype(auto) operator()(Type &&args) noexcept(noexcept(std::apply(std::declval<Func &>(), args))) {
return std::apply(static_cast<Func &>(*this), std::forward<Type>(args));
}
/*! @copydoc operator()() */
template<class Type>
constexpr decltype(auto) operator()(Type &&args) const noexcept(noexcept(std::apply(std::declval<const Func &>(), args))) {
return std::apply(static_cast<const Func &>(*this), std::forward<Type>(args));
}
};
/**
* @brief Deduction guide.
* @tparam Func Type of underlying invocable object.
*/
template<typename Func>
forward_apply(Func) -> forward_apply<std::remove_reference_t<std::remove_cv_t<Func>>>;
} // namespace entt
#endif
// #include "core/type_info.hpp"
#ifndef ENTT_CORE_TYPE_INFO_HPP
#define ENTT_CORE_TYPE_INFO_HPP
#include <string_view>
#include <type_traits>
#include <utility>
// #include "../config/config.h"
// #include "../core/attribute.h"
// #include "fwd.hpp"
// #include "hashed_string.hpp"
namespace entt {
/**
* @cond TURN_OFF_DOXYGEN
* Internal details not to be documented.
*/
namespace internal {
struct ENTT_API type_index final {
[[nodiscard]] static id_type next() noexcept {
static ENTT_MAYBE_ATOMIC(id_type) value{};
return value++;
}
};
template<typename Type>
[[nodiscard]] constexpr auto stripped_type_name() noexcept {
#if defined ENTT_PRETTY_FUNCTION
std::string_view pretty_function{ENTT_PRETTY_FUNCTION};
auto first = pretty_function.find_first_not_of(' ', pretty_function.find_first_of(ENTT_PRETTY_FUNCTION_PREFIX) + 1);
auto value = pretty_function.substr(first, pretty_function.find_last_of(ENTT_PRETTY_FUNCTION_SUFFIX) - first);
return value;
#else
return std::string_view{""};
#endif
}
template<typename Type, auto = stripped_type_name<Type>().find_first_of('.')>
[[nodiscard]] static constexpr std::string_view type_name(int) noexcept {
constexpr auto value = stripped_type_name<Type>();
return value;
}
template<typename Type>
[[nodiscard]] static std::string_view type_name(char) noexcept {
static const auto value = stripped_type_name<Type>();
return value;
}
template<typename Type, auto = stripped_type_name<Type>().find_first_of('.')>
[[nodiscard]] static constexpr id_type type_hash(int) noexcept {
constexpr auto stripped = stripped_type_name<Type>();
constexpr auto value = hashed_string::value(stripped.data(), stripped.size());
return value;
}
template<typename Type>
[[nodiscard]] static id_type type_hash(char) noexcept {
static const auto value = [](const auto stripped) {
return hashed_string::value(stripped.data(), stripped.size());
}(stripped_type_name<Type>());
return value;
}
} // namespace internal
/**
* Internal details not to be documented.
* @endcond
*/
/**
* @brief Type sequential identifier.
* @tparam Type Type for which to generate a sequential identifier.
*/
template<typename Type, typename = void>
struct ENTT_API type_index final {
/**
* @brief Returns the sequential identifier of a given type.
* @return The sequential identifier of a given type.
*/
[[nodiscard]] static id_type value() noexcept {
static const id_type value = internal::type_index::next();
return value;
}
/*! @copydoc value */
[[nodiscard]] constexpr operator id_type() const noexcept {
return value();
}
};
/**
* @brief Type hash.
* @tparam Type Type for which to generate a hash value.
*/
template<typename Type, typename = void>
struct type_hash final {
/**
* @brief Returns the numeric representation of a given type.
* @return The numeric representation of the given type.
*/
#if defined ENTT_PRETTY_FUNCTION
[[nodiscard]] static constexpr id_type value() noexcept {
return internal::type_hash<Type>(0);
#else
[[nodiscard]] static constexpr id_type value() noexcept {
return type_index<Type>::value();
#endif
}
/*! @copydoc value */
[[nodiscard]] constexpr operator id_type() const noexcept {
return value();
}
};
/**
* @brief Type name.
* @tparam Type Type for which to generate a name.
*/
template<typename Type, typename = void>
struct type_name final {
/**
* @brief Returns the name of a given type.
* @return The name of the given type.
*/
[[nodiscard]] static constexpr std::string_view value() noexcept {
return internal::type_name<Type>(0);
}
/*! @copydoc value */
[[nodiscard]] constexpr operator std::string_view() const noexcept {
return value();
}
};
/*! @brief Implementation specific information about a type. */
struct type_info final {
/**
* @brief Constructs a type info object for a given type.
* @tparam Type Type for which to construct a type info object.
*/
template<typename Type>
constexpr type_info(std::in_place_type_t<Type>) noexcept
: seq{type_index<std::remove_cv_t<std::remove_reference_t<Type>>>::value()},
identifier{type_hash<std::remove_cv_t<std::remove_reference_t<Type>>>::value()},
alias{type_name<std::remove_cv_t<std::remove_reference_t<Type>>>::value()} {}
/**
* @brief Type index.
* @return Type index.
*/
[[nodiscard]] constexpr id_type index() const noexcept {
return seq;
}
/**
* @brief Type hash.
* @return Type hash.
*/
[[nodiscard]] constexpr id_type hash() const noexcept {
return identifier;
}
/**
* @brief Type name.
* @return Type name.
*/
[[nodiscard]] constexpr std::string_view name() const noexcept {
return alias;
}
private:
id_type seq;
id_type identifier;
std::string_view alias;
};
/**
* @brief Compares the contents of two type info objects.
* @param lhs A type info object.
* @param rhs A type info object.
* @return True if the two type info objects are identical, false otherwise.
*/
[[nodiscard]] inline constexpr bool operator==(const type_info &lhs, const type_info &rhs) noexcept {
return lhs.hash() == rhs.hash();
}
/**
* @brief Compares the contents of two type info objects.
* @param lhs A type info object.
* @param rhs A type info object.
* @return True if the two type info objects differ, false otherwise.
*/
[[nodiscard]] inline constexpr bool operator!=(const type_info &lhs, const type_info &rhs) noexcept {
return !(lhs == rhs);
}
/**
* @brief Compares two type info objects.
* @param lhs A valid type info object.
* @param rhs A valid type info object.
* @return True if the first element is less than the second, false otherwise.
*/
[[nodiscard]] constexpr bool operator<(const type_info &lhs, const type_info &rhs) noexcept {
return lhs.index() < rhs.index();
}
/**
* @brief Compares two type info objects.
* @param lhs A valid type info object.
* @param rhs A valid type info object.
* @return True if the first element is less than or equal to the second, false
* otherwise.
*/
[[nodiscard]] constexpr bool operator<=(const type_info &lhs, const type_info &rhs) noexcept {
return !(rhs < lhs);
}
/**
* @brief Compares two type info objects.
* @param lhs A valid type info object.
* @param rhs A valid type info object.
* @return True if the first element is greater than the second, false
* otherwise.
*/
[[nodiscard]] constexpr bool operator>(const type_info &lhs, const type_info &rhs) noexcept {
return rhs < lhs;
}
/**
* @brief Compares two type info objects.
* @param lhs A valid type info object.
* @param rhs A valid type info object.
* @return True if the first element is greater than or equal to the second,
* false otherwise.
*/
[[nodiscard]] constexpr bool operator>=(const type_info &lhs, const type_info &rhs) noexcept {
return !(lhs < rhs);
}
/**
* @brief Returns the type info object associated to a given type.
*
* The returned element refers to an object with static storage duration.<br/>
* The type doesn't need to be a complete type. If the type is a reference, the
* result refers to the referenced type. In all cases, top-level cv-qualifiers
* are ignored.
*
* @tparam Type Type for which to generate a type info object.
* @return A reference to a properly initialized type info object.
*/
template<typename Type>
[[nodiscard]] const type_info &type_id() noexcept {
if constexpr(std::is_same_v<Type, std::remove_cv_t<std::remove_reference_t<Type>>>) {
static type_info instance{std::in_place_type<Type>};
return instance;
} else {
return type_id<std::remove_cv_t<std::remove_reference_t<Type>>>();
}
}
/*! @copydoc type_id */
template<typename Type>
[[nodiscard]] const type_info &type_id(Type &&) noexcept {
return type_id<std::remove_cv_t<std::remove_reference_t<Type>>>();
}
} // namespace entt
#endif
// #include "core/type_traits.hpp"
#ifndef ENTT_CORE_TYPE_TRAITS_HPP
#define ENTT_CORE_TYPE_TRAITS_HPP
#include <cstddef>
#include <iterator>
#include <type_traits>
#include <utility>
// #include "../config/config.h"
// #include "fwd.hpp"
namespace entt {
/**
* @brief Utility class to disambiguate overloaded functions.
* @tparam N Number of choices available.
*/
template<std::size_t N>
struct choice_t
// Unfortunately, doxygen cannot parse such a construct.
: /*! @cond TURN_OFF_DOXYGEN */ choice_t<N - 1> /*! @endcond */
{};
/*! @copybrief choice_t */
template<>
struct choice_t<0> {};
/**
* @brief Variable template for the choice trick.
* @tparam N Number of choices available.
*/
template<std::size_t N>
inline constexpr choice_t<N> choice{};
/**
* @brief Identity type trait.
*
* Useful to establish non-deduced contexts in template argument deduction
* (waiting for C++20) or to provide types through function arguments.
*
* @tparam Type A type.
*/
template<typename Type>
struct type_identity {
/*! @brief Identity type. */
using type = Type;
};
/**
* @brief Helper type.
* @tparam Type A type.
*/
template<typename Type>
using type_identity_t = typename type_identity<Type>::type;
/**
* @brief A type-only `sizeof` wrapper that returns 0 where `sizeof` complains.
* @tparam Type The type of which to return the size.
* @tparam The size of the type if `sizeof` accepts it, 0 otherwise.
*/
template<typename Type, typename = void>
struct size_of: std::integral_constant<std::size_t, 0u> {};
/*! @copydoc size_of */
template<typename Type>
struct size_of<Type, std::void_t<decltype(sizeof(Type))>>
: std::integral_constant<std::size_t, sizeof(Type)> {};
/**
* @brief Helper variable template.
* @tparam Type The type of which to return the size.
*/
template<typename Type>
inline constexpr std::size_t size_of_v = size_of<Type>::value;
/**
* @brief Using declaration to be used to _repeat_ the same type a number of
* times equal to the size of a given parameter pack.
* @tparam Type A type to repeat.
*/
template<typename Type, typename>
using unpack_as_type = Type;
/**
* @brief Helper variable template to be used to _repeat_ the same value a
* number of times equal to the size of a given parameter pack.
* @tparam Value A value to repeat.
*/
template<auto Value, typename>
inline constexpr auto unpack_as_value = Value;
/**
* @brief Wraps a static constant.
* @tparam Value A static constant.
*/
template<auto Value>
using integral_constant = std::integral_constant<decltype(Value), Value>;
/**
* @brief Alias template to facilitate the creation of named values.
* @tparam Value A constant value at least convertible to `id_type`.
*/
template<id_type Value>
using tag = integral_constant<Value>;
/**
* @brief A class to use to push around lists of types, nothing more.
* @tparam Type Types provided by the type list.
*/
template<typename... Type>
struct type_list {
/*! @brief Type list type. */
using type = type_list;
/*! @brief Compile-time number of elements in the type list. */
static constexpr auto size = sizeof...(Type);
};
/*! @brief Primary template isn't defined on purpose. */
template<std::size_t, typename>
struct type_list_element;
/**
* @brief Provides compile-time indexed access to the types of a type list.
* @tparam Index Index of the type to return.
* @tparam First First type provided by the type list.
* @tparam Other Other types provided by the type list.
*/
template<std::size_t Index, typename First, typename... Other>
struct type_list_element<Index, type_list<First, Other...>>
: type_list_element<Index - 1u, type_list<Other...>> {};
/**
* @brief Provides compile-time indexed access to the types of a type list.
* @tparam First First type provided by the type list.
* @tparam Other Other types provided by the type list.
*/
template<typename First, typename... Other>
struct type_list_element<0u, type_list<First, Other...>> {
/*! @brief Searched type. */
using type = First;
};
/**
* @brief Helper type.
* @tparam Index Index of the type to return.
* @tparam List Type list to search into.
*/
template<std::size_t Index, typename List>
using type_list_element_t = typename type_list_element<Index, List>::type;
/*! @brief Primary template isn't defined on purpose. */
template<typename, typename>
struct type_list_index;
/**
* @brief Provides compile-time type access to the types of a type list.
* @tparam Type Type to look for and for which to return the index.
* @tparam First First type provided by the type list.
* @tparam Other Other types provided by the type list.
*/
template<typename Type, typename First, typename... Other>
struct type_list_index<Type, type_list<First, Other...>> {
/*! @brief Unsigned integer type. */
using value_type = std::size_t;
/*! @brief Compile-time position of the given type in the sublist. */
static constexpr value_type value = 1u + type_list_index<Type, type_list<Other...>>::value;
};
/**
* @brief Provides compile-time type access to the types of a type list.
* @tparam Type Type to look for and for which to return the index.
* @tparam Other Other types provided by the type list.
*/
template<typename Type, typename... Other>
struct type_list_index<Type, type_list<Type, Other...>> {
static_assert(type_list_index<Type, type_list<Other...>>::value == sizeof...(Other), "Non-unique type");
/*! @brief Unsigned integer type. */
using value_type = std::size_t;
/*! @brief Compile-time position of the given type in the sublist. */
static constexpr value_type value = 0u;
};
/**
* @brief Provides compile-time type access to the types of a type list.
* @tparam Type Type to look for and for which to return the index.
*/
template<typename Type>
struct type_list_index<Type, type_list<>> {
/*! @brief Unsigned integer type. */
using value_type = std::size_t;
/*! @brief Compile-time position of the given type in the sublist. */
static constexpr value_type value = 0u;
};
/**
* @brief Helper variable template.
* @tparam List Type list.
* @tparam Type Type to look for and for which to return the index.
*/
template<typename Type, typename List>
inline constexpr std::size_t type_list_index_v = type_list_index<Type, List>::value;
/**
* @brief Concatenates multiple type lists.
* @tparam Type Types provided by the first type list.
* @tparam Other Types provided by the second type list.
* @return A type list composed by the types of both the type lists.
*/
template<typename... Type, typename... Other>
constexpr type_list<Type..., Other...> operator+(type_list<Type...>, type_list<Other...>) {
return {};
}
/*! @brief Primary template isn't defined on purpose. */
template<typename...>
struct type_list_cat;
/*! @brief Concatenates multiple type lists. */
template<>
struct type_list_cat<> {
/*! @brief A type list composed by the types of all the type lists. */
using type = type_list<>;
};
/**
* @brief Concatenates multiple type lists.
* @tparam Type Types provided by the first type list.
* @tparam Other Types provided by the second type list.
* @tparam List Other type lists, if any.
*/
template<typename... Type, typename... Other, typename... List>
struct type_list_cat<type_list<Type...>, type_list<Other...>, List...> {
/*! @brief A type list composed by the types of all the type lists. */
using type = typename type_list_cat<type_list<Type..., Other...>, List...>::type;
};
/**
* @brief Concatenates multiple type lists.
* @tparam Type Types provided by the type list.
*/
template<typename... Type>
struct type_list_cat<type_list<Type...>> {
/*! @brief A type list composed by the types of all the type lists. */
using type = type_list<Type...>;
};
/**
* @brief Helper type.
* @tparam List Type lists to concatenate.
*/
template<typename... List>
using type_list_cat_t = typename type_list_cat<List...>::type;
/*! @brief Primary template isn't defined on purpose. */
template<typename>
struct type_list_unique;
/**
* @brief Removes duplicates types from a type list.
* @tparam Type One of the types provided by the given type list.
* @tparam Other The other types provided by the given type list.
*/
template<typename Type, typename... Other>
struct type_list_unique<type_list<Type, Other...>> {
/*! @brief A type list without duplicate types. */
using type = std::conditional_t<
(std::is_same_v<Type, Other> || ...),
typename type_list_unique<type_list<Other...>>::type,
type_list_cat_t<type_list<Type>, typename type_list_unique<type_list<Other...>>::type>>;
};
/*! @brief Removes duplicates types from a type list. */
template<>
struct type_list_unique<type_list<>> {
/*! @brief A type list without duplicate types. */
using type = type_list<>;
};
/**
* @brief Helper type.
* @tparam Type A type list.
*/
template<typename Type>
using type_list_unique_t = typename type_list_unique<Type>::type;
/**
* @brief Provides the member constant `value` to true if a type list contains a
* given type, false otherwise.
* @tparam List Type list.
* @tparam Type Type to look for.
*/
template<typename List, typename Type>
struct type_list_contains;
/**
* @copybrief type_list_contains
* @tparam Type Types provided by the type list.
* @tparam Other Type to look for.
*/
template<typename... Type, typename Other>
struct type_list_contains<type_list<Type...>, Other>: std::disjunction<std::is_same<Type, Other>...> {};
/**
* @brief Helper variable template.
* @tparam List Type list.
* @tparam Type Type to look for.
*/
template<typename List, typename Type>
inline constexpr bool type_list_contains_v = type_list_contains<List, Type>::value;
/*! @brief Primary template isn't defined on purpose. */
template<typename...>
struct type_list_diff;
/**
* @brief Computes the difference between two type lists.
* @tparam Type Types provided by the first type list.
* @tparam Other Types provided by the second type list.
*/
template<typename... Type, typename... Other>
struct type_list_diff<type_list<Type...>, type_list<Other...>> {
/*! @brief A type list that is the difference between the two type lists. */
using type = type_list_cat_t<std::conditional_t<type_list_contains_v<type_list<Other...>, Type>, type_list<>, type_list<Type>>...>;
};
/**
* @brief Helper type.
* @tparam List Type lists between which to compute the difference.
*/
template<typename... List>
using type_list_diff_t = typename type_list_diff<List...>::type;
/*! @brief Primary template isn't defined on purpose. */
template<typename, template<typename...> class>
struct type_list_transform;
/**
* @brief Applies a given _function_ to a type list and generate a new list.
* @tparam Type Types provided by the type list.
* @tparam Op Unary operation as template class with a type member named `type`.
*/
template<typename... Type, template<typename...> class Op>
struct type_list_transform<type_list<Type...>, Op> {
/*! @brief Resulting type list after applying the transform function. */
using type = type_list<typename Op<Type>::type...>;
};
/**
* @brief Helper type.
* @tparam List Type list.
* @tparam Op Unary operation as template class with a type member named `type`.
*/
template<typename List, template<typename...> class Op>
using type_list_transform_t = typename type_list_transform<List, Op>::type;
/**
* @brief A class to use to push around lists of constant values, nothing more.
* @tparam Value Values provided by the value list.
*/
template<auto... Value>
struct value_list {
/*! @brief Value list type. */
using type = value_list;
/*! @brief Compile-time number of elements in the value list. */
static constexpr auto size = sizeof...(Value);
};
/*! @brief Primary template isn't defined on purpose. */
template<std::size_t, typename>
struct value_list_element;
/**
* @brief Provides compile-time indexed access to the values of a value list.
* @tparam Index Index of the value to return.
* @tparam Value First value provided by the value list.
* @tparam Other Other values provided by the value list.
*/
template<std::size_t Index, auto Value, auto... Other>
struct value_list_element<Index, value_list<Value, Other...>>
: value_list_element<Index - 1u, value_list<Other...>> {};
/**
* @brief Provides compile-time indexed access to the types of a type list.
* @tparam Value First value provided by the value list.
* @tparam Other Other values provided by the value list.
*/
template<auto Value, auto... Other>
struct value_list_element<0u, value_list<Value, Other...>> {
/*! @brief Searched value. */
static constexpr auto value = Value;
};
/**
* @brief Helper type.
* @tparam Index Index of the value to return.
* @tparam List Value list to search into.
*/
template<std::size_t Index, typename List>
inline constexpr auto value_list_element_v = value_list_element<Index, List>::value;
/**
* @brief Concatenates multiple value lists.
* @tparam Value Values provided by the first value list.
* @tparam Other Values provided by the second value list.
* @return A value list composed by the values of both the value lists.
*/
template<auto... Value, auto... Other>
constexpr value_list<Value..., Other...> operator+(value_list<Value...>, value_list<Other...>) {
return {};
}
/*! @brief Primary template isn't defined on purpose. */
template<typename...>
struct value_list_cat;
/*! @brief Concatenates multiple value lists. */
template<>
struct value_list_cat<> {
/*! @brief A value list composed by the values of all the value lists. */
using type = value_list<>;
};
/**
* @brief Concatenates multiple value lists.
* @tparam Value Values provided by the first value list.
* @tparam Other Values provided by the second value list.
* @tparam List Other value lists, if any.
*/
template<auto... Value, auto... Other, typename... List>
struct value_list_cat<value_list<Value...>, value_list<Other...>, List...> {
/*! @brief A value list composed by the values of all the value lists. */
using type = typename value_list_cat<value_list<Value..., Other...>, List...>::type;
};
/**
* @brief Concatenates multiple value lists.
* @tparam Value Values provided by the value list.
*/
template<auto... Value>
struct value_list_cat<value_list<Value...>> {
/*! @brief A value list composed by the values of all the value lists. */
using type = value_list<Value...>;
};
/**
* @brief Helper type.
* @tparam List Value lists to concatenate.
*/
template<typename... List>
using value_list_cat_t = typename value_list_cat<List...>::type;
/*! @brief Same as std::is_invocable, but with tuples. */
template<typename, typename>
struct is_applicable: std::false_type {};
/**
* @copybrief is_applicable
* @tparam Func A valid function type.
* @tparam Tuple Tuple-like type.
* @tparam Args The list of arguments to use to probe the function type.
*/
template<typename Func, template<typename...> class Tuple, typename... Args>
struct is_applicable<Func, Tuple<Args...>>: std::is_invocable<Func, Args...> {};
/**
* @copybrief is_applicable
* @tparam Func A valid function type.
* @tparam Tuple Tuple-like type.
* @tparam Args The list of arguments to use to probe the function type.
*/
template<typename Func, template<typename...> class Tuple, typename... Args>
struct is_applicable<Func, const Tuple<Args...>>: std::is_invocable<Func, Args...> {};
/**
* @brief Helper variable template.
* @tparam Func A valid function type.
* @tparam Args The list of arguments to use to probe the function type.
*/
template<typename Func, typename Args>
inline constexpr bool is_applicable_v = is_applicable<Func, Args>::value;
/*! @brief Same as std::is_invocable_r, but with tuples for arguments. */
template<typename, typename, typename>
struct is_applicable_r: std::false_type {};
/**
* @copybrief is_applicable_r
* @tparam Ret The type to which the return type of the function should be
* convertible.
* @tparam Func A valid function type.
* @tparam Args The list of arguments to use to probe the function type.
*/
template<typename Ret, typename Func, typename... Args>
struct is_applicable_r<Ret, Func, std::tuple<Args...>>: std::is_invocable_r<Ret, Func, Args...> {};
/**
* @brief Helper variable template.
* @tparam Ret The type to which the return type of the function should be
* convertible.
* @tparam Func A valid function type.
* @tparam Args The list of arguments to use to probe the function type.
*/
template<typename Ret, typename Func, typename Args>
inline constexpr bool is_applicable_r_v = is_applicable_r<Ret, Func, Args>::value;
/**
* @brief Provides the member constant `value` to true if a given type is
* complete, false otherwise.
* @tparam Type The type to test.
*/
template<typename Type, typename = void>
struct is_complete: std::false_type {};
/*! @copydoc is_complete */
template<typename Type>
struct is_complete<Type, std::void_t<decltype(sizeof(Type))>>: std::true_type {};
/**
* @brief Helper variable template.
* @tparam Type The type to test.
*/
template<typename Type>
inline constexpr bool is_complete_v = is_complete<Type>::value;
/**
* @brief Provides the member constant `value` to true if a given type is an
* iterator, false otherwise.
* @tparam Type The type to test.
*/
template<typename Type, typename = void>
struct is_iterator: std::false_type {};
/**
* @cond TURN_OFF_DOXYGEN
* Internal details not to be documented.
*/
namespace internal {
template<typename, typename = void>
struct has_iterator_category: std::false_type {};
template<typename Type>
struct has_iterator_category<Type, std::void_t<typename std::iterator_traits<Type>::iterator_category>>: std::true_type {};
} // namespace internal
/**
* Internal details not to be documented.
* @endcond
*/
/*! @copydoc is_iterator */
template<typename Type>
struct is_iterator<Type, std::enable_if_t<!std::is_same_v<std::remove_cv_t<std::remove_pointer_t<Type>>, void>>>
: internal::has_iterator_category<Type> {};
/**
* @brief Helper variable template.
* @tparam Type The type to test.
*/
template<typename Type>
inline constexpr bool is_iterator_v = is_iterator<Type>::value;
/**
* @brief Provides the member constant `value` to true if a given type is both
* an empty and non-final class, false otherwise.
* @tparam Type The type to test
*/
template<typename Type>
struct is_ebco_eligible
: std::conjunction<std::is_empty<Type>, std::negation<std::is_final<Type>>> {};
/**
* @brief Helper variable template.
* @tparam Type The type to test.
*/
template<typename Type>
inline constexpr bool is_ebco_eligible_v = is_ebco_eligible<Type>::value;
/**
* @brief Provides the member constant `value` to true if `Type::is_transparent`
* is valid and denotes a type, false otherwise.
* @tparam Type The type to test.
*/
template<typename Type, typename = void>
struct is_transparent: std::false_type {};
/*! @copydoc is_transparent */
template<typename Type>
struct is_transparent<Type, std::void_t<typename Type::is_transparent>>: std::true_type {};
/**
* @brief Helper variable template.
* @tparam Type The type to test.
*/
template<typename Type>
inline constexpr bool is_transparent_v = is_transparent<Type>::value;
/**
* @brief Provides the member constant `value` to true if a given type is
* equality comparable, false otherwise.
* @tparam Type The type to test.
*/
template<typename Type, typename = void>
struct is_equality_comparable: std::false_type {};
/**
* @cond TURN_OFF_DOXYGEN
* Internal details not to be documented.
*/
namespace internal {
template<typename, typename = void>
struct has_tuple_size_value: std::false_type {};
template<typename Type>
struct has_tuple_size_value<Type, std::void_t<decltype(std::tuple_size<const Type>::value)>>: std::true_type {};
template<typename Type, std::size_t... Index>
[[nodiscard]] constexpr bool unpack_maybe_equality_comparable(std::index_sequence<Index...>) {
return (is_equality_comparable<std::tuple_element_t<Index, Type>>::value && ...);
}
template<typename>
[[nodiscard]] constexpr bool maybe_equality_comparable(choice_t<0>) {
return true;
}
template<typename Type>
[[nodiscard]] constexpr auto maybe_equality_comparable(choice_t<1>) -> decltype(std::declval<typename Type::value_type>(), bool{}) {
if constexpr(is_iterator_v<Type>) {
return true;
} else if constexpr(std::is_same_v<typename Type::value_type, Type>) {
return maybe_equality_comparable<Type>(choice<0>);
} else {
return is_equality_comparable<typename Type::value_type>::value;
}
}
template<typename Type>
[[nodiscard]] constexpr std::enable_if_t<is_complete_v<std::tuple_size<std::remove_cv_t<Type>>>, bool> maybe_equality_comparable(choice_t<2>) {
if constexpr(has_tuple_size_value<Type>::value) {
return unpack_maybe_equality_comparable<Type>(std::make_index_sequence<std::tuple_size<Type>::value>{});
} else {
return maybe_equality_comparable<Type>(choice<1>);
}
}
} // namespace internal
/**
* Internal details not to be documented.
* @endcond
*/
/*! @copydoc is_equality_comparable */
template<typename Type>
struct is_equality_comparable<Type, std::void_t<decltype(std::declval<Type>() == std::declval<Type>())>>
: std::bool_constant<internal::maybe_equality_comparable<Type>(choice<2>)> {};
/**
* @brief Helper variable template.
* @tparam Type The type to test.
*/
template<typename Type>
inline constexpr bool is_equality_comparable_v = is_equality_comparable<Type>::value;
/**
* @brief Transcribes the constness of a type to another type.
* @tparam To The type to which to transcribe the constness.
* @tparam From The type from which to transcribe the constness.
*/
template<typename To, typename From>
struct constness_as {
/*! @brief The type resulting from the transcription of the constness. */
using type = std::remove_const_t<To>;
};
/*! @copydoc constness_as */
template<typename To, typename From>
struct constness_as<To, const From> {
/*! @brief The type resulting from the transcription of the constness. */
using type = const To;
};
/**
* @brief Alias template to facilitate the transcription of the constness.
* @tparam To The type to which to transcribe the constness.
* @tparam From The type from which to transcribe the constness.
*/
template<typename To, typename From>
using constness_as_t = typename constness_as<To, From>::type;
/**
* @brief Extracts the class of a non-static member object or function.
* @tparam Member A pointer to a non-static member object or function.
*/
template<typename Member>
class member_class {
static_assert(std::is_member_pointer_v<Member>, "Invalid pointer type to non-static member object or function");
template<typename Class, typename Ret, typename... Args>
static Class *clazz(Ret (Class::*)(Args...));
template<typename Class, typename Ret, typename... Args>
static Class *clazz(Ret (Class::*)(Args...) const);
template<typename Class, typename Type>
static Class *clazz(Type Class::*);
public:
/*! @brief The class of the given non-static member object or function. */
using type = std::remove_pointer_t<decltype(clazz(std::declval<Member>()))>;
};
/**
* @brief Helper type.
* @tparam Member A pointer to a non-static member object or function.
*/
template<typename Member>
using member_class_t = typename member_class<Member>::type;
/**
* @brief Extracts the n-th argument of a given function or member function.
* @tparam Index The index of the argument to extract.
* @tparam Candidate A valid function, member function or data member.
*/
template<std::size_t Index, auto Candidate>
class nth_argument {
template<typename Ret, typename... Args>
static constexpr type_list<Args...> pick_up(Ret (*)(Args...));
template<typename Ret, typename Class, typename... Args>
static constexpr type_list<Args...> pick_up(Ret (Class ::*)(Args...));
template<typename Ret, typename Class, typename... Args>
static constexpr type_list<Args...> pick_up(Ret (Class ::*)(Args...) const);
template<typename Type, typename Class>
static constexpr type_list<Type> pick_up(Type Class ::*);
public:
/*! @brief N-th argument of the given function or member function. */
using type = type_list_element_t<Index, decltype(pick_up(Candidate))>;
};
/**
* @brief Helper type.
* @tparam Index The index of the argument to extract.
* @tparam Candidate A valid function, member function or data member.
*/
template<std::size_t Index, auto Candidate>
using nth_argument_t = typename nth_argument<Index, Candidate>::type;
} // namespace entt
#endif
// #include "core/utility.hpp"
#ifndef ENTT_CORE_UTILITY_HPP
#define ENTT_CORE_UTILITY_HPP
#include <type_traits>
#include <utility>
namespace entt {
/*! @brief Identity function object (waiting for C++20). */
struct identity {
/*! @brief Indicates that this is a transparent function object. */
using is_transparent = void;
/**
* @brief Returns its argument unchanged.
* @tparam Type Type of the argument.
* @param value The actual argument.
* @return The submitted value as-is.
*/
template<class Type>
[[nodiscard]] constexpr Type &&operator()(Type &&value) const noexcept {
return std::forward<Type>(value);
}
};
/**
* @brief Constant utility to disambiguate overloaded members of a class.
* @tparam Type Type of the desired overload.
* @tparam Class Type of class to which the member belongs.
* @param member A valid pointer to a member.
* @return Pointer to the member.
*/
template<typename Type, typename Class>
[[nodiscard]] constexpr auto overload(Type Class::*member) noexcept {
return member;
}
/**
* @brief Constant utility to disambiguate overloaded functions.
* @tparam Func Function type of the desired overload.
* @param func A valid pointer to a function.
* @return Pointer to the function.
*/
template<typename Func>
[[nodiscard]] constexpr auto overload(Func *func) noexcept {
return func;
}
/**
* @brief Helper type for visitors.
* @tparam Func Types of function objects.
*/
template<class... Func>
struct overloaded: Func... {
using Func::operator()...;
};
/**
* @brief Deduction guide.
* @tparam Func Types of function objects.
*/
template<class... Func>
overloaded(Func...) -> overloaded<Func...>;
/**
* @brief Basic implementation of a y-combinator.
* @tparam Func Type of a potentially recursive function.
*/
template<class Func>
struct y_combinator {
/**
* @brief Constructs a y-combinator from a given function.
* @param recursive A potentially recursive function.
*/
constexpr y_combinator(Func recursive) noexcept(std::is_nothrow_move_constructible_v<Func>)
: func{std::move(recursive)} {}
/**
* @brief Invokes a y-combinator and therefore its underlying function.
* @tparam Args Types of arguments to use to invoke the underlying function.
* @param args Parameters to use to invoke the underlying function.
* @return Return value of the underlying function, if any.
*/
template<class... Args>
constexpr decltype(auto) operator()(Args &&...args) const noexcept(std::is_nothrow_invocable_v<Func, const y_combinator &, Args...>) {
return func(*this, std::forward<Args>(args)...);
}
/*! @copydoc operator()() */
template<class... Args>
constexpr decltype(auto) operator()(Args &&...args) noexcept(std::is_nothrow_invocable_v<Func, y_combinator &, Args...>) {
return func(*this, std::forward<Args>(args)...);
}
private:
Func func;
};
} // namespace entt
#endif
// #include "entity/component.hpp"
#ifndef ENTT_ENTITY_COMPONENT_HPP
#define ENTT_ENTITY_COMPONENT_HPP
#include <cstddef>
#include <type_traits>
// #include "../config/config.h"
#ifndef ENTT_CONFIG_CONFIG_H
#define ENTT_CONFIG_CONFIG_H
// #include "version.h"
#ifndef ENTT_CONFIG_VERSION_H
#define ENTT_CONFIG_VERSION_H
// #include "macro.h"
#ifndef ENTT_CONFIG_MACRO_H
#define ENTT_CONFIG_MACRO_H
#define ENTT_STR(arg) #arg
#define ENTT_XSTR(arg) ENTT_STR(arg)
#endif
#define ENTT_VERSION_MAJOR 3
#define ENTT_VERSION_MINOR 11
#define ENTT_VERSION_PATCH 1
#define ENTT_VERSION \
ENTT_XSTR(ENTT_VERSION_MAJOR) \
"." ENTT_XSTR(ENTT_VERSION_MINOR) "." ENTT_XSTR(ENTT_VERSION_PATCH)
#endif
#if defined(__cpp_exceptions) && !defined(ENTT_NOEXCEPTION)
# define ENTT_CONSTEXPR
# define ENTT_THROW throw
# define ENTT_TRY try
# define ENTT_CATCH catch(...)
#else
# define ENTT_CONSTEXPR constexpr // use only with throwing functions (waiting for C++20)
# define ENTT_THROW
# define ENTT_TRY if(true)
# define ENTT_CATCH if(false)
#endif
#ifdef ENTT_USE_ATOMIC
# include <atomic>
# define ENTT_MAYBE_ATOMIC(Type) std::atomic<Type>
#else
# define ENTT_MAYBE_ATOMIC(Type) Type
#endif
#ifndef ENTT_ID_TYPE
# include <cstdint>
# define ENTT_ID_TYPE std::uint32_t
#endif
#ifndef ENTT_SPARSE_PAGE
# define ENTT_SPARSE_PAGE 4096
#endif
#ifndef ENTT_PACKED_PAGE
# define ENTT_PACKED_PAGE 1024
#endif
#ifdef ENTT_DISABLE_ASSERT
# undef ENTT_ASSERT
# define ENTT_ASSERT(condition, msg) (void(0))
#elif !defined ENTT_ASSERT
# include <cassert>
# define ENTT_ASSERT(condition, msg) assert(condition)
#endif
#ifdef ENTT_DISABLE_ASSERT
# undef ENTT_ASSERT_CONSTEXPR
# define ENTT_ASSERT_CONSTEXPR(condition, msg) (void(0))
#elif !defined ENTT_ASSERT_CONSTEXPR
# define ENTT_ASSERT_CONSTEXPR(condition, msg) ENTT_ASSERT(condition, msg)
#endif
#ifdef ENTT_NO_ETO
# define ENTT_ETO_TYPE(Type) void
#else
# define ENTT_ETO_TYPE(Type) Type
#endif
#ifdef ENTT_STANDARD_CPP
# define ENTT_NONSTD false
#else
# define ENTT_NONSTD true
# if defined __clang__ || defined __GNUC__
# define ENTT_PRETTY_FUNCTION __PRETTY_FUNCTION__
# define ENTT_PRETTY_FUNCTION_PREFIX '='
# define ENTT_PRETTY_FUNCTION_SUFFIX ']'
# elif defined _MSC_VER
# define ENTT_PRETTY_FUNCTION __FUNCSIG__
# define ENTT_PRETTY_FUNCTION_PREFIX '<'
# define ENTT_PRETTY_FUNCTION_SUFFIX '>'
# endif
#endif
#if defined _MSC_VER
# pragma detect_mismatch("entt.version", ENTT_VERSION)
# pragma detect_mismatch("entt.noexcept", ENTT_XSTR(ENTT_TRY))
# pragma detect_mismatch("entt.id", ENTT_XSTR(ENTT_ID_TYPE))
# pragma detect_mismatch("entt.nonstd", ENTT_XSTR(ENTT_NONSTD))
#endif
#endif
namespace entt {
/**
* @cond TURN_OFF_DOXYGEN
* Internal details not to be documented.
*/
namespace internal {
template<typename Type, typename = void>
struct in_place_delete: std::bool_constant<!(std::is_move_constructible_v<Type> && std::is_move_assignable_v<Type>)> {};
template<typename Type>
struct in_place_delete<Type, std::enable_if_t<Type::in_place_delete>>
: std::true_type {};
template<typename Type, typename = void>
struct page_size: std::integral_constant<std::size_t, !std::is_empty_v<ENTT_ETO_TYPE(Type)> * ENTT_PACKED_PAGE> {};
template<typename Type>
struct page_size<Type, std::enable_if_t<std::is_convertible_v<decltype(Type::page_size), std::size_t>>>
: std::integral_constant<std::size_t, Type::page_size> {};
} // namespace internal
/**
* Internal details not to be documented.
* @endcond
*/
/**
* @brief Common way to access various properties of components.
* @tparam Type Type of component.
*/
template<typename Type, typename = void>
struct component_traits {
static_assert(std::is_same_v<std::decay_t<Type>, Type>, "Unsupported type");
/*! @brief Component type. */
using type = Type;
/*! @brief Pointer stability, default is `false`. */
static constexpr bool in_place_delete = internal::in_place_delete<Type>::value;
/*! @brief Page size, default is `ENTT_PACKED_PAGE` for non-empty types. */
static constexpr std::size_t page_size = internal::page_size<Type>::value;
};
/**
* @brief Helper variable template.
* @tparam Type Type of component.
*/
template<class Type>
inline constexpr bool ignore_as_empty_v = (std::is_void_v<Type> || component_traits<Type>::page_size == 0u);
} // namespace entt
#endif
// #include "entity/entity.hpp"
#ifndef ENTT_ENTITY_ENTITY_HPP
#define ENTT_ENTITY_ENTITY_HPP
#include <cstddef>
#include <cstdint>
#include <type_traits>
// #include "../config/config.h"
// #include "fwd.hpp"
#ifndef ENTT_ENTITY_FWD_HPP
#define ENTT_ENTITY_FWD_HPP
#include <memory>
#include <type_traits>
// #include "../core/fwd.hpp"
#ifndef ENTT_CORE_FWD_HPP
#define ENTT_CORE_FWD_HPP
#include <cstddef>
// #include "../config/config.h"
#ifndef ENTT_CONFIG_CONFIG_H
#define ENTT_CONFIG_CONFIG_H
// #include "version.h"
#ifndef ENTT_CONFIG_VERSION_H
#define ENTT_CONFIG_VERSION_H
// #include "macro.h"
#ifndef ENTT_CONFIG_MACRO_H
#define ENTT_CONFIG_MACRO_H
#define ENTT_STR(arg) #arg
#define ENTT_XSTR(arg) ENTT_STR(arg)
#endif
#define ENTT_VERSION_MAJOR 3
#define ENTT_VERSION_MINOR 11
#define ENTT_VERSION_PATCH 1
#define ENTT_VERSION \
ENTT_XSTR(ENTT_VERSION_MAJOR) \
"." ENTT_XSTR(ENTT_VERSION_MINOR) "." ENTT_XSTR(ENTT_VERSION_PATCH)
#endif
#if defined(__cpp_exceptions) && !defined(ENTT_NOEXCEPTION)
# define ENTT_CONSTEXPR
# define ENTT_THROW throw
# define ENTT_TRY try
# define ENTT_CATCH catch(...)
#else
# define ENTT_CONSTEXPR constexpr // use only with throwing functions (waiting for C++20)
# define ENTT_THROW
# define ENTT_TRY if(true)
# define ENTT_CATCH if(false)
#endif
#ifdef ENTT_USE_ATOMIC
# include <atomic>
# define ENTT_MAYBE_ATOMIC(Type) std::atomic<Type>
#else
# define ENTT_MAYBE_ATOMIC(Type) Type
#endif
#ifndef ENTT_ID_TYPE
# include <cstdint>
# define ENTT_ID_TYPE std::uint32_t
#endif
#ifndef ENTT_SPARSE_PAGE
# define ENTT_SPARSE_PAGE 4096
#endif
#ifndef ENTT_PACKED_PAGE
# define ENTT_PACKED_PAGE 1024
#endif
#ifdef ENTT_DISABLE_ASSERT
# undef ENTT_ASSERT
# define ENTT_ASSERT(condition, msg) (void(0))
#elif !defined ENTT_ASSERT
# include <cassert>
# define ENTT_ASSERT(condition, msg) assert(condition)
#endif
#ifdef ENTT_DISABLE_ASSERT
# undef ENTT_ASSERT_CONSTEXPR
# define ENTT_ASSERT_CONSTEXPR(condition, msg) (void(0))
#elif !defined ENTT_ASSERT_CONSTEXPR
# define ENTT_ASSERT_CONSTEXPR(condition, msg) ENTT_ASSERT(condition, msg)
#endif
#ifdef ENTT_NO_ETO
# define ENTT_ETO_TYPE(Type) void
#else
# define ENTT_ETO_TYPE(Type) Type
#endif
#ifdef ENTT_STANDARD_CPP
# define ENTT_NONSTD false
#else
# define ENTT_NONSTD true
# if defined __clang__ || defined __GNUC__
# define ENTT_PRETTY_FUNCTION __PRETTY_FUNCTION__
# define ENTT_PRETTY_FUNCTION_PREFIX '='
# define ENTT_PRETTY_FUNCTION_SUFFIX ']'
# elif defined _MSC_VER
# define ENTT_PRETTY_FUNCTION __FUNCSIG__
# define ENTT_PRETTY_FUNCTION_PREFIX '<'
# define ENTT_PRETTY_FUNCTION_SUFFIX '>'
# endif
#endif
#if defined _MSC_VER
# pragma detect_mismatch("entt.version", ENTT_VERSION)
# pragma detect_mismatch("entt.noexcept", ENTT_XSTR(ENTT_TRY))
# pragma detect_mismatch("entt.id", ENTT_XSTR(ENTT_ID_TYPE))
# pragma detect_mismatch("entt.nonstd", ENTT_XSTR(ENTT_NONSTD))
#endif
#endif
namespace entt {
template<std::size_t Len = sizeof(double[2]), std::size_t = alignof(double[2])>
class basic_any;
/*! @brief Alias declaration for type identifiers. */
using id_type = ENTT_ID_TYPE;
/*! @brief Alias declaration for the most common use case. */
using any = basic_any<>;
} // namespace entt
#endif
// #include "../core/type_traits.hpp"
#ifndef ENTT_CORE_TYPE_TRAITS_HPP
#define ENTT_CORE_TYPE_TRAITS_HPP
#include <cstddef>
#include <iterator>
#include <type_traits>
#include <utility>
// #include "../config/config.h"
// #include "fwd.hpp"
#ifndef ENTT_CORE_FWD_HPP
#define ENTT_CORE_FWD_HPP
#include <cstddef>
// #include "../config/config.h"
namespace entt {
template<std::size_t Len = sizeof(double[2]), std::size_t = alignof(double[2])>
class basic_any;
/*! @brief Alias declaration for type identifiers. */
using id_type = ENTT_ID_TYPE;
/*! @brief Alias declaration for the most common use case. */
using any = basic_any<>;
} // namespace entt
#endif
namespace entt {
/**
* @brief Utility class to disambiguate overloaded functions.
* @tparam N Number of choices available.
*/
template<std::size_t N>
struct choice_t
// Unfortunately, doxygen cannot parse such a construct.
: /*! @cond TURN_OFF_DOXYGEN */ choice_t<N - 1> /*! @endcond */
{};
/*! @copybrief choice_t */
template<>
struct choice_t<0> {};
/**
* @brief Variable template for the choice trick.
* @tparam N Number of choices available.
*/
template<std::size_t N>
inline constexpr choice_t<N> choice{};
/**
* @brief Identity type trait.
*
* Useful to establish non-deduced contexts in template argument deduction
* (waiting for C++20) or to provide types through function arguments.
*
* @tparam Type A type.
*/
template<typename Type>
struct type_identity {
/*! @brief Identity type. */
using type = Type;
};
/**
* @brief Helper type.
* @tparam Type A type.
*/
template<typename Type>
using type_identity_t = typename type_identity<Type>::type;
/**
* @brief A type-only `sizeof` wrapper that returns 0 where `sizeof` complains.
* @tparam Type The type of which to return the size.
* @tparam The size of the type if `sizeof` accepts it, 0 otherwise.
*/
template<typename Type, typename = void>
struct size_of: std::integral_constant<std::size_t, 0u> {};
/*! @copydoc size_of */
template<typename Type>
struct size_of<Type, std::void_t<decltype(sizeof(Type))>>
: std::integral_constant<std::size_t, sizeof(Type)> {};
/**
* @brief Helper variable template.
* @tparam Type The type of which to return the size.
*/
template<typename Type>
inline constexpr std::size_t size_of_v = size_of<Type>::value;
/**
* @brief Using declaration to be used to _repeat_ the same type a number of
* times equal to the size of a given parameter pack.
* @tparam Type A type to repeat.
*/
template<typename Type, typename>
using unpack_as_type = Type;
/**
* @brief Helper variable template to be used to _repeat_ the same value a
* number of times equal to the size of a given parameter pack.
* @tparam Value A value to repeat.
*/
template<auto Value, typename>
inline constexpr auto unpack_as_value = Value;
/**
* @brief Wraps a static constant.
* @tparam Value A static constant.
*/
template<auto Value>
using integral_constant = std::integral_constant<decltype(Value), Value>;
/**
* @brief Alias template to facilitate the creation of named values.
* @tparam Value A constant value at least convertible to `id_type`.
*/
template<id_type Value>
using tag = integral_constant<Value>;
/**
* @brief A class to use to push around lists of types, nothing more.
* @tparam Type Types provided by the type list.
*/
template<typename... Type>
struct type_list {
/*! @brief Type list type. */
using type = type_list;
/*! @brief Compile-time number of elements in the type list. */
static constexpr auto size = sizeof...(Type);
};
/*! @brief Primary template isn't defined on purpose. */
template<std::size_t, typename>
struct type_list_element;
/**
* @brief Provides compile-time indexed access to the types of a type list.
* @tparam Index Index of the type to return.
* @tparam First First type provided by the type list.
* @tparam Other Other types provided by the type list.
*/
template<std::size_t Index, typename First, typename... Other>
struct type_list_element<Index, type_list<First, Other...>>
: type_list_element<Index - 1u, type_list<Other...>> {};
/**
* @brief Provides compile-time indexed access to the types of a type list.
* @tparam First First type provided by the type list.
* @tparam Other Other types provided by the type list.
*/
template<typename First, typename... Other>
struct type_list_element<0u, type_list<First, Other...>> {
/*! @brief Searched type. */
using type = First;
};
/**
* @brief Helper type.
* @tparam Index Index of the type to return.
* @tparam List Type list to search into.
*/
template<std::size_t Index, typename List>
using type_list_element_t = typename type_list_element<Index, List>::type;
/*! @brief Primary template isn't defined on purpose. */
template<typename, typename>
struct type_list_index;
/**
* @brief Provides compile-time type access to the types of a type list.
* @tparam Type Type to look for and for which to return the index.
* @tparam First First type provided by the type list.
* @tparam Other Other types provided by the type list.
*/
template<typename Type, typename First, typename... Other>
struct type_list_index<Type, type_list<First, Other...>> {
/*! @brief Unsigned integer type. */
using value_type = std::size_t;
/*! @brief Compile-time position of the given type in the sublist. */
static constexpr value_type value = 1u + type_list_index<Type, type_list<Other...>>::value;
};
/**
* @brief Provides compile-time type access to the types of a type list.
* @tparam Type Type to look for and for which to return the index.
* @tparam Other Other types provided by the type list.
*/
template<typename Type, typename... Other>
struct type_list_index<Type, type_list<Type, Other...>> {
static_assert(type_list_index<Type, type_list<Other...>>::value == sizeof...(Other), "Non-unique type");
/*! @brief Unsigned integer type. */
using value_type = std::size_t;
/*! @brief Compile-time position of the given type in the sublist. */
static constexpr value_type value = 0u;
};
/**
* @brief Provides compile-time type access to the types of a type list.
* @tparam Type Type to look for and for which to return the index.
*/
template<typename Type>
struct type_list_index<Type, type_list<>> {
/*! @brief Unsigned integer type. */
using value_type = std::size_t;
/*! @brief Compile-time position of the given type in the sublist. */
static constexpr value_type value = 0u;
};
/**
* @brief Helper variable template.
* @tparam List Type list.
* @tparam Type Type to look for and for which to return the index.
*/
template<typename Type, typename List>
inline constexpr std::size_t type_list_index_v = type_list_index<Type, List>::value;
/**
* @brief Concatenates multiple type lists.
* @tparam Type Types provided by the first type list.
* @tparam Other Types provided by the second type list.
* @return A type list composed by the types of both the type lists.
*/
template<typename... Type, typename... Other>
constexpr type_list<Type..., Other...> operator+(type_list<Type...>, type_list<Other...>) {
return {};
}
/*! @brief Primary template isn't defined on purpose. */
template<typename...>
struct type_list_cat;
/*! @brief Concatenates multiple type lists. */
template<>
struct type_list_cat<> {
/*! @brief A type list composed by the types of all the type lists. */
using type = type_list<>;
};
/**
* @brief Concatenates multiple type lists.
* @tparam Type Types provided by the first type list.
* @tparam Other Types provided by the second type list.
* @tparam List Other type lists, if any.
*/
template<typename... Type, typename... Other, typename... List>
struct type_list_cat<type_list<Type...>, type_list<Other...>, List...> {
/*! @brief A type list composed by the types of all the type lists. */
using type = typename type_list_cat<type_list<Type..., Other...>, List...>::type;
};
/**
* @brief Concatenates multiple type lists.
* @tparam Type Types provided by the type list.
*/
template<typename... Type>
struct type_list_cat<type_list<Type...>> {
/*! @brief A type list composed by the types of all the type lists. */
using type = type_list<Type...>;
};
/**
* @brief Helper type.
* @tparam List Type lists to concatenate.
*/
template<typename... List>
using type_list_cat_t = typename type_list_cat<List...>::type;
/*! @brief Primary template isn't defined on purpose. */
template<typename>
struct type_list_unique;
/**
* @brief Removes duplicates types from a type list.
* @tparam Type One of the types provided by the given type list.
* @tparam Other The other types provided by the given type list.
*/
template<typename Type, typename... Other>
struct type_list_unique<type_list<Type, Other...>> {
/*! @brief A type list without duplicate types. */
using type = std::conditional_t<
(std::is_same_v<Type, Other> || ...),
typename type_list_unique<type_list<Other...>>::type,
type_list_cat_t<type_list<Type>, typename type_list_unique<type_list<Other...>>::type>>;
};
/*! @brief Removes duplicates types from a type list. */
template<>
struct type_list_unique<type_list<>> {
/*! @brief A type list without duplicate types. */
using type = type_list<>;
};
/**
* @brief Helper type.
* @tparam Type A type list.
*/
template<typename Type>
using type_list_unique_t = typename type_list_unique<Type>::type;
/**
* @brief Provides the member constant `value` to true if a type list contains a
* given type, false otherwise.
* @tparam List Type list.
* @tparam Type Type to look for.
*/
template<typename List, typename Type>
struct type_list_contains;
/**
* @copybrief type_list_contains
* @tparam Type Types provided by the type list.
* @tparam Other Type to look for.
*/
template<typename... Type, typename Other>
struct type_list_contains<type_list<Type...>, Other>: std::disjunction<std::is_same<Type, Other>...> {};
/**
* @brief Helper variable template.
* @tparam List Type list.
* @tparam Type Type to look for.
*/
template<typename List, typename Type>
inline constexpr bool type_list_contains_v = type_list_contains<List, Type>::value;
/*! @brief Primary template isn't defined on purpose. */
template<typename...>
struct type_list_diff;
/**
* @brief Computes the difference between two type lists.
* @tparam Type Types provided by the first type list.
* @tparam Other Types provided by the second type list.
*/
template<typename... Type, typename... Other>
struct type_list_diff<type_list<Type...>, type_list<Other...>> {
/*! @brief A type list that is the difference between the two type lists. */
using type = type_list_cat_t<std::conditional_t<type_list_contains_v<type_list<Other...>, Type>, type_list<>, type_list<Type>>...>;
};
/**
* @brief Helper type.
* @tparam List Type lists between which to compute the difference.
*/
template<typename... List>
using type_list_diff_t = typename type_list_diff<List...>::type;
/*! @brief Primary template isn't defined on purpose. */
template<typename, template<typename...> class>
struct type_list_transform;
/**
* @brief Applies a given _function_ to a type list and generate a new list.
* @tparam Type Types provided by the type list.
* @tparam Op Unary operation as template class with a type member named `type`.
*/
template<typename... Type, template<typename...> class Op>
struct type_list_transform<type_list<Type...>, Op> {
/*! @brief Resulting type list after applying the transform function. */
using type = type_list<typename Op<Type>::type...>;
};
/**
* @brief Helper type.
* @tparam List Type list.
* @tparam Op Unary operation as template class with a type member named `type`.
*/
template<typename List, template<typename...> class Op>
using type_list_transform_t = typename type_list_transform<List, Op>::type;
/**
* @brief A class to use to push around lists of constant values, nothing more.
* @tparam Value Values provided by the value list.
*/
template<auto... Value>
struct value_list {
/*! @brief Value list type. */
using type = value_list;
/*! @brief Compile-time number of elements in the value list. */
static constexpr auto size = sizeof...(Value);
};
/*! @brief Primary template isn't defined on purpose. */
template<std::size_t, typename>
struct value_list_element;
/**
* @brief Provides compile-time indexed access to the values of a value list.
* @tparam Index Index of the value to return.
* @tparam Value First value provided by the value list.
* @tparam Other Other values provided by the value list.
*/
template<std::size_t Index, auto Value, auto... Other>
struct value_list_element<Index, value_list<Value, Other...>>
: value_list_element<Index - 1u, value_list<Other...>> {};
/**
* @brief Provides compile-time indexed access to the types of a type list.
* @tparam Value First value provided by the value list.
* @tparam Other Other values provided by the value list.
*/
template<auto Value, auto... Other>
struct value_list_element<0u, value_list<Value, Other...>> {
/*! @brief Searched value. */
static constexpr auto value = Value;
};
/**
* @brief Helper type.
* @tparam Index Index of the value to return.
* @tparam List Value list to search into.
*/
template<std::size_t Index, typename List>
inline constexpr auto value_list_element_v = value_list_element<Index, List>::value;
/**
* @brief Concatenates multiple value lists.
* @tparam Value Values provided by the first value list.
* @tparam Other Values provided by the second value list.
* @return A value list composed by the values of both the value lists.
*/
template<auto... Value, auto... Other>
constexpr value_list<Value..., Other...> operator+(value_list<Value...>, value_list<Other...>) {
return {};
}
/*! @brief Primary template isn't defined on purpose. */
template<typename...>
struct value_list_cat;
/*! @brief Concatenates multiple value lists. */
template<>
struct value_list_cat<> {
/*! @brief A value list composed by the values of all the value lists. */
using type = value_list<>;
};
/**
* @brief Concatenates multiple value lists.
* @tparam Value Values provided by the first value list.
* @tparam Other Values provided by the second value list.
* @tparam List Other value lists, if any.
*/
template<auto... Value, auto... Other, typename... List>
struct value_list_cat<value_list<Value...>, value_list<Other...>, List...> {
/*! @brief A value list composed by the values of all the value lists. */
using type = typename value_list_cat<value_list<Value..., Other...>, List...>::type;
};
/**
* @brief Concatenates multiple value lists.
* @tparam Value Values provided by the value list.
*/
template<auto... Value>
struct value_list_cat<value_list<Value...>> {
/*! @brief A value list composed by the values of all the value lists. */
using type = value_list<Value...>;
};
/**
* @brief Helper type.
* @tparam List Value lists to concatenate.
*/
template<typename... List>
using value_list_cat_t = typename value_list_cat<List...>::type;
/*! @brief Same as std::is_invocable, but with tuples. */
template<typename, typename>
struct is_applicable: std::false_type {};
/**
* @copybrief is_applicable
* @tparam Func A valid function type.
* @tparam Tuple Tuple-like type.
* @tparam Args The list of arguments to use to probe the function type.
*/
template<typename Func, template<typename...> class Tuple, typename... Args>
struct is_applicable<Func, Tuple<Args...>>: std::is_invocable<Func, Args...> {};
/**
* @copybrief is_applicable
* @tparam Func A valid function type.
* @tparam Tuple Tuple-like type.
* @tparam Args The list of arguments to use to probe the function type.
*/
template<typename Func, template<typename...> class Tuple, typename... Args>
struct is_applicable<Func, const Tuple<Args...>>: std::is_invocable<Func, Args...> {};
/**
* @brief Helper variable template.
* @tparam Func A valid function type.
* @tparam Args The list of arguments to use to probe the function type.
*/
template<typename Func, typename Args>
inline constexpr bool is_applicable_v = is_applicable<Func, Args>::value;
/*! @brief Same as std::is_invocable_r, but with tuples for arguments. */
template<typename, typename, typename>
struct is_applicable_r: std::false_type {};
/**
* @copybrief is_applicable_r
* @tparam Ret The type to which the return type of the function should be
* convertible.
* @tparam Func A valid function type.
* @tparam Args The list of arguments to use to probe the function type.
*/
template<typename Ret, typename Func, typename... Args>
struct is_applicable_r<Ret, Func, std::tuple<Args...>>: std::is_invocable_r<Ret, Func, Args...> {};
/**
* @brief Helper variable template.
* @tparam Ret The type to which the return type of the function should be
* convertible.
* @tparam Func A valid function type.
* @tparam Args The list of arguments to use to probe the function type.
*/
template<typename Ret, typename Func, typename Args>
inline constexpr bool is_applicable_r_v = is_applicable_r<Ret, Func, Args>::value;
/**
* @brief Provides the member constant `value` to true if a given type is
* complete, false otherwise.
* @tparam Type The type to test.
*/
template<typename Type, typename = void>
struct is_complete: std::false_type {};
/*! @copydoc is_complete */
template<typename Type>
struct is_complete<Type, std::void_t<decltype(sizeof(Type))>>: std::true_type {};
/**
* @brief Helper variable template.
* @tparam Type The type to test.
*/
template<typename Type>
inline constexpr bool is_complete_v = is_complete<Type>::value;
/**
* @brief Provides the member constant `value` to true if a given type is an
* iterator, false otherwise.
* @tparam Type The type to test.
*/
template<typename Type, typename = void>
struct is_iterator: std::false_type {};
/**
* @cond TURN_OFF_DOXYGEN
* Internal details not to be documented.
*/
namespace internal {
template<typename, typename = void>
struct has_iterator_category: std::false_type {};
template<typename Type>
struct has_iterator_category<Type, std::void_t<typename std::iterator_traits<Type>::iterator_category>>: std::true_type {};
} // namespace internal
/**
* Internal details not to be documented.
* @endcond
*/
/*! @copydoc is_iterator */
template<typename Type>
struct is_iterator<Type, std::enable_if_t<!std::is_same_v<std::remove_cv_t<std::remove_pointer_t<Type>>, void>>>
: internal::has_iterator_category<Type> {};
/**
* @brief Helper variable template.
* @tparam Type The type to test.
*/
template<typename Type>
inline constexpr bool is_iterator_v = is_iterator<Type>::value;
/**
* @brief Provides the member constant `value` to true if a given type is both
* an empty and non-final class, false otherwise.
* @tparam Type The type to test
*/
template<typename Type>
struct is_ebco_eligible
: std::conjunction<std::is_empty<Type>, std::negation<std::is_final<Type>>> {};
/**
* @brief Helper variable template.
* @tparam Type The type to test.
*/
template<typename Type>
inline constexpr bool is_ebco_eligible_v = is_ebco_eligible<Type>::value;
/**
* @brief Provides the member constant `value` to true if `Type::is_transparent`
* is valid and denotes a type, false otherwise.
* @tparam Type The type to test.
*/
template<typename Type, typename = void>
struct is_transparent: std::false_type {};
/*! @copydoc is_transparent */
template<typename Type>
struct is_transparent<Type, std::void_t<typename Type::is_transparent>>: std::true_type {};
/**
* @brief Helper variable template.
* @tparam Type The type to test.
*/
template<typename Type>
inline constexpr bool is_transparent_v = is_transparent<Type>::value;
/**
* @brief Provides the member constant `value` to true if a given type is
* equality comparable, false otherwise.
* @tparam Type The type to test.
*/
template<typename Type, typename = void>
struct is_equality_comparable: std::false_type {};
/**
* @cond TURN_OFF_DOXYGEN
* Internal details not to be documented.
*/
namespace internal {
template<typename, typename = void>
struct has_tuple_size_value: std::false_type {};
template<typename Type>
struct has_tuple_size_value<Type, std::void_t<decltype(std::tuple_size<const Type>::value)>>: std::true_type {};
template<typename Type, std::size_t... Index>
[[nodiscard]] constexpr bool unpack_maybe_equality_comparable(std::index_sequence<Index...>) {
return (is_equality_comparable<std::tuple_element_t<Index, Type>>::value && ...);
}
template<typename>
[[nodiscard]] constexpr bool maybe_equality_comparable(choice_t<0>) {
return true;
}
template<typename Type>
[[nodiscard]] constexpr auto maybe_equality_comparable(choice_t<1>) -> decltype(std::declval<typename Type::value_type>(), bool{}) {
if constexpr(is_iterator_v<Type>) {
return true;
} else if constexpr(std::is_same_v<typename Type::value_type, Type>) {
return maybe_equality_comparable<Type>(choice<0>);
} else {
return is_equality_comparable<typename Type::value_type>::value;
}
}
template<typename Type>
[[nodiscard]] constexpr std::enable_if_t<is_complete_v<std::tuple_size<std::remove_cv_t<Type>>>, bool> maybe_equality_comparable(choice_t<2>) {
if constexpr(has_tuple_size_value<Type>::value) {
return unpack_maybe_equality_comparable<Type>(std::make_index_sequence<std::tuple_size<Type>::value>{});
} else {
return maybe_equality_comparable<Type>(choice<1>);
}
}
} // namespace internal
/**
* Internal details not to be documented.
* @endcond
*/
/*! @copydoc is_equality_comparable */
template<typename Type>
struct is_equality_comparable<Type, std::void_t<decltype(std::declval<Type>() == std::declval<Type>())>>
: std::bool_constant<internal::maybe_equality_comparable<Type>(choice<2>)> {};
/**
* @brief Helper variable template.
* @tparam Type The type to test.
*/
template<typename Type>
inline constexpr bool is_equality_comparable_v = is_equality_comparable<Type>::value;
/**
* @brief Transcribes the constness of a type to another type.
* @tparam To The type to which to transcribe the constness.
* @tparam From The type from which to transcribe the constness.
*/
template<typename To, typename From>
struct constness_as {
/*! @brief The type resulting from the transcription of the constness. */
using type = std::remove_const_t<To>;
};
/*! @copydoc constness_as */
template<typename To, typename From>
struct constness_as<To, const From> {
/*! @brief The type resulting from the transcription of the constness. */
using type = const To;
};
/**
* @brief Alias template to facilitate the transcription of the constness.
* @tparam To The type to which to transcribe the constness.
* @tparam From The type from which to transcribe the constness.
*/
template<typename To, typename From>
using constness_as_t = typename constness_as<To, From>::type;
/**
* @brief Extracts the class of a non-static member object or function.
* @tparam Member A pointer to a non-static member object or function.
*/
template<typename Member>
class member_class {
static_assert(std::is_member_pointer_v<Member>, "Invalid pointer type to non-static member object or function");
template<typename Class, typename Ret, typename... Args>
static Class *clazz(Ret (Class::*)(Args...));
template<typename Class, typename Ret, typename... Args>
static Class *clazz(Ret (Class::*)(Args...) const);
template<typename Class, typename Type>
static Class *clazz(Type Class::*);
public:
/*! @brief The class of the given non-static member object or function. */
using type = std::remove_pointer_t<decltype(clazz(std::declval<Member>()))>;
};
/**
* @brief Helper type.
* @tparam Member A pointer to a non-static member object or function.
*/
template<typename Member>
using member_class_t = typename member_class<Member>::type;
/**
* @brief Extracts the n-th argument of a given function or member function.
* @tparam Index The index of the argument to extract.
* @tparam Candidate A valid function, member function or data member.
*/
template<std::size_t Index, auto Candidate>
class nth_argument {
template<typename Ret, typename... Args>
static constexpr type_list<Args...> pick_up(Ret (*)(Args...));
template<typename Ret, typename Class, typename... Args>
static constexpr type_list<Args...> pick_up(Ret (Class ::*)(Args...));
template<typename Ret, typename Class, typename... Args>
static constexpr type_list<Args...> pick_up(Ret (Class ::*)(Args...) const);
template<typename Type, typename Class>
static constexpr type_list<Type> pick_up(Type Class ::*);
public:
/*! @brief N-th argument of the given function or member function. */
using type = type_list_element_t<Index, decltype(pick_up(Candidate))>;
};
/**
* @brief Helper type.
* @tparam Index The index of the argument to extract.
* @tparam Candidate A valid function, member function or data member.
*/
template<std::size_t Index, auto Candidate>
using nth_argument_t = typename nth_argument<Index, Candidate>::type;
} // namespace entt
#endif
namespace entt {
/*! @brief Default entity identifier. */
enum class entity : id_type {};
template<typename Entity = entity, typename = std::allocator<Entity>>
class basic_sparse_set;
template<typename Type, typename = entity, typename = std::allocator<Type>, typename = void>
class basic_storage;
template<typename Type>
class sigh_storage_mixin;
/**
* @brief Provides a common way to define storage types.
* @tparam Type Storage value type.
* @tparam Entity A valid entity type (see entt_traits for more details).
* @tparam Allocator Type of allocator used to manage memory and elements.
*/
template<typename Type, typename Entity = entity, typename Allocator = std::allocator<Type>, typename = void>
struct storage_type {
/*! @brief Type-to-storage conversion result. */
using type = sigh_storage_mixin<basic_storage<Type, Entity, Allocator>>;
};
/**
* @brief Helper type.
* @tparam Args Arguments to forward.
*/
template<typename... Args>
using storage_type_t = typename storage_type<Args...>::type;
/**
* Type-to-storage conversion utility that preserves constness.
* @tparam Type Storage value type, eventually const.
* @tparam Entity A valid entity type (see entt_traits for more details).
* @tparam Allocator Type of allocator used to manage memory and elements.
*/
template<typename Type, typename Entity = entity, typename Allocator = std::allocator<std::remove_const_t<Type>>>
struct storage_for {
/*! @brief Type-to-storage conversion result. */
using type = constness_as_t<storage_type_t<std::remove_const_t<Type>, Entity, Allocator>, Type>;
};
/**
* @brief Helper type.
* @tparam Args Arguments to forward.
*/
template<typename... Args>
using storage_for_t = typename storage_for<Args...>::type;
template<typename Entity = entity, typename = std::allocator<Entity>>
class basic_registry;
template<typename, typename, typename = void>
class basic_view;
template<typename Type, typename = std::allocator<Type *>>
class basic_runtime_view;
template<typename, typename, typename>
class basic_group;
template<typename>
class basic_observer;
template<typename>
class basic_organizer;
template<typename, typename...>
struct basic_handle;
template<typename>
class basic_snapshot;
template<typename>
class basic_snapshot_loader;
template<typename>
class basic_continuous_loader;
/**
* @brief Alias for exclusion lists.
* @tparam Type List of types.
*/
template<typename... Type>
using exclude_t = type_list<Type...>;
/**
* @brief Variable template for exclusion lists.
* @tparam Type List of types.
*/
template<typename... Type>
inline constexpr exclude_t<Type...> exclude{};
/**
* @brief Alias for lists of observed components.
* @tparam Type List of types.
*/
template<typename... Type>
using get_t = type_list<Type...>;
/**
* @brief Variable template for lists of observed components.
* @tparam Type List of types.
*/
template<typename... Type>
inline constexpr get_t<Type...> get{};
/**
* @brief Alias for lists of owned components.
* @tparam Type List of types.
*/
template<typename... Type>
using owned_t = type_list<Type...>;
/**
* @brief Variable template for lists of owned components.
* @tparam Type List of types.
*/
template<typename... Type>
inline constexpr owned_t<Type...> owned{};
/*! @brief Alias declaration for the most common use case. */
using sparse_set = basic_sparse_set<>;
/**
* @brief Alias declaration for the most common use case.
* @tparam Type Type of objects assigned to the entities.
*/
template<typename Type>
using storage = basic_storage<Type>;
/*! @brief Alias declaration for the most common use case. */
using registry = basic_registry<>;
/*! @brief Alias declaration for the most common use case. */
using observer = basic_observer<registry>;
/*! @brief Alias declaration for the most common use case. */
using organizer = basic_organizer<registry>;
/*! @brief Alias declaration for the most common use case. */
using handle = basic_handle<registry>;
/*! @brief Alias declaration for the most common use case. */
using const_handle = basic_handle<const registry>;
/**
* @brief Alias declaration for the most common use case.
* @tparam Args Other template parameters.
*/
template<typename... Args>
using handle_view = basic_handle<registry, Args...>;
/**
* @brief Alias declaration for the most common use case.
* @tparam Args Other template parameters.
*/
template<typename... Args>
using const_handle_view = basic_handle<const registry, Args...>;
/*! @brief Alias declaration for the most common use case. */
using snapshot = basic_snapshot<registry>;
/*! @brief Alias declaration for the most common use case. */
using snapshot_loader = basic_snapshot_loader<registry>;
/*! @brief Alias declaration for the most common use case. */
using continuous_loader = basic_continuous_loader<registry>;
/**
* @brief Alias declaration for the most common use case.
* @tparam Get Types of storage iterated by the view.
* @tparam Exclude Types of storage used to filter the view.
*/
template<typename Get, typename Exclude = exclude_t<>>
using view = basic_view<type_list_transform_t<Get, storage_for>, type_list_transform_t<Exclude, storage_for>>;
/*! @brief Alias declaration for the most common use case. */
using runtime_view = basic_runtime_view<sparse_set>;
/*! @brief Alias declaration for the most common use case. */
using const_runtime_view = basic_runtime_view<const sparse_set>;
/**
* @brief Alias declaration for the most common use case.
* @tparam Owned Types of storage _owned_ by the group.
* @tparam Get Types of storage _observed_ by the group.
* @tparam Exclude Types of storage used to filter the group.
*/
template<typename Owned, typename Get, typename Exclude>
using group = basic_group<type_list_transform_t<Owned, storage_for>, type_list_transform_t<Get, storage_for>, type_list_transform_t<Exclude, storage_for>>;
} // namespace entt
#endif
namespace entt {
/**
* @cond TURN_OFF_DOXYGEN
* Internal details not to be documented.
*/
namespace internal {
template<typename, typename = void>
struct entt_traits;
template<typename Type>
struct entt_traits<Type, std::enable_if_t<std::is_enum_v<Type>>>
: entt_traits<std::underlying_type_t<Type>> {};
template<typename Type>
struct entt_traits<Type, std::enable_if_t<std::is_class_v<Type>>>
: entt_traits<typename Type::entity_type> {};
template<>
struct entt_traits<std::uint32_t> {
using entity_type = std::uint32_t;
using version_type = std::uint16_t;
static constexpr entity_type entity_mask = 0xFFFFF;
static constexpr entity_type version_mask = 0xFFF;
static constexpr std::size_t entity_shift = 20u;
};
template<>
struct entt_traits<std::uint64_t> {
using entity_type = std::uint64_t;
using version_type = std::uint32_t;
static constexpr entity_type entity_mask = 0xFFFFFFFF;
static constexpr entity_type version_mask = 0xFFFFFFFF;
static constexpr std::size_t entity_shift = 32u;
};
} // namespace internal
/**
* Internal details not to be documented.
* @endcond
*/
/**
* @brief Entity traits.
* @tparam Type Type of identifier.
*/
template<typename Type>
class entt_traits: internal::entt_traits<Type> {
using base_type = internal::entt_traits<Type>;
public:
/*! @brief Value type. */
using value_type = Type;
/*! @brief Underlying entity type. */
using entity_type = typename base_type::entity_type;
/*! @brief Underlying version type. */
using version_type = typename base_type::version_type;
/*! @brief Reserved identifier. */
static constexpr entity_type reserved = base_type::entity_mask | (base_type::version_mask << base_type::entity_shift);
/*! @brief Page size, default is `ENTT_SPARSE_PAGE`. */
static constexpr auto page_size = ENTT_SPARSE_PAGE;
/**
* @brief Converts an entity to its underlying type.
* @param value The value to convert.
* @return The integral representation of the given value.
*/
[[nodiscard]] static constexpr entity_type to_integral(const value_type value) noexcept {
return static_cast<entity_type>(value);
}
/**
* @brief Returns the entity part once converted to the underlying type.
* @param value The value to convert.
* @return The integral representation of the entity part.
*/
[[nodiscard]] static constexpr entity_type to_entity(const value_type value) noexcept {
return (to_integral(value) & base_type::entity_mask);
}
/**
* @brief Returns the version part once converted to the underlying type.
* @param value The value to convert.
* @return The integral representation of the version part.
*/
[[nodiscard]] static constexpr version_type to_version(const value_type value) noexcept {
return (to_integral(value) >> base_type::entity_shift);
}
/**
* @brief Constructs an identifier from its parts.
*
* If the version part is not provided, a tombstone is returned.<br/>
* If the entity part is not provided, a null identifier is returned.
*
* @param entity The entity part of the identifier.
* @param version The version part of the identifier.
* @return A properly constructed identifier.
*/
[[nodiscard]] static constexpr value_type construct(const entity_type entity, const version_type version) noexcept {
return value_type{(entity & base_type::entity_mask) | (static_cast<entity_type>(version) << base_type::entity_shift)};
}
/**
* @brief Combines two identifiers in a single one.
*
* The returned identifier is a copy of the first element except for its
* version, which is taken from the second element.
*
* @param lhs The identifier from which to take the entity part.
* @param rhs The identifier from which to take the version part.
* @return A properly constructed identifier.
*/
[[nodiscard]] static constexpr value_type combine(const entity_type lhs, const entity_type rhs) noexcept {
constexpr auto mask = (base_type::version_mask << base_type::entity_shift);
return value_type{(lhs & base_type::entity_mask) | (rhs & mask)};
}
};
/**
* @copydoc entt_traits<Entity>::to_integral
* @tparam Entity The value type.
*/
template<typename Entity>
[[nodiscard]] constexpr typename entt_traits<Entity>::entity_type to_integral(const Entity value) noexcept {
return entt_traits<Entity>::to_integral(value);
}
/**
* @copydoc entt_traits<Entity>::to_entity
* @tparam Entity The value type.
*/
template<typename Entity>
[[nodiscard]] constexpr typename entt_traits<Entity>::entity_type to_entity(const Entity value) noexcept {
return entt_traits<Entity>::to_entity(value);
}
/**
* @copydoc entt_traits<Entity>::to_version
* @tparam Entity The value type.
*/
template<typename Entity>
[[nodiscard]] constexpr typename entt_traits<Entity>::version_type to_version(const Entity value) noexcept {
return entt_traits<Entity>::to_version(value);
}
/*! @brief Null object for all identifiers. */
struct null_t {
/**
* @brief Converts the null object to identifiers of any type.
* @tparam Entity Type of identifier.
* @return The null representation for the given type.
*/
template<typename Entity>
[[nodiscard]] constexpr operator Entity() const noexcept {
using entity_traits = entt_traits<Entity>;
return entity_traits::combine(entity_traits::reserved, entity_traits::reserved);
}
/**
* @brief Compares two null objects.
* @param other A null object.
* @return True in all cases.
*/
[[nodiscard]] constexpr bool operator==([[maybe_unused]] const null_t other) const noexcept {
return true;
}
/**
* @brief Compares two null objects.
* @param other A null object.
* @return False in all cases.
*/
[[nodiscard]] constexpr bool operator!=([[maybe_unused]] const null_t other) const noexcept {
return false;
}
/**
* @brief Compares a null object and an identifier of any type.
* @tparam Entity Type of identifier.
* @param entity Identifier with which to compare.
* @return False if the two elements differ, true otherwise.
*/
template<typename Entity>
[[nodiscard]] constexpr bool operator==(const Entity entity) const noexcept {
using entity_traits = entt_traits<Entity>;
return entity_traits::to_entity(entity) == entity_traits::to_entity(*this);
}
/**
* @brief Compares a null object and an identifier of any type.
* @tparam Entity Type of identifier.
* @param entity Identifier with which to compare.
* @return True if the two elements differ, false otherwise.
*/
template<typename Entity>
[[nodiscard]] constexpr bool operator!=(const Entity entity) const noexcept {
return !(entity == *this);
}
};
/**
* @brief Compares a null object and an identifier of any type.
* @tparam Entity Type of identifier.
* @param entity Identifier with which to compare.
* @param other A null object yet to be converted.
* @return False if the two elements differ, true otherwise.
*/
template<typename Entity>
[[nodiscard]] constexpr bool operator==(const Entity entity, const null_t other) noexcept {
return other.operator==(entity);
}
/**
* @brief Compares a null object and an identifier of any type.
* @tparam Entity Type of identifier.
* @param entity Identifier with which to compare.
* @param other A null object yet to be converted.
* @return True if the two elements differ, false otherwise.
*/
template<typename Entity>
[[nodiscard]] constexpr bool operator!=(const Entity entity, const null_t other) noexcept {
return !(other == entity);
}
/*! @brief Tombstone object for all identifiers. */
struct tombstone_t {
/**
* @brief Converts the tombstone object to identifiers of any type.
* @tparam Entity Type of identifier.
* @return The tombstone representation for the given type.
*/
template<typename Entity>
[[nodiscard]] constexpr operator Entity() const noexcept {
using entity_traits = entt_traits<Entity>;
return entity_traits::combine(entity_traits::reserved, entity_traits::reserved);
}
/**
* @brief Compares two tombstone objects.
* @param other A tombstone object.
* @return True in all cases.
*/
[[nodiscard]] constexpr bool operator==([[maybe_unused]] const tombstone_t other) const noexcept {
return true;
}
/**
* @brief Compares two tombstone objects.
* @param other A tombstone object.
* @return False in all cases.
*/
[[nodiscard]] constexpr bool operator!=([[maybe_unused]] const tombstone_t other) const noexcept {
return false;
}
/**
* @brief Compares a tombstone object and an identifier of any type.
* @tparam Entity Type of identifier.
* @param entity Identifier with which to compare.
* @return False if the two elements differ, true otherwise.
*/
template<typename Entity>
[[nodiscard]] constexpr bool operator==(const Entity entity) const noexcept {
using entity_traits = entt_traits<Entity>;
return entity_traits::to_version(entity) == entity_traits::to_version(*this);
}
/**
* @brief Compares a tombstone object and an identifier of any type.
* @tparam Entity Type of identifier.
* @param entity Identifier with which to compare.
* @return True if the two elements differ, false otherwise.
*/
template<typename Entity>
[[nodiscard]] constexpr bool operator!=(const Entity entity) const noexcept {
return !(entity == *this);
}
};
/**
* @brief Compares a tombstone object and an identifier of any type.
* @tparam Entity Type of identifier.
* @param entity Identifier with which to compare.
* @param other A tombstone object yet to be converted.
* @return False if the two elements differ, true otherwise.
*/
template<typename Entity>
[[nodiscard]] constexpr bool operator==(const Entity entity, const tombstone_t other) noexcept {
return other.operator==(entity);
}
/**
* @brief Compares a tombstone object and an identifier of any type.
* @tparam Entity Type of identifier.
* @param entity Identifier with which to compare.
* @param other A tombstone object yet to be converted.
* @return True if the two elements differ, false otherwise.
*/
template<typename Entity>
[[nodiscard]] constexpr bool operator!=(const Entity entity, const tombstone_t other) noexcept {
return !(other == entity);
}
/**
* @brief Compile-time constant for null entities.
*
* There exist implicit conversions from this variable to identifiers of any
* allowed type. Similarly, there exist comparison operators between the null
* entity and any other identifier.
*/
inline constexpr null_t null{};
/**
* @brief Compile-time constant for tombstone entities.
*
* There exist implicit conversions from this variable to identifiers of any
* allowed type. Similarly, there exist comparison operators between the
* tombstone entity and any other identifier.
*/
inline constexpr tombstone_t tombstone{};
} // namespace entt
#endif
// #include "entity/group.hpp"
#ifndef ENTT_ENTITY_GROUP_HPP
#define ENTT_ENTITY_GROUP_HPP
#include <tuple>
#include <type_traits>
#include <utility>
// #include "../config/config.h"
// #include "../core/iterator.hpp"
#ifndef ENTT_CORE_ITERATOR_HPP
#define ENTT_CORE_ITERATOR_HPP
#include <iterator>
#include <memory>
#include <type_traits>
#include <utility>
namespace entt {
/**
* @brief Helper type to use as pointer with input iterators.
* @tparam Type of wrapped value.
*/
template<typename Type>
struct input_iterator_pointer final {
/*! @brief Value type. */
using value_type = Type;
/*! @brief Pointer type. */
using pointer = Type *;
/*! @brief Reference type. */
using reference = Type &;
/**
* @brief Constructs a proxy object by move.
* @param val Value to use to initialize the proxy object.
*/
constexpr input_iterator_pointer(value_type &&val) noexcept(std::is_nothrow_move_constructible_v<value_type>)
: value{std::move(val)} {}
/**
* @brief Access operator for accessing wrapped values.
* @return A pointer to the wrapped value.
*/
[[nodiscard]] constexpr pointer operator->() noexcept {
return std::addressof(value);
}
/**
* @brief Dereference operator for accessing wrapped values.
* @return A reference to the wrapped value.
*/
[[nodiscard]] constexpr reference operator*() noexcept {
return value;
}
private:
Type value;
};
/**
* @brief Plain iota iterator (waiting for C++20).
* @tparam Type Value type.
*/
template<typename Type>
class iota_iterator final {
static_assert(std::is_integral_v<Type>, "Not an integral type");
public:
/*! @brief Value type, likely an integral one. */
using value_type = Type;
/*! @brief Invalid pointer type. */
using pointer = void;
/*! @brief Non-reference type, same as value type. */
using reference = value_type;
/*! @brief Difference type. */
using difference_type = std::ptrdiff_t;
/*! @brief Iterator category. */
using iterator_category = std::input_iterator_tag;
/*! @brief Default constructor. */
constexpr iota_iterator() noexcept
: current{} {}
/**
* @brief Constructs an iota iterator from a given value.
* @param init The initial value assigned to the iota iterator.
*/
constexpr iota_iterator(const value_type init) noexcept
: current{init} {}
/**
* @brief Pre-increment operator.
* @return This iota iterator.
*/
constexpr iota_iterator &operator++() noexcept {
return ++current, *this;
}
/**
* @brief Post-increment operator.
* @return This iota iterator.
*/
constexpr iota_iterator operator++(int) noexcept {
iota_iterator orig = *this;
return ++(*this), orig;
}
/**
* @brief Dereference operator.
* @return The underlying value.
*/
[[nodiscard]] constexpr reference operator*() const noexcept {
return current;
}
private:
value_type current;
};
/**
* @brief Comparison operator.
* @tparam Type Value type of the iota iterator.
* @param lhs A properly initialized iota iterator.
* @param rhs A properly initialized iota iterator.
* @return True if the two iterators are identical, false otherwise.
*/
template<typename Type>
[[nodiscard]] constexpr bool operator==(const iota_iterator<Type> &lhs, const iota_iterator<Type> &rhs) noexcept {
return *lhs == *rhs;
}
/**
* @brief Comparison operator.
* @tparam Type Value type of the iota iterator.
* @param lhs A properly initialized iota iterator.
* @param rhs A properly initialized iota iterator.
* @return True if the two iterators differ, false otherwise.
*/
template<typename Type>
[[nodiscard]] constexpr bool operator!=(const iota_iterator<Type> &lhs, const iota_iterator<Type> &rhs) noexcept {
return !(lhs == rhs);
}
/**
* @brief Utility class to create an iterable object from a pair of iterators.
* @tparam It Type of iterator.
* @tparam Sentinel Type of sentinel.
*/
template<typename It, typename Sentinel = It>
struct iterable_adaptor final {
/*! @brief Value type. */
using value_type = typename std::iterator_traits<It>::value_type;
/*! @brief Iterator type. */
using iterator = It;
/*! @brief Sentinel type. */
using sentinel = Sentinel;
/*! @brief Default constructor. */
constexpr iterable_adaptor() noexcept(std::is_nothrow_default_constructible_v<iterator> &&std::is_nothrow_default_constructible_v<sentinel>)
: first{},
last{} {}
/**
* @brief Creates an iterable object from a pair of iterators.
* @param from Begin iterator.
* @param to End iterator.
*/
constexpr iterable_adaptor(iterator from, sentinel to) noexcept(std::is_nothrow_move_constructible_v<iterator> &&std::is_nothrow_move_constructible_v<sentinel>)
: first{std::move(from)},
last{std::move(to)} {}
/**
* @brief Returns an iterator to the beginning.
* @return An iterator to the first element of the range.
*/
[[nodiscard]] constexpr iterator begin() const noexcept {
return first;
}
/**
* @brief Returns an iterator to the end.
* @return An iterator to the element following the last element of the
* range.
*/
[[nodiscard]] constexpr sentinel end() const noexcept {
return last;
}
/*! @copydoc begin */
[[nodiscard]] constexpr iterator cbegin() const noexcept {
return begin();
}
/*! @copydoc end */
[[nodiscard]] constexpr sentinel cend() const noexcept {
return end();
}
private:
It first;
Sentinel last;
};
} // namespace entt
#endif
// #include "../core/type_traits.hpp"
// #include "component.hpp"
#ifndef ENTT_ENTITY_COMPONENT_HPP
#define ENTT_ENTITY_COMPONENT_HPP
#include <cstddef>
#include <type_traits>
// #include "../config/config.h"
namespace entt {
/**
* @cond TURN_OFF_DOXYGEN
* Internal details not to be documented.
*/
namespace internal {
template<typename Type, typename = void>
struct in_place_delete: std::bool_constant<!(std::is_move_constructible_v<Type> && std::is_move_assignable_v<Type>)> {};
template<typename Type>
struct in_place_delete<Type, std::enable_if_t<Type::in_place_delete>>
: std::true_type {};
template<typename Type, typename = void>
struct page_size: std::integral_constant<std::size_t, !std::is_empty_v<ENTT_ETO_TYPE(Type)> * ENTT_PACKED_PAGE> {};
template<typename Type>
struct page_size<Type, std::enable_if_t<std::is_convertible_v<decltype(Type::page_size), std::size_t>>>
: std::integral_constant<std::size_t, Type::page_size> {};
} // namespace internal
/**
* Internal details not to be documented.
* @endcond
*/
/**
* @brief Common way to access various properties of components.
* @tparam Type Type of component.
*/
template<typename Type, typename = void>
struct component_traits {
static_assert(std::is_same_v<std::decay_t<Type>, Type>, "Unsupported type");
/*! @brief Component type. */
using type = Type;
/*! @brief Pointer stability, default is `false`. */
static constexpr bool in_place_delete = internal::in_place_delete<Type>::value;
/*! @brief Page size, default is `ENTT_PACKED_PAGE` for non-empty types. */
static constexpr std::size_t page_size = internal::page_size<Type>::value;
};
/**
* @brief Helper variable template.
* @tparam Type Type of component.
*/
template<class Type>
inline constexpr bool ignore_as_empty_v = (std::is_void_v<Type> || component_traits<Type>::page_size == 0u);
} // namespace entt
#endif
// #include "entity.hpp"
#ifndef ENTT_ENTITY_ENTITY_HPP
#define ENTT_ENTITY_ENTITY_HPP
#include <cstddef>
#include <cstdint>
#include <type_traits>
// #include "../config/config.h"
// #include "fwd.hpp"
namespace entt {
/**
* @cond TURN_OFF_DOXYGEN
* Internal details not to be documented.
*/
namespace internal {
template<typename, typename = void>
struct entt_traits;
template<typename Type>
struct entt_traits<Type, std::enable_if_t<std::is_enum_v<Type>>>
: entt_traits<std::underlying_type_t<Type>> {};
template<typename Type>
struct entt_traits<Type, std::enable_if_t<std::is_class_v<Type>>>
: entt_traits<typename Type::entity_type> {};
template<>
struct entt_traits<std::uint32_t> {
using entity_type = std::uint32_t;
using version_type = std::uint16_t;
static constexpr entity_type entity_mask = 0xFFFFF;
static constexpr entity_type version_mask = 0xFFF;
static constexpr std::size_t entity_shift = 20u;
};
template<>
struct entt_traits<std::uint64_t> {
using entity_type = std::uint64_t;
using version_type = std::uint32_t;
static constexpr entity_type entity_mask = 0xFFFFFFFF;
static constexpr entity_type version_mask = 0xFFFFFFFF;
static constexpr std::size_t entity_shift = 32u;
};
} // namespace internal
/**
* Internal details not to be documented.
* @endcond
*/
/**
* @brief Entity traits.
* @tparam Type Type of identifier.
*/
template<typename Type>
class entt_traits: internal::entt_traits<Type> {
using base_type = internal::entt_traits<Type>;
public:
/*! @brief Value type. */
using value_type = Type;
/*! @brief Underlying entity type. */
using entity_type = typename base_type::entity_type;
/*! @brief Underlying version type. */
using version_type = typename base_type::version_type;
/*! @brief Reserved identifier. */
static constexpr entity_type reserved = base_type::entity_mask | (base_type::version_mask << base_type::entity_shift);
/*! @brief Page size, default is `ENTT_SPARSE_PAGE`. */
static constexpr auto page_size = ENTT_SPARSE_PAGE;
/**
* @brief Converts an entity to its underlying type.
* @param value The value to convert.
* @return The integral representation of the given value.
*/
[[nodiscard]] static constexpr entity_type to_integral(const value_type value) noexcept {
return static_cast<entity_type>(value);
}
/**
* @brief Returns the entity part once converted to the underlying type.
* @param value The value to convert.
* @return The integral representation of the entity part.
*/
[[nodiscard]] static constexpr entity_type to_entity(const value_type value) noexcept {
return (to_integral(value) & base_type::entity_mask);
}
/**
* @brief Returns the version part once converted to the underlying type.
* @param value The value to convert.
* @return The integral representation of the version part.
*/
[[nodiscard]] static constexpr version_type to_version(const value_type value) noexcept {
return (to_integral(value) >> base_type::entity_shift);
}
/**
* @brief Constructs an identifier from its parts.
*
* If the version part is not provided, a tombstone is returned.<br/>
* If the entity part is not provided, a null identifier is returned.
*
* @param entity The entity part of the identifier.
* @param version The version part of the identifier.
* @return A properly constructed identifier.
*/
[[nodiscard]] static constexpr value_type construct(const entity_type entity, const version_type version) noexcept {
return value_type{(entity & base_type::entity_mask) | (static_cast<entity_type>(version) << base_type::entity_shift)};
}
/**
* @brief Combines two identifiers in a single one.
*
* The returned identifier is a copy of the first element except for its
* version, which is taken from the second element.
*
* @param lhs The identifier from which to take the entity part.
* @param rhs The identifier from which to take the version part.
* @return A properly constructed identifier.
*/
[[nodiscard]] static constexpr value_type combine(const entity_type lhs, const entity_type rhs) noexcept {
constexpr auto mask = (base_type::version_mask << base_type::entity_shift);
return value_type{(lhs & base_type::entity_mask) | (rhs & mask)};
}
};
/**
* @copydoc entt_traits<Entity>::to_integral
* @tparam Entity The value type.
*/
template<typename Entity>
[[nodiscard]] constexpr typename entt_traits<Entity>::entity_type to_integral(const Entity value) noexcept {
return entt_traits<Entity>::to_integral(value);
}
/**
* @copydoc entt_traits<Entity>::to_entity
* @tparam Entity The value type.
*/
template<typename Entity>
[[nodiscard]] constexpr typename entt_traits<Entity>::entity_type to_entity(const Entity value) noexcept {
return entt_traits<Entity>::to_entity(value);
}
/**
* @copydoc entt_traits<Entity>::to_version
* @tparam Entity The value type.
*/
template<typename Entity>
[[nodiscard]] constexpr typename entt_traits<Entity>::version_type to_version(const Entity value) noexcept {
return entt_traits<Entity>::to_version(value);
}
/*! @brief Null object for all identifiers. */
struct null_t {
/**
* @brief Converts the null object to identifiers of any type.
* @tparam Entity Type of identifier.
* @return The null representation for the given type.
*/
template<typename Entity>
[[nodiscard]] constexpr operator Entity() const noexcept {
using entity_traits = entt_traits<Entity>;
return entity_traits::combine(entity_traits::reserved, entity_traits::reserved);
}
/**
* @brief Compares two null objects.
* @param other A null object.
* @return True in all cases.
*/
[[nodiscard]] constexpr bool operator==([[maybe_unused]] const null_t other) const noexcept {
return true;
}
/**
* @brief Compares two null objects.
* @param other A null object.
* @return False in all cases.
*/
[[nodiscard]] constexpr bool operator!=([[maybe_unused]] const null_t other) const noexcept {
return false;
}
/**
* @brief Compares a null object and an identifier of any type.
* @tparam Entity Type of identifier.
* @param entity Identifier with which to compare.
* @return False if the two elements differ, true otherwise.
*/
template<typename Entity>
[[nodiscard]] constexpr bool operator==(const Entity entity) const noexcept {
using entity_traits = entt_traits<Entity>;
return entity_traits::to_entity(entity) == entity_traits::to_entity(*this);
}
/**
* @brief Compares a null object and an identifier of any type.
* @tparam Entity Type of identifier.
* @param entity Identifier with which to compare.
* @return True if the two elements differ, false otherwise.
*/
template<typename Entity>
[[nodiscard]] constexpr bool operator!=(const Entity entity) const noexcept {
return !(entity == *this);
}
};
/**
* @brief Compares a null object and an identifier of any type.
* @tparam Entity Type of identifier.
* @param entity Identifier with which to compare.
* @param other A null object yet to be converted.
* @return False if the two elements differ, true otherwise.
*/
template<typename Entity>
[[nodiscard]] constexpr bool operator==(const Entity entity, const null_t other) noexcept {
return other.operator==(entity);
}
/**
* @brief Compares a null object and an identifier of any type.
* @tparam Entity Type of identifier.
* @param entity Identifier with which to compare.
* @param other A null object yet to be converted.
* @return True if the two elements differ, false otherwise.
*/
template<typename Entity>
[[nodiscard]] constexpr bool operator!=(const Entity entity, const null_t other) noexcept {
return !(other == entity);
}
/*! @brief Tombstone object for all identifiers. */
struct tombstone_t {
/**
* @brief Converts the tombstone object to identifiers of any type.
* @tparam Entity Type of identifier.
* @return The tombstone representation for the given type.
*/
template<typename Entity>
[[nodiscard]] constexpr operator Entity() const noexcept {
using entity_traits = entt_traits<Entity>;
return entity_traits::combine(entity_traits::reserved, entity_traits::reserved);
}
/**
* @brief Compares two tombstone objects.
* @param other A tombstone object.
* @return True in all cases.
*/
[[nodiscard]] constexpr bool operator==([[maybe_unused]] const tombstone_t other) const noexcept {
return true;
}
/**
* @brief Compares two tombstone objects.
* @param other A tombstone object.
* @return False in all cases.
*/
[[nodiscard]] constexpr bool operator!=([[maybe_unused]] const tombstone_t other) const noexcept {
return false;
}
/**
* @brief Compares a tombstone object and an identifier of any type.
* @tparam Entity Type of identifier.
* @param entity Identifier with which to compare.
* @return False if the two elements differ, true otherwise.
*/
template<typename Entity>
[[nodiscard]] constexpr bool operator==(const Entity entity) const noexcept {
using entity_traits = entt_traits<Entity>;
return entity_traits::to_version(entity) == entity_traits::to_version(*this);
}
/**
* @brief Compares a tombstone object and an identifier of any type.
* @tparam Entity Type of identifier.
* @param entity Identifier with which to compare.
* @return True if the two elements differ, false otherwise.
*/
template<typename Entity>
[[nodiscard]] constexpr bool operator!=(const Entity entity) const noexcept {
return !(entity == *this);
}
};
/**
* @brief Compares a tombstone object and an identifier of any type.
* @tparam Entity Type of identifier.
* @param entity Identifier with which to compare.
* @param other A tombstone object yet to be converted.
* @return False if the two elements differ, true otherwise.
*/
template<typename Entity>
[[nodiscard]] constexpr bool operator==(const Entity entity, const tombstone_t other) noexcept {
return other.operator==(entity);
}
/**
* @brief Compares a tombstone object and an identifier of any type.
* @tparam Entity Type of identifier.
* @param entity Identifier with which to compare.
* @param other A tombstone object yet to be converted.
* @return True if the two elements differ, false otherwise.
*/
template<typename Entity>
[[nodiscard]] constexpr bool operator!=(const Entity entity, const tombstone_t other) noexcept {
return !(other == entity);
}
/**
* @brief Compile-time constant for null entities.
*
* There exist implicit conversions from this variable to identifiers of any
* allowed type. Similarly, there exist comparison operators between the null
* entity and any other identifier.
*/
inline constexpr null_t null{};
/**
* @brief Compile-time constant for tombstone entities.
*
* There exist implicit conversions from this variable to identifiers of any
* allowed type. Similarly, there exist comparison operators between the
* tombstone entity and any other identifier.
*/
inline constexpr tombstone_t tombstone{};
} // namespace entt
#endif
// #include "fwd.hpp"
// #include "sparse_set.hpp"
#ifndef ENTT_ENTITY_SPARSE_SET_HPP
#define ENTT_ENTITY_SPARSE_SET_HPP
#include <cstddef>
#include <iterator>
#include <memory>
#include <type_traits>
#include <utility>
#include <vector>
// #include "../config/config.h"
// #include "../core/algorithm.hpp"
#ifndef ENTT_CORE_ALGORITHM_HPP
#define ENTT_CORE_ALGORITHM_HPP
#include <algorithm>
#include <functional>
#include <iterator>
#include <utility>
#include <vector>
// #include "utility.hpp"
#ifndef ENTT_CORE_UTILITY_HPP
#define ENTT_CORE_UTILITY_HPP
#include <type_traits>
#include <utility>
namespace entt {
/*! @brief Identity function object (waiting for C++20). */
struct identity {
/*! @brief Indicates that this is a transparent function object. */
using is_transparent = void;
/**
* @brief Returns its argument unchanged.
* @tparam Type Type of the argument.
* @param value The actual argument.
* @return The submitted value as-is.
*/
template<class Type>
[[nodiscard]] constexpr Type &&operator()(Type &&value) const noexcept {
return std::forward<Type>(value);
}
};
/**
* @brief Constant utility to disambiguate overloaded members of a class.
* @tparam Type Type of the desired overload.
* @tparam Class Type of class to which the member belongs.
* @param member A valid pointer to a member.
* @return Pointer to the member.
*/
template<typename Type, typename Class>
[[nodiscard]] constexpr auto overload(Type Class::*member) noexcept {
return member;
}
/**
* @brief Constant utility to disambiguate overloaded functions.
* @tparam Func Function type of the desired overload.
* @param func A valid pointer to a function.
* @return Pointer to the function.
*/
template<typename Func>
[[nodiscard]] constexpr auto overload(Func *func) noexcept {
return func;
}
/**
* @brief Helper type for visitors.
* @tparam Func Types of function objects.
*/
template<class... Func>
struct overloaded: Func... {
using Func::operator()...;
};
/**
* @brief Deduction guide.
* @tparam Func Types of function objects.
*/
template<class... Func>
overloaded(Func...) -> overloaded<Func...>;
/**
* @brief Basic implementation of a y-combinator.
* @tparam Func Type of a potentially recursive function.
*/
template<class Func>
struct y_combinator {
/**
* @brief Constructs a y-combinator from a given function.
* @param recursive A potentially recursive function.
*/
constexpr y_combinator(Func recursive) noexcept(std::is_nothrow_move_constructible_v<Func>)
: func{std::move(recursive)} {}
/**
* @brief Invokes a y-combinator and therefore its underlying function.
* @tparam Args Types of arguments to use to invoke the underlying function.
* @param args Parameters to use to invoke the underlying function.
* @return Return value of the underlying function, if any.
*/
template<class... Args>
constexpr decltype(auto) operator()(Args &&...args) const noexcept(std::is_nothrow_invocable_v<Func, const y_combinator &, Args...>) {
return func(*this, std::forward<Args>(args)...);
}
/*! @copydoc operator()() */
template<class... Args>
constexpr decltype(auto) operator()(Args &&...args) noexcept(std::is_nothrow_invocable_v<Func, y_combinator &, Args...>) {
return func(*this, std::forward<Args>(args)...);
}
private:
Func func;
};
} // namespace entt
#endif
namespace entt {
/**
* @brief Function object to wrap `std::sort` in a class type.
*
* Unfortunately, `std::sort` cannot be passed as template argument to a class
* template or a function template.<br/>
* This class fills the gap by wrapping some flavors of `std::sort` in a
* function object.
*/
struct std_sort {
/**
* @brief Sorts the elements in a range.
*
* Sorts the elements in a range using the given binary comparison function.
*
* @tparam It Type of random access iterator.
* @tparam Compare Type of comparison function object.
* @tparam Args Types of arguments to forward to the sort function.
* @param first An iterator to the first element of the range to sort.
* @param last An iterator past the last element of the range to sort.
* @param compare A valid comparison function object.
* @param args Arguments to forward to the sort function, if any.
*/
template<typename It, typename Compare = std::less<>, typename... Args>
void operator()(It first, It last, Compare compare = Compare{}, Args &&...args) const {
std::sort(std::forward<Args>(args)..., std::move(first), std::move(last), std::move(compare));
}
};
/*! @brief Function object for performing insertion sort. */
struct insertion_sort {
/**
* @brief Sorts the elements in a range.
*
* Sorts the elements in a range using the given binary comparison function.
*
* @tparam It Type of random access iterator.
* @tparam Compare Type of comparison function object.
* @param first An iterator to the first element of the range to sort.
* @param last An iterator past the last element of the range to sort.
* @param compare A valid comparison function object.
*/
template<typename It, typename Compare = std::less<>>
void operator()(It first, It last, Compare compare = Compare{}) const {
if(first < last) {
for(auto it = first + 1; it < last; ++it) {
auto value = std::move(*it);
auto pre = it;
for(; pre > first && compare(value, *(pre - 1)); --pre) {
*pre = std::move(*(pre - 1));
}
*pre = std::move(value);
}
}
}
};
/**
* @brief Function object for performing LSD radix sort.
* @tparam Bit Number of bits processed per pass.
* @tparam N Maximum number of bits to sort.
*/
template<std::size_t Bit, std::size_t N>
struct radix_sort {
static_assert((N % Bit) == 0, "The maximum number of bits to sort must be a multiple of the number of bits processed per pass");
/**
* @brief Sorts the elements in a range.
*
* Sorts the elements in a range using the given _getter_ to access the
* actual data to be sorted.
*
* This implementation is inspired by the online book
* [Physically Based Rendering](http://www.pbr-book.org/3ed-2018/Primitives_and_Intersection_Acceleration/Bounding_Volume_Hierarchies.html#RadixSort).
*
* @tparam It Type of random access iterator.
* @tparam Getter Type of _getter_ function object.
* @param first An iterator to the first element of the range to sort.
* @param last An iterator past the last element of the range to sort.
* @param getter A valid _getter_ function object.
*/
template<typename It, typename Getter = identity>
void operator()(It first, It last, Getter getter = Getter{}) const {
if(first < last) {
static constexpr auto mask = (1 << Bit) - 1;
static constexpr auto buckets = 1 << Bit;
static constexpr auto passes = N / Bit;
using value_type = typename std::iterator_traits<It>::value_type;
std::vector<value_type> aux(std::distance(first, last));
auto part = [getter = std::move(getter)](auto from, auto to, auto out, auto start) {
std::size_t index[buckets]{};
std::size_t count[buckets]{};
for(auto it = from; it != to; ++it) {
++count[(getter(*it) >> start) & mask];
}
for(std::size_t pos{}, end = buckets - 1u; pos < end; ++pos) {
index[pos + 1u] = index[pos] + count[pos];
}
for(auto it = from; it != to; ++it) {
out[index[(getter(*it) >> start) & mask]++] = std::move(*it);
}
};
for(std::size_t pass = 0; pass < (passes & ~1); pass += 2) {
part(first, last, aux.begin(), pass * Bit);
part(aux.begin(), aux.end(), first, (pass + 1) * Bit);
}
if constexpr(passes & 1) {
part(first, last, aux.begin(), (passes - 1) * Bit);
std::move(aux.begin(), aux.end(), first);
}
}
}
};
} // namespace entt
#endif
// #include "../core/any.hpp"
#ifndef ENTT_CORE_ANY_HPP
#define ENTT_CORE_ANY_HPP
#include <cstddef>
#include <memory>
#include <type_traits>
#include <utility>
// #include "../config/config.h"
// #include "../core/utility.hpp"
#ifndef ENTT_CORE_UTILITY_HPP
#define ENTT_CORE_UTILITY_HPP
#include <type_traits>
#include <utility>
namespace entt {
/*! @brief Identity function object (waiting for C++20). */
struct identity {
/*! @brief Indicates that this is a transparent function object. */
using is_transparent = void;
/**
* @brief Returns its argument unchanged.
* @tparam Type Type of the argument.
* @param value The actual argument.
* @return The submitted value as-is.
*/
template<class Type>
[[nodiscard]] constexpr Type &&operator()(Type &&value) const noexcept {
return std::forward<Type>(value);
}
};
/**
* @brief Constant utility to disambiguate overloaded members of a class.
* @tparam Type Type of the desired overload.
* @tparam Class Type of class to which the member belongs.
* @param member A valid pointer to a member.
* @return Pointer to the member.
*/
template<typename Type, typename Class>
[[nodiscard]] constexpr auto overload(Type Class::*member) noexcept {
return member;
}
/**
* @brief Constant utility to disambiguate overloaded functions.
* @tparam Func Function type of the desired overload.
* @param func A valid pointer to a function.
* @return Pointer to the function.
*/
template<typename Func>
[[nodiscard]] constexpr auto overload(Func *func) noexcept {
return func;
}
/**
* @brief Helper type for visitors.
* @tparam Func Types of function objects.
*/
template<class... Func>
struct overloaded: Func... {
using Func::operator()...;
};
/**
* @brief Deduction guide.
* @tparam Func Types of function objects.
*/
template<class... Func>
overloaded(Func...) -> overloaded<Func...>;
/**
* @brief Basic implementation of a y-combinator.
* @tparam Func Type of a potentially recursive function.
*/
template<class Func>
struct y_combinator {
/**
* @brief Constructs a y-combinator from a given function.
* @param recursive A potentially recursive function.
*/
constexpr y_combinator(Func recursive) noexcept(std::is_nothrow_move_constructible_v<Func>)
: func{std::move(recursive)} {}
/**
* @brief Invokes a y-combinator and therefore its underlying function.
* @tparam Args Types of arguments to use to invoke the underlying function.
* @param args Parameters to use to invoke the underlying function.
* @return Return value of the underlying function, if any.
*/
template<class... Args>
constexpr decltype(auto) operator()(Args &&...args) const noexcept(std::is_nothrow_invocable_v<Func, const y_combinator &, Args...>) {
return func(*this, std::forward<Args>(args)...);
}
/*! @copydoc operator()() */
template<class... Args>
constexpr decltype(auto) operator()(Args &&...args) noexcept(std::is_nothrow_invocable_v<Func, y_combinator &, Args...>) {
return func(*this, std::forward<Args>(args)...);
}
private:
Func func;
};
} // namespace entt
#endif
// #include "fwd.hpp"
// #include "type_info.hpp"
#ifndef ENTT_CORE_TYPE_INFO_HPP
#define ENTT_CORE_TYPE_INFO_HPP
#include <string_view>
#include <type_traits>
#include <utility>
// #include "../config/config.h"
// #include "../core/attribute.h"
#ifndef ENTT_CORE_ATTRIBUTE_H
#define ENTT_CORE_ATTRIBUTE_H
#ifndef ENTT_EXPORT
# if defined _WIN32 || defined __CYGWIN__ || defined _MSC_VER
# define ENTT_EXPORT __declspec(dllexport)
# define ENTT_IMPORT __declspec(dllimport)
# define ENTT_HIDDEN
# elif defined __GNUC__ && __GNUC__ >= 4
# define ENTT_EXPORT __attribute__((visibility("default")))
# define ENTT_IMPORT __attribute__((visibility("default")))
# define ENTT_HIDDEN __attribute__((visibility("hidden")))
# else /* Unsupported compiler */
# define ENTT_EXPORT
# define ENTT_IMPORT
# define ENTT_HIDDEN
# endif
#endif
#ifndef ENTT_API
# if defined ENTT_API_EXPORT
# define ENTT_API ENTT_EXPORT
# elif defined ENTT_API_IMPORT
# define ENTT_API ENTT_IMPORT
# else /* No API */
# define ENTT_API
# endif
#endif
#endif
// #include "fwd.hpp"
// #include "hashed_string.hpp"
#ifndef ENTT_CORE_HASHED_STRING_HPP
#define ENTT_CORE_HASHED_STRING_HPP
#include <cstddef>
#include <cstdint>
// #include "fwd.hpp"
namespace entt {
/**
* @cond TURN_OFF_DOXYGEN
* Internal details not to be documented.
*/
namespace internal {
template<typename>
struct fnv1a_traits;
template<>
struct fnv1a_traits<std::uint32_t> {
using type = std::uint32_t;
static constexpr std::uint32_t offset = 2166136261;
static constexpr std::uint32_t prime = 16777619;
};
template<>
struct fnv1a_traits<std::uint64_t> {
using type = std::uint64_t;
static constexpr std::uint64_t offset = 14695981039346656037ull;
static constexpr std::uint64_t prime = 1099511628211ull;
};
template<typename Char>
struct basic_hashed_string {
using value_type = Char;
using size_type = std::size_t;
using hash_type = id_type;
const value_type *repr;
size_type length;
hash_type hash;
};
} // namespace internal
/**
* Internal details not to be documented.
* @endcond
*/
/**
* @brief Zero overhead unique identifier.
*
* A hashed string is a compile-time tool that allows users to use
* human-readable identifiers in the codebase while using their numeric
* counterparts at runtime.<br/>
* Because of that, a hashed string can also be used in constant expressions if
* required.
*
* @warning
* This class doesn't take ownership of user-supplied strings nor does it make a
* copy of them.
*
* @tparam Char Character type.
*/
template<typename Char>
class basic_hashed_string: internal::basic_hashed_string<Char> {
using base_type = internal::basic_hashed_string<Char>;
using hs_traits = internal::fnv1a_traits<id_type>;
struct const_wrapper {
// non-explicit constructor on purpose
constexpr const_wrapper(const Char *str) noexcept
: repr{str} {}
const Char *repr;
};
// FowlerNollVo hash function v. 1a - the good
[[nodiscard]] static constexpr auto helper(const Char *str) noexcept {
base_type base{str, 0u, hs_traits::offset};
for(; str[base.length]; ++base.length) {
base.hash = (base.hash ^ static_cast<hs_traits::type>(str[base.length])) * hs_traits::prime;
}
return base;
}
// FowlerNollVo hash function v. 1a - the good
[[nodiscard]] static constexpr auto helper(const Char *str, const std::size_t len) noexcept {
base_type base{str, len, hs_traits::offset};
for(size_type pos{}; pos < len; ++pos) {
base.hash = (base.hash ^ static_cast<hs_traits::type>(str[pos])) * hs_traits::prime;
}
return base;
}
public:
/*! @brief Character type. */
using value_type = typename base_type::value_type;
/*! @brief Unsigned integer type. */
using size_type = typename base_type::size_type;
/*! @brief Unsigned integer type. */
using hash_type = typename base_type::hash_type;
/**
* @brief Returns directly the numeric representation of a string view.
* @param str Human-readable identifier.
* @param len Length of the string to hash.
* @return The numeric representation of the string.
*/
[[nodiscard]] static constexpr hash_type value(const value_type *str, const size_type len) noexcept {
return basic_hashed_string{str, len};
}
/**
* @brief Returns directly the numeric representation of a string.
* @tparam N Number of characters of the identifier.
* @param str Human-readable identifier.
* @return The numeric representation of the string.
*/
template<std::size_t N>
[[nodiscard]] static constexpr hash_type value(const value_type (&str)[N]) noexcept {
return basic_hashed_string{str};
}
/**
* @brief Returns directly the numeric representation of a string.
* @param wrapper Helps achieving the purpose by relying on overloading.
* @return The numeric representation of the string.
*/
[[nodiscard]] static constexpr hash_type value(const_wrapper wrapper) noexcept {
return basic_hashed_string{wrapper};
}
/*! @brief Constructs an empty hashed string. */
constexpr basic_hashed_string() noexcept
: base_type{} {}
/**
* @brief Constructs a hashed string from a string view.
* @param str Human-readable identifier.
* @param len Length of the string to hash.
*/
constexpr basic_hashed_string(const value_type *str, const size_type len) noexcept
: base_type{helper(str, len)} {}
/**
* @brief Constructs a hashed string from an array of const characters.
* @tparam N Number of characters of the identifier.
* @param str Human-readable identifier.
*/
template<std::size_t N>
constexpr basic_hashed_string(const value_type (&str)[N]) noexcept
: base_type{helper(str)} {}
/**
* @brief Explicit constructor on purpose to avoid constructing a hashed
* string directly from a `const value_type *`.
*
* @warning
* The lifetime of the string is not extended nor is it copied.
*
* @param wrapper Helps achieving the purpose by relying on overloading.
*/
explicit constexpr basic_hashed_string(const_wrapper wrapper) noexcept
: base_type{helper(wrapper.repr)} {}
/**
* @brief Returns the size a hashed string.
* @return The size of the hashed string.
*/
[[nodiscard]] constexpr size_type size() const noexcept {
return base_type::length;
}
/**
* @brief Returns the human-readable representation of a hashed string.
* @return The string used to initialize the hashed string.
*/
[[nodiscard]] constexpr const value_type *data() const noexcept {
return base_type::repr;
}
/**
* @brief Returns the numeric representation of a hashed string.
* @return The numeric representation of the hashed string.
*/
[[nodiscard]] constexpr hash_type value() const noexcept {
return base_type::hash;
}
/*! @copydoc data */
[[nodiscard]] constexpr operator const value_type *() const noexcept {
return data();
}
/**
* @brief Returns the numeric representation of a hashed string.
* @return The numeric representation of the hashed string.
*/
[[nodiscard]] constexpr operator hash_type() const noexcept {
return value();
}
};
/**
* @brief Deduction guide.
* @tparam Char Character type.
* @param str Human-readable identifier.
* @param len Length of the string to hash.
*/
template<typename Char>
basic_hashed_string(const Char *str, const std::size_t len) -> basic_hashed_string<Char>;
/**
* @brief Deduction guide.
* @tparam Char Character type.
* @tparam N Number of characters of the identifier.
* @param str Human-readable identifier.
*/
template<typename Char, std::size_t N>
basic_hashed_string(const Char (&str)[N]) -> basic_hashed_string<Char>;
/**
* @brief Compares two hashed strings.
* @tparam Char Character type.
* @param lhs A valid hashed string.
* @param rhs A valid hashed string.
* @return True if the two hashed strings are identical, false otherwise.
*/
template<typename Char>
[[nodiscard]] constexpr bool operator==(const basic_hashed_string<Char> &lhs, const basic_hashed_string<Char> &rhs) noexcept {
return lhs.value() == rhs.value();
}
/**
* @brief Compares two hashed strings.
* @tparam Char Character type.
* @param lhs A valid hashed string.
* @param rhs A valid hashed string.
* @return True if the two hashed strings differ, false otherwise.
*/
template<typename Char>
[[nodiscard]] constexpr bool operator!=(const basic_hashed_string<Char> &lhs, const basic_hashed_string<Char> &rhs) noexcept {
return !(lhs == rhs);
}
/**
* @brief Compares two hashed strings.
* @tparam Char Character type.
* @param lhs A valid hashed string.
* @param rhs A valid hashed string.
* @return True if the first element is less than the second, false otherwise.
*/
template<typename Char>
[[nodiscard]] constexpr bool operator<(const basic_hashed_string<Char> &lhs, const basic_hashed_string<Char> &rhs) noexcept {
return lhs.value() < rhs.value();
}
/**
* @brief Compares two hashed strings.
* @tparam Char Character type.
* @param lhs A valid hashed string.
* @param rhs A valid hashed string.
* @return True if the first element is less than or equal to the second, false
* otherwise.
*/
template<typename Char>
[[nodiscard]] constexpr bool operator<=(const basic_hashed_string<Char> &lhs, const basic_hashed_string<Char> &rhs) noexcept {
return !(rhs < lhs);
}
/**
* @brief Compares two hashed strings.
* @tparam Char Character type.
* @param lhs A valid hashed string.
* @param rhs A valid hashed string.
* @return True if the first element is greater than the second, false
* otherwise.
*/
template<typename Char>
[[nodiscard]] constexpr bool operator>(const basic_hashed_string<Char> &lhs, const basic_hashed_string<Char> &rhs) noexcept {
return rhs < lhs;
}
/**
* @brief Compares two hashed strings.
* @tparam Char Character type.
* @param lhs A valid hashed string.
* @param rhs A valid hashed string.
* @return True if the first element is greater than or equal to the second,
* false otherwise.
*/
template<typename Char>
[[nodiscard]] constexpr bool operator>=(const basic_hashed_string<Char> &lhs, const basic_hashed_string<Char> &rhs) noexcept {
return !(lhs < rhs);
}
/*! @brief Aliases for common character types. */
using hashed_string = basic_hashed_string<char>;
/*! @brief Aliases for common character types. */
using hashed_wstring = basic_hashed_string<wchar_t>;
inline namespace literals {
/**
* @brief User defined literal for hashed strings.
* @param str The literal without its suffix.
* @return A properly initialized hashed string.
*/
[[nodiscard]] constexpr hashed_string operator"" _hs(const char *str, std::size_t) noexcept {
return hashed_string{str};
}
/**
* @brief User defined literal for hashed wstrings.
* @param str The literal without its suffix.
* @return A properly initialized hashed wstring.
*/
[[nodiscard]] constexpr hashed_wstring operator"" _hws(const wchar_t *str, std::size_t) noexcept {
return hashed_wstring{str};
}
} // namespace literals
} // namespace entt
#endif
namespace entt {
/**
* @cond TURN_OFF_DOXYGEN
* Internal details not to be documented.
*/
namespace internal {
struct ENTT_API type_index final {
[[nodiscard]] static id_type next() noexcept {
static ENTT_MAYBE_ATOMIC(id_type) value{};
return value++;
}
};
template<typename Type>
[[nodiscard]] constexpr auto stripped_type_name() noexcept {
#if defined ENTT_PRETTY_FUNCTION
std::string_view pretty_function{ENTT_PRETTY_FUNCTION};
auto first = pretty_function.find_first_not_of(' ', pretty_function.find_first_of(ENTT_PRETTY_FUNCTION_PREFIX) + 1);
auto value = pretty_function.substr(first, pretty_function.find_last_of(ENTT_PRETTY_FUNCTION_SUFFIX) - first);
return value;
#else
return std::string_view{""};
#endif
}
template<typename Type, auto = stripped_type_name<Type>().find_first_of('.')>
[[nodiscard]] static constexpr std::string_view type_name(int) noexcept {
constexpr auto value = stripped_type_name<Type>();
return value;
}
template<typename Type>
[[nodiscard]] static std::string_view type_name(char) noexcept {
static const auto value = stripped_type_name<Type>();
return value;
}
template<typename Type, auto = stripped_type_name<Type>().find_first_of('.')>
[[nodiscard]] static constexpr id_type type_hash(int) noexcept {
constexpr auto stripped = stripped_type_name<Type>();
constexpr auto value = hashed_string::value(stripped.data(), stripped.size());
return value;
}
template<typename Type>
[[nodiscard]] static id_type type_hash(char) noexcept {
static const auto value = [](const auto stripped) {
return hashed_string::value(stripped.data(), stripped.size());
}(stripped_type_name<Type>());
return value;
}
} // namespace internal
/**
* Internal details not to be documented.
* @endcond
*/
/**
* @brief Type sequential identifier.
* @tparam Type Type for which to generate a sequential identifier.
*/
template<typename Type, typename = void>
struct ENTT_API type_index final {
/**
* @brief Returns the sequential identifier of a given type.
* @return The sequential identifier of a given type.
*/
[[nodiscard]] static id_type value() noexcept {
static const id_type value = internal::type_index::next();
return value;
}
/*! @copydoc value */
[[nodiscard]] constexpr operator id_type() const noexcept {
return value();
}
};
/**
* @brief Type hash.
* @tparam Type Type for which to generate a hash value.
*/
template<typename Type, typename = void>
struct type_hash final {
/**
* @brief Returns the numeric representation of a given type.
* @return The numeric representation of the given type.
*/
#if defined ENTT_PRETTY_FUNCTION
[[nodiscard]] static constexpr id_type value() noexcept {
return internal::type_hash<Type>(0);
#else
[[nodiscard]] static constexpr id_type value() noexcept {
return type_index<Type>::value();
#endif
}
/*! @copydoc value */
[[nodiscard]] constexpr operator id_type() const noexcept {
return value();
}
};
/**
* @brief Type name.
* @tparam Type Type for which to generate a name.
*/
template<typename Type, typename = void>
struct type_name final {
/**
* @brief Returns the name of a given type.
* @return The name of the given type.
*/
[[nodiscard]] static constexpr std::string_view value() noexcept {
return internal::type_name<Type>(0);
}
/*! @copydoc value */
[[nodiscard]] constexpr operator std::string_view() const noexcept {
return value();
}
};
/*! @brief Implementation specific information about a type. */
struct type_info final {
/**
* @brief Constructs a type info object for a given type.
* @tparam Type Type for which to construct a type info object.
*/
template<typename Type>
constexpr type_info(std::in_place_type_t<Type>) noexcept
: seq{type_index<std::remove_cv_t<std::remove_reference_t<Type>>>::value()},
identifier{type_hash<std::remove_cv_t<std::remove_reference_t<Type>>>::value()},
alias{type_name<std::remove_cv_t<std::remove_reference_t<Type>>>::value()} {}
/**
* @brief Type index.
* @return Type index.
*/
[[nodiscard]] constexpr id_type index() const noexcept {
return seq;
}
/**
* @brief Type hash.
* @return Type hash.
*/
[[nodiscard]] constexpr id_type hash() const noexcept {
return identifier;
}
/**
* @brief Type name.
* @return Type name.
*/
[[nodiscard]] constexpr std::string_view name() const noexcept {
return alias;
}
private:
id_type seq;
id_type identifier;
std::string_view alias;
};
/**
* @brief Compares the contents of two type info objects.
* @param lhs A type info object.
* @param rhs A type info object.
* @return True if the two type info objects are identical, false otherwise.
*/
[[nodiscard]] inline constexpr bool operator==(const type_info &lhs, const type_info &rhs) noexcept {
return lhs.hash() == rhs.hash();
}
/**
* @brief Compares the contents of two type info objects.
* @param lhs A type info object.
* @param rhs A type info object.
* @return True if the two type info objects differ, false otherwise.
*/
[[nodiscard]] inline constexpr bool operator!=(const type_info &lhs, const type_info &rhs) noexcept {
return !(lhs == rhs);
}
/**
* @brief Compares two type info objects.
* @param lhs A valid type info object.
* @param rhs A valid type info object.
* @return True if the first element is less than the second, false otherwise.
*/
[[nodiscard]] constexpr bool operator<(const type_info &lhs, const type_info &rhs) noexcept {
return lhs.index() < rhs.index();
}
/**
* @brief Compares two type info objects.
* @param lhs A valid type info object.
* @param rhs A valid type info object.
* @return True if the first element is less than or equal to the second, false
* otherwise.
*/
[[nodiscard]] constexpr bool operator<=(const type_info &lhs, const type_info &rhs) noexcept {
return !(rhs < lhs);
}
/**
* @brief Compares two type info objects.
* @param lhs A valid type info object.
* @param rhs A valid type info object.
* @return True if the first element is greater than the second, false
* otherwise.
*/
[[nodiscard]] constexpr bool operator>(const type_info &lhs, const type_info &rhs) noexcept {
return rhs < lhs;
}
/**
* @brief Compares two type info objects.
* @param lhs A valid type info object.
* @param rhs A valid type info object.
* @return True if the first element is greater than or equal to the second,
* false otherwise.
*/
[[nodiscard]] constexpr bool operator>=(const type_info &lhs, const type_info &rhs) noexcept {
return !(lhs < rhs);
}
/**
* @brief Returns the type info object associated to a given type.
*
* The returned element refers to an object with static storage duration.<br/>
* The type doesn't need to be a complete type. If the type is a reference, the
* result refers to the referenced type. In all cases, top-level cv-qualifiers
* are ignored.
*
* @tparam Type Type for which to generate a type info object.
* @return A reference to a properly initialized type info object.
*/
template<typename Type>
[[nodiscard]] const type_info &type_id() noexcept {
if constexpr(std::is_same_v<Type, std::remove_cv_t<std::remove_reference_t<Type>>>) {
static type_info instance{std::in_place_type<Type>};
return instance;
} else {
return type_id<std::remove_cv_t<std::remove_reference_t<Type>>>();
}
}
/*! @copydoc type_id */
template<typename Type>
[[nodiscard]] const type_info &type_id(Type &&) noexcept {
return type_id<std::remove_cv_t<std::remove_reference_t<Type>>>();
}
} // namespace entt
#endif
// #include "type_traits.hpp"
#ifndef ENTT_CORE_TYPE_TRAITS_HPP
#define ENTT_CORE_TYPE_TRAITS_HPP
#include <cstddef>
#include <iterator>
#include <type_traits>
#include <utility>
// #include "../config/config.h"
// #include "fwd.hpp"
namespace entt {
/**
* @brief Utility class to disambiguate overloaded functions.
* @tparam N Number of choices available.
*/
template<std::size_t N>
struct choice_t
// Unfortunately, doxygen cannot parse such a construct.
: /*! @cond TURN_OFF_DOXYGEN */ choice_t<N - 1> /*! @endcond */
{};
/*! @copybrief choice_t */
template<>
struct choice_t<0> {};
/**
* @brief Variable template for the choice trick.
* @tparam N Number of choices available.
*/
template<std::size_t N>
inline constexpr choice_t<N> choice{};
/**
* @brief Identity type trait.
*
* Useful to establish non-deduced contexts in template argument deduction
* (waiting for C++20) or to provide types through function arguments.
*
* @tparam Type A type.
*/
template<typename Type>
struct type_identity {
/*! @brief Identity type. */
using type = Type;
};
/**
* @brief Helper type.
* @tparam Type A type.
*/
template<typename Type>
using type_identity_t = typename type_identity<Type>::type;
/**
* @brief A type-only `sizeof` wrapper that returns 0 where `sizeof` complains.
* @tparam Type The type of which to return the size.
* @tparam The size of the type if `sizeof` accepts it, 0 otherwise.
*/
template<typename Type, typename = void>
struct size_of: std::integral_constant<std::size_t, 0u> {};
/*! @copydoc size_of */
template<typename Type>
struct size_of<Type, std::void_t<decltype(sizeof(Type))>>
: std::integral_constant<std::size_t, sizeof(Type)> {};
/**
* @brief Helper variable template.
* @tparam Type The type of which to return the size.
*/
template<typename Type>
inline constexpr std::size_t size_of_v = size_of<Type>::value;
/**
* @brief Using declaration to be used to _repeat_ the same type a number of
* times equal to the size of a given parameter pack.
* @tparam Type A type to repeat.
*/
template<typename Type, typename>
using unpack_as_type = Type;
/**
* @brief Helper variable template to be used to _repeat_ the same value a
* number of times equal to the size of a given parameter pack.
* @tparam Value A value to repeat.
*/
template<auto Value, typename>
inline constexpr auto unpack_as_value = Value;
/**
* @brief Wraps a static constant.
* @tparam Value A static constant.
*/
template<auto Value>
using integral_constant = std::integral_constant<decltype(Value), Value>;
/**
* @brief Alias template to facilitate the creation of named values.
* @tparam Value A constant value at least convertible to `id_type`.
*/
template<id_type Value>
using tag = integral_constant<Value>;
/**
* @brief A class to use to push around lists of types, nothing more.
* @tparam Type Types provided by the type list.
*/
template<typename... Type>
struct type_list {
/*! @brief Type list type. */
using type = type_list;
/*! @brief Compile-time number of elements in the type list. */
static constexpr auto size = sizeof...(Type);
};
/*! @brief Primary template isn't defined on purpose. */
template<std::size_t, typename>
struct type_list_element;
/**
* @brief Provides compile-time indexed access to the types of a type list.
* @tparam Index Index of the type to return.
* @tparam First First type provided by the type list.
* @tparam Other Other types provided by the type list.
*/
template<std::size_t Index, typename First, typename... Other>
struct type_list_element<Index, type_list<First, Other...>>
: type_list_element<Index - 1u, type_list<Other...>> {};
/**
* @brief Provides compile-time indexed access to the types of a type list.
* @tparam First First type provided by the type list.
* @tparam Other Other types provided by the type list.
*/
template<typename First, typename... Other>
struct type_list_element<0u, type_list<First, Other...>> {
/*! @brief Searched type. */
using type = First;
};
/**
* @brief Helper type.
* @tparam Index Index of the type to return.
* @tparam List Type list to search into.
*/
template<std::size_t Index, typename List>
using type_list_element_t = typename type_list_element<Index, List>::type;
/*! @brief Primary template isn't defined on purpose. */
template<typename, typename>
struct type_list_index;
/**
* @brief Provides compile-time type access to the types of a type list.
* @tparam Type Type to look for and for which to return the index.
* @tparam First First type provided by the type list.
* @tparam Other Other types provided by the type list.
*/
template<typename Type, typename First, typename... Other>
struct type_list_index<Type, type_list<First, Other...>> {
/*! @brief Unsigned integer type. */
using value_type = std::size_t;
/*! @brief Compile-time position of the given type in the sublist. */
static constexpr value_type value = 1u + type_list_index<Type, type_list<Other...>>::value;
};
/**
* @brief Provides compile-time type access to the types of a type list.
* @tparam Type Type to look for and for which to return the index.
* @tparam Other Other types provided by the type list.
*/
template<typename Type, typename... Other>
struct type_list_index<Type, type_list<Type, Other...>> {
static_assert(type_list_index<Type, type_list<Other...>>::value == sizeof...(Other), "Non-unique type");
/*! @brief Unsigned integer type. */
using value_type = std::size_t;
/*! @brief Compile-time position of the given type in the sublist. */
static constexpr value_type value = 0u;
};
/**
* @brief Provides compile-time type access to the types of a type list.
* @tparam Type Type to look for and for which to return the index.
*/
template<typename Type>
struct type_list_index<Type, type_list<>> {
/*! @brief Unsigned integer type. */
using value_type = std::size_t;
/*! @brief Compile-time position of the given type in the sublist. */
static constexpr value_type value = 0u;
};
/**
* @brief Helper variable template.
* @tparam List Type list.
* @tparam Type Type to look for and for which to return the index.
*/
template<typename Type, typename List>
inline constexpr std::size_t type_list_index_v = type_list_index<Type, List>::value;
/**
* @brief Concatenates multiple type lists.
* @tparam Type Types provided by the first type list.
* @tparam Other Types provided by the second type list.
* @return A type list composed by the types of both the type lists.
*/
template<typename... Type, typename... Other>
constexpr type_list<Type..., Other...> operator+(type_list<Type...>, type_list<Other...>) {
return {};
}
/*! @brief Primary template isn't defined on purpose. */
template<typename...>
struct type_list_cat;
/*! @brief Concatenates multiple type lists. */
template<>
struct type_list_cat<> {
/*! @brief A type list composed by the types of all the type lists. */
using type = type_list<>;
};
/**
* @brief Concatenates multiple type lists.
* @tparam Type Types provided by the first type list.
* @tparam Other Types provided by the second type list.
* @tparam List Other type lists, if any.
*/
template<typename... Type, typename... Other, typename... List>
struct type_list_cat<type_list<Type...>, type_list<Other...>, List...> {
/*! @brief A type list composed by the types of all the type lists. */
using type = typename type_list_cat<type_list<Type..., Other...>, List...>::type;
};
/**
* @brief Concatenates multiple type lists.
* @tparam Type Types provided by the type list.
*/
template<typename... Type>
struct type_list_cat<type_list<Type...>> {
/*! @brief A type list composed by the types of all the type lists. */
using type = type_list<Type...>;
};
/**
* @brief Helper type.
* @tparam List Type lists to concatenate.
*/
template<typename... List>
using type_list_cat_t = typename type_list_cat<List...>::type;
/*! @brief Primary template isn't defined on purpose. */
template<typename>
struct type_list_unique;
/**
* @brief Removes duplicates types from a type list.
* @tparam Type One of the types provided by the given type list.
* @tparam Other The other types provided by the given type list.
*/
template<typename Type, typename... Other>
struct type_list_unique<type_list<Type, Other...>> {
/*! @brief A type list without duplicate types. */
using type = std::conditional_t<
(std::is_same_v<Type, Other> || ...),
typename type_list_unique<type_list<Other...>>::type,
type_list_cat_t<type_list<Type>, typename type_list_unique<type_list<Other...>>::type>>;
};
/*! @brief Removes duplicates types from a type list. */
template<>
struct type_list_unique<type_list<>> {
/*! @brief A type list without duplicate types. */
using type = type_list<>;
};
/**
* @brief Helper type.
* @tparam Type A type list.
*/
template<typename Type>
using type_list_unique_t = typename type_list_unique<Type>::type;
/**
* @brief Provides the member constant `value` to true if a type list contains a
* given type, false otherwise.
* @tparam List Type list.
* @tparam Type Type to look for.
*/
template<typename List, typename Type>
struct type_list_contains;
/**
* @copybrief type_list_contains
* @tparam Type Types provided by the type list.
* @tparam Other Type to look for.
*/
template<typename... Type, typename Other>
struct type_list_contains<type_list<Type...>, Other>: std::disjunction<std::is_same<Type, Other>...> {};
/**
* @brief Helper variable template.
* @tparam List Type list.
* @tparam Type Type to look for.
*/
template<typename List, typename Type>
inline constexpr bool type_list_contains_v = type_list_contains<List, Type>::value;
/*! @brief Primary template isn't defined on purpose. */
template<typename...>
struct type_list_diff;
/**
* @brief Computes the difference between two type lists.
* @tparam Type Types provided by the first type list.
* @tparam Other Types provided by the second type list.
*/
template<typename... Type, typename... Other>
struct type_list_diff<type_list<Type...>, type_list<Other...>> {
/*! @brief A type list that is the difference between the two type lists. */
using type = type_list_cat_t<std::conditional_t<type_list_contains_v<type_list<Other...>, Type>, type_list<>, type_list<Type>>...>;
};
/**
* @brief Helper type.
* @tparam List Type lists between which to compute the difference.
*/
template<typename... List>
using type_list_diff_t = typename type_list_diff<List...>::type;
/*! @brief Primary template isn't defined on purpose. */
template<typename, template<typename...> class>
struct type_list_transform;
/**
* @brief Applies a given _function_ to a type list and generate a new list.
* @tparam Type Types provided by the type list.
* @tparam Op Unary operation as template class with a type member named `type`.
*/
template<typename... Type, template<typename...> class Op>
struct type_list_transform<type_list<Type...>, Op> {
/*! @brief Resulting type list after applying the transform function. */
using type = type_list<typename Op<Type>::type...>;
};
/**
* @brief Helper type.
* @tparam List Type list.
* @tparam Op Unary operation as template class with a type member named `type`.
*/
template<typename List, template<typename...> class Op>
using type_list_transform_t = typename type_list_transform<List, Op>::type;
/**
* @brief A class to use to push around lists of constant values, nothing more.
* @tparam Value Values provided by the value list.
*/
template<auto... Value>
struct value_list {
/*! @brief Value list type. */
using type = value_list;
/*! @brief Compile-time number of elements in the value list. */
static constexpr auto size = sizeof...(Value);
};
/*! @brief Primary template isn't defined on purpose. */
template<std::size_t, typename>
struct value_list_element;
/**
* @brief Provides compile-time indexed access to the values of a value list.
* @tparam Index Index of the value to return.
* @tparam Value First value provided by the value list.
* @tparam Other Other values provided by the value list.
*/
template<std::size_t Index, auto Value, auto... Other>
struct value_list_element<Index, value_list<Value, Other...>>
: value_list_element<Index - 1u, value_list<Other...>> {};
/**
* @brief Provides compile-time indexed access to the types of a type list.
* @tparam Value First value provided by the value list.
* @tparam Other Other values provided by the value list.
*/
template<auto Value, auto... Other>
struct value_list_element<0u, value_list<Value, Other...>> {
/*! @brief Searched value. */
static constexpr auto value = Value;
};
/**
* @brief Helper type.
* @tparam Index Index of the value to return.
* @tparam List Value list to search into.
*/
template<std::size_t Index, typename List>
inline constexpr auto value_list_element_v = value_list_element<Index, List>::value;
/**
* @brief Concatenates multiple value lists.
* @tparam Value Values provided by the first value list.
* @tparam Other Values provided by the second value list.
* @return A value list composed by the values of both the value lists.
*/
template<auto... Value, auto... Other>
constexpr value_list<Value..., Other...> operator+(value_list<Value...>, value_list<Other...>) {
return {};
}
/*! @brief Primary template isn't defined on purpose. */
template<typename...>
struct value_list_cat;
/*! @brief Concatenates multiple value lists. */
template<>
struct value_list_cat<> {
/*! @brief A value list composed by the values of all the value lists. */
using type = value_list<>;
};
/**
* @brief Concatenates multiple value lists.
* @tparam Value Values provided by the first value list.
* @tparam Other Values provided by the second value list.
* @tparam List Other value lists, if any.
*/
template<auto... Value, auto... Other, typename... List>
struct value_list_cat<value_list<Value...>, value_list<Other...>, List...> {
/*! @brief A value list composed by the values of all the value lists. */
using type = typename value_list_cat<value_list<Value..., Other...>, List...>::type;
};
/**
* @brief Concatenates multiple value lists.
* @tparam Value Values provided by the value list.
*/
template<auto... Value>
struct value_list_cat<value_list<Value...>> {
/*! @brief A value list composed by the values of all the value lists. */
using type = value_list<Value...>;
};
/**
* @brief Helper type.
* @tparam List Value lists to concatenate.
*/
template<typename... List>
using value_list_cat_t = typename value_list_cat<List...>::type;
/*! @brief Same as std::is_invocable, but with tuples. */
template<typename, typename>
struct is_applicable: std::false_type {};
/**
* @copybrief is_applicable
* @tparam Func A valid function type.
* @tparam Tuple Tuple-like type.
* @tparam Args The list of arguments to use to probe the function type.
*/
template<typename Func, template<typename...> class Tuple, typename... Args>
struct is_applicable<Func, Tuple<Args...>>: std::is_invocable<Func, Args...> {};
/**
* @copybrief is_applicable
* @tparam Func A valid function type.
* @tparam Tuple Tuple-like type.
* @tparam Args The list of arguments to use to probe the function type.
*/
template<typename Func, template<typename...> class Tuple, typename... Args>
struct is_applicable<Func, const Tuple<Args...>>: std::is_invocable<Func, Args...> {};
/**
* @brief Helper variable template.
* @tparam Func A valid function type.
* @tparam Args The list of arguments to use to probe the function type.
*/
template<typename Func, typename Args>
inline constexpr bool is_applicable_v = is_applicable<Func, Args>::value;
/*! @brief Same as std::is_invocable_r, but with tuples for arguments. */
template<typename, typename, typename>
struct is_applicable_r: std::false_type {};
/**
* @copybrief is_applicable_r
* @tparam Ret The type to which the return type of the function should be
* convertible.
* @tparam Func A valid function type.
* @tparam Args The list of arguments to use to probe the function type.
*/
template<typename Ret, typename Func, typename... Args>
struct is_applicable_r<Ret, Func, std::tuple<Args...>>: std::is_invocable_r<Ret, Func, Args...> {};
/**
* @brief Helper variable template.
* @tparam Ret The type to which the return type of the function should be
* convertible.
* @tparam Func A valid function type.
* @tparam Args The list of arguments to use to probe the function type.
*/
template<typename Ret, typename Func, typename Args>
inline constexpr bool is_applicable_r_v = is_applicable_r<Ret, Func, Args>::value;
/**
* @brief Provides the member constant `value` to true if a given type is
* complete, false otherwise.
* @tparam Type The type to test.
*/
template<typename Type, typename = void>
struct is_complete: std::false_type {};
/*! @copydoc is_complete */
template<typename Type>
struct is_complete<Type, std::void_t<decltype(sizeof(Type))>>: std::true_type {};
/**
* @brief Helper variable template.
* @tparam Type The type to test.
*/
template<typename Type>
inline constexpr bool is_complete_v = is_complete<Type>::value;
/**
* @brief Provides the member constant `value` to true if a given type is an
* iterator, false otherwise.
* @tparam Type The type to test.
*/
template<typename Type, typename = void>
struct is_iterator: std::false_type {};
/**
* @cond TURN_OFF_DOXYGEN
* Internal details not to be documented.
*/
namespace internal {
template<typename, typename = void>
struct has_iterator_category: std::false_type {};
template<typename Type>
struct has_iterator_category<Type, std::void_t<typename std::iterator_traits<Type>::iterator_category>>: std::true_type {};
} // namespace internal
/**
* Internal details not to be documented.
* @endcond
*/
/*! @copydoc is_iterator */
template<typename Type>
struct is_iterator<Type, std::enable_if_t<!std::is_same_v<std::remove_cv_t<std::remove_pointer_t<Type>>, void>>>
: internal::has_iterator_category<Type> {};
/**
* @brief Helper variable template.
* @tparam Type The type to test.
*/
template<typename Type>
inline constexpr bool is_iterator_v = is_iterator<Type>::value;
/**
* @brief Provides the member constant `value` to true if a given type is both
* an empty and non-final class, false otherwise.
* @tparam Type The type to test
*/
template<typename Type>
struct is_ebco_eligible
: std::conjunction<std::is_empty<Type>, std::negation<std::is_final<Type>>> {};
/**
* @brief Helper variable template.
* @tparam Type The type to test.
*/
template<typename Type>
inline constexpr bool is_ebco_eligible_v = is_ebco_eligible<Type>::value;
/**
* @brief Provides the member constant `value` to true if `Type::is_transparent`
* is valid and denotes a type, false otherwise.
* @tparam Type The type to test.
*/
template<typename Type, typename = void>
struct is_transparent: std::false_type {};
/*! @copydoc is_transparent */
template<typename Type>
struct is_transparent<Type, std::void_t<typename Type::is_transparent>>: std::true_type {};
/**
* @brief Helper variable template.
* @tparam Type The type to test.
*/
template<typename Type>
inline constexpr bool is_transparent_v = is_transparent<Type>::value;
/**
* @brief Provides the member constant `value` to true if a given type is
* equality comparable, false otherwise.
* @tparam Type The type to test.
*/
template<typename Type, typename = void>
struct is_equality_comparable: std::false_type {};
/**
* @cond TURN_OFF_DOXYGEN
* Internal details not to be documented.
*/
namespace internal {
template<typename, typename = void>
struct has_tuple_size_value: std::false_type {};
template<typename Type>
struct has_tuple_size_value<Type, std::void_t<decltype(std::tuple_size<const Type>::value)>>: std::true_type {};
template<typename Type, std::size_t... Index>
[[nodiscard]] constexpr bool unpack_maybe_equality_comparable(std::index_sequence<Index...>) {
return (is_equality_comparable<std::tuple_element_t<Index, Type>>::value && ...);
}
template<typename>
[[nodiscard]] constexpr bool maybe_equality_comparable(choice_t<0>) {
return true;
}
template<typename Type>
[[nodiscard]] constexpr auto maybe_equality_comparable(choice_t<1>) -> decltype(std::declval<typename Type::value_type>(), bool{}) {
if constexpr(is_iterator_v<Type>) {
return true;
} else if constexpr(std::is_same_v<typename Type::value_type, Type>) {
return maybe_equality_comparable<Type>(choice<0>);
} else {
return is_equality_comparable<typename Type::value_type>::value;
}
}
template<typename Type>
[[nodiscard]] constexpr std::enable_if_t<is_complete_v<std::tuple_size<std::remove_cv_t<Type>>>, bool> maybe_equality_comparable(choice_t<2>) {
if constexpr(has_tuple_size_value<Type>::value) {
return unpack_maybe_equality_comparable<Type>(std::make_index_sequence<std::tuple_size<Type>::value>{});
} else {
return maybe_equality_comparable<Type>(choice<1>);
}
}
} // namespace internal
/**
* Internal details not to be documented.
* @endcond
*/
/*! @copydoc is_equality_comparable */
template<typename Type>
struct is_equality_comparable<Type, std::void_t<decltype(std::declval<Type>() == std::declval<Type>())>>
: std::bool_constant<internal::maybe_equality_comparable<Type>(choice<2>)> {};
/**
* @brief Helper variable template.
* @tparam Type The type to test.
*/
template<typename Type>
inline constexpr bool is_equality_comparable_v = is_equality_comparable<Type>::value;
/**
* @brief Transcribes the constness of a type to another type.
* @tparam To The type to which to transcribe the constness.
* @tparam From The type from which to transcribe the constness.
*/
template<typename To, typename From>
struct constness_as {
/*! @brief The type resulting from the transcription of the constness. */
using type = std::remove_const_t<To>;
};
/*! @copydoc constness_as */
template<typename To, typename From>
struct constness_as<To, const From> {
/*! @brief The type resulting from the transcription of the constness. */
using type = const To;
};
/**
* @brief Alias template to facilitate the transcription of the constness.
* @tparam To The type to which to transcribe the constness.
* @tparam From The type from which to transcribe the constness.
*/
template<typename To, typename From>
using constness_as_t = typename constness_as<To, From>::type;
/**
* @brief Extracts the class of a non-static member object or function.
* @tparam Member A pointer to a non-static member object or function.
*/
template<typename Member>
class member_class {
static_assert(std::is_member_pointer_v<Member>, "Invalid pointer type to non-static member object or function");
template<typename Class, typename Ret, typename... Args>
static Class *clazz(Ret (Class::*)(Args...));
template<typename Class, typename Ret, typename... Args>
static Class *clazz(Ret (Class::*)(Args...) const);
template<typename Class, typename Type>
static Class *clazz(Type Class::*);
public:
/*! @brief The class of the given non-static member object or function. */
using type = std::remove_pointer_t<decltype(clazz(std::declval<Member>()))>;
};
/**
* @brief Helper type.
* @tparam Member A pointer to a non-static member object or function.
*/
template<typename Member>
using member_class_t = typename member_class<Member>::type;
/**
* @brief Extracts the n-th argument of a given function or member function.
* @tparam Index The index of the argument to extract.
* @tparam Candidate A valid function, member function or data member.
*/
template<std::size_t Index, auto Candidate>
class nth_argument {
template<typename Ret, typename... Args>
static constexpr type_list<Args...> pick_up(Ret (*)(Args...));
template<typename Ret, typename Class, typename... Args>
static constexpr type_list<Args...> pick_up(Ret (Class ::*)(Args...));
template<typename Ret, typename Class, typename... Args>
static constexpr type_list<Args...> pick_up(Ret (Class ::*)(Args...) const);
template<typename Type, typename Class>
static constexpr type_list<Type> pick_up(Type Class ::*);
public:
/*! @brief N-th argument of the given function or member function. */
using type = type_list_element_t<Index, decltype(pick_up(Candidate))>;
};
/**
* @brief Helper type.
* @tparam Index The index of the argument to extract.
* @tparam Candidate A valid function, member function or data member.
*/
template<std::size_t Index, auto Candidate>
using nth_argument_t = typename nth_argument<Index, Candidate>::type;
} // namespace entt
#endif
namespace entt {
/**
* @cond TURN_OFF_DOXYGEN
* Internal details not to be documented.
*/
namespace internal {
enum class any_operation : std::uint8_t {
copy,
move,
transfer,
assign,
destroy,
compare,
get
};
enum class any_policy : std::uint8_t {
owner,
ref,
cref
};
} // namespace internal
/**
* Internal details not to be documented.
* @endcond
*/
/**
* @brief A SBO friendly, type-safe container for single values of any type.
* @tparam Len Size of the storage reserved for the small buffer optimization.
* @tparam Align Optional alignment requirement.
*/
template<std::size_t Len, std::size_t Align>
class basic_any {
using operation = internal::any_operation;
using policy = internal::any_policy;
using vtable_type = const void *(const operation, const basic_any &, const void *);
struct storage_type {
alignas(Align) std::byte data[Len + !Len];
};
template<typename Type>
static constexpr bool in_situ = Len && alignof(Type) <= Align && sizeof(Type) <= Len &&std::is_nothrow_move_constructible_v<Type>;
template<typename Type>
static const void *basic_vtable(const operation op, const basic_any &value, const void *other) {
static_assert(!std::is_same_v<Type, void> && std::is_same_v<std::remove_cv_t<std::remove_reference_t<Type>>, Type>, "Invalid type");
const Type *element = nullptr;
if constexpr(in_situ<Type>) {
element = value.owner() ? reinterpret_cast<const Type *>(&value.storage) : static_cast<const Type *>(value.instance);
} else {
element = static_cast<const Type *>(value.instance);
}
switch(op) {
case operation::copy:
if constexpr(std::is_copy_constructible_v<Type>) {
static_cast<basic_any *>(const_cast<void *>(other))->initialize<Type>(*element);
}
break;
case operation::move:
if constexpr(in_situ<Type>) {
if(value.owner()) {
return new(&static_cast<basic_any *>(const_cast<void *>(other))->storage) Type{std::move(*const_cast<Type *>(element))};
}
}
return (static_cast<basic_any *>(const_cast<void *>(other))->instance = std::exchange(const_cast<basic_any &>(value).instance, nullptr));
case operation::transfer:
if constexpr(std::is_move_assignable_v<Type>) {
*const_cast<Type *>(element) = std::move(*static_cast<Type *>(const_cast<void *>(other)));
return other;
}
[[fallthrough]];
case operation::assign:
if constexpr(std::is_copy_assignable_v<Type>) {
*const_cast<Type *>(element) = *static_cast<const Type *>(other);
return other;
}
break;
case operation::destroy:
if constexpr(in_situ<Type>) {
element->~Type();
} else if constexpr(std::is_array_v<Type>) {
delete[] element;
} else {
delete element;
}
break;
case operation::compare:
if constexpr(!std::is_function_v<Type> && !std::is_array_v<Type> && is_equality_comparable_v<Type>) {
return *element == *static_cast<const Type *>(other) ? other : nullptr;
} else {
return (element == other) ? other : nullptr;
}
case operation::get:
return element;
}
return nullptr;
}
template<typename Type, typename... Args>
void initialize([[maybe_unused]] Args &&...args) {
info = &type_id<std::remove_cv_t<std::remove_reference_t<Type>>>();
if constexpr(!std::is_void_v<Type>) {
vtable = basic_vtable<std::remove_cv_t<std::remove_reference_t<Type>>>;
if constexpr(std::is_lvalue_reference_v<Type>) {
static_assert(sizeof...(Args) == 1u && (std::is_lvalue_reference_v<Args> && ...), "Invalid arguments");
mode = std::is_const_v<std::remove_reference_t<Type>> ? policy::cref : policy::ref;
instance = (std::addressof(args), ...);
} else if constexpr(in_situ<std::remove_cv_t<std::remove_reference_t<Type>>>) {
if constexpr(sizeof...(Args) != 0u && std::is_aggregate_v<std::remove_cv_t<std::remove_reference_t<Type>>>) {
new(&storage) std::remove_cv_t<std::remove_reference_t<Type>>{std::forward<Args>(args)...};
} else {
new(&storage) std::remove_cv_t<std::remove_reference_t<Type>>(std::forward<Args>(args)...);
}
} else {
if constexpr(sizeof...(Args) != 0u && std::is_aggregate_v<std::remove_cv_t<std::remove_reference_t<Type>>>) {
instance = new std::remove_cv_t<std::remove_reference_t<Type>>{std::forward<Args>(args)...};
} else {
instance = new std::remove_cv_t<std::remove_reference_t<Type>>(std::forward<Args>(args)...);
}
}
}
}
basic_any(const basic_any &other, const policy pol) noexcept
: instance{other.data()},
info{other.info},
vtable{other.vtable},
mode{pol} {}
public:
/*! @brief Size of the internal storage. */
static constexpr auto length = Len;
/*! @brief Alignment requirement. */
static constexpr auto alignment = Align;
/*! @brief Default constructor. */
constexpr basic_any() noexcept
: basic_any{std::in_place_type<void>} {}
/**
* @brief Constructs a wrapper by directly initializing the new object.
* @tparam Type Type of object to use to initialize the wrapper.
* @tparam Args Types of arguments to use to construct the new instance.
* @param args Parameters to use to construct the instance.
*/
template<typename Type, typename... Args>
explicit basic_any(std::in_place_type_t<Type>, Args &&...args)
: instance{},
info{},
vtable{},
mode{policy::owner} {
initialize<Type>(std::forward<Args>(args)...);
}
/**
* @brief Constructs a wrapper from a given value.
* @tparam Type Type of object to use to initialize the wrapper.
* @param value An instance of an object to use to initialize the wrapper.
*/
template<typename Type, typename = std::enable_if_t<!std::is_same_v<std::decay_t<Type>, basic_any>>>
basic_any(Type &&value)
: basic_any{std::in_place_type<std::decay_t<Type>>, std::forward<Type>(value)} {}
/**
* @brief Copy constructor.
* @param other The instance to copy from.
*/
basic_any(const basic_any &other)
: basic_any{} {
if(other.vtable) {
other.vtable(operation::copy, other, this);
}
}
/**
* @brief Move constructor.
* @param other The instance to move from.
*/
basic_any(basic_any &&other) noexcept
: instance{},
info{other.info},
vtable{other.vtable},
mode{other.mode} {
if(other.vtable) {
other.vtable(operation::move, other, this);
}
}
/*! @brief Frees the internal storage, whatever it means. */
~basic_any() {
if(vtable && owner()) {
vtable(operation::destroy, *this, nullptr);
}
}
/**
* @brief Copy assignment operator.
* @param other The instance to copy from.
* @return This any object.
*/
basic_any &operator=(const basic_any &other) {
reset();
if(other.vtable) {
other.vtable(operation::copy, other, this);
}
return *this;
}
/**
* @brief Move assignment operator.
* @param other The instance to move from.
* @return This any object.
*/
basic_any &operator=(basic_any &&other) noexcept {
reset();
if(other.vtable) {
other.vtable(operation::move, other, this);
info = other.info;
vtable = other.vtable;
mode = other.mode;
}
return *this;
}
/**
* @brief Value assignment operator.
* @tparam Type Type of object to use to initialize the wrapper.
* @param value An instance of an object to use to initialize the wrapper.
* @return This any object.
*/
template<typename Type>
std::enable_if_t<!std::is_same_v<std::decay_t<Type>, basic_any>, basic_any &>
operator=(Type &&value) {
emplace<std::decay_t<Type>>(std::forward<Type>(value));
return *this;
}
/**
* @brief Returns the object type if any, `type_id<void>()` otherwise.
* @return The object type if any, `type_id<void>()` otherwise.
*/
[[nodiscard]] const type_info &type() const noexcept {
return *info;
}
/**
* @brief Returns an opaque pointer to the contained instance.
* @return An opaque pointer the contained instance, if any.
*/
[[nodiscard]] const void *data() const noexcept {
return vtable ? vtable(operation::get, *this, nullptr) : nullptr;
}
/**
* @brief Returns an opaque pointer to the contained instance.
* @param req Expected type.
* @return An opaque pointer the contained instance, if any.
*/
[[nodiscard]] const void *data(const type_info &req) const noexcept {
return *info == req ? data() : nullptr;
}
/**
* @brief Returns an opaque pointer to the contained instance.
* @return An opaque pointer the contained instance, if any.
*/
[[nodiscard]] void *data() noexcept {
return mode == policy::cref ? nullptr : const_cast<void *>(std::as_const(*this).data());
}
/**
* @brief Returns an opaque pointer to the contained instance.
* @param req Expected type.
* @return An opaque pointer the contained instance, if any.
*/
[[nodiscard]] void *data(const type_info &req) noexcept {
return mode == policy::cref ? nullptr : const_cast<void *>(std::as_const(*this).data(req));
}
/**
* @brief Replaces the contained object by creating a new instance directly.
* @tparam Type Type of object to use to initialize the wrapper.
* @tparam Args Types of arguments to use to construct the new instance.
* @param args Parameters to use to construct the instance.
*/
template<typename Type, typename... Args>
void emplace(Args &&...args) {
reset();
initialize<Type>(std::forward<Args>(args)...);
}
/**
* @brief Assigns a value to the contained object without replacing it.
* @param other The value to assign to the contained object.
* @return True in case of success, false otherwise.
*/
bool assign(const basic_any &other) {
if(vtable && mode != policy::cref && *info == *other.info) {
return (vtable(operation::assign, *this, other.data()) != nullptr);
}
return false;
}
/*! @copydoc assign */
bool assign(basic_any &&other) {
if(vtable && mode != policy::cref && *info == *other.info) {
if(auto *val = other.data(); val) {
return (vtable(operation::transfer, *this, val) != nullptr);
} else {
return (vtable(operation::assign, *this, std::as_const(other).data()) != nullptr);
}
}
return false;
}
/*! @brief Destroys contained object */
void reset() {
if(vtable && owner()) {
vtable(operation::destroy, *this, nullptr);
}
// unnecessary but it helps to detect nasty bugs
ENTT_ASSERT((instance = nullptr) == nullptr, "");
info = &type_id<void>();
vtable = nullptr;
mode = policy::owner;
}
/**
* @brief Returns false if a wrapper is empty, true otherwise.
* @return False if the wrapper is empty, true otherwise.
*/
[[nodiscard]] explicit operator bool() const noexcept {
return vtable != nullptr;
}
/**
* @brief Checks if two wrappers differ in their content.
* @param other Wrapper with which to compare.
* @return False if the two objects differ in their content, true otherwise.
*/
[[nodiscard]] bool operator==(const basic_any &other) const noexcept {
if(vtable && *info == *other.info) {
return (vtable(operation::compare, *this, other.data()) != nullptr);
}
return (!vtable && !other.vtable);
}
/**
* @brief Checks if two wrappers differ in their content.
* @param other Wrapper with which to compare.
* @return True if the two objects differ in their content, false otherwise.
*/
[[nodiscard]] bool operator!=(const basic_any &other) const noexcept {
return !(*this == other);
}
/**
* @brief Aliasing constructor.
* @return A wrapper that shares a reference to an unmanaged object.
*/
[[nodiscard]] basic_any as_ref() noexcept {
return basic_any{*this, (mode == policy::cref ? policy::cref : policy::ref)};
}
/*! @copydoc as_ref */
[[nodiscard]] basic_any as_ref() const noexcept {
return basic_any{*this, policy::cref};
}
/**
* @brief Returns true if a wrapper owns its object, false otherwise.
* @return True if the wrapper owns its object, false otherwise.
*/
[[nodiscard]] bool owner() const noexcept {
return (mode == policy::owner);
}
private:
union {
const void *instance;
storage_type storage;
};
const type_info *info;
vtable_type *vtable;
policy mode;
};
/**
* @brief Performs type-safe access to the contained object.
* @tparam Type Type to which conversion is required.
* @tparam Len Size of the storage reserved for the small buffer optimization.
* @tparam Align Alignment requirement.
* @param data Target any object.
* @return The element converted to the requested type.
*/
template<typename Type, std::size_t Len, std::size_t Align>
Type any_cast(const basic_any<Len, Align> &data) noexcept {
const auto *const instance = any_cast<std::remove_reference_t<Type>>(&data);
ENTT_ASSERT(instance, "Invalid instance");
return static_cast<Type>(*instance);
}
/*! @copydoc any_cast */
template<typename Type, std::size_t Len, std::size_t Align>
Type any_cast(basic_any<Len, Align> &data) noexcept {
// forces const on non-reference types to make them work also with wrappers for const references
auto *const instance = any_cast<std::remove_reference_t<const Type>>(&data);
ENTT_ASSERT(instance, "Invalid instance");
return static_cast<Type>(*instance);
}
/*! @copydoc any_cast */
template<typename Type, std::size_t Len, std::size_t Align>
Type any_cast(basic_any<Len, Align> &&data) noexcept {
if constexpr(std::is_copy_constructible_v<std::remove_cv_t<std::remove_reference_t<Type>>>) {
if(auto *const instance = any_cast<std::remove_reference_t<Type>>(&data); instance) {
return static_cast<Type>(std::move(*instance));
} else {
return any_cast<Type>(data);
}
} else {
auto *const instance = any_cast<std::remove_reference_t<Type>>(&data);
ENTT_ASSERT(instance, "Invalid instance");
return static_cast<Type>(std::move(*instance));
}
}
/*! @copydoc any_cast */
template<typename Type, std::size_t Len, std::size_t Align>
const Type *any_cast(const basic_any<Len, Align> *data) noexcept {
const auto &info = type_id<std::remove_cv_t<Type>>();
return static_cast<const Type *>(data->data(info));
}
/*! @copydoc any_cast */
template<typename Type, std::size_t Len, std::size_t Align>
Type *any_cast(basic_any<Len, Align> *data) noexcept {
if constexpr(std::is_const_v<Type>) {
// last attempt to make wrappers for const references return their values
return any_cast<Type>(&std::as_const(*data));
} else {
const auto &info = type_id<std::remove_cv_t<Type>>();
return static_cast<Type *>(data->data(info));
}
}
/**
* @brief Constructs a wrapper from a given type, passing it all arguments.
* @tparam Type Type of object to use to initialize the wrapper.
* @tparam Len Size of the storage reserved for the small buffer optimization.
* @tparam Align Optional alignment requirement.
* @tparam Args Types of arguments to use to construct the new instance.
* @param args Parameters to use to construct the instance.
* @return A properly initialized wrapper for an object of the given type.
*/
template<typename Type, std::size_t Len = basic_any<>::length, std::size_t Align = basic_any<Len>::alignment, typename... Args>
basic_any<Len, Align> make_any(Args &&...args) {
return basic_any<Len, Align>{std::in_place_type<Type>, std::forward<Args>(args)...};
}
/**
* @brief Forwards its argument and avoids copies for lvalue references.
* @tparam Len Size of the storage reserved for the small buffer optimization.
* @tparam Align Optional alignment requirement.
* @tparam Type Type of argument to use to construct the new instance.
* @param value Parameter to use to construct the instance.
* @return A properly initialized and not necessarily owning wrapper.
*/
template<std::size_t Len = basic_any<>::length, std::size_t Align = basic_any<Len>::alignment, typename Type>
basic_any<Len, Align> forward_as_any(Type &&value) {
return basic_any<Len, Align>{std::in_place_type<Type &&>, std::forward<Type>(value)};
}
} // namespace entt
#endif
// #include "../core/memory.hpp"
#ifndef ENTT_CORE_MEMORY_HPP
#define ENTT_CORE_MEMORY_HPP
#include <cstddef>
#include <limits>
#include <memory>
#include <tuple>
#include <type_traits>
#include <utility>
// #include "../config/config.h"
namespace entt {
/**
* @brief Checks whether a value is a power of two or not.
* @param value A value that may or may not be a power of two.
* @return True if the value is a power of two, false otherwise.
*/
[[nodiscard]] inline constexpr bool is_power_of_two(const std::size_t value) noexcept {
return value && ((value & (value - 1)) == 0);
}
/**
* @brief Computes the smallest power of two greater than or equal to a value.
* @param value The value to use.
* @return The smallest power of two greater than or equal to the given value.
*/
[[nodiscard]] inline constexpr std::size_t next_power_of_two(const std::size_t value) noexcept {
ENTT_ASSERT_CONSTEXPR(value < (std::size_t{1u} << (std::numeric_limits<std::size_t>::digits - 1)), "Numeric limits exceeded");
std::size_t curr = value - (value != 0u);
for(int next = 1; next < std::numeric_limits<std::size_t>::digits; next = next * 2) {
curr |= curr >> next;
}
return ++curr;
}
/**
* @brief Fast module utility function (powers of two only).
* @param value A value for which to calculate the modulus.
* @param mod _Modulus_, it must be a power of two.
* @return The common remainder.
*/
[[nodiscard]] inline constexpr std::size_t fast_mod(const std::size_t value, const std::size_t mod) noexcept {
ENTT_ASSERT_CONSTEXPR(is_power_of_two(mod), "Value must be a power of two");
return value & (mod - 1u);
}
/**
* @brief Unwraps fancy pointers, does nothing otherwise (waiting for C++20).
* @tparam Type Pointer type.
* @param ptr Fancy or raw pointer.
* @return A raw pointer that represents the address of the original pointer.
*/
template<typename Type>
[[nodiscard]] constexpr auto to_address(Type &&ptr) noexcept {
if constexpr(std::is_pointer_v<std::decay_t<Type>>) {
return ptr;
} else {
return to_address(std::forward<Type>(ptr).operator->());
}
}
/**
* @brief Utility function to design allocation-aware containers.
* @tparam Allocator Type of allocator.
* @param lhs A valid allocator.
* @param rhs Another valid allocator.
*/
template<typename Allocator>
constexpr void propagate_on_container_copy_assignment([[maybe_unused]] Allocator &lhs, [[maybe_unused]] Allocator &rhs) noexcept {
if constexpr(std::allocator_traits<Allocator>::propagate_on_container_copy_assignment::value) {
lhs = rhs;
}
}
/**
* @brief Utility function to design allocation-aware containers.
* @tparam Allocator Type of allocator.
* @param lhs A valid allocator.
* @param rhs Another valid allocator.
*/
template<typename Allocator>
constexpr void propagate_on_container_move_assignment([[maybe_unused]] Allocator &lhs, [[maybe_unused]] Allocator &rhs) noexcept {
if constexpr(std::allocator_traits<Allocator>::propagate_on_container_move_assignment::value) {
lhs = std::move(rhs);
}
}
/**
* @brief Utility function to design allocation-aware containers.
* @tparam Allocator Type of allocator.
* @param lhs A valid allocator.
* @param rhs Another valid allocator.
*/
template<typename Allocator>
constexpr void propagate_on_container_swap([[maybe_unused]] Allocator &lhs, [[maybe_unused]] Allocator &rhs) noexcept {
if constexpr(std::allocator_traits<Allocator>::propagate_on_container_swap::value) {
using std::swap;
swap(lhs, rhs);
} else {
ENTT_ASSERT_CONSTEXPR(lhs == rhs, "Cannot swap the containers");
}
}
/**
* @brief Deleter for allocator-aware unique pointers (waiting for C++20).
* @tparam Args Types of arguments to use to construct the object.
*/
template<typename Allocator>
struct allocation_deleter: private Allocator {
/*! @brief Allocator type. */
using allocator_type = Allocator;
/*! @brief Pointer type. */
using pointer = typename std::allocator_traits<Allocator>::pointer;
/**
* @brief Inherited constructors.
* @param alloc The allocator to use.
*/
constexpr allocation_deleter(const allocator_type &alloc) noexcept(std::is_nothrow_copy_constructible_v<allocator_type>)
: Allocator{alloc} {}
/**
* @brief Destroys the pointed object and deallocates its memory.
* @param ptr A valid pointer to an object of the given type.
*/
constexpr void operator()(pointer ptr) noexcept(std::is_nothrow_destructible_v<typename allocator_type::value_type>) {
using alloc_traits = typename std::allocator_traits<Allocator>;
alloc_traits::destroy(*this, to_address(ptr));
alloc_traits::deallocate(*this, ptr, 1u);
}
};
/**
* @brief Allows `std::unique_ptr` to use allocators (waiting for C++20).
* @tparam Type Type of object to allocate for and to construct.
* @tparam Allocator Type of allocator used to manage memory and elements.
* @tparam Args Types of arguments to use to construct the object.
* @param allocator The allocator to use.
* @param args Parameters to use to construct the object.
* @return A properly initialized unique pointer with a custom deleter.
*/
template<typename Type, typename Allocator, typename... Args>
ENTT_CONSTEXPR auto allocate_unique(Allocator &allocator, Args &&...args) {
static_assert(!std::is_array_v<Type>, "Array types are not supported");
using alloc_traits = typename std::allocator_traits<Allocator>::template rebind_traits<Type>;
using allocator_type = typename alloc_traits::allocator_type;
allocator_type alloc{allocator};
auto ptr = alloc_traits::allocate(alloc, 1u);
ENTT_TRY {
alloc_traits::construct(alloc, to_address(ptr), std::forward<Args>(args)...);
}
ENTT_CATCH {
alloc_traits::deallocate(alloc, ptr, 1u);
ENTT_THROW;
}
return std::unique_ptr<Type, allocation_deleter<allocator_type>>{ptr, alloc};
}
/**
* @cond TURN_OFF_DOXYGEN
* Internal details not to be documented.
*/
namespace internal {
template<typename Type>
struct uses_allocator_construction {
template<typename Allocator, typename... Params>
static constexpr auto args([[maybe_unused]] const Allocator &allocator, Params &&...params) noexcept {
if constexpr(!std::uses_allocator_v<Type, Allocator> && std::is_constructible_v<Type, Params...>) {
return std::forward_as_tuple(std::forward<Params>(params)...);
} else {
static_assert(std::uses_allocator_v<Type, Allocator>, "Ill-formed request");
if constexpr(std::is_constructible_v<Type, std::allocator_arg_t, const Allocator &, Params...>) {
return std::tuple<std::allocator_arg_t, const Allocator &, Params &&...>{std::allocator_arg, allocator, std::forward<Params>(params)...};
} else {
static_assert(std::is_constructible_v<Type, Params..., const Allocator &>, "Ill-formed request");
return std::forward_as_tuple(std::forward<Params>(params)..., allocator);
}
}
}
};
template<typename Type, typename Other>
struct uses_allocator_construction<std::pair<Type, Other>> {
using type = std::pair<Type, Other>;
template<typename Allocator, typename First, typename Second>
static constexpr auto args(const Allocator &allocator, std::piecewise_construct_t, First &&first, Second &&second) noexcept {
return std::make_tuple(
std::piecewise_construct,
std::apply([&allocator](auto &&...curr) { return uses_allocator_construction<Type>::args(allocator, std::forward<decltype(curr)>(curr)...); }, std::forward<First>(first)),
std::apply([&allocator](auto &&...curr) { return uses_allocator_construction<Other>::args(allocator, std::forward<decltype(curr)>(curr)...); }, std::forward<Second>(second)));
}
template<typename Allocator>
static constexpr auto args(const Allocator &allocator) noexcept {
return uses_allocator_construction<type>::args(allocator, std::piecewise_construct, std::tuple<>{}, std::tuple<>{});
}
template<typename Allocator, typename First, typename Second>
static constexpr auto args(const Allocator &allocator, First &&first, Second &&second) noexcept {
return uses_allocator_construction<type>::args(allocator, std::piecewise_construct, std::forward_as_tuple(std::forward<First>(first)), std::forward_as_tuple(std::forward<Second>(second)));
}
template<typename Allocator, typename First, typename Second>
static constexpr auto args(const Allocator &allocator, const std::pair<First, Second> &value) noexcept {
return uses_allocator_construction<type>::args(allocator, std::piecewise_construct, std::forward_as_tuple(value.first), std::forward_as_tuple(value.second));
}
template<typename Allocator, typename First, typename Second>
static constexpr auto args(const Allocator &allocator, std::pair<First, Second> &&value) noexcept {
return uses_allocator_construction<type>::args(allocator, std::piecewise_construct, std::forward_as_tuple(std::move(value.first)), std::forward_as_tuple(std::move(value.second)));
}
};
} // namespace internal
/**
* Internal details not to be documented.
* @endcond
*/
/**
* @brief Uses-allocator construction utility (waiting for C++20).
*
* Primarily intended for internal use. Prepares the argument list needed to
* create an object of a given type by means of uses-allocator construction.
*
* @tparam Type Type to return arguments for.
* @tparam Allocator Type of allocator used to manage memory and elements.
* @tparam Args Types of arguments to use to construct the object.
* @param allocator The allocator to use.
* @param args Parameters to use to construct the object.
* @return The arguments needed to create an object of the given type.
*/
template<typename Type, typename Allocator, typename... Args>
constexpr auto uses_allocator_construction_args(const Allocator &allocator, Args &&...args) noexcept {
return internal::uses_allocator_construction<Type>::args(allocator, std::forward<Args>(args)...);
}
/**
* @brief Uses-allocator construction utility (waiting for C++20).
*
* Primarily intended for internal use. Creates an object of a given type by
* means of uses-allocator construction.
*
* @tparam Type Type of object to create.
* @tparam Allocator Type of allocator used to manage memory and elements.
* @tparam Args Types of arguments to use to construct the object.
* @param allocator The allocator to use.
* @param args Parameters to use to construct the object.
* @return A newly created object of the given type.
*/
template<typename Type, typename Allocator, typename... Args>
constexpr Type make_obj_using_allocator(const Allocator &allocator, Args &&...args) {
return std::make_from_tuple<Type>(internal::uses_allocator_construction<Type>::args(allocator, std::forward<Args>(args)...));
}
/**
* @brief Uses-allocator construction utility (waiting for C++20).
*
* Primarily intended for internal use. Creates an object of a given type by
* means of uses-allocator construction at an uninitialized memory location.
*
* @tparam Type Type of object to create.
* @tparam Allocator Type of allocator used to manage memory and elements.
* @tparam Args Types of arguments to use to construct the object.
* @param value Memory location in which to place the object.
* @param allocator The allocator to use.
* @param args Parameters to use to construct the object.
* @return A pointer to the newly created object of the given type.
*/
template<typename Type, typename Allocator, typename... Args>
constexpr Type *uninitialized_construct_using_allocator(Type *value, const Allocator &allocator, Args &&...args) {
return std::apply([value](auto &&...curr) { return new(value) Type(std::forward<decltype(curr)>(curr)...); }, internal::uses_allocator_construction<Type>::args(allocator, std::forward<Args>(args)...));
}
} // namespace entt
#endif
// #include "../core/type_info.hpp"
#ifndef ENTT_CORE_TYPE_INFO_HPP
#define ENTT_CORE_TYPE_INFO_HPP
#include <string_view>
#include <type_traits>
#include <utility>
// #include "../config/config.h"
// #include "../core/attribute.h"
// #include "fwd.hpp"
// #include "hashed_string.hpp"
namespace entt {
/**
* @cond TURN_OFF_DOXYGEN
* Internal details not to be documented.
*/
namespace internal {
struct ENTT_API type_index final {
[[nodiscard]] static id_type next() noexcept {
static ENTT_MAYBE_ATOMIC(id_type) value{};
return value++;
}
};
template<typename Type>
[[nodiscard]] constexpr auto stripped_type_name() noexcept {
#if defined ENTT_PRETTY_FUNCTION
std::string_view pretty_function{ENTT_PRETTY_FUNCTION};
auto first = pretty_function.find_first_not_of(' ', pretty_function.find_first_of(ENTT_PRETTY_FUNCTION_PREFIX) + 1);
auto value = pretty_function.substr(first, pretty_function.find_last_of(ENTT_PRETTY_FUNCTION_SUFFIX) - first);
return value;
#else
return std::string_view{""};
#endif
}
template<typename Type, auto = stripped_type_name<Type>().find_first_of('.')>
[[nodiscard]] static constexpr std::string_view type_name(int) noexcept {
constexpr auto value = stripped_type_name<Type>();
return value;
}
template<typename Type>
[[nodiscard]] static std::string_view type_name(char) noexcept {
static const auto value = stripped_type_name<Type>();
return value;
}
template<typename Type, auto = stripped_type_name<Type>().find_first_of('.')>
[[nodiscard]] static constexpr id_type type_hash(int) noexcept {
constexpr auto stripped = stripped_type_name<Type>();
constexpr auto value = hashed_string::value(stripped.data(), stripped.size());
return value;
}
template<typename Type>
[[nodiscard]] static id_type type_hash(char) noexcept {
static const auto value = [](const auto stripped) {
return hashed_string::value(stripped.data(), stripped.size());
}(stripped_type_name<Type>());
return value;
}
} // namespace internal
/**
* Internal details not to be documented.
* @endcond
*/
/**
* @brief Type sequential identifier.
* @tparam Type Type for which to generate a sequential identifier.
*/
template<typename Type, typename = void>
struct ENTT_API type_index final {
/**
* @brief Returns the sequential identifier of a given type.
* @return The sequential identifier of a given type.
*/
[[nodiscard]] static id_type value() noexcept {
static const id_type value = internal::type_index::next();
return value;
}
/*! @copydoc value */
[[nodiscard]] constexpr operator id_type() const noexcept {
return value();
}
};
/**
* @brief Type hash.
* @tparam Type Type for which to generate a hash value.
*/
template<typename Type, typename = void>
struct type_hash final {
/**
* @brief Returns the numeric representation of a given type.
* @return The numeric representation of the given type.
*/
#if defined ENTT_PRETTY_FUNCTION
[[nodiscard]] static constexpr id_type value() noexcept {
return internal::type_hash<Type>(0);
#else
[[nodiscard]] static constexpr id_type value() noexcept {
return type_index<Type>::value();
#endif
}
/*! @copydoc value */
[[nodiscard]] constexpr operator id_type() const noexcept {
return value();
}
};
/**
* @brief Type name.
* @tparam Type Type for which to generate a name.
*/
template<typename Type, typename = void>
struct type_name final {
/**
* @brief Returns the name of a given type.
* @return The name of the given type.
*/
[[nodiscard]] static constexpr std::string_view value() noexcept {
return internal::type_name<Type>(0);
}
/*! @copydoc value */
[[nodiscard]] constexpr operator std::string_view() const noexcept {
return value();
}
};
/*! @brief Implementation specific information about a type. */
struct type_info final {
/**
* @brief Constructs a type info object for a given type.
* @tparam Type Type for which to construct a type info object.
*/
template<typename Type>
constexpr type_info(std::in_place_type_t<Type>) noexcept
: seq{type_index<std::remove_cv_t<std::remove_reference_t<Type>>>::value()},
identifier{type_hash<std::remove_cv_t<std::remove_reference_t<Type>>>::value()},
alias{type_name<std::remove_cv_t<std::remove_reference_t<Type>>>::value()} {}
/**
* @brief Type index.
* @return Type index.
*/
[[nodiscard]] constexpr id_type index() const noexcept {
return seq;
}
/**
* @brief Type hash.
* @return Type hash.
*/
[[nodiscard]] constexpr id_type hash() const noexcept {
return identifier;
}
/**
* @brief Type name.
* @return Type name.
*/
[[nodiscard]] constexpr std::string_view name() const noexcept {
return alias;
}
private:
id_type seq;
id_type identifier;
std::string_view alias;
};
/**
* @brief Compares the contents of two type info objects.
* @param lhs A type info object.
* @param rhs A type info object.
* @return True if the two type info objects are identical, false otherwise.
*/
[[nodiscard]] inline constexpr bool operator==(const type_info &lhs, const type_info &rhs) noexcept {
return lhs.hash() == rhs.hash();
}
/**
* @brief Compares the contents of two type info objects.
* @param lhs A type info object.
* @param rhs A type info object.
* @return True if the two type info objects differ, false otherwise.
*/
[[nodiscard]] inline constexpr bool operator!=(const type_info &lhs, const type_info &rhs) noexcept {
return !(lhs == rhs);
}
/**
* @brief Compares two type info objects.
* @param lhs A valid type info object.
* @param rhs A valid type info object.
* @return True if the first element is less than the second, false otherwise.
*/
[[nodiscard]] constexpr bool operator<(const type_info &lhs, const type_info &rhs) noexcept {
return lhs.index() < rhs.index();
}
/**
* @brief Compares two type info objects.
* @param lhs A valid type info object.
* @param rhs A valid type info object.
* @return True if the first element is less than or equal to the second, false
* otherwise.
*/
[[nodiscard]] constexpr bool operator<=(const type_info &lhs, const type_info &rhs) noexcept {
return !(rhs < lhs);
}
/**
* @brief Compares two type info objects.
* @param lhs A valid type info object.
* @param rhs A valid type info object.
* @return True if the first element is greater than the second, false
* otherwise.
*/
[[nodiscard]] constexpr bool operator>(const type_info &lhs, const type_info &rhs) noexcept {
return rhs < lhs;
}
/**
* @brief Compares two type info objects.
* @param lhs A valid type info object.
* @param rhs A valid type info object.
* @return True if the first element is greater than or equal to the second,
* false otherwise.
*/
[[nodiscard]] constexpr bool operator>=(const type_info &lhs, const type_info &rhs) noexcept {
return !(lhs < rhs);
}
/**
* @brief Returns the type info object associated to a given type.
*
* The returned element refers to an object with static storage duration.<br/>
* The type doesn't need to be a complete type. If the type is a reference, the
* result refers to the referenced type. In all cases, top-level cv-qualifiers
* are ignored.
*
* @tparam Type Type for which to generate a type info object.
* @return A reference to a properly initialized type info object.
*/
template<typename Type>
[[nodiscard]] const type_info &type_id() noexcept {
if constexpr(std::is_same_v<Type, std::remove_cv_t<std::remove_reference_t<Type>>>) {
static type_info instance{std::in_place_type<Type>};
return instance;
} else {
return type_id<std::remove_cv_t<std::remove_reference_t<Type>>>();
}
}
/*! @copydoc type_id */
template<typename Type>
[[nodiscard]] const type_info &type_id(Type &&) noexcept {
return type_id<std::remove_cv_t<std::remove_reference_t<Type>>>();
}
} // namespace entt
#endif
// #include "entity.hpp"
// #include "fwd.hpp"
namespace entt {
/**
* @cond TURN_OFF_DOXYGEN
* Internal details not to be documented.
*/
namespace internal {
template<typename Container>
struct sparse_set_iterator final {
using value_type = typename Container::value_type;
using pointer = typename Container::const_pointer;
using reference = typename Container::const_reference;
using difference_type = typename Container::difference_type;
using iterator_category = std::random_access_iterator_tag;
constexpr sparse_set_iterator() noexcept
: packed{},
offset{} {}
constexpr sparse_set_iterator(const Container &ref, const difference_type idx) noexcept
: packed{std::addressof(ref)},
offset{idx} {}
constexpr sparse_set_iterator &operator++() noexcept {
return --offset, *this;
}
constexpr sparse_set_iterator operator++(int) noexcept {
sparse_set_iterator orig = *this;
return ++(*this), orig;
}
constexpr sparse_set_iterator &operator--() noexcept {
return ++offset, *this;
}
constexpr sparse_set_iterator operator--(int) noexcept {
sparse_set_iterator orig = *this;
return operator--(), orig;
}
constexpr sparse_set_iterator &operator+=(const difference_type value) noexcept {
offset -= value;
return *this;
}
constexpr sparse_set_iterator operator+(const difference_type value) const noexcept {
sparse_set_iterator copy = *this;
return (copy += value);
}
constexpr sparse_set_iterator &operator-=(const difference_type value) noexcept {
return (*this += -value);
}
constexpr sparse_set_iterator operator-(const difference_type value) const noexcept {
return (*this + -value);
}
[[nodiscard]] constexpr reference operator[](const difference_type value) const noexcept {
return packed->data()[index() - value];
}
[[nodiscard]] constexpr pointer operator->() const noexcept {
return packed->data() + index();
}
[[nodiscard]] constexpr reference operator*() const noexcept {
return *operator->();
}
[[nodiscard]] constexpr difference_type index() const noexcept {
return offset - 1;
}
private:
const Container *packed;
difference_type offset;
};
template<typename Type, typename Other>
[[nodiscard]] constexpr std::ptrdiff_t operator-(const sparse_set_iterator<Type> &lhs, const sparse_set_iterator<Other> &rhs) noexcept {
return rhs.index() - lhs.index();
}
template<typename Type, typename Other>
[[nodiscard]] constexpr bool operator==(const sparse_set_iterator<Type> &lhs, const sparse_set_iterator<Other> &rhs) noexcept {
return lhs.index() == rhs.index();
}
template<typename Type, typename Other>
[[nodiscard]] constexpr bool operator!=(const sparse_set_iterator<Type> &lhs, const sparse_set_iterator<Other> &rhs) noexcept {
return !(lhs == rhs);
}
template<typename Type, typename Other>
[[nodiscard]] constexpr bool operator<(const sparse_set_iterator<Type> &lhs, const sparse_set_iterator<Other> &rhs) noexcept {
return lhs.index() > rhs.index();
}
template<typename Type, typename Other>
[[nodiscard]] constexpr bool operator>(const sparse_set_iterator<Type> &lhs, const sparse_set_iterator<Other> &rhs) noexcept {
return lhs.index() < rhs.index();
}
template<typename Type, typename Other>
[[nodiscard]] constexpr bool operator<=(const sparse_set_iterator<Type> &lhs, const sparse_set_iterator<Other> &rhs) noexcept {
return !(lhs > rhs);
}
template<typename Type, typename Other>
[[nodiscard]] constexpr bool operator>=(const sparse_set_iterator<Type> &lhs, const sparse_set_iterator<Other> &rhs) noexcept {
return !(lhs < rhs);
}
} // namespace internal
/**
* Internal details not to be documented.
* @endcond
*/
/*! @brief Sparse set deletion policy. */
enum class deletion_policy : std::uint8_t {
/*! @brief Swap-and-pop deletion policy. */
swap_and_pop = 0u,
/*! @brief In-place deletion policy. */
in_place = 1u
};
/**
* @brief Basic sparse set implementation.
*
* Sparse set or packed array or whatever is the name users give it.<br/>
* Two arrays: an _external_ one and an _internal_ one; a _sparse_ one and a
* _packed_ one; one used for direct access through contiguous memory, the other
* one used to get the data through an extra level of indirection.<br/>
* This is largely used by the registry to offer users the fastest access ever
* to the components. Views and groups in general are almost entirely designed
* around sparse sets.
*
* This type of data structure is widely documented in the literature and on the
* web. This is nothing more than a customized implementation suitable for the
* purpose of the framework.
*
* @note
* Internal data structures arrange elements to maximize performance. There are
* no guarantees that entities are returned in the insertion order when iterate
* a sparse set. Do not make assumption on the order in any case.
*
* @tparam Entity A valid entity type (see entt_traits for more details).
* @tparam Allocator Type of allocator used to manage memory and elements.
*/
template<typename Entity, typename Allocator>
class basic_sparse_set {
using alloc_traits = std::allocator_traits<Allocator>;
static_assert(std::is_same_v<typename alloc_traits::value_type, Entity>, "Invalid value type");
using sparse_container_type = std::vector<typename alloc_traits::pointer, typename alloc_traits::template rebind_alloc<typename alloc_traits::pointer>>;
using packed_container_type = std::vector<Entity, Allocator>;
using entity_traits = entt_traits<Entity>;
[[nodiscard]] auto sparse_ptr(const Entity entt) const {
const auto pos = static_cast<size_type>(entity_traits::to_entity(entt));
const auto page = pos / entity_traits::page_size;
return (page < sparse.size() && sparse[page]) ? (sparse[page] + fast_mod(pos, entity_traits::page_size)) : nullptr;
}
[[nodiscard]] auto &sparse_ref(const Entity entt) const {
ENTT_ASSERT(sparse_ptr(entt), "Invalid element");
const auto pos = static_cast<size_type>(entity_traits::to_entity(entt));
return sparse[pos / entity_traits::page_size][fast_mod(pos, entity_traits::page_size)];
}
[[nodiscard]] auto &assure_at_least(const Entity entt) {
const auto pos = static_cast<size_type>(entity_traits::to_entity(entt));
const auto page = pos / entity_traits::page_size;
if(!(page < sparse.size())) {
sparse.resize(page + 1u, nullptr);
}
if(!sparse[page]) {
auto page_allocator{packed.get_allocator()};
sparse[page] = alloc_traits::allocate(page_allocator, entity_traits::page_size);
std::uninitialized_fill(sparse[page], sparse[page] + entity_traits::page_size, null);
}
auto &elem = sparse[page][fast_mod(pos, entity_traits::page_size)];
ENTT_ASSERT(elem == null, "Slot not available");
return elem;
}
void release_sparse_pages() {
auto page_allocator{packed.get_allocator()};
for(auto &&page: sparse) {
if(page != nullptr) {
std::destroy(page, page + entity_traits::page_size);
alloc_traits::deallocate(page_allocator, page, entity_traits::page_size);
page = nullptr;
}
}
}
private:
virtual const void *get_at(const std::size_t) const {
return nullptr;
}
virtual void swap_at(const std::size_t, const std::size_t) {}
virtual void move_element(const std::size_t, const std::size_t) {}
protected:
/*! @brief Random access iterator type. */
using basic_iterator = internal::sparse_set_iterator<packed_container_type>;
/**
* @brief Erases an entity from a sparse set.
* @param it An iterator to the element to pop.
*/
void swap_and_pop(const basic_iterator it) {
ENTT_ASSERT(mode == deletion_policy::swap_and_pop, "Deletion policy mismatched");
auto &self = sparse_ref(*it);
const auto entt = entity_traits::to_entity(self);
sparse_ref(packed.back()) = entity_traits::combine(entt, entity_traits::to_integral(packed.back()));
packed[static_cast<size_type>(entt)] = packed.back();
// unnecessary but it helps to detect nasty bugs
ENTT_ASSERT((packed.back() = null, true), "");
// lazy self-assignment guard
self = null;
packed.pop_back();
}
/**
* @brief Erases an entity from a sparse set.
* @param it An iterator to the element to pop.
*/
void in_place_pop(const basic_iterator it) {
ENTT_ASSERT(mode == deletion_policy::in_place, "Deletion policy mismatched");
const auto entt = entity_traits::to_entity(std::exchange(sparse_ref(*it), null));
packed[static_cast<size_type>(entt)] = std::exchange(free_list, entity_traits::combine(entt, entity_traits::reserved));
}
protected:
/**
* @brief Erases entities from a sparse set.
* @param first An iterator to the first element of the range of entities.
* @param last An iterator past the last element of the range of entities.
*/
virtual void pop(basic_iterator first, basic_iterator last) {
if(mode == deletion_policy::swap_and_pop) {
for(; first != last; ++first) {
swap_and_pop(first);
}
} else {
for(; first != last; ++first) {
in_place_pop(first);
}
}
}
/**
* @brief Assigns an entity to a sparse set.
* @param entt A valid identifier.
* @param force_back Force back insertion.
* @return Iterator pointing to the emplaced element.
*/
virtual basic_iterator try_emplace(const Entity entt, const bool force_back, const void * = nullptr) {
ENTT_ASSERT(!contains(entt), "Set already contains entity");
if(auto &elem = assure_at_least(entt); free_list == null || force_back) {
packed.push_back(entt);
elem = entity_traits::combine(static_cast<typename entity_traits::entity_type>(packed.size() - 1u), entity_traits::to_integral(entt));
return begin();
} else {
const auto pos = static_cast<size_type>(entity_traits::to_entity(free_list));
elem = entity_traits::combine(entity_traits::to_integral(free_list), entity_traits::to_integral(entt));
free_list = std::exchange(packed[pos], entt);
return --(end() - pos);
}
}
public:
/*! @brief Allocator type. */
using allocator_type = Allocator;
/*! @brief Underlying entity identifier. */
using entity_type = typename entity_traits::value_type;
/*! @brief Underlying version type. */
using version_type = typename entity_traits::version_type;
/*! @brief Unsigned integer type. */
using size_type = std::size_t;
/*! @brief Pointer type to contained entities. */
using pointer = typename packed_container_type::const_pointer;
/*! @brief Random access iterator type. */
using iterator = basic_iterator;
/*! @brief Constant random access iterator type. */
using const_iterator = iterator;
/*! @brief Reverse iterator type. */
using reverse_iterator = std::reverse_iterator<iterator>;
/*! @brief Constant reverse iterator type. */
using const_reverse_iterator = reverse_iterator;
/*! @brief Default constructor. */
basic_sparse_set()
: basic_sparse_set{type_id<void>()} {}
/**
* @brief Constructs an empty container with a given allocator.
* @param allocator The allocator to use.
*/
explicit basic_sparse_set(const allocator_type &allocator)
: basic_sparse_set{type_id<void>(), deletion_policy::swap_and_pop, allocator} {}
/**
* @brief Constructs an empty container with the given policy and allocator.
* @param pol Type of deletion policy.
* @param allocator The allocator to use (possibly default-constructed).
*/
explicit basic_sparse_set(deletion_policy pol, const allocator_type &allocator = {})
: basic_sparse_set{type_id<void>(), pol, allocator} {}
/**
* @brief Constructs an empty container with the given value type, policy
* and allocator.
* @param value Returned value type, if any.
* @param pol Type of deletion policy.
* @param allocator The allocator to use (possibly default-constructed).
*/
explicit basic_sparse_set(const type_info &value, deletion_policy pol = deletion_policy::swap_and_pop, const allocator_type &allocator = {})
: sparse{allocator},
packed{allocator},
info{&value},
free_list{tombstone},
mode{pol} {}
/**
* @brief Move constructor.
* @param other The instance to move from.
*/
basic_sparse_set(basic_sparse_set &&other) noexcept
: sparse{std::move(other.sparse)},
packed{std::move(other.packed)},
info{other.info},
free_list{std::exchange(other.free_list, tombstone)},
mode{other.mode} {}
/**
* @brief Allocator-extended move constructor.
* @param other The instance to move from.
* @param allocator The allocator to use.
*/
basic_sparse_set(basic_sparse_set &&other, const allocator_type &allocator) noexcept
: sparse{std::move(other.sparse), allocator},
packed{std::move(other.packed), allocator},
info{other.info},
free_list{std::exchange(other.free_list, tombstone)},
mode{other.mode} {
ENTT_ASSERT(alloc_traits::is_always_equal::value || packed.get_allocator() == other.packed.get_allocator(), "Copying a sparse set is not allowed");
}
/*! @brief Default destructor. */
virtual ~basic_sparse_set() {
release_sparse_pages();
}
/**
* @brief Move assignment operator.
* @param other The instance to move from.
* @return This sparse set.
*/
basic_sparse_set &operator=(basic_sparse_set &&other) noexcept {
ENTT_ASSERT(alloc_traits::is_always_equal::value || packed.get_allocator() == other.packed.get_allocator(), "Copying a sparse set is not allowed");
release_sparse_pages();
sparse = std::move(other.sparse);
packed = std::move(other.packed);
info = other.info;
free_list = std::exchange(other.free_list, tombstone);
mode = other.mode;
return *this;
}
/**
* @brief Exchanges the contents with those of a given sparse set.
* @param other Sparse set to exchange the content with.
*/
void swap(basic_sparse_set &other) {
using std::swap;
swap(sparse, other.sparse);
swap(packed, other.packed);
swap(info, other.info);
swap(free_list, other.free_list);
swap(mode, other.mode);
}
/**
* @brief Returns the associated allocator.
* @return The associated allocator.
*/
[[nodiscard]] constexpr allocator_type get_allocator() const noexcept {
return packed.get_allocator();
}
/**
* @brief Returns the deletion policy of a sparse set.
* @return The deletion policy of the sparse set.
*/
[[nodiscard]] deletion_policy policy() const noexcept {
return mode;
}
/**
* @brief Increases the capacity of a sparse set.
*
* If the new capacity is greater than the current capacity, new storage is
* allocated, otherwise the method does nothing.
*
* @param cap Desired capacity.
*/
virtual void reserve(const size_type cap) {
packed.reserve(cap);
}
/**
* @brief Returns the number of elements that a sparse set has currently
* allocated space for.
* @return Capacity of the sparse set.
*/
[[nodiscard]] virtual size_type capacity() const noexcept {
return packed.capacity();
}
/*! @brief Requests the removal of unused capacity. */
virtual void shrink_to_fit() {
packed.shrink_to_fit();
}
/**
* @brief Returns the extent of a sparse set.
*
* The extent of a sparse set is also the size of the internal sparse array.
* There is no guarantee that the internal packed array has the same size.
* Usually the size of the internal sparse array is equal or greater than
* the one of the internal packed array.
*
* @return Extent of the sparse set.
*/
[[nodiscard]] size_type extent() const noexcept {
return sparse.size() * entity_traits::page_size;
}
/**
* @brief Returns the number of elements in a sparse set.
*
* The number of elements is also the size of the internal packed array.
* There is no guarantee that the internal sparse array has the same size.
* Usually the size of the internal sparse array is equal or greater than
* the one of the internal packed array.
*
* @return Number of elements.
*/
[[nodiscard]] size_type size() const noexcept {
return packed.size();
}
/**
* @brief Checks whether a sparse set is empty.
* @return True if the sparse set is empty, false otherwise.
*/
[[nodiscard]] bool empty() const noexcept {
return packed.empty();
}
/**
* @brief Direct access to the internal packed array.
* @return A pointer to the internal packed array.
*/
[[nodiscard]] pointer data() const noexcept {
return packed.data();
}
/**
* @brief Returns an iterator to the beginning.
*
* The returned iterator points to the first entity of the internal packed
* array. If the sparse set is empty, the returned iterator will be equal to
* `end()`.
*
* @return An iterator to the first entity of the sparse set.
*/
[[nodiscard]] const_iterator begin() const noexcept {
const auto pos = static_cast<typename iterator::difference_type>(packed.size());
return iterator{packed, pos};
}
/*! @copydoc begin */
[[nodiscard]] const_iterator cbegin() const noexcept {
return begin();
}
/**
* @brief Returns an iterator to the end.
*
* The returned iterator points to the element following the last entity in
* a sparse set. Attempting to dereference the returned iterator results in
* undefined behavior.
*
* @return An iterator to the element following the last entity of a sparse
* set.
*/
[[nodiscard]] iterator end() const noexcept {
return iterator{packed, {}};
}
/*! @copydoc end */
[[nodiscard]] const_iterator cend() const noexcept {
return end();
}
/**
* @brief Returns a reverse iterator to the beginning.
*
* The returned iterator points to the first entity of the reversed internal
* packed array. If the sparse set is empty, the returned iterator will be
* equal to `rend()`.
*
* @return An iterator to the first entity of the reversed internal packed
* array.
*/
[[nodiscard]] const_reverse_iterator rbegin() const noexcept {
return std::make_reverse_iterator(end());
}
/*! @copydoc rbegin */
[[nodiscard]] const_reverse_iterator crbegin() const noexcept {
return rbegin();
}
/**
* @brief Returns a reverse iterator to the end.
*
* The returned iterator points to the element following the last entity in
* the reversed sparse set. Attempting to dereference the returned iterator
* results in undefined behavior.
*
* @return An iterator to the element following the last entity of the
* reversed sparse set.
*/
[[nodiscard]] reverse_iterator rend() const noexcept {
return std::make_reverse_iterator(begin());
}
/*! @copydoc rend */
[[nodiscard]] const_reverse_iterator crend() const noexcept {
return rend();
}
/**
* @brief Finds an entity.
* @param entt A valid identifier.
* @return An iterator to the given entity if it's found, past the end
* iterator otherwise.
*/
[[nodiscard]] iterator find(const entity_type entt) const noexcept {
return contains(entt) ? --(end() - index(entt)) : end();
}
/**
* @brief Checks if a sparse set contains an entity.
* @param entt A valid identifier.
* @return True if the sparse set contains the entity, false otherwise.
*/
[[nodiscard]] bool contains(const entity_type entt) const noexcept {
const auto elem = sparse_ptr(entt);
constexpr auto cap = entity_traits::to_entity(null);
// testing versions permits to avoid accessing the packed array
return elem && (((~cap & entity_traits::to_integral(entt)) ^ entity_traits::to_integral(*elem)) < cap);
}
/**
* @brief Returns the contained version for an identifier.
* @param entt A valid identifier.
* @return The version for the given identifier if present, the tombstone
* version otherwise.
*/
[[nodiscard]] version_type current(const entity_type entt) const noexcept {
const auto elem = sparse_ptr(entt);
constexpr auto fallback = entity_traits::to_version(tombstone);
return elem ? entity_traits::to_version(*elem) : fallback;
}
/**
* @brief Returns the position of an entity in a sparse set.
*
* @warning
* Attempting to get the position of an entity that doesn't belong to the
* sparse set results in undefined behavior.
*
* @param entt A valid identifier.
* @return The position of the entity in the sparse set.
*/
[[nodiscard]] size_type index(const entity_type entt) const noexcept {
ENTT_ASSERT(contains(entt), "Set does not contain entity");
return static_cast<size_type>(entity_traits::to_entity(sparse_ref(entt)));
}
/**
* @brief Returns the entity at specified location, with bounds checking.
* @param pos The position for which to return the entity.
* @return The entity at specified location if any, a null entity otherwise.
*/
[[nodiscard]] entity_type at(const size_type pos) const noexcept {
return pos < packed.size() ? packed[pos] : null;
}
/**
* @brief Returns the entity at specified location, without bounds checking.
* @param pos The position for which to return the entity.
* @return The entity at specified location.
*/
[[nodiscard]] entity_type operator[](const size_type pos) const noexcept {
ENTT_ASSERT(pos < packed.size(), "Position is out of bounds");
return packed[pos];
}
/**
* @brief Returns the element assigned to an entity, if any.
*
* @warning
* Attempting to use an entity that doesn't belong to the sparse set results
* in undefined behavior.
*
* @param entt A valid identifier.
* @return An opaque pointer to the element assigned to the entity, if any.
*/
[[nodiscard]] const void *get(const entity_type entt) const noexcept {
return get_at(index(entt));
}
/*! @copydoc get */
[[nodiscard]] void *get(const entity_type entt) noexcept {
return const_cast<void *>(std::as_const(*this).get(entt));
}
/**
* @brief Assigns an entity to a sparse set.
*
* @warning
* Attempting to assign an entity that already belongs to the sparse set
* results in undefined behavior.
*
* @param entt A valid identifier.
* @param value Optional opaque value to forward to mixins, if any.
* @return Iterator pointing to the emplaced element in case of success, the
* `end()` iterator otherwise.
*/
iterator emplace(const entity_type entt, const void *value = nullptr) {
return try_emplace(entt, false, value);
}
/**
* @brief Bump the version number of an entity.
*
* @warning
* Attempting to bump the version of an entity that doesn't belong to the
* sparse set results in undefined behavior.
*
* @param entt A valid identifier.
*/
void bump(const entity_type entt) {
auto &entity = sparse_ref(entt);
ENTT_ASSERT(entt != tombstone && entity != null, "Cannot set the required version");
entity = entity_traits::combine(entity_traits::to_integral(entity), entity_traits::to_integral(entt));
packed[static_cast<size_type>(entity_traits::to_entity(entity))] = entt;
}
/**
* @brief Assigns one or more entities to a sparse set.
*
* @warning
* Attempting to assign an entity that already belongs to the sparse set
* results in undefined behavior.
*
* @tparam It Type of input iterator.
* @param first An iterator to the first element of the range of entities.
* @param last An iterator past the last element of the range of entities.
* @return Iterator pointing to the first element inserted in case of
* success, the `end()` iterator otherwise.
*/
template<typename It>
iterator insert(It first, It last) {
for(auto it = first; it != last; ++it) {
try_emplace(*it, true);
}
return first == last ? end() : find(*first);
}
/**
* @brief Erases an entity from a sparse set.
*
* @warning
* Attempting to erase an entity that doesn't belong to the sparse set
* results in undefined behavior.
*
* @param entt A valid identifier.
*/
void erase(const entity_type entt) {
const auto it = --(end() - index(entt));
pop(it, it + 1u);
}
/**
* @brief Erases entities from a set.
*
* @sa erase
*
* @tparam It Type of input iterator.
* @param first An iterator to the first element of the range of entities.
* @param last An iterator past the last element of the range of entities.
*/
template<typename It>
void erase(It first, It last) {
if constexpr(std::is_same_v<It, basic_iterator>) {
pop(first, last);
} else {
for(; first != last; ++first) {
erase(*first);
}
}
}
/**
* @brief Removes an entity from a sparse set if it exists.
* @param entt A valid identifier.
* @return True if the entity is actually removed, false otherwise.
*/
bool remove(const entity_type entt) {
return contains(entt) && (erase(entt), true);
}
/**
* @brief Removes entities from a sparse set if they exist.
* @tparam It Type of input iterator.
* @param first An iterator to the first element of the range of entities.
* @param last An iterator past the last element of the range of entities.
* @return The number of entities actually removed.
*/
template<typename It>
size_type remove(It first, It last) {
size_type count{};
for(; first != last; ++first) {
count += remove(*first);
}
return count;
}
/*! @brief Removes all tombstones from the packed array of a sparse set. */
void compact() {
size_type from = packed.size();
for(; from && packed[from - 1u] == tombstone; --from) {}
for(auto *it = &free_list; *it != null && from; it = std::addressof(packed[entity_traits::to_entity(*it)])) {
if(const size_type to = entity_traits::to_entity(*it); to < from) {
--from;
move_element(from, to);
using std::swap;
swap(packed[from], packed[to]);
const auto entity = static_cast<typename entity_traits::entity_type>(to);
sparse_ref(packed[to]) = entity_traits::combine(entity, entity_traits::to_integral(packed[to]));
*it = entity_traits::combine(static_cast<typename entity_traits::entity_type>(from), entity_traits::reserved);
for(; from && packed[from - 1u] == tombstone; --from) {}
}
}
free_list = tombstone;
packed.resize(from);
}
/**
* @brief Swaps two entities in a sparse set.
*
* For what it's worth, this function affects both the internal sparse array
* and the internal packed array. Users should not care of that anyway.
*
* @warning
* Attempting to swap entities that don't belong to the sparse set results
* in undefined behavior.
*
* @param lhs A valid identifier.
* @param rhs A valid identifier.
*/
void swap_elements(const entity_type lhs, const entity_type rhs) {
ENTT_ASSERT(contains(lhs) && contains(rhs), "Set does not contain entities");
auto &entt = sparse_ref(lhs);
auto &other = sparse_ref(rhs);
const auto from = entity_traits::to_entity(entt);
const auto to = entity_traits::to_entity(other);
// basic no-leak guarantee (with invalid state) if swapping throws
swap_at(static_cast<size_type>(from), static_cast<size_type>(to));
entt = entity_traits::combine(to, entity_traits::to_integral(packed[from]));
other = entity_traits::combine(from, entity_traits::to_integral(packed[to]));
using std::swap;
swap(packed[from], packed[to]);
}
/**
* @brief Sort the first count elements according to the given comparison
* function.
*
* The comparison function object must return `true` if the first element
* is _less_ than the second one, `false` otherwise. The signature of the
* comparison function should be equivalent to the following:
*
* @code{.cpp}
* bool(const Entity, const Entity);
* @endcode
*
* Moreover, the comparison function object shall induce a
* _strict weak ordering_ on the values.
*
* The sort function object must offer a member function template
* `operator()` that accepts three arguments:
*
* * An iterator to the first element of the range to sort.
* * An iterator past the last element of the range to sort.
* * A comparison function to use to compare the elements.
*
* @tparam Compare Type of comparison function object.
* @tparam Sort Type of sort function object.
* @tparam Args Types of arguments to forward to the sort function object.
* @param length Number of elements to sort.
* @param compare A valid comparison function object.
* @param algo A valid sort function object.
* @param args Arguments to forward to the sort function object, if any.
*/
template<typename Compare, typename Sort = std_sort, typename... Args>
void sort_n(const size_type length, Compare compare, Sort algo = Sort{}, Args &&...args) {
ENTT_ASSERT(!(length > packed.size()), "Length exceeds the number of elements");
ENTT_ASSERT(free_list == null, "Partial sorting with tombstones is not supported");
algo(packed.rend() - length, packed.rend(), std::move(compare), std::forward<Args>(args)...);
for(size_type pos{}; pos < length; ++pos) {
auto curr = pos;
auto next = index(packed[curr]);
while(curr != next) {
const auto idx = index(packed[next]);
const auto entt = packed[curr];
swap_at(next, idx);
const auto entity = static_cast<typename entity_traits::entity_type>(curr);
sparse_ref(entt) = entity_traits::combine(entity, entity_traits::to_integral(packed[curr]));
curr = std::exchange(next, idx);
}
}
}
/**
* @brief Sort all elements according to the given comparison function.
*
* @sa sort_n
*
* @tparam Compare Type of comparison function object.
* @tparam Sort Type of sort function object.
* @tparam Args Types of arguments to forward to the sort function object.
* @param compare A valid comparison function object.
* @param algo A valid sort function object.
* @param args Arguments to forward to the sort function object, if any.
*/
template<typename Compare, typename Sort = std_sort, typename... Args>
void sort(Compare compare, Sort algo = Sort{}, Args &&...args) {
compact();
sort_n(packed.size(), std::move(compare), std::move(algo), std::forward<Args>(args)...);
}
/**
* @brief Sort entities according to their order in another sparse set.
*
* Entities that are part of both the sparse sets are ordered internally
* according to the order they have in `other`. All the other entities goes
* to the end of the list and there are no guarantees on their order.<br/>
* In other terms, this function can be used to impose the same order on two
* sets by using one of them as a master and the other one as a slave.
*
* Iterating the sparse set with a couple of iterators returns elements in
* the expected order after a call to `respect`. See `begin` and `end` for
* more details.
*
* @param other The sparse sets that imposes the order of the entities.
*/
void respect(const basic_sparse_set &other) {
compact();
const auto to = other.end();
auto from = other.begin();
for(size_type pos = packed.size() - 1; pos && from != to; ++from) {
if(contains(*from)) {
if(*from != packed[pos]) {
// basic no-leak guarantee (with invalid state) if swapping throws
swap_elements(packed[pos], *from);
}
--pos;
}
}
}
/*! @brief Clears a sparse set. */
void clear() {
if(const auto last = end(); free_list == null) {
pop(begin(), last);
} else {
for(auto &&entity: *this) {
// tombstone filter on itself
if(const auto it = find(entity); it != last) {
pop(it, it + 1u);
}
}
}
free_list = tombstone;
packed.clear();
}
/**
* @brief Returned value type, if any.
* @return Returned value type, if any.
*/
const type_info &type() const noexcept {
return *info;
}
/*! @brief Forwards variables to derived classes, if any. */
virtual void bind(any) noexcept {}
private:
sparse_container_type sparse;
packed_container_type packed;
const type_info *info;
entity_type free_list;
deletion_policy mode;
};
} // namespace entt
#endif
// #include "storage.hpp"
#ifndef ENTT_ENTITY_STORAGE_HPP
#define ENTT_ENTITY_STORAGE_HPP
#include <cstddef>
#include <iterator>
#include <memory>
#include <tuple>
#include <type_traits>
#include <utility>
#include <vector>
// #include "../config/config.h"
// #include "../core/compressed_pair.hpp"
#ifndef ENTT_CORE_COMPRESSED_PAIR_HPP
#define ENTT_CORE_COMPRESSED_PAIR_HPP
#include <cstddef>
#include <tuple>
#include <type_traits>
#include <utility>
// #include "type_traits.hpp"
namespace entt {
/**
* @cond TURN_OFF_DOXYGEN
* Internal details not to be documented.
*/
namespace internal {
template<typename Type, std::size_t, typename = void>
struct compressed_pair_element {
using reference = Type &;
using const_reference = const Type &;
template<bool Dummy = true, typename = std::enable_if_t<Dummy && std::is_default_constructible_v<Type>>>
constexpr compressed_pair_element() noexcept(std::is_nothrow_default_constructible_v<Type>)
: value{} {}
template<typename Arg, typename = std::enable_if_t<!std::is_same_v<std::remove_cv_t<std::remove_reference_t<Arg>>, compressed_pair_element>>>
constexpr compressed_pair_element(Arg &&arg) noexcept(std::is_nothrow_constructible_v<Type, Arg>)
: value{std::forward<Arg>(arg)} {}
template<typename... Args, std::size_t... Index>
constexpr compressed_pair_element(std::tuple<Args...> args, std::index_sequence<Index...>) noexcept(std::is_nothrow_constructible_v<Type, Args...>)
: value{std::forward<Args>(std::get<Index>(args))...} {}
[[nodiscard]] constexpr reference get() noexcept {
return value;
}
[[nodiscard]] constexpr const_reference get() const noexcept {
return value;
}
private:
Type value;
};
template<typename Type, std::size_t Tag>
struct compressed_pair_element<Type, Tag, std::enable_if_t<is_ebco_eligible_v<Type>>>: Type {
using reference = Type &;
using const_reference = const Type &;
using base_type = Type;
template<bool Dummy = true, typename = std::enable_if_t<Dummy && std::is_default_constructible_v<base_type>>>
constexpr compressed_pair_element() noexcept(std::is_nothrow_default_constructible_v<base_type>)
: base_type{} {}
template<typename Arg, typename = std::enable_if_t<!std::is_same_v<std::remove_cv_t<std::remove_reference_t<Arg>>, compressed_pair_element>>>
constexpr compressed_pair_element(Arg &&arg) noexcept(std::is_nothrow_constructible_v<base_type, Arg>)
: base_type{std::forward<Arg>(arg)} {}
template<typename... Args, std::size_t... Index>
constexpr compressed_pair_element(std::tuple<Args...> args, std::index_sequence<Index...>) noexcept(std::is_nothrow_constructible_v<base_type, Args...>)
: base_type{std::forward<Args>(std::get<Index>(args))...} {}
[[nodiscard]] constexpr reference get() noexcept {
return *this;
}
[[nodiscard]] constexpr const_reference get() const noexcept {
return *this;
}
};
} // namespace internal
/**
* Internal details not to be documented.
* @endcond
*/
/**
* @brief A compressed pair.
*
* A pair that exploits the _Empty Base Class Optimization_ (or _EBCO_) to
* reduce its final size to a minimum.
*
* @tparam First The type of the first element that the pair stores.
* @tparam Second The type of the second element that the pair stores.
*/
template<typename First, typename Second>
class compressed_pair final
: internal::compressed_pair_element<First, 0u>,
internal::compressed_pair_element<Second, 1u> {
using first_base = internal::compressed_pair_element<First, 0u>;
using second_base = internal::compressed_pair_element<Second, 1u>;
public:
/*! @brief The type of the first element that the pair stores. */
using first_type = First;
/*! @brief The type of the second element that the pair stores. */
using second_type = Second;
/**
* @brief Default constructor, conditionally enabled.
*
* This constructor is only available when the types that the pair stores
* are both at least default constructible.
*
* @tparam Dummy Dummy template parameter used for internal purposes.
*/
template<bool Dummy = true, typename = std::enable_if_t<Dummy && std::is_default_constructible_v<first_type> && std::is_default_constructible_v<second_type>>>
constexpr compressed_pair() noexcept(std::is_nothrow_default_constructible_v<first_base> &&std::is_nothrow_default_constructible_v<second_base>)
: first_base{},
second_base{} {}
/**
* @brief Copy constructor.
* @param other The instance to copy from.
*/
constexpr compressed_pair(const compressed_pair &other) noexcept(std::is_nothrow_copy_constructible_v<first_base> &&std::is_nothrow_copy_constructible_v<second_base>) = default;
/**
* @brief Move constructor.
* @param other The instance to move from.
*/
constexpr compressed_pair(compressed_pair &&other) noexcept(std::is_nothrow_move_constructible_v<first_base> &&std::is_nothrow_move_constructible_v<second_base>) = default;
/**
* @brief Constructs a pair from its values.
* @tparam Arg Type of value to use to initialize the first element.
* @tparam Other Type of value to use to initialize the second element.
* @param arg Value to use to initialize the first element.
* @param other Value to use to initialize the second element.
*/
template<typename Arg, typename Other>
constexpr compressed_pair(Arg &&arg, Other &&other) noexcept(std::is_nothrow_constructible_v<first_base, Arg> &&std::is_nothrow_constructible_v<second_base, Other>)
: first_base{std::forward<Arg>(arg)},
second_base{std::forward<Other>(other)} {}
/**
* @brief Constructs a pair by forwarding the arguments to its parts.
* @tparam Args Types of arguments to use to initialize the first element.
* @tparam Other Types of arguments to use to initialize the second element.
* @param args Arguments to use to initialize the first element.
* @param other Arguments to use to initialize the second element.
*/
template<typename... Args, typename... Other>
constexpr compressed_pair(std::piecewise_construct_t, std::tuple<Args...> args, std::tuple<Other...> other) noexcept(std::is_nothrow_constructible_v<first_base, Args...> &&std::is_nothrow_constructible_v<second_base, Other...>)
: first_base{std::move(args), std::index_sequence_for<Args...>{}},
second_base{std::move(other), std::index_sequence_for<Other...>{}} {}
/**
* @brief Copy assignment operator.
* @param other The instance to copy from.
* @return This compressed pair object.
*/
constexpr compressed_pair &operator=(const compressed_pair &other) noexcept(std::is_nothrow_copy_assignable_v<first_base> &&std::is_nothrow_copy_assignable_v<second_base>) = default;
/**
* @brief Move assignment operator.
* @param other The instance to move from.
* @return This compressed pair object.
*/
constexpr compressed_pair &operator=(compressed_pair &&other) noexcept(std::is_nothrow_move_assignable_v<first_base> &&std::is_nothrow_move_assignable_v<second_base>) = default;
/**
* @brief Returns the first element that a pair stores.
* @return The first element that a pair stores.
*/
[[nodiscard]] constexpr first_type &first() noexcept {
return static_cast<first_base &>(*this).get();
}
/*! @copydoc first */
[[nodiscard]] constexpr const first_type &first() const noexcept {
return static_cast<const first_base &>(*this).get();
}
/**
* @brief Returns the second element that a pair stores.
* @return The second element that a pair stores.
*/
[[nodiscard]] constexpr second_type &second() noexcept {
return static_cast<second_base &>(*this).get();
}
/*! @copydoc second */
[[nodiscard]] constexpr const second_type &second() const noexcept {
return static_cast<const second_base &>(*this).get();
}
/**
* @brief Swaps two compressed pair objects.
* @param other The compressed pair to swap with.
*/
constexpr void swap(compressed_pair &other) noexcept(std::is_nothrow_swappable_v<first_type> &&std::is_nothrow_swappable_v<second_type>) {
using std::swap;
swap(first(), other.first());
swap(second(), other.second());
}
/**
* @brief Extracts an element from the compressed pair.
* @tparam Index An integer value that is either 0 or 1.
* @return Returns a reference to the first element if `Index` is 0 and a
* reference to the second element if `Index` is 1.
*/
template<std::size_t Index>
constexpr decltype(auto) get() noexcept {
if constexpr(Index == 0u) {
return first();
} else {
static_assert(Index == 1u, "Index out of bounds");
return second();
}
}
/*! @copydoc get */
template<std::size_t Index>
constexpr decltype(auto) get() const noexcept {
if constexpr(Index == 0u) {
return first();
} else {
static_assert(Index == 1u, "Index out of bounds");
return second();
}
}
};
/**
* @brief Deduction guide.
* @tparam Type Type of value to use to initialize the first element.
* @tparam Other Type of value to use to initialize the second element.
*/
template<typename Type, typename Other>
compressed_pair(Type &&, Other &&) -> compressed_pair<std::decay_t<Type>, std::decay_t<Other>>;
/**
* @brief Swaps two compressed pair objects.
* @tparam First The type of the first element that the pairs store.
* @tparam Second The type of the second element that the pairs store.
* @param lhs A valid compressed pair object.
* @param rhs A valid compressed pair object.
*/
template<typename First, typename Second>
inline constexpr void swap(compressed_pair<First, Second> &lhs, compressed_pair<First, Second> &rhs) {
lhs.swap(rhs);
}
} // namespace entt
// disable structured binding support for clang 6, it messes when specializing tuple_size
#if !defined __clang_major__ || __clang_major__ > 6
namespace std {
/**
* @brief `std::tuple_size` specialization for `compressed_pair`s.
* @tparam First The type of the first element that the pair stores.
* @tparam Second The type of the second element that the pair stores.
*/
template<typename First, typename Second>
struct tuple_size<entt::compressed_pair<First, Second>>: integral_constant<size_t, 2u> {};
/**
* @brief `std::tuple_element` specialization for `compressed_pair`s.
* @tparam Index The index of the type to return.
* @tparam First The type of the first element that the pair stores.
* @tparam Second The type of the second element that the pair stores.
*/
template<size_t Index, typename First, typename Second>
struct tuple_element<Index, entt::compressed_pair<First, Second>>: conditional<Index == 0u, First, Second> {
static_assert(Index < 2u, "Index out of bounds");
};
} // namespace std
#endif
#endif
// #include "../core/iterator.hpp"
// #include "../core/memory.hpp"
// #include "../core/type_info.hpp"
// #include "component.hpp"
// #include "entity.hpp"
// #include "fwd.hpp"
// #include "sparse_set.hpp"
// #include "storage_mixin.hpp"
#ifndef ENTT_ENTITY_SIGH_STORAGE_MIXIN_HPP
#define ENTT_ENTITY_SIGH_STORAGE_MIXIN_HPP
#include <utility>
// #include "../config/config.h"
// #include "../core/any.hpp"
// #include "../signal/sigh.hpp"
#ifndef ENTT_SIGNAL_SIGH_HPP
#define ENTT_SIGNAL_SIGH_HPP
#include <algorithm>
#include <functional>
#include <type_traits>
#include <utility>
#include <vector>
// #include "delegate.hpp"
#ifndef ENTT_SIGNAL_DELEGATE_HPP
#define ENTT_SIGNAL_DELEGATE_HPP
#include <cstddef>
#include <functional>
#include <tuple>
#include <type_traits>
#include <utility>
// #include "../config/config.h"
#ifndef ENTT_CONFIG_CONFIG_H
#define ENTT_CONFIG_CONFIG_H
// #include "version.h"
#ifndef ENTT_CONFIG_VERSION_H
#define ENTT_CONFIG_VERSION_H
// #include "macro.h"
#ifndef ENTT_CONFIG_MACRO_H
#define ENTT_CONFIG_MACRO_H
#define ENTT_STR(arg) #arg
#define ENTT_XSTR(arg) ENTT_STR(arg)
#endif
#define ENTT_VERSION_MAJOR 3
#define ENTT_VERSION_MINOR 11
#define ENTT_VERSION_PATCH 1
#define ENTT_VERSION \
ENTT_XSTR(ENTT_VERSION_MAJOR) \
"." ENTT_XSTR(ENTT_VERSION_MINOR) "." ENTT_XSTR(ENTT_VERSION_PATCH)
#endif
#if defined(__cpp_exceptions) && !defined(ENTT_NOEXCEPTION)
# define ENTT_CONSTEXPR
# define ENTT_THROW throw
# define ENTT_TRY try
# define ENTT_CATCH catch(...)
#else
# define ENTT_CONSTEXPR constexpr // use only with throwing functions (waiting for C++20)
# define ENTT_THROW
# define ENTT_TRY if(true)
# define ENTT_CATCH if(false)
#endif
#ifdef ENTT_USE_ATOMIC
# include <atomic>
# define ENTT_MAYBE_ATOMIC(Type) std::atomic<Type>
#else
# define ENTT_MAYBE_ATOMIC(Type) Type
#endif
#ifndef ENTT_ID_TYPE
# include <cstdint>
# define ENTT_ID_TYPE std::uint32_t
#endif
#ifndef ENTT_SPARSE_PAGE
# define ENTT_SPARSE_PAGE 4096
#endif
#ifndef ENTT_PACKED_PAGE
# define ENTT_PACKED_PAGE 1024
#endif
#ifdef ENTT_DISABLE_ASSERT
# undef ENTT_ASSERT
# define ENTT_ASSERT(condition, msg) (void(0))
#elif !defined ENTT_ASSERT
# include <cassert>
# define ENTT_ASSERT(condition, msg) assert(condition)
#endif
#ifdef ENTT_DISABLE_ASSERT
# undef ENTT_ASSERT_CONSTEXPR
# define ENTT_ASSERT_CONSTEXPR(condition, msg) (void(0))
#elif !defined ENTT_ASSERT_CONSTEXPR
# define ENTT_ASSERT_CONSTEXPR(condition, msg) ENTT_ASSERT(condition, msg)
#endif
#ifdef ENTT_NO_ETO
# define ENTT_ETO_TYPE(Type) void
#else
# define ENTT_ETO_TYPE(Type) Type
#endif
#ifdef ENTT_STANDARD_CPP
# define ENTT_NONSTD false
#else
# define ENTT_NONSTD true
# if defined __clang__ || defined __GNUC__
# define ENTT_PRETTY_FUNCTION __PRETTY_FUNCTION__
# define ENTT_PRETTY_FUNCTION_PREFIX '='
# define ENTT_PRETTY_FUNCTION_SUFFIX ']'
# elif defined _MSC_VER
# define ENTT_PRETTY_FUNCTION __FUNCSIG__
# define ENTT_PRETTY_FUNCTION_PREFIX '<'
# define ENTT_PRETTY_FUNCTION_SUFFIX '>'
# endif
#endif
#if defined _MSC_VER
# pragma detect_mismatch("entt.version", ENTT_VERSION)
# pragma detect_mismatch("entt.noexcept", ENTT_XSTR(ENTT_TRY))
# pragma detect_mismatch("entt.id", ENTT_XSTR(ENTT_ID_TYPE))
# pragma detect_mismatch("entt.nonstd", ENTT_XSTR(ENTT_NONSTD))
#endif
#endif
// #include "../core/type_traits.hpp"
#ifndef ENTT_CORE_TYPE_TRAITS_HPP
#define ENTT_CORE_TYPE_TRAITS_HPP
#include <cstddef>
#include <iterator>
#include <type_traits>
#include <utility>
// #include "../config/config.h"
#ifndef ENTT_CONFIG_CONFIG_H
#define ENTT_CONFIG_CONFIG_H
// #include "version.h"
#ifndef ENTT_CONFIG_VERSION_H
#define ENTT_CONFIG_VERSION_H
// #include "macro.h"
#ifndef ENTT_CONFIG_MACRO_H
#define ENTT_CONFIG_MACRO_H
#define ENTT_STR(arg) #arg
#define ENTT_XSTR(arg) ENTT_STR(arg)
#endif
#define ENTT_VERSION_MAJOR 3
#define ENTT_VERSION_MINOR 11
#define ENTT_VERSION_PATCH 1
#define ENTT_VERSION \
ENTT_XSTR(ENTT_VERSION_MAJOR) \
"." ENTT_XSTR(ENTT_VERSION_MINOR) "." ENTT_XSTR(ENTT_VERSION_PATCH)
#endif
#if defined(__cpp_exceptions) && !defined(ENTT_NOEXCEPTION)
# define ENTT_CONSTEXPR
# define ENTT_THROW throw
# define ENTT_TRY try
# define ENTT_CATCH catch(...)
#else
# define ENTT_CONSTEXPR constexpr // use only with throwing functions (waiting for C++20)
# define ENTT_THROW
# define ENTT_TRY if(true)
# define ENTT_CATCH if(false)
#endif
#ifdef ENTT_USE_ATOMIC
# include <atomic>
# define ENTT_MAYBE_ATOMIC(Type) std::atomic<Type>
#else
# define ENTT_MAYBE_ATOMIC(Type) Type
#endif
#ifndef ENTT_ID_TYPE
# include <cstdint>
# define ENTT_ID_TYPE std::uint32_t
#endif
#ifndef ENTT_SPARSE_PAGE
# define ENTT_SPARSE_PAGE 4096
#endif
#ifndef ENTT_PACKED_PAGE
# define ENTT_PACKED_PAGE 1024
#endif
#ifdef ENTT_DISABLE_ASSERT
# undef ENTT_ASSERT
# define ENTT_ASSERT(condition, msg) (void(0))
#elif !defined ENTT_ASSERT
# include <cassert>
# define ENTT_ASSERT(condition, msg) assert(condition)
#endif
#ifdef ENTT_DISABLE_ASSERT
# undef ENTT_ASSERT_CONSTEXPR
# define ENTT_ASSERT_CONSTEXPR(condition, msg) (void(0))
#elif !defined ENTT_ASSERT_CONSTEXPR
# define ENTT_ASSERT_CONSTEXPR(condition, msg) ENTT_ASSERT(condition, msg)
#endif
#ifdef ENTT_NO_ETO
# define ENTT_ETO_TYPE(Type) void
#else
# define ENTT_ETO_TYPE(Type) Type
#endif
#ifdef ENTT_STANDARD_CPP
# define ENTT_NONSTD false
#else
# define ENTT_NONSTD true
# if defined __clang__ || defined __GNUC__
# define ENTT_PRETTY_FUNCTION __PRETTY_FUNCTION__
# define ENTT_PRETTY_FUNCTION_PREFIX '='
# define ENTT_PRETTY_FUNCTION_SUFFIX ']'
# elif defined _MSC_VER
# define ENTT_PRETTY_FUNCTION __FUNCSIG__
# define ENTT_PRETTY_FUNCTION_PREFIX '<'
# define ENTT_PRETTY_FUNCTION_SUFFIX '>'
# endif
#endif
#if defined _MSC_VER
# pragma detect_mismatch("entt.version", ENTT_VERSION)
# pragma detect_mismatch("entt.noexcept", ENTT_XSTR(ENTT_TRY))
# pragma detect_mismatch("entt.id", ENTT_XSTR(ENTT_ID_TYPE))
# pragma detect_mismatch("entt.nonstd", ENTT_XSTR(ENTT_NONSTD))
#endif
#endif
// #include "fwd.hpp"
#ifndef ENTT_CORE_FWD_HPP
#define ENTT_CORE_FWD_HPP
#include <cstddef>
// #include "../config/config.h"
namespace entt {
template<std::size_t Len = sizeof(double[2]), std::size_t = alignof(double[2])>
class basic_any;
/*! @brief Alias declaration for type identifiers. */
using id_type = ENTT_ID_TYPE;
/*! @brief Alias declaration for the most common use case. */
using any = basic_any<>;
} // namespace entt
#endif
namespace entt {
/**
* @brief Utility class to disambiguate overloaded functions.
* @tparam N Number of choices available.
*/
template<std::size_t N>
struct choice_t
// Unfortunately, doxygen cannot parse such a construct.
: /*! @cond TURN_OFF_DOXYGEN */ choice_t<N - 1> /*! @endcond */
{};
/*! @copybrief choice_t */
template<>
struct choice_t<0> {};
/**
* @brief Variable template for the choice trick.
* @tparam N Number of choices available.
*/
template<std::size_t N>
inline constexpr choice_t<N> choice{};
/**
* @brief Identity type trait.
*
* Useful to establish non-deduced contexts in template argument deduction
* (waiting for C++20) or to provide types through function arguments.
*
* @tparam Type A type.
*/
template<typename Type>
struct type_identity {
/*! @brief Identity type. */
using type = Type;
};
/**
* @brief Helper type.
* @tparam Type A type.
*/
template<typename Type>
using type_identity_t = typename type_identity<Type>::type;
/**
* @brief A type-only `sizeof` wrapper that returns 0 where `sizeof` complains.
* @tparam Type The type of which to return the size.
* @tparam The size of the type if `sizeof` accepts it, 0 otherwise.
*/
template<typename Type, typename = void>
struct size_of: std::integral_constant<std::size_t, 0u> {};
/*! @copydoc size_of */
template<typename Type>
struct size_of<Type, std::void_t<decltype(sizeof(Type))>>
: std::integral_constant<std::size_t, sizeof(Type)> {};
/**
* @brief Helper variable template.
* @tparam Type The type of which to return the size.
*/
template<typename Type>
inline constexpr std::size_t size_of_v = size_of<Type>::value;
/**
* @brief Using declaration to be used to _repeat_ the same type a number of
* times equal to the size of a given parameter pack.
* @tparam Type A type to repeat.
*/
template<typename Type, typename>
using unpack_as_type = Type;
/**
* @brief Helper variable template to be used to _repeat_ the same value a
* number of times equal to the size of a given parameter pack.
* @tparam Value A value to repeat.
*/
template<auto Value, typename>
inline constexpr auto unpack_as_value = Value;
/**
* @brief Wraps a static constant.
* @tparam Value A static constant.
*/
template<auto Value>
using integral_constant = std::integral_constant<decltype(Value), Value>;
/**
* @brief Alias template to facilitate the creation of named values.
* @tparam Value A constant value at least convertible to `id_type`.
*/
template<id_type Value>
using tag = integral_constant<Value>;
/**
* @brief A class to use to push around lists of types, nothing more.
* @tparam Type Types provided by the type list.
*/
template<typename... Type>
struct type_list {
/*! @brief Type list type. */
using type = type_list;
/*! @brief Compile-time number of elements in the type list. */
static constexpr auto size = sizeof...(Type);
};
/*! @brief Primary template isn't defined on purpose. */
template<std::size_t, typename>
struct type_list_element;
/**
* @brief Provides compile-time indexed access to the types of a type list.
* @tparam Index Index of the type to return.
* @tparam First First type provided by the type list.
* @tparam Other Other types provided by the type list.
*/
template<std::size_t Index, typename First, typename... Other>
struct type_list_element<Index, type_list<First, Other...>>
: type_list_element<Index - 1u, type_list<Other...>> {};
/**
* @brief Provides compile-time indexed access to the types of a type list.
* @tparam First First type provided by the type list.
* @tparam Other Other types provided by the type list.
*/
template<typename First, typename... Other>
struct type_list_element<0u, type_list<First, Other...>> {
/*! @brief Searched type. */
using type = First;
};
/**
* @brief Helper type.
* @tparam Index Index of the type to return.
* @tparam List Type list to search into.
*/
template<std::size_t Index, typename List>
using type_list_element_t = typename type_list_element<Index, List>::type;
/*! @brief Primary template isn't defined on purpose. */
template<typename, typename>
struct type_list_index;
/**
* @brief Provides compile-time type access to the types of a type list.
* @tparam Type Type to look for and for which to return the index.
* @tparam First First type provided by the type list.
* @tparam Other Other types provided by the type list.
*/
template<typename Type, typename First, typename... Other>
struct type_list_index<Type, type_list<First, Other...>> {
/*! @brief Unsigned integer type. */
using value_type = std::size_t;
/*! @brief Compile-time position of the given type in the sublist. */
static constexpr value_type value = 1u + type_list_index<Type, type_list<Other...>>::value;
};
/**
* @brief Provides compile-time type access to the types of a type list.
* @tparam Type Type to look for and for which to return the index.
* @tparam Other Other types provided by the type list.
*/
template<typename Type, typename... Other>
struct type_list_index<Type, type_list<Type, Other...>> {
static_assert(type_list_index<Type, type_list<Other...>>::value == sizeof...(Other), "Non-unique type");
/*! @brief Unsigned integer type. */
using value_type = std::size_t;
/*! @brief Compile-time position of the given type in the sublist. */
static constexpr value_type value = 0u;
};
/**
* @brief Provides compile-time type access to the types of a type list.
* @tparam Type Type to look for and for which to return the index.
*/
template<typename Type>
struct type_list_index<Type, type_list<>> {
/*! @brief Unsigned integer type. */
using value_type = std::size_t;
/*! @brief Compile-time position of the given type in the sublist. */
static constexpr value_type value = 0u;
};
/**
* @brief Helper variable template.
* @tparam List Type list.
* @tparam Type Type to look for and for which to return the index.
*/
template<typename Type, typename List>
inline constexpr std::size_t type_list_index_v = type_list_index<Type, List>::value;
/**
* @brief Concatenates multiple type lists.
* @tparam Type Types provided by the first type list.
* @tparam Other Types provided by the second type list.
* @return A type list composed by the types of both the type lists.
*/
template<typename... Type, typename... Other>
constexpr type_list<Type..., Other...> operator+(type_list<Type...>, type_list<Other...>) {
return {};
}
/*! @brief Primary template isn't defined on purpose. */
template<typename...>
struct type_list_cat;
/*! @brief Concatenates multiple type lists. */
template<>
struct type_list_cat<> {
/*! @brief A type list composed by the types of all the type lists. */
using type = type_list<>;
};
/**
* @brief Concatenates multiple type lists.
* @tparam Type Types provided by the first type list.
* @tparam Other Types provided by the second type list.
* @tparam List Other type lists, if any.
*/
template<typename... Type, typename... Other, typename... List>
struct type_list_cat<type_list<Type...>, type_list<Other...>, List...> {
/*! @brief A type list composed by the types of all the type lists. */
using type = typename type_list_cat<type_list<Type..., Other...>, List...>::type;
};
/**
* @brief Concatenates multiple type lists.
* @tparam Type Types provided by the type list.
*/
template<typename... Type>
struct type_list_cat<type_list<Type...>> {
/*! @brief A type list composed by the types of all the type lists. */
using type = type_list<Type...>;
};
/**
* @brief Helper type.
* @tparam List Type lists to concatenate.
*/
template<typename... List>
using type_list_cat_t = typename type_list_cat<List...>::type;
/*! @brief Primary template isn't defined on purpose. */
template<typename>
struct type_list_unique;
/**
* @brief Removes duplicates types from a type list.
* @tparam Type One of the types provided by the given type list.
* @tparam Other The other types provided by the given type list.
*/
template<typename Type, typename... Other>
struct type_list_unique<type_list<Type, Other...>> {
/*! @brief A type list without duplicate types. */
using type = std::conditional_t<
(std::is_same_v<Type, Other> || ...),
typename type_list_unique<type_list<Other...>>::type,
type_list_cat_t<type_list<Type>, typename type_list_unique<type_list<Other...>>::type>>;
};
/*! @brief Removes duplicates types from a type list. */
template<>
struct type_list_unique<type_list<>> {
/*! @brief A type list without duplicate types. */
using type = type_list<>;
};
/**
* @brief Helper type.
* @tparam Type A type list.
*/
template<typename Type>
using type_list_unique_t = typename type_list_unique<Type>::type;
/**
* @brief Provides the member constant `value` to true if a type list contains a
* given type, false otherwise.
* @tparam List Type list.
* @tparam Type Type to look for.
*/
template<typename List, typename Type>
struct type_list_contains;
/**
* @copybrief type_list_contains
* @tparam Type Types provided by the type list.
* @tparam Other Type to look for.
*/
template<typename... Type, typename Other>
struct type_list_contains<type_list<Type...>, Other>: std::disjunction<std::is_same<Type, Other>...> {};
/**
* @brief Helper variable template.
* @tparam List Type list.
* @tparam Type Type to look for.
*/
template<typename List, typename Type>
inline constexpr bool type_list_contains_v = type_list_contains<List, Type>::value;
/*! @brief Primary template isn't defined on purpose. */
template<typename...>
struct type_list_diff;
/**
* @brief Computes the difference between two type lists.
* @tparam Type Types provided by the first type list.
* @tparam Other Types provided by the second type list.
*/
template<typename... Type, typename... Other>
struct type_list_diff<type_list<Type...>, type_list<Other...>> {
/*! @brief A type list that is the difference between the two type lists. */
using type = type_list_cat_t<std::conditional_t<type_list_contains_v<type_list<Other...>, Type>, type_list<>, type_list<Type>>...>;
};
/**
* @brief Helper type.
* @tparam List Type lists between which to compute the difference.
*/
template<typename... List>
using type_list_diff_t = typename type_list_diff<List...>::type;
/*! @brief Primary template isn't defined on purpose. */
template<typename, template<typename...> class>
struct type_list_transform;
/**
* @brief Applies a given _function_ to a type list and generate a new list.
* @tparam Type Types provided by the type list.
* @tparam Op Unary operation as template class with a type member named `type`.
*/
template<typename... Type, template<typename...> class Op>
struct type_list_transform<type_list<Type...>, Op> {
/*! @brief Resulting type list after applying the transform function. */
using type = type_list<typename Op<Type>::type...>;
};
/**
* @brief Helper type.
* @tparam List Type list.
* @tparam Op Unary operation as template class with a type member named `type`.
*/
template<typename List, template<typename...> class Op>
using type_list_transform_t = typename type_list_transform<List, Op>::type;
/**
* @brief A class to use to push around lists of constant values, nothing more.
* @tparam Value Values provided by the value list.
*/
template<auto... Value>
struct value_list {
/*! @brief Value list type. */
using type = value_list;
/*! @brief Compile-time number of elements in the value list. */
static constexpr auto size = sizeof...(Value);
};
/*! @brief Primary template isn't defined on purpose. */
template<std::size_t, typename>
struct value_list_element;
/**
* @brief Provides compile-time indexed access to the values of a value list.
* @tparam Index Index of the value to return.
* @tparam Value First value provided by the value list.
* @tparam Other Other values provided by the value list.
*/
template<std::size_t Index, auto Value, auto... Other>
struct value_list_element<Index, value_list<Value, Other...>>
: value_list_element<Index - 1u, value_list<Other...>> {};
/**
* @brief Provides compile-time indexed access to the types of a type list.
* @tparam Value First value provided by the value list.
* @tparam Other Other values provided by the value list.
*/
template<auto Value, auto... Other>
struct value_list_element<0u, value_list<Value, Other...>> {
/*! @brief Searched value. */
static constexpr auto value = Value;
};
/**
* @brief Helper type.
* @tparam Index Index of the value to return.
* @tparam List Value list to search into.
*/
template<std::size_t Index, typename List>
inline constexpr auto value_list_element_v = value_list_element<Index, List>::value;
/**
* @brief Concatenates multiple value lists.
* @tparam Value Values provided by the first value list.
* @tparam Other Values provided by the second value list.
* @return A value list composed by the values of both the value lists.
*/
template<auto... Value, auto... Other>
constexpr value_list<Value..., Other...> operator+(value_list<Value...>, value_list<Other...>) {
return {};
}
/*! @brief Primary template isn't defined on purpose. */
template<typename...>
struct value_list_cat;
/*! @brief Concatenates multiple value lists. */
template<>
struct value_list_cat<> {
/*! @brief A value list composed by the values of all the value lists. */
using type = value_list<>;
};
/**
* @brief Concatenates multiple value lists.
* @tparam Value Values provided by the first value list.
* @tparam Other Values provided by the second value list.
* @tparam List Other value lists, if any.
*/
template<auto... Value, auto... Other, typename... List>
struct value_list_cat<value_list<Value...>, value_list<Other...>, List...> {
/*! @brief A value list composed by the values of all the value lists. */
using type = typename value_list_cat<value_list<Value..., Other...>, List...>::type;
};
/**
* @brief Concatenates multiple value lists.
* @tparam Value Values provided by the value list.
*/
template<auto... Value>
struct value_list_cat<value_list<Value...>> {
/*! @brief A value list composed by the values of all the value lists. */
using type = value_list<Value...>;
};
/**
* @brief Helper type.
* @tparam List Value lists to concatenate.
*/
template<typename... List>
using value_list_cat_t = typename value_list_cat<List...>::type;
/*! @brief Same as std::is_invocable, but with tuples. */
template<typename, typename>
struct is_applicable: std::false_type {};
/**
* @copybrief is_applicable
* @tparam Func A valid function type.
* @tparam Tuple Tuple-like type.
* @tparam Args The list of arguments to use to probe the function type.
*/
template<typename Func, template<typename...> class Tuple, typename... Args>
struct is_applicable<Func, Tuple<Args...>>: std::is_invocable<Func, Args...> {};
/**
* @copybrief is_applicable
* @tparam Func A valid function type.
* @tparam Tuple Tuple-like type.
* @tparam Args The list of arguments to use to probe the function type.
*/
template<typename Func, template<typename...> class Tuple, typename... Args>
struct is_applicable<Func, const Tuple<Args...>>: std::is_invocable<Func, Args...> {};
/**
* @brief Helper variable template.
* @tparam Func A valid function type.
* @tparam Args The list of arguments to use to probe the function type.
*/
template<typename Func, typename Args>
inline constexpr bool is_applicable_v = is_applicable<Func, Args>::value;
/*! @brief Same as std::is_invocable_r, but with tuples for arguments. */
template<typename, typename, typename>
struct is_applicable_r: std::false_type {};
/**
* @copybrief is_applicable_r
* @tparam Ret The type to which the return type of the function should be
* convertible.
* @tparam Func A valid function type.
* @tparam Args The list of arguments to use to probe the function type.
*/
template<typename Ret, typename Func, typename... Args>
struct is_applicable_r<Ret, Func, std::tuple<Args...>>: std::is_invocable_r<Ret, Func, Args...> {};
/**
* @brief Helper variable template.
* @tparam Ret The type to which the return type of the function should be
* convertible.
* @tparam Func A valid function type.
* @tparam Args The list of arguments to use to probe the function type.
*/
template<typename Ret, typename Func, typename Args>
inline constexpr bool is_applicable_r_v = is_applicable_r<Ret, Func, Args>::value;
/**
* @brief Provides the member constant `value` to true if a given type is
* complete, false otherwise.
* @tparam Type The type to test.
*/
template<typename Type, typename = void>
struct is_complete: std::false_type {};
/*! @copydoc is_complete */
template<typename Type>
struct is_complete<Type, std::void_t<decltype(sizeof(Type))>>: std::true_type {};
/**
* @brief Helper variable template.
* @tparam Type The type to test.
*/
template<typename Type>
inline constexpr bool is_complete_v = is_complete<Type>::value;
/**
* @brief Provides the member constant `value` to true if a given type is an
* iterator, false otherwise.
* @tparam Type The type to test.
*/
template<typename Type, typename = void>
struct is_iterator: std::false_type {};
/**
* @cond TURN_OFF_DOXYGEN
* Internal details not to be documented.
*/
namespace internal {
template<typename, typename = void>
struct has_iterator_category: std::false_type {};
template<typename Type>
struct has_iterator_category<Type, std::void_t<typename std::iterator_traits<Type>::iterator_category>>: std::true_type {};
} // namespace internal
/**
* Internal details not to be documented.
* @endcond
*/
/*! @copydoc is_iterator */
template<typename Type>
struct is_iterator<Type, std::enable_if_t<!std::is_same_v<std::remove_cv_t<std::remove_pointer_t<Type>>, void>>>
: internal::has_iterator_category<Type> {};
/**
* @brief Helper variable template.
* @tparam Type The type to test.
*/
template<typename Type>
inline constexpr bool is_iterator_v = is_iterator<Type>::value;
/**
* @brief Provides the member constant `value` to true if a given type is both
* an empty and non-final class, false otherwise.
* @tparam Type The type to test
*/
template<typename Type>
struct is_ebco_eligible
: std::conjunction<std::is_empty<Type>, std::negation<std::is_final<Type>>> {};
/**
* @brief Helper variable template.
* @tparam Type The type to test.
*/
template<typename Type>
inline constexpr bool is_ebco_eligible_v = is_ebco_eligible<Type>::value;
/**
* @brief Provides the member constant `value` to true if `Type::is_transparent`
* is valid and denotes a type, false otherwise.
* @tparam Type The type to test.
*/
template<typename Type, typename = void>
struct is_transparent: std::false_type {};
/*! @copydoc is_transparent */
template<typename Type>
struct is_transparent<Type, std::void_t<typename Type::is_transparent>>: std::true_type {};
/**
* @brief Helper variable template.
* @tparam Type The type to test.
*/
template<typename Type>
inline constexpr bool is_transparent_v = is_transparent<Type>::value;
/**
* @brief Provides the member constant `value` to true if a given type is
* equality comparable, false otherwise.
* @tparam Type The type to test.
*/
template<typename Type, typename = void>
struct is_equality_comparable: std::false_type {};
/**
* @cond TURN_OFF_DOXYGEN
* Internal details not to be documented.
*/
namespace internal {
template<typename, typename = void>
struct has_tuple_size_value: std::false_type {};
template<typename Type>
struct has_tuple_size_value<Type, std::void_t<decltype(std::tuple_size<const Type>::value)>>: std::true_type {};
template<typename Type, std::size_t... Index>
[[nodiscard]] constexpr bool unpack_maybe_equality_comparable(std::index_sequence<Index...>) {
return (is_equality_comparable<std::tuple_element_t<Index, Type>>::value && ...);
}
template<typename>
[[nodiscard]] constexpr bool maybe_equality_comparable(choice_t<0>) {
return true;
}
template<typename Type>
[[nodiscard]] constexpr auto maybe_equality_comparable(choice_t<1>) -> decltype(std::declval<typename Type::value_type>(), bool{}) {
if constexpr(is_iterator_v<Type>) {
return true;
} else if constexpr(std::is_same_v<typename Type::value_type, Type>) {
return maybe_equality_comparable<Type>(choice<0>);
} else {
return is_equality_comparable<typename Type::value_type>::value;
}
}
template<typename Type>
[[nodiscard]] constexpr std::enable_if_t<is_complete_v<std::tuple_size<std::remove_cv_t<Type>>>, bool> maybe_equality_comparable(choice_t<2>) {
if constexpr(has_tuple_size_value<Type>::value) {
return unpack_maybe_equality_comparable<Type>(std::make_index_sequence<std::tuple_size<Type>::value>{});
} else {
return maybe_equality_comparable<Type>(choice<1>);
}
}
} // namespace internal
/**
* Internal details not to be documented.
* @endcond
*/
/*! @copydoc is_equality_comparable */
template<typename Type>
struct is_equality_comparable<Type, std::void_t<decltype(std::declval<Type>() == std::declval<Type>())>>
: std::bool_constant<internal::maybe_equality_comparable<Type>(choice<2>)> {};
/**
* @brief Helper variable template.
* @tparam Type The type to test.
*/
template<typename Type>
inline constexpr bool is_equality_comparable_v = is_equality_comparable<Type>::value;
/**
* @brief Transcribes the constness of a type to another type.
* @tparam To The type to which to transcribe the constness.
* @tparam From The type from which to transcribe the constness.
*/
template<typename To, typename From>
struct constness_as {
/*! @brief The type resulting from the transcription of the constness. */
using type = std::remove_const_t<To>;
};
/*! @copydoc constness_as */
template<typename To, typename From>
struct constness_as<To, const From> {
/*! @brief The type resulting from the transcription of the constness. */
using type = const To;
};
/**
* @brief Alias template to facilitate the transcription of the constness.
* @tparam To The type to which to transcribe the constness.
* @tparam From The type from which to transcribe the constness.
*/
template<typename To, typename From>
using constness_as_t = typename constness_as<To, From>::type;
/**
* @brief Extracts the class of a non-static member object or function.
* @tparam Member A pointer to a non-static member object or function.
*/
template<typename Member>
class member_class {
static_assert(std::is_member_pointer_v<Member>, "Invalid pointer type to non-static member object or function");
template<typename Class, typename Ret, typename... Args>
static Class *clazz(Ret (Class::*)(Args...));
template<typename Class, typename Ret, typename... Args>
static Class *clazz(Ret (Class::*)(Args...) const);
template<typename Class, typename Type>
static Class *clazz(Type Class::*);
public:
/*! @brief The class of the given non-static member object or function. */
using type = std::remove_pointer_t<decltype(clazz(std::declval<Member>()))>;
};
/**
* @brief Helper type.
* @tparam Member A pointer to a non-static member object or function.
*/
template<typename Member>
using member_class_t = typename member_class<Member>::type;
/**
* @brief Extracts the n-th argument of a given function or member function.
* @tparam Index The index of the argument to extract.
* @tparam Candidate A valid function, member function or data member.
*/
template<std::size_t Index, auto Candidate>
class nth_argument {
template<typename Ret, typename... Args>
static constexpr type_list<Args...> pick_up(Ret (*)(Args...));
template<typename Ret, typename Class, typename... Args>
static constexpr type_list<Args...> pick_up(Ret (Class ::*)(Args...));
template<typename Ret, typename Class, typename... Args>
static constexpr type_list<Args...> pick_up(Ret (Class ::*)(Args...) const);
template<typename Type, typename Class>
static constexpr type_list<Type> pick_up(Type Class ::*);
public:
/*! @brief N-th argument of the given function or member function. */
using type = type_list_element_t<Index, decltype(pick_up(Candidate))>;
};
/**
* @brief Helper type.
* @tparam Index The index of the argument to extract.
* @tparam Candidate A valid function, member function or data member.
*/
template<std::size_t Index, auto Candidate>
using nth_argument_t = typename nth_argument<Index, Candidate>::type;
} // namespace entt
#endif
// #include "fwd.hpp"
#ifndef ENTT_SIGNAL_FWD_HPP
#define ENTT_SIGNAL_FWD_HPP
#include <memory>
namespace entt {
template<typename>
class delegate;
template<typename = std::allocator<void>>
class basic_dispatcher;
template<typename, typename = std::allocator<void>>
class emitter;
class connection;
struct scoped_connection;
template<typename>
class sink;
template<typename Type, typename = std::allocator<void>>
class sigh;
/*! @brief Alias declaration for the most common use case. */
using dispatcher = basic_dispatcher<>;
/*! @brief Disambiguation tag for constructors and the like. */
template<auto>
struct connect_arg_t {
/*! @brief Default constructor. */
explicit connect_arg_t() = default;
};
/**
* @brief Constant of type connect_arg_t used to disambiguate calls.
* @tparam Candidate Element to connect (likely a free or member function).
*/
template<auto Candidate>
inline constexpr connect_arg_t<Candidate> connect_arg{};
} // namespace entt
#endif
namespace entt {
/**
* @cond TURN_OFF_DOXYGEN
* Internal details not to be documented.
*/
namespace internal {
template<typename Ret, typename... Args>
constexpr auto function_pointer(Ret (*)(Args...)) -> Ret (*)(Args...);
template<typename Ret, typename Type, typename... Args, typename Other>
constexpr auto function_pointer(Ret (*)(Type, Args...), Other &&) -> Ret (*)(Args...);
template<typename Class, typename Ret, typename... Args, typename... Other>
constexpr auto function_pointer(Ret (Class::*)(Args...), Other &&...) -> Ret (*)(Args...);
template<typename Class, typename Ret, typename... Args, typename... Other>
constexpr auto function_pointer(Ret (Class::*)(Args...) const, Other &&...) -> Ret (*)(Args...);
template<typename Class, typename Type, typename... Other>
constexpr auto function_pointer(Type Class::*, Other &&...) -> Type (*)();
template<typename... Type>
using function_pointer_t = decltype(function_pointer(std::declval<Type>()...));
template<typename... Class, typename Ret, typename... Args>
[[nodiscard]] constexpr auto index_sequence_for(Ret (*)(Args...)) {
return std::index_sequence_for<Class..., Args...>{};
}
} // namespace internal
/**
* Internal details not to be documented.
* @endcond
*/
/**
* @brief Basic delegate implementation.
*
* Primary template isn't defined on purpose. All the specializations give a
* compile-time error unless the template parameter is a function type.
*/
template<typename>
class delegate;
/**
* @brief Utility class to use to send around functions and members.
*
* Unmanaged delegate for function pointers and members. Users of this class are
* in charge of disconnecting instances before deleting them.
*
* A delegate can be used as a general purpose invoker without memory overhead
* for free functions possibly with payloads and bound or unbound members.
*
* @tparam Ret Return type of a function type.
* @tparam Args Types of arguments of a function type.
*/
template<typename Ret, typename... Args>
class delegate<Ret(Args...)> {
template<auto Candidate, std::size_t... Index>
[[nodiscard]] auto wrap(std::index_sequence<Index...>) noexcept {
return [](const void *, Args... args) -> Ret {
[[maybe_unused]] const auto arguments = std::forward_as_tuple(std::forward<Args>(args)...);
return static_cast<Ret>(std::invoke(Candidate, std::forward<type_list_element_t<Index, type_list<Args...>>>(std::get<Index>(arguments))...));
};
}
template<auto Candidate, typename Type, std::size_t... Index>
[[nodiscard]] auto wrap(Type &, std::index_sequence<Index...>) noexcept {
return [](const void *payload, Args... args) -> Ret {
[[maybe_unused]] const auto arguments = std::forward_as_tuple(std::forward<Args>(args)...);
Type *curr = static_cast<Type *>(const_cast<constness_as_t<void, Type> *>(payload));
return static_cast<Ret>(std::invoke(Candidate, *curr, std::forward<type_list_element_t<Index, type_list<Args...>>>(std::get<Index>(arguments))...));
};
}
template<auto Candidate, typename Type, std::size_t... Index>
[[nodiscard]] auto wrap(Type *, std::index_sequence<Index...>) noexcept {
return [](const void *payload, Args... args) -> Ret {
[[maybe_unused]] const auto arguments = std::forward_as_tuple(std::forward<Args>(args)...);
Type *curr = static_cast<Type *>(const_cast<constness_as_t<void, Type> *>(payload));
return static_cast<Ret>(std::invoke(Candidate, curr, std::forward<type_list_element_t<Index, type_list<Args...>>>(std::get<Index>(arguments))...));
};
}
public:
/*! @brief Function type of the contained target. */
using function_type = Ret(const void *, Args...);
/*! @brief Function type of the delegate. */
using type = Ret(Args...);
/*! @brief Return type of the delegate. */
using result_type = Ret;
/*! @brief Default constructor. */
delegate() noexcept
: instance{nullptr},
fn{nullptr} {}
/**
* @brief Constructs a delegate with a given object or payload, if any.
* @tparam Candidate Function or member to connect to the delegate.
* @tparam Type Type of class or type of payload, if any.
* @param value_or_instance Optional valid object that fits the purpose.
*/
template<auto Candidate, typename... Type>
delegate(connect_arg_t<Candidate>, Type &&...value_or_instance) noexcept {
connect<Candidate>(std::forward<Type>(value_or_instance)...);
}
/**
* @brief Constructs a delegate and connects an user defined function with
* optional payload.
* @param function Function to connect to the delegate.
* @param payload User defined arbitrary data.
*/
delegate(function_type *function, const void *payload = nullptr) noexcept {
connect(function, payload);
}
/**
* @brief Connects a free function or an unbound member to a delegate.
* @tparam Candidate Function or member to connect to the delegate.
*/
template<auto Candidate>
void connect() noexcept {
instance = nullptr;
if constexpr(std::is_invocable_r_v<Ret, decltype(Candidate), Args...>) {
fn = [](const void *, Args... args) -> Ret {
return Ret(std::invoke(Candidate, std::forward<Args>(args)...));
};
} else if constexpr(std::is_member_pointer_v<decltype(Candidate)>) {
fn = wrap<Candidate>(internal::index_sequence_for<type_list_element_t<0, type_list<Args...>>>(internal::function_pointer_t<decltype(Candidate)>{}));
} else {
fn = wrap<Candidate>(internal::index_sequence_for(internal::function_pointer_t<decltype(Candidate)>{}));
}
}
/**
* @brief Connects a free function with payload or a bound member to a
* delegate.
*
* The delegate isn't responsible for the connected object or the payload.
* Users must always guarantee that the lifetime of the instance overcomes
* the one of the delegate.<br/>
* When used to connect a free function with payload, its signature must be
* such that the instance is the first argument before the ones used to
* define the delegate itself.
*
* @tparam Candidate Function or member to connect to the delegate.
* @tparam Type Type of class or type of payload.
* @param value_or_instance A valid reference that fits the purpose.
*/
template<auto Candidate, typename Type>
void connect(Type &value_or_instance) noexcept {
instance = &value_or_instance;
if constexpr(std::is_invocable_r_v<Ret, decltype(Candidate), Type &, Args...>) {
fn = [](const void *payload, Args... args) -> Ret {
Type *curr = static_cast<Type *>(const_cast<constness_as_t<void, Type> *>(payload));
return Ret(std::invoke(Candidate, *curr, std::forward<Args>(args)...));
};
} else {
fn = wrap<Candidate>(value_or_instance, internal::index_sequence_for(internal::function_pointer_t<decltype(Candidate), Type>{}));
}
}
/**
* @brief Connects a free function with payload or a bound member to a
* delegate.
*
* @sa connect(Type &)
*
* @tparam Candidate Function or member to connect to the delegate.
* @tparam Type Type of class or type of payload.
* @param value_or_instance A valid pointer that fits the purpose.
*/
template<auto Candidate, typename Type>
void connect(Type *value_or_instance) noexcept {
instance = value_or_instance;
if constexpr(std::is_invocable_r_v<Ret, decltype(Candidate), Type *, Args...>) {
fn = [](const void *payload, Args... args) -> Ret {
Type *curr = static_cast<Type *>(const_cast<constness_as_t<void, Type> *>(payload));
return Ret(std::invoke(Candidate, curr, std::forward<Args>(args)...));
};
} else {
fn = wrap<Candidate>(value_or_instance, internal::index_sequence_for(internal::function_pointer_t<decltype(Candidate), Type>{}));
}
}
/**
* @brief Connects an user defined function with optional payload to a
* delegate.
*
* The delegate isn't responsible for the connected object or the payload.
* Users must always guarantee that the lifetime of an instance overcomes
* the one of the delegate.<br/>
* The payload is returned as the first argument to the target function in
* all cases.
*
* @param function Function to connect to the delegate.
* @param payload User defined arbitrary data.
*/
void connect(function_type *function, const void *payload = nullptr) noexcept {
ENTT_ASSERT(function != nullptr, "Uninitialized function pointer");
instance = payload;
fn = function;
}
/**
* @brief Resets a delegate.
*
* After a reset, a delegate cannot be invoked anymore.
*/
void reset() noexcept {
instance = nullptr;
fn = nullptr;
}
/**
* @brief Returns the instance or the payload linked to a delegate, if any.
* @return An opaque pointer to the underlying data.
*/
[[nodiscard]] const void *data() const noexcept {
return instance;
}
/**
* @brief Triggers a delegate.
*
* The delegate invokes the underlying function and returns the result.
*
* @warning
* Attempting to trigger an invalid delegate results in undefined
* behavior.
*
* @param args Arguments to use to invoke the underlying function.
* @return The value returned by the underlying function.
*/
Ret operator()(Args... args) const {
ENTT_ASSERT(static_cast<bool>(*this), "Uninitialized delegate");
return fn(instance, std::forward<Args>(args)...);
}
/**
* @brief Checks whether a delegate actually stores a listener.
* @return False if the delegate is empty, true otherwise.
*/
[[nodiscard]] explicit operator bool() const noexcept {
// no need to also test instance
return !(fn == nullptr);
}
/**
* @brief Compares the contents of two delegates.
* @param other Delegate with which to compare.
* @return False if the two contents differ, true otherwise.
*/
[[nodiscard]] bool operator==(const delegate<Ret(Args...)> &other) const noexcept {
return fn == other.fn && instance == other.instance;
}
private:
const void *instance;
function_type *fn;
};
/**
* @brief Compares the contents of two delegates.
* @tparam Ret Return type of a function type.
* @tparam Args Types of arguments of a function type.
* @param lhs A valid delegate object.
* @param rhs A valid delegate object.
* @return True if the two contents differ, false otherwise.
*/
template<typename Ret, typename... Args>
[[nodiscard]] bool operator!=(const delegate<Ret(Args...)> &lhs, const delegate<Ret(Args...)> &rhs) noexcept {
return !(lhs == rhs);
}
/**
* @brief Deduction guide.
* @tparam Candidate Function or member to connect to the delegate.
*/
template<auto Candidate>
delegate(connect_arg_t<Candidate>) -> delegate<std::remove_pointer_t<internal::function_pointer_t<decltype(Candidate)>>>;
/**
* @brief Deduction guide.
* @tparam Candidate Function or member to connect to the delegate.
* @tparam Type Type of class or type of payload.
*/
template<auto Candidate, typename Type>
delegate(connect_arg_t<Candidate>, Type &&) -> delegate<std::remove_pointer_t<internal::function_pointer_t<decltype(Candidate), Type>>>;
/**
* @brief Deduction guide.
* @tparam Ret Return type of a function type.
* @tparam Args Types of arguments of a function type.
*/
template<typename Ret, typename... Args>
delegate(Ret (*)(const void *, Args...), const void * = nullptr) -> delegate<Ret(Args...)>;
} // namespace entt
#endif
// #include "fwd.hpp"
namespace entt {
/**
* @brief Sink class.
*
* Primary template isn't defined on purpose. All the specializations give a
* compile-time error unless the template parameter is a function type.
*
* @tparam Type A valid signal handler type.
*/
template<typename Type>
class sink;
/**
* @brief Unmanaged signal handler.
*
* Primary template isn't defined on purpose. All the specializations give a
* compile-time error unless the template parameter is a function type.
*
* @tparam Type A valid function type.
* @tparam Allocator Type of allocator used to manage memory and elements.
*/
template<typename Type, typename Allocator>
class sigh;
/**
* @brief Unmanaged signal handler.
*
* It works directly with references to classes and pointers to member functions
* as well as pointers to free functions. Users of this class are in charge of
* disconnecting instances before deleting them.
*
* This class serves mainly two purposes:
*
* * Creating signals to use later to notify a bunch of listeners.
* * Collecting results from a set of functions like in a voting system.
*
* @tparam Ret Return type of a function type.
* @tparam Args Types of arguments of a function type.
* @tparam Allocator Type of allocator used to manage memory and elements.
*/
template<typename Ret, typename... Args, typename Allocator>
class sigh<Ret(Args...), Allocator> {
/*! @brief A sink is allowed to modify a signal. */
friend class sink<sigh<Ret(Args...), Allocator>>;
using alloc_traits = std::allocator_traits<Allocator>;
using container_type = std::vector<delegate<Ret(Args...)>, typename alloc_traits::template rebind_alloc<delegate<Ret(Args...)>>>;
public:
/*! @brief Allocator type. */
using allocator_type = Allocator;
/*! @brief Unsigned integer type. */
using size_type = std::size_t;
/*! @brief Sink type. */
using sink_type = sink<sigh<Ret(Args...), Allocator>>;
/*! @brief Default constructor. */
sigh() noexcept(std::is_nothrow_default_constructible_v<allocator_type> &&std::is_nothrow_constructible_v<container_type, const allocator_type &>)
: sigh{allocator_type{}} {}
/**
* @brief Constructs a signal handler with a given allocator.
* @param allocator The allocator to use.
*/
explicit sigh(const allocator_type &allocator) noexcept(std::is_nothrow_constructible_v<container_type, const allocator_type &>)
: calls{allocator} {}
/**
* @brief Copy constructor.
* @param other The instance to copy from.
*/
sigh(const sigh &other) noexcept(std::is_nothrow_copy_constructible_v<container_type>)
: calls{other.calls} {}
/**
* @brief Allocator-extended copy constructor.
* @param other The instance to copy from.
* @param allocator The allocator to use.
*/
sigh(const sigh &other, const allocator_type &allocator) noexcept(std::is_nothrow_constructible_v<container_type, const container_type &, const allocator_type &>)
: calls{other.calls, allocator} {}
/**
* @brief Move constructor.
* @param other The instance to move from.
*/
sigh(sigh &&other) noexcept(std::is_nothrow_move_constructible_v<container_type>)
: calls{std::move(other.calls)} {}
/**
* @brief Allocator-extended move constructor.
* @param other The instance to move from.
* @param allocator The allocator to use.
*/
sigh(sigh &&other, const allocator_type &allocator) noexcept(std::is_nothrow_constructible_v<container_type, container_type &&, const allocator_type &>)
: calls{std::move(other.calls), allocator} {}
/**
* @brief Copy assignment operator.
* @param other The instance to copy from.
* @return This signal handler.
*/
sigh &operator=(const sigh &other) noexcept(std::is_nothrow_copy_assignable_v<container_type>) {
calls = other.calls;
return *this;
}
/**
* @brief Move assignment operator.
* @param other The instance to move from.
* @return This signal handler.
*/
sigh &operator=(sigh &&other) noexcept(std::is_nothrow_move_assignable_v<container_type>) {
calls = std::move(other.calls);
return *this;
}
/**
* @brief Exchanges the contents with those of a given signal handler.
* @param other Signal handler to exchange the content with.
*/
void swap(sigh &other) noexcept(std::is_nothrow_swappable_v<container_type>) {
using std::swap;
swap(calls, other.calls);
}
/**
* @brief Returns the associated allocator.
* @return The associated allocator.
*/
[[nodiscard]] constexpr allocator_type get_allocator() const noexcept {
return calls.get_allocator();
}
/**
* @brief Number of listeners connected to the signal.
* @return Number of listeners currently connected.
*/
[[nodiscard]] size_type size() const noexcept {
return calls.size();
}
/**
* @brief Returns false if at least a listener is connected to the signal.
* @return True if the signal has no listeners connected, false otherwise.
*/
[[nodiscard]] bool empty() const noexcept {
return calls.empty();
}
/**
* @brief Triggers a signal.
*
* All the listeners are notified. Order isn't guaranteed.
*
* @param args Arguments to use to invoke listeners.
*/
void publish(Args... args) const {
for(auto &&call: std::as_const(calls)) {
call(args...);
}
}
/**
* @brief Collects return values from the listeners.
*
* The collector must expose a call operator with the following properties:
*
* * The return type is either `void` or such that it's convertible to
* `bool`. In the second case, a true value will stop the iteration.
* * The list of parameters is empty if `Ret` is `void`, otherwise it
* contains a single element such that `Ret` is convertible to it.
*
* @tparam Func Type of collector to use, if any.
* @param func A valid function object.
* @param args Arguments to use to invoke listeners.
*/
template<typename Func>
void collect(Func func, Args... args) const {
for(auto &&call: calls) {
if constexpr(std::is_void_v<Ret>) {
if constexpr(std::is_invocable_r_v<bool, Func>) {
call(args...);
if(func()) {
break;
}
} else {
call(args...);
func();
}
} else {
if constexpr(std::is_invocable_r_v<bool, Func, Ret>) {
if(func(call(args...))) {
break;
}
} else {
func(call(args...));
}
}
}
}
private:
container_type calls;
};
/**
* @brief Connection class.
*
* Opaque object the aim of which is to allow users to release an already
* estabilished connection without having to keep a reference to the signal or
* the sink that generated it.
*/
class connection {
/*! @brief A sink is allowed to create connection objects. */
template<typename>
friend class sink;
connection(delegate<void(void *)> fn, void *ref)
: disconnect{fn}, signal{ref} {}
public:
/*! @brief Default constructor. */
connection()
: disconnect{},
signal{} {}
/**
* @brief Checks whether a connection is properly initialized.
* @return True if the connection is properly initialized, false otherwise.
*/
[[nodiscard]] explicit operator bool() const noexcept {
return static_cast<bool>(disconnect);
}
/*! @brief Breaks the connection. */
void release() {
if(disconnect) {
disconnect(signal);
disconnect.reset();
}
}
private:
delegate<void(void *)> disconnect;
void *signal;
};
/**
* @brief Scoped connection class.
*
* Opaque object the aim of which is to allow users to release an already
* estabilished connection without having to keep a reference to the signal or
* the sink that generated it.<br/>
* A scoped connection automatically breaks the link between the two objects
* when it goes out of scope.
*/
struct scoped_connection {
/*! @brief Default constructor. */
scoped_connection() = default;
/**
* @brief Constructs a scoped connection from a basic connection.
* @param other A valid connection object.
*/
scoped_connection(const connection &other)
: conn{other} {}
/*! @brief Default copy constructor, deleted on purpose. */
scoped_connection(const scoped_connection &) = delete;
/**
* @brief Move constructor.
* @param other The scoped connection to move from.
*/
scoped_connection(scoped_connection &&other) noexcept
: conn{std::exchange(other.conn, {})} {}
/*! @brief Automatically breaks the link on destruction. */
~scoped_connection() {
conn.release();
}
/**
* @brief Default copy assignment operator, deleted on purpose.
* @return This scoped connection.
*/
scoped_connection &operator=(const scoped_connection &) = delete;
/**
* @brief Move assignment operator.
* @param other The scoped connection to move from.
* @return This scoped connection.
*/
scoped_connection &operator=(scoped_connection &&other) noexcept {
conn = std::exchange(other.conn, {});
return *this;
}
/**
* @brief Acquires a connection.
* @param other The connection object to acquire.
* @return This scoped connection.
*/
scoped_connection &operator=(connection other) {
conn = std::move(other);
return *this;
}
/**
* @brief Checks whether a scoped connection is properly initialized.
* @return True if the connection is properly initialized, false otherwise.
*/
[[nodiscard]] explicit operator bool() const noexcept {
return static_cast<bool>(conn);
}
/*! @brief Breaks the connection. */
void release() {
conn.release();
}
private:
connection conn;
};
/**
* @brief Sink class.
*
* A sink is used to connect listeners to signals and to disconnect them.<br/>
* The function type for a listener is the one of the signal to which it
* belongs.
*
* The clear separation between a signal and a sink permits to store the former
* as private data member without exposing the publish functionality to the
* users of the class.
*
* @warning
* Lifetime of a sink must not overcome that of the signal to which it refers.
* In any other case, attempting to use a sink results in undefined behavior.
*
* @tparam Ret Return type of a function type.
* @tparam Args Types of arguments of a function type.
* @tparam Allocator Type of allocator used to manage memory and elements.
*/
template<typename Ret, typename... Args, typename Allocator>
class sink<sigh<Ret(Args...), Allocator>> {
using signal_type = sigh<Ret(Args...), Allocator>;
using difference_type = typename signal_type::container_type::difference_type;
template<auto Candidate, typename Type>
static void release(Type value_or_instance, void *signal) {
sink{*static_cast<signal_type *>(signal)}.disconnect<Candidate>(value_or_instance);
}
template<auto Candidate>
static void release(void *signal) {
sink{*static_cast<signal_type *>(signal)}.disconnect<Candidate>();
}
auto before(delegate<Ret(Args...)> call) {
const auto &calls = signal->calls;
const auto it = std::find(calls.cbegin(), calls.cend(), std::move(call));
sink other{*this};
other.offset = calls.cend() - it;
return other;
}
public:
/**
* @brief Constructs a sink that is allowed to modify a given signal.
* @param ref A valid reference to a signal object.
*/
sink(sigh<Ret(Args...), Allocator> &ref) noexcept
: offset{},
signal{&ref} {}
/**
* @brief Returns false if at least a listener is connected to the sink.
* @return True if the sink has no listeners connected, false otherwise.
*/
[[nodiscard]] bool empty() const noexcept {
return signal->calls.empty();
}
/**
* @brief Returns a sink that connects before a given free function or an
* unbound member.
* @tparam Function A valid free function pointer.
* @return A properly initialized sink object.
*/
template<auto Function>
[[nodiscard]] sink before() {
delegate<Ret(Args...)> call{};
call.template connect<Function>();
return before(std::move(call));
}
/**
* @brief Returns a sink that connects before a free function with payload
* or a bound member.
* @tparam Candidate Member or free function to look for.
* @tparam Type Type of class or type of payload.
* @param value_or_instance A valid object that fits the purpose.
* @return A properly initialized sink object.
*/
template<auto Candidate, typename Type>
[[nodiscard]] sink before(Type &&value_or_instance) {
delegate<Ret(Args...)> call{};
call.template connect<Candidate>(value_or_instance);
return before(std::move(call));
}
/**
* @brief Returns a sink that connects before a given instance or specific
* payload.
* @tparam Type Type of class or type of payload.
* @param value_or_instance A valid object that fits the purpose.
* @return A properly initialized sink object.
*/
template<typename Type, typename = std::enable_if_t<!std::is_same_v<std::decay_t<std::remove_pointer_t<Type>>, void>, sink>>
[[nodiscard]] sink before(Type &value_or_instance) {
return before(&value_or_instance);
}
/**
* @brief Returns a sink that connects before a given instance or specific
* payload.
* @param value_or_instance A valid pointer that fits the purpose.
* @return A properly initialized sink object.
*/
[[nodiscard]] sink before(const void *value_or_instance) {
sink other{*this};
if(value_or_instance) {
const auto &calls = signal->calls;
const auto it = std::find_if(calls.cbegin(), calls.cend(), [value_or_instance](const auto &delegate) {
return delegate.data() == value_or_instance;
});
other.offset = calls.cend() - it;
}
return other;
}
/**
* @brief Returns a sink that connects before anything else.
* @return A properly initialized sink object.
*/
[[nodiscard]] sink before() {
sink other{*this};
other.offset = signal->calls.size();
return other;
}
/**
* @brief Connects a free function (with or without payload), a bound or an
* unbound member to a signal.
*
* The signal isn't responsible for the connected object or the payload, if
* any. Users must guarantee that the lifetime of the instance overcomes the
* one of the signal. On the other side, the signal handler performs
* checks to avoid multiple connections for the same function.<br/>
* When used to connect a free function with payload, its signature must be
* such that the instance is the first argument before the ones used to
* define the signal itself.
*
* @tparam Candidate Function or member to connect to the signal.
* @tparam Type Type of class or type of payload, if any.
* @param value_or_instance A valid object that fits the purpose, if any.
* @return A properly initialized connection object.
*/
template<auto Candidate, typename... Type>
connection connect(Type &&...value_or_instance) {
disconnect<Candidate>(value_or_instance...);
delegate<Ret(Args...)> call{};
call.template connect<Candidate>(value_or_instance...);
signal->calls.insert(signal->calls.end() - offset, std::move(call));
delegate<void(void *)> conn{};
conn.template connect<&release<Candidate, Type...>>(value_or_instance...);
return {std::move(conn), signal};
}
/**
* @brief Disconnects a free function (with or without payload), a bound or
* an unbound member from a signal.
* @tparam Candidate Function or member to disconnect from the signal.
* @tparam Type Type of class or type of payload, if any.
* @param value_or_instance A valid object that fits the purpose, if any.
*/
template<auto Candidate, typename... Type>
void disconnect(Type &&...value_or_instance) {
auto &calls = signal->calls;
delegate<Ret(Args...)> call{};
call.template connect<Candidate>(value_or_instance...);
calls.erase(std::remove(calls.begin(), calls.end(), std::move(call)), calls.end());
}
/**
* @brief Disconnects free functions with payload or bound members from a
* signal.
* @tparam Type Type of class or type of payload.
* @param value_or_instance A valid object that fits the purpose.
*/
template<typename Type, typename = std::enable_if_t<!std::is_same_v<std::decay_t<std::remove_pointer_t<Type>>, void>>>
void disconnect(Type &value_or_instance) {
disconnect(&value_or_instance);
}
/**
* @brief Disconnects free functions with payload or bound members from a
* signal.
* @param value_or_instance A valid object that fits the purpose.
*/
void disconnect(const void *value_or_instance) {
if(value_or_instance) {
auto &calls = signal->calls;
auto predicate = [value_or_instance](const auto &delegate) { return delegate.data() == value_or_instance; };
calls.erase(std::remove_if(calls.begin(), calls.end(), std::move(predicate)), calls.end());
}
}
/*! @brief Disconnects all the listeners from a signal. */
void disconnect() {
signal->calls.clear();
}
private:
difference_type offset;
signal_type *signal;
};
/**
* @brief Deduction guide.
*
* It allows to deduce the signal handler type of a sink directly from the
* signal it refers to.
*
* @tparam Ret Return type of a function type.
* @tparam Args Types of arguments of a function type.
* @tparam Allocator Type of allocator used to manage memory and elements.
*/
template<typename Ret, typename... Args, typename Allocator>
sink(sigh<Ret(Args...), Allocator> &) -> sink<sigh<Ret(Args...), Allocator>>;
} // namespace entt
#endif
// #include "fwd.hpp"
namespace entt {
/**
* @brief Mixin type used to add signal support to storage types.
*
* The function type of a listener is equivalent to:
*
* @code{.cpp}
* void(basic_registry<entity_type> &, entity_type);
* @endcode
*
* This applies to all signals made available.
*
* @tparam Type The type of the underlying storage.
*/
template<typename Type>
class sigh_storage_mixin final: public Type {
using basic_registry_type = basic_registry<typename Type::entity_type, typename Type::base_type::allocator_type>;
using sigh_type = sigh<void(basic_registry_type &, const typename Type::entity_type), typename Type::allocator_type>;
using basic_iterator = typename Type::basic_iterator;
void pop(basic_iterator first, basic_iterator last) override {
ENTT_ASSERT(owner != nullptr, "Invalid pointer to registry");
for(; first != last; ++first) {
const auto entt = *first;
destruction.publish(*owner, entt);
const auto it = Type::find(entt);
Type::pop(it, it + 1u);
}
}
basic_iterator try_emplace(const typename basic_registry_type::entity_type entt, const bool force_back, const void *value) final {
ENTT_ASSERT(owner != nullptr, "Invalid pointer to registry");
Type::try_emplace(entt, force_back, value);
construction.publish(*owner, entt);
return Type::find(entt);
}
public:
/*! @brief Allocator type. */
using allocator_type = typename Type::allocator_type;
/*! @brief Underlying entity identifier. */
using entity_type = typename Type::entity_type;
/*! @brief Expected registry type. */
using registry_type = basic_registry_type;
/*! @brief Default constructor. */
sigh_storage_mixin()
: sigh_storage_mixin{allocator_type{}} {}
/**
* @brief Constructs an empty storage with a given allocator.
* @param allocator The allocator to use.
*/
explicit sigh_storage_mixin(const allocator_type &allocator)
: Type{allocator},
owner{},
construction{allocator},
destruction{allocator},
update{allocator} {}
/**
* @brief Move constructor.
* @param other The instance to move from.
*/
sigh_storage_mixin(sigh_storage_mixin &&other) noexcept
: Type{std::move(other)},
owner{other.owner},
construction{std::move(other.construction)},
destruction{std::move(other.destruction)},
update{std::move(other.update)} {}
/**
* @brief Allocator-extended move constructor.
* @param other The instance to move from.
* @param allocator The allocator to use.
*/
sigh_storage_mixin(sigh_storage_mixin &&other, const allocator_type &allocator) noexcept
: Type{std::move(other), allocator},
owner{other.owner},
construction{std::move(other.construction), allocator},
destruction{std::move(other.destruction), allocator},
update{std::move(other.update), allocator} {}
/**
* @brief Move assignment operator.
* @param other The instance to move from.
* @return This storage.
*/
sigh_storage_mixin &operator=(sigh_storage_mixin &&other) noexcept {
Type::operator=(std::move(other));
owner = other.owner;
construction = std::move(other.construction);
destruction = std::move(other.destruction);
update = std::move(other.update);
return *this;
}
/**
* @brief Exchanges the contents with those of a given storage.
* @param other Storage to exchange the content with.
*/
void swap(sigh_storage_mixin &other) {
using std::swap;
Type::swap(other);
swap(owner, other.owner);
swap(construction, other.construction);
swap(destruction, other.destruction);
swap(update, other.update);
}
/**
* @brief Returns a sink object.
*
* The sink returned by this function can be used to receive notifications
* whenever a new instance is created and assigned to an entity.<br/>
* Listeners are invoked after the object has been assigned to the entity.
*
* @sa sink
*
* @return A temporary sink object.
*/
[[nodiscard]] auto on_construct() noexcept {
return sink{construction};
}
/**
* @brief Returns a sink object.
*
* The sink returned by this function can be used to receive notifications
* whenever an instance is explicitly updated.<br/>
* Listeners are invoked after the object has been updated.
*
* @sa sink
*
* @return A temporary sink object.
*/
[[nodiscard]] auto on_update() noexcept {
return sink{update};
}
/**
* @brief Returns a sink object.
*
* The sink returned by this function can be used to receive notifications
* whenever an instance is removed from an entity and thus destroyed.<br/>
* Listeners are invoked before the object has been removed from the entity.
*
* @sa sink
*
* @return A temporary sink object.
*/
[[nodiscard]] auto on_destroy() noexcept {
return sink{destruction};
}
/**
* @brief Assigns entities to a storage.
* @tparam Args Types of arguments to use to construct the object.
* @param entt A valid identifier.
* @param args Parameters to use to initialize the object.
* @return A reference to the newly created object.
*/
template<typename... Args>
decltype(auto) emplace(const entity_type entt, Args &&...args) {
ENTT_ASSERT(owner != nullptr, "Invalid pointer to registry");
Type::emplace(entt, std::forward<Args>(args)...);
construction.publish(*owner, entt);
return this->get(entt);
}
/**
* @brief Patches the given instance for an entity.
* @tparam Func Types of the function objects to invoke.
* @param entt A valid identifier.
* @param func Valid function objects.
* @return A reference to the patched instance.
*/
template<typename... Func>
decltype(auto) patch(const entity_type entt, Func &&...func) {
ENTT_ASSERT(owner != nullptr, "Invalid pointer to registry");
Type::patch(entt, std::forward<Func>(func)...);
update.publish(*owner, entt);
return this->get(entt);
}
/**
* @brief Assigns entities to a storage.
* @tparam It Type of input iterator.
* @tparam Args Types of arguments to use to construct the objects assigned
* to the entities.
* @param first An iterator to the first element of the range of entities.
* @param last An iterator past the last element of the range of entities.
* @param args Parameters to use to initialize the objects assigned to the
* entities.
*/
template<typename It, typename... Args>
void insert(It first, It last, Args &&...args) {
ENTT_ASSERT(owner != nullptr, "Invalid pointer to registry");
Type::insert(first, last, std::forward<Args>(args)...);
for(auto it = construction.empty() ? last : first; it != last; ++it) {
construction.publish(*owner, *it);
}
}
/**
* @brief Forwards variables to derived classes, if any.
* @param value A variable wrapped in an opaque container.
*/
void bind(any value) noexcept final {
auto *reg = any_cast<basic_registry_type>(&value);
owner = reg ? reg : owner;
Type::bind(std::move(value));
}
private:
basic_registry_type *owner;
sigh_type construction;
sigh_type destruction;
sigh_type update;
};
} // namespace entt
#endif
namespace entt {
/**
* @cond TURN_OFF_DOXYGEN
* Internal details not to be documented.
*/
namespace internal {
template<typename Container>
class storage_iterator final {
friend storage_iterator<const Container>;
using container_type = std::remove_const_t<Container>;
using alloc_traits = std::allocator_traits<typename container_type::allocator_type>;
using comp_traits = component_traits<std::remove_pointer_t<typename container_type::value_type>>;
using iterator_traits = std::iterator_traits<std::conditional_t<
std::is_const_v<Container>,
typename alloc_traits::template rebind_traits<typename std::pointer_traits<typename container_type::value_type>::element_type>::const_pointer,
typename alloc_traits::template rebind_traits<typename std::pointer_traits<typename container_type::value_type>::element_type>::pointer>>;
public:
using value_type = typename iterator_traits::value_type;
using pointer = typename iterator_traits::pointer;
using reference = typename iterator_traits::reference;
using difference_type = typename iterator_traits::difference_type;
using iterator_category = std::random_access_iterator_tag;
constexpr storage_iterator() noexcept = default;
constexpr storage_iterator(Container *ref, const difference_type idx) noexcept
: packed{ref},
offset{idx} {}
template<bool Const = std::is_const_v<Container>, typename = std::enable_if_t<Const>>
constexpr storage_iterator(const storage_iterator<std::remove_const_t<Container>> &other) noexcept
: storage_iterator{other.packed, other.offset} {}
constexpr storage_iterator &operator++() noexcept {
return --offset, *this;
}
constexpr storage_iterator operator++(int) noexcept {
storage_iterator orig = *this;
return ++(*this), orig;
}
constexpr storage_iterator &operator--() noexcept {
return ++offset, *this;
}
constexpr storage_iterator operator--(int) noexcept {
storage_iterator orig = *this;
return operator--(), orig;
}
constexpr storage_iterator &operator+=(const difference_type value) noexcept {
offset -= value;
return *this;
}
constexpr storage_iterator operator+(const difference_type value) const noexcept {
storage_iterator copy = *this;
return (copy += value);
}
constexpr storage_iterator &operator-=(const difference_type value) noexcept {
return (*this += -value);
}
constexpr storage_iterator operator-(const difference_type value) const noexcept {
return (*this + -value);
}
[[nodiscard]] constexpr reference operator[](const difference_type value) const noexcept {
const auto pos = index() - value;
return (*packed)[pos / comp_traits::page_size][fast_mod(pos, comp_traits::page_size)];
}
[[nodiscard]] constexpr pointer operator->() const noexcept {
const auto pos = index();
return (*packed)[pos / comp_traits::page_size] + fast_mod(pos, comp_traits::page_size);
}
[[nodiscard]] constexpr reference operator*() const noexcept {
return *operator->();
}
[[nodiscard]] constexpr difference_type index() const noexcept {
return offset - 1;
}
private:
Container *packed;
difference_type offset;
};
template<typename CLhs, typename CRhs>
[[nodiscard]] constexpr std::ptrdiff_t operator-(const storage_iterator<CLhs> &lhs, const storage_iterator<CRhs> &rhs) noexcept {
return rhs.index() - lhs.index();
}
template<typename CLhs, typename CRhs>
[[nodiscard]] constexpr bool operator==(const storage_iterator<CLhs> &lhs, const storage_iterator<CRhs> &rhs) noexcept {
return lhs.index() == rhs.index();
}
template<typename CLhs, typename CRhs>
[[nodiscard]] constexpr bool operator!=(const storage_iterator<CLhs> &lhs, const storage_iterator<CRhs> &rhs) noexcept {
return !(lhs == rhs);
}
template<typename CLhs, typename CRhs>
[[nodiscard]] constexpr bool operator<(const storage_iterator<CLhs> &lhs, const storage_iterator<CRhs> &rhs) noexcept {
return lhs.index() > rhs.index();
}
template<typename CLhs, typename CRhs>
[[nodiscard]] constexpr bool operator>(const storage_iterator<CLhs> &lhs, const storage_iterator<CRhs> &rhs) noexcept {
return lhs.index() < rhs.index();
}
template<typename CLhs, typename CRhs>
[[nodiscard]] constexpr bool operator<=(const storage_iterator<CLhs> &lhs, const storage_iterator<CRhs> &rhs) noexcept {
return !(lhs > rhs);
}
template<typename CLhs, typename CRhs>
[[nodiscard]] constexpr bool operator>=(const storage_iterator<CLhs> &lhs, const storage_iterator<CRhs> &rhs) noexcept {
return !(lhs < rhs);
}
template<typename It, typename... Other>
class extended_storage_iterator final {
template<typename Iter, typename... Args>
friend class extended_storage_iterator;
public:
using value_type = decltype(std::tuple_cat(std::make_tuple(*std::declval<It>()), std::forward_as_tuple(*std::declval<Other>()...)));
using pointer = input_iterator_pointer<value_type>;
using reference = value_type;
using difference_type = std::ptrdiff_t;
using iterator_category = std::input_iterator_tag;
constexpr extended_storage_iterator()
: it{} {}
constexpr extended_storage_iterator(It base, Other... other)
: it{base, other...} {}
template<typename... Args, typename = std::enable_if_t<(!std::is_same_v<Other, Args> && ...) && (std::is_constructible_v<Other, Args> && ...)>>
constexpr extended_storage_iterator(const extended_storage_iterator<It, Args...> &other)
: it{other.it} {}
constexpr extended_storage_iterator &operator++() noexcept {
return ++std::get<It>(it), (++std::get<Other>(it), ...), *this;
}
constexpr extended_storage_iterator operator++(int) noexcept {
extended_storage_iterator orig = *this;
return ++(*this), orig;
}
[[nodiscard]] constexpr pointer operator->() const noexcept {
return operator*();
}
[[nodiscard]] constexpr reference operator*() const noexcept {
return {*std::get<It>(it), *std::get<Other>(it)...};
}
template<typename... CLhs, typename... CRhs>
friend constexpr bool operator==(const extended_storage_iterator<CLhs...> &, const extended_storage_iterator<CRhs...> &) noexcept;
private:
std::tuple<It, Other...> it;
};
template<typename... CLhs, typename... CRhs>
[[nodiscard]] constexpr bool operator==(const extended_storage_iterator<CLhs...> &lhs, const extended_storage_iterator<CRhs...> &rhs) noexcept {
return std::get<0>(lhs.it) == std::get<0>(rhs.it);
}
template<typename... CLhs, typename... CRhs>
[[nodiscard]] constexpr bool operator!=(const extended_storage_iterator<CLhs...> &lhs, const extended_storage_iterator<CRhs...> &rhs) noexcept {
return !(lhs == rhs);
}
} // namespace internal
/**
* Internal details not to be documented.
* @endcond
*/
/**
* @brief Basic storage implementation.
*
* Internal data structures arrange elements to maximize performance. There are
* no guarantees that objects are returned in the insertion order when iterate
* a storage. Do not make assumption on the order in any case.
*
* @warning
* Empty types aren't explicitly instantiated. Therefore, many of the functions
* normally available for non-empty types will not be available for empty ones.
*
* @tparam Type Type of objects assigned to the entities.
* @tparam Entity A valid entity type (see entt_traits for more details).
* @tparam Allocator Type of allocator used to manage memory and elements.
*/
template<typename Type, typename Entity, typename Allocator, typename>
class basic_storage: public basic_sparse_set<Entity, typename std::allocator_traits<Allocator>::template rebind_alloc<Entity>> {
using alloc_traits = std::allocator_traits<Allocator>;
static_assert(std::is_same_v<typename alloc_traits::value_type, Type>, "Invalid value type");
using underlying_type = basic_sparse_set<Entity, typename alloc_traits::template rebind_alloc<Entity>>;
using container_type = std::vector<typename alloc_traits::pointer, typename alloc_traits::template rebind_alloc<typename alloc_traits::pointer>>;
using comp_traits = component_traits<Type>;
static constexpr bool is_pinned_type_v = !(std::is_move_constructible_v<Type> && std::is_move_assignable_v<Type>);
[[nodiscard]] auto &element_at(const std::size_t pos) const {
return packed.first()[pos / comp_traits::page_size][fast_mod(pos, comp_traits::page_size)];
}
auto assure_at_least(const std::size_t pos) {
auto &&container = packed.first();
const auto idx = pos / comp_traits::page_size;
if(!(idx < container.size())) {
auto curr = container.size();
container.resize(idx + 1u, nullptr);
ENTT_TRY {
for(const auto last = container.size(); curr < last; ++curr) {
container[curr] = alloc_traits::allocate(packed.second(), comp_traits::page_size);
}
}
ENTT_CATCH {
container.resize(curr);
ENTT_THROW;
}
}
return container[idx] + fast_mod(pos, comp_traits::page_size);
}
template<typename... Args>
auto emplace_element(const Entity entt, const bool force_back, Args &&...args) {
const auto it = base_type::try_emplace(entt, force_back);
ENTT_TRY {
auto elem = assure_at_least(static_cast<size_type>(it.index()));
entt::uninitialized_construct_using_allocator(to_address(elem), packed.second(), std::forward<Args>(args)...);
}
ENTT_CATCH {
base_type::pop(it, it + 1u);
ENTT_THROW;
}
return it;
}
void shrink_to_size(const std::size_t sz) {
for(auto pos = sz, length = base_type::size(); pos < length; ++pos) {
if constexpr(comp_traits::in_place_delete) {
if(base_type::at(pos) != tombstone) {
std::destroy_at(std::addressof(element_at(pos)));
}
} else {
std::destroy_at(std::addressof(element_at(pos)));
}
}
auto &&container = packed.first();
auto page_allocator{packed.second()};
const auto from = (sz + comp_traits::page_size - 1u) / comp_traits::page_size;
for(auto pos = from, last = container.size(); pos < last; ++pos) {
alloc_traits::deallocate(page_allocator, container[pos], comp_traits::page_size);
}
container.resize(from);
}
private:
const void *get_at(const std::size_t pos) const final {
return std::addressof(element_at(pos));
}
void swap_at([[maybe_unused]] const std::size_t lhs, [[maybe_unused]] const std::size_t rhs) final {
// use a runtime value to avoid compile-time suppression that drives the code coverage tool crazy
ENTT_ASSERT((lhs + 1u) && !is_pinned_type_v, "Pinned type");
if constexpr(!is_pinned_type_v) {
using std::swap;
swap(element_at(lhs), element_at(rhs));
}
}
void move_element([[maybe_unused]] const std::size_t from, [[maybe_unused]] const std::size_t to) final {
// use a runtime value to avoid compile-time suppression that drives the code coverage tool crazy
ENTT_ASSERT((from + 1u) && !is_pinned_type_v, "Pinned type");
if constexpr(!is_pinned_type_v) {
auto &elem = element_at(from);
entt::uninitialized_construct_using_allocator(to_address(assure_at_least(to)), packed.second(), std::move(elem));
std::destroy_at(std::addressof(elem));
}
}
protected:
/*! @brief Random access iterator type. */
using basic_iterator = typename underlying_type::basic_iterator;
/**
* @brief Erases entities from a sparse set.
* @param first An iterator to the first element of the range of entities.
* @param last An iterator past the last element of the range of entities.
*/
void pop(basic_iterator first, basic_iterator last) override {
for(; first != last; ++first) {
// cannot use first.index() because it would break with cross iterators
auto &elem = element_at(base_type::index(*first));
if constexpr(comp_traits::in_place_delete) {
base_type::in_place_pop(first);
std::destroy_at(std::addressof(elem));
} else {
auto &other = element_at(base_type::size() - 1u);
// destroying on exit allows reentrant destructors
[[maybe_unused]] auto unused = std::exchange(elem, std::move(other));
std::destroy_at(std::addressof(other));
base_type::swap_and_pop(first);
}
}
}
/**
* @brief Assigns an entity to a storage.
* @param entt A valid identifier.
* @param value Optional opaque value.
* @param force_back Force back insertion.
* @return Iterator pointing to the emplaced element.
*/
basic_iterator try_emplace([[maybe_unused]] const Entity entt, [[maybe_unused]] const bool force_back, const void *value) override {
if(value) {
if constexpr(std::is_copy_constructible_v<value_type>) {
return emplace_element(entt, force_back, *static_cast<const value_type *>(value));
} else {
return base_type::end();
}
} else {
if constexpr(std::is_default_constructible_v<value_type>) {
return emplace_element(entt, force_back);
} else {
return base_type::end();
}
}
}
public:
/*! @brief Base type. */
using base_type = underlying_type;
/*! @brief Allocator type. */
using allocator_type = Allocator;
/*! @brief Type of the objects assigned to entities. */
using value_type = Type;
/*! @brief Underlying entity identifier. */
using entity_type = Entity;
/*! @brief Unsigned integer type. */
using size_type = std::size_t;
/*! @brief Pointer type to contained elements. */
using pointer = typename container_type::pointer;
/*! @brief Constant pointer type to contained elements. */
using const_pointer = typename alloc_traits::template rebind_traits<typename alloc_traits::const_pointer>::const_pointer;
/*! @brief Random access iterator type. */
using iterator = internal::storage_iterator<container_type>;
/*! @brief Constant random access iterator type. */
using const_iterator = internal::storage_iterator<const container_type>;
/*! @brief Reverse iterator type. */
using reverse_iterator = std::reverse_iterator<iterator>;
/*! @brief Constant reverse iterator type. */
using const_reverse_iterator = std::reverse_iterator<const_iterator>;
/*! @brief Extended iterable storage proxy. */
using iterable = iterable_adaptor<internal::extended_storage_iterator<typename base_type::iterator, iterator>>;
/*! @brief Constant extended iterable storage proxy. */
using const_iterable = iterable_adaptor<internal::extended_storage_iterator<typename base_type::const_iterator, const_iterator>>;
/*! @brief Default constructor. */
basic_storage()
: basic_storage{allocator_type{}} {}
/**
* @brief Constructs an empty storage with a given allocator.
* @param allocator The allocator to use.
*/
explicit basic_storage(const allocator_type &allocator)
: base_type{type_id<value_type>(), deletion_policy{comp_traits::in_place_delete}, allocator},
packed{container_type{allocator}, allocator} {}
/**
* @brief Move constructor.
* @param other The instance to move from.
*/
basic_storage(basic_storage &&other) noexcept
: base_type{std::move(other)},
packed{std::move(other.packed)} {}
/**
* @brief Allocator-extended move constructor.
* @param other The instance to move from.
* @param allocator The allocator to use.
*/
basic_storage(basic_storage &&other, const allocator_type &allocator) noexcept
: base_type{std::move(other), allocator},
packed{container_type{std::move(other.packed.first()), allocator}, allocator} {
ENTT_ASSERT(alloc_traits::is_always_equal::value || packed.second() == other.packed.second(), "Copying a storage is not allowed");
}
/*! @brief Default destructor. */
~basic_storage() override {
shrink_to_size(0u);
}
/**
* @brief Move assignment operator.
* @param other The instance to move from.
* @return This storage.
*/
basic_storage &operator=(basic_storage &&other) noexcept {
ENTT_ASSERT(alloc_traits::is_always_equal::value || packed.second() == other.packed.second(), "Copying a storage is not allowed");
shrink_to_size(0u);
base_type::operator=(std::move(other));
packed.first() = std::move(other.packed.first());
propagate_on_container_move_assignment(packed.second(), other.packed.second());
return *this;
}
/**
* @brief Exchanges the contents with those of a given storage.
* @param other Storage to exchange the content with.
*/
void swap(basic_storage &other) {
using std::swap;
underlying_type::swap(other);
propagate_on_container_swap(packed.second(), other.packed.second());
swap(packed.first(), other.packed.first());
}
/**
* @brief Returns the associated allocator.
* @return The associated allocator.
*/
[[nodiscard]] constexpr allocator_type get_allocator() const noexcept {
return allocator_type{packed.second()};
}
/**
* @brief Increases the capacity of a storage.
*
* If the new capacity is greater than the current capacity, new storage is
* allocated, otherwise the method does nothing.
*
* @param cap Desired capacity.
*/
void reserve(const size_type cap) override {
if(cap != 0u) {
base_type::reserve(cap);
assure_at_least(cap - 1u);
}
}
/**
* @brief Returns the number of elements that a storage has currently
* allocated space for.
* @return Capacity of the storage.
*/
[[nodiscard]] size_type capacity() const noexcept override {
return packed.first().size() * comp_traits::page_size;
}
/*! @brief Requests the removal of unused capacity. */
void shrink_to_fit() override {
base_type::shrink_to_fit();
shrink_to_size(base_type::size());
}
/**
* @brief Direct access to the array of objects.
* @return A pointer to the array of objects.
*/
[[nodiscard]] const_pointer raw() const noexcept {
return packed.first().data();
}
/*! @copydoc raw */
[[nodiscard]] pointer raw() noexcept {
return packed.first().data();
}
/**
* @brief Returns an iterator to the beginning.
*
* The returned iterator points to the first instance of the internal array.
* If the storage is empty, the returned iterator will be equal to `end()`.
*
* @return An iterator to the first instance of the internal array.
*/
[[nodiscard]] const_iterator cbegin() const noexcept {
const auto pos = static_cast<typename iterator::difference_type>(base_type::size());
return const_iterator{&packed.first(), pos};
}
/*! @copydoc cbegin */
[[nodiscard]] const_iterator begin() const noexcept {
return cbegin();
}
/*! @copydoc begin */
[[nodiscard]] iterator begin() noexcept {
const auto pos = static_cast<typename iterator::difference_type>(base_type::size());
return iterator{&packed.first(), pos};
}
/**
* @brief Returns an iterator to the end.
*
* The returned iterator points to the element following the last instance
* of the internal array. Attempting to dereference the returned iterator
* results in undefined behavior.
*
* @return An iterator to the element following the last instance of the
* internal array.
*/
[[nodiscard]] const_iterator cend() const noexcept {
return const_iterator{&packed.first(), {}};
}
/*! @copydoc cend */
[[nodiscard]] const_iterator end() const noexcept {
return cend();
}
/*! @copydoc end */
[[nodiscard]] iterator end() noexcept {
return iterator{&packed.first(), {}};
}
/**
* @brief Returns a reverse iterator to the beginning.
*
* The returned iterator points to the first instance of the reversed
* internal array. If the storage is empty, the returned iterator will be
* equal to `rend()`.
*
* @return An iterator to the first instance of the reversed internal array.
*/
[[nodiscard]] const_reverse_iterator crbegin() const noexcept {
return std::make_reverse_iterator(cend());
}
/*! @copydoc crbegin */
[[nodiscard]] const_reverse_iterator rbegin() const noexcept {
return crbegin();
}
/*! @copydoc rbegin */
[[nodiscard]] reverse_iterator rbegin() noexcept {
return std::make_reverse_iterator(end());
}
/**
* @brief Returns a reverse iterator to the end.
*
* The returned iterator points to the element following the last instance
* of the reversed internal array. Attempting to dereference the returned
* iterator results in undefined behavior.
*
* @return An iterator to the element following the last instance of the
* reversed internal array.
*/
[[nodiscard]] const_reverse_iterator crend() const noexcept {
return std::make_reverse_iterator(cbegin());
}
/*! @copydoc crend */
[[nodiscard]] const_reverse_iterator rend() const noexcept {
return crend();
}
/*! @copydoc rend */
[[nodiscard]] reverse_iterator rend() noexcept {
return std::make_reverse_iterator(begin());
}
/**
* @brief Returns the object assigned to an entity.
*
* @warning
* Attempting to use an entity that doesn't belong to the storage results in
* undefined behavior.
*
* @param entt A valid identifier.
* @return The object assigned to the entity.
*/
[[nodiscard]] const value_type &get(const entity_type entt) const noexcept {
return element_at(base_type::index(entt));
}
/*! @copydoc get */
[[nodiscard]] value_type &get(const entity_type entt) noexcept {
return const_cast<value_type &>(std::as_const(*this).get(entt));
}
/**
* @brief Returns the object assigned to an entity as a tuple.
* @param entt A valid identifier.
* @return The object assigned to the entity as a tuple.
*/
[[nodiscard]] std::tuple<const value_type &> get_as_tuple(const entity_type entt) const noexcept {
return std::forward_as_tuple(get(entt));
}
/*! @copydoc get_as_tuple */
[[nodiscard]] std::tuple<value_type &> get_as_tuple(const entity_type entt) noexcept {
return std::forward_as_tuple(get(entt));
}
/**
* @brief Assigns an entity to a storage and constructs its object.
*
* @warning
* Attempting to use an entity that already belongs to the storage results
* in undefined behavior.
*
* @tparam Args Types of arguments to use to construct the object.
* @param entt A valid identifier.
* @param args Parameters to use to construct an object for the entity.
* @return A reference to the newly created object.
*/
template<typename... Args>
value_type &emplace(const entity_type entt, Args &&...args) {
if constexpr(std::is_aggregate_v<value_type>) {
const auto it = emplace_element(entt, false, Type{std::forward<Args>(args)...});
return element_at(static_cast<size_type>(it.index()));
} else {
const auto it = emplace_element(entt, false, std::forward<Args>(args)...);
return element_at(static_cast<size_type>(it.index()));
}
}
/**
* @brief Updates the instance assigned to a given entity in-place.
* @tparam Func Types of the function objects to invoke.
* @param entt A valid identifier.
* @param func Valid function objects.
* @return A reference to the updated instance.
*/
template<typename... Func>
value_type &patch(const entity_type entt, Func &&...func) {
const auto idx = base_type::index(entt);
auto &elem = element_at(idx);
(std::forward<Func>(func)(elem), ...);
return elem;
}
/**
* @brief Assigns one or more entities to a storage and constructs their
* objects from a given instance.
*
* @warning
* Attempting to assign an entity that already belongs to the storage
* results in undefined behavior.
*
* @tparam It Type of input iterator.
* @param first An iterator to the first element of the range of entities.
* @param last An iterator past the last element of the range of entities.
* @param value An instance of the object to construct.
*/
template<typename It>
void insert(It first, It last, const value_type &value = {}) {
for(; first != last; ++first) {
emplace_element(*first, true, value);
}
}
/**
* @brief Assigns one or more entities to a storage and constructs their
* objects from a given range.
*
* @sa construct
*
* @tparam EIt Type of input iterator.
* @tparam CIt Type of input iterator.
* @param first An iterator to the first element of the range of entities.
* @param last An iterator past the last element of the range of entities.
* @param from An iterator to the first element of the range of objects.
*/
template<typename EIt, typename CIt, typename = std::enable_if_t<std::is_same_v<typename std::iterator_traits<CIt>::value_type, value_type>>>
void insert(EIt first, EIt last, CIt from) {
for(; first != last; ++first, ++from) {
emplace_element(*first, true, *from);
}
}
/**
* @brief Returns an iterable object to use to _visit_ a storage.
*
* The iterable object returns a tuple that contains the current entity and
* a reference to its component.
*
* @return An iterable object to use to _visit_ the storage.
*/
[[nodiscard]] iterable each() noexcept {
return {internal::extended_storage_iterator{base_type::begin(), begin()}, internal::extended_storage_iterator{base_type::end(), end()}};
}
/*! @copydoc each */
[[nodiscard]] const_iterable each() const noexcept {
return {internal::extended_storage_iterator{base_type::cbegin(), cbegin()}, internal::extended_storage_iterator{base_type::cend(), cend()}};
}
private:
compressed_pair<container_type, allocator_type> packed;
};
/*! @copydoc basic_storage */
template<typename Type, typename Entity, typename Allocator>
class basic_storage<Type, Entity, Allocator, std::enable_if_t<ignore_as_empty_v<Type>>>
: public basic_sparse_set<Entity, typename std::allocator_traits<Allocator>::template rebind_alloc<Entity>> {
using alloc_traits = std::allocator_traits<Allocator>;
static_assert(std::is_same_v<typename alloc_traits::value_type, Type>, "Invalid value type");
using underlying_type = basic_sparse_set<Entity, typename alloc_traits::template rebind_alloc<Entity>>;
using comp_traits = component_traits<Type>;
public:
/*! @brief Base type. */
using base_type = underlying_type;
/*! @brief Allocator type. */
using allocator_type = Allocator;
/*! @brief Type of the objects assigned to entities. */
using value_type = Type;
/*! @brief Underlying entity identifier. */
using entity_type = Entity;
/*! @brief Unsigned integer type. */
using size_type = std::size_t;
/*! @brief Extended iterable storage proxy. */
using iterable = iterable_adaptor<internal::extended_storage_iterator<typename base_type::iterator>>;
/*! @brief Constant extended iterable storage proxy. */
using const_iterable = iterable_adaptor<internal::extended_storage_iterator<typename base_type::const_iterator>>;
/*! @brief Default constructor. */
basic_storage()
: basic_storage{allocator_type{}} {}
/**
* @brief Constructs an empty container with a given allocator.
* @param allocator The allocator to use.
*/
explicit basic_storage(const allocator_type &allocator)
: base_type{type_id<value_type>(), deletion_policy{comp_traits::in_place_delete}, allocator} {}
/**
* @brief Move constructor.
* @param other The instance to move from.
*/
basic_storage(basic_storage &&other) noexcept = default;
/**
* @brief Allocator-extended move constructor.
* @param other The instance to move from.
* @param allocator The allocator to use.
*/
basic_storage(basic_storage &&other, const allocator_type &allocator) noexcept
: base_type{std::move(other), allocator} {}
/**
* @brief Move assignment operator.
* @param other The instance to move from.
* @return This storage.
*/
basic_storage &operator=(basic_storage &&other) noexcept = default;
/**
* @brief Returns the associated allocator.
* @return The associated allocator.
*/
[[nodiscard]] constexpr allocator_type get_allocator() const noexcept {
return allocator_type{base_type::get_allocator()};
}
/**
* @brief Returns the object assigned to an entity, that is `void`.
*
* @warning
* Attempting to use an entity that doesn't belong to the storage results in
* undefined behavior.
*
* @param entt A valid identifier.
*/
void get([[maybe_unused]] const entity_type entt) const noexcept {
ENTT_ASSERT(base_type::contains(entt), "Storage does not contain entity");
}
/**
* @brief Returns an empty tuple.
*
* @warning
* Attempting to use an entity that doesn't belong to the storage results in
* undefined behavior.
*
* @param entt A valid identifier.
* @return Returns an empty tuple.
*/
[[nodiscard]] std::tuple<> get_as_tuple([[maybe_unused]] const entity_type entt) const noexcept {
ENTT_ASSERT(base_type::contains(entt), "Storage does not contain entity");
return std::tuple{};
}
/**
* @brief Assigns an entity to a storage and constructs its object.
*
* @warning
* Attempting to use an entity that already belongs to the storage results
* in undefined behavior.
*
* @tparam Args Types of arguments to use to construct the object.
* @param entt A valid identifier.
*/
template<typename... Args>
void emplace(const entity_type entt, Args &&...) {
base_type::try_emplace(entt, false);
}
/**
* @brief Updates the instance assigned to a given entity in-place.
* @tparam Func Types of the function objects to invoke.
* @param entt A valid identifier.
* @param func Valid function objects.
*/
template<typename... Func>
void patch([[maybe_unused]] const entity_type entt, Func &&...func) {
ENTT_ASSERT(base_type::contains(entt), "Storage does not contain entity");
(std::forward<Func>(func)(), ...);
}
/**
* @brief Assigns entities to a storage.
* @tparam It Type of input iterator.
* @tparam Args Types of optional arguments.
* @param first An iterator to the first element of the range of entities.
* @param last An iterator past the last element of the range of entities.
*/
template<typename It, typename... Args>
void insert(It first, It last, Args &&...) {
for(; first != last; ++first) {
base_type::try_emplace(*first, true);
}
}
/**
* @brief Returns an iterable object to use to _visit_ a storage.
*
* The iterable object returns a tuple that contains the current entity.
*
* @return An iterable object to use to _visit_ the storage.
*/
[[nodiscard]] iterable each() noexcept {
return {internal::extended_storage_iterator{base_type::begin()}, internal::extended_storage_iterator{base_type::end()}};
}
/*! @copydoc each */
[[nodiscard]] const_iterable each() const noexcept {
return {internal::extended_storage_iterator{base_type::cbegin()}, internal::extended_storage_iterator{base_type::cend()}};
}
};
} // namespace entt
#endif
namespace entt {
/**
* @cond TURN_OFF_DOXYGEN
* Internal details not to be documented.
*/
namespace internal {
template<typename, typename, typename>
class extended_group_iterator;
template<typename It, typename... Owned, typename... Get>
class extended_group_iterator<It, owned_t<Owned...>, get_t<Get...>> {
template<typename Type>
auto index_to_element([[maybe_unused]] Type &cpool) const {
if constexpr(ignore_as_empty_v<typename Type::value_type>) {
return std::make_tuple();
} else {
return std::forward_as_tuple(cpool.rbegin()[it.index()]);
}
}
public:
using difference_type = std::ptrdiff_t;
using value_type = decltype(std::tuple_cat(std::make_tuple(*std::declval<It>()), std::declval<Owned>().get_as_tuple({})..., std::declval<Get>().get_as_tuple({})...));
using pointer = input_iterator_pointer<value_type>;
using reference = value_type;
using iterator_category = std::input_iterator_tag;
constexpr extended_group_iterator()
: it{},
pools{} {}
extended_group_iterator(It from, const std::tuple<Owned *..., Get *...> &cpools)
: it{from},
pools{cpools} {}
extended_group_iterator &operator++() noexcept {
return ++it, *this;
}
extended_group_iterator operator++(int) noexcept {
extended_group_iterator orig = *this;
return ++(*this), orig;
}
[[nodiscard]] reference operator*() const noexcept {
return std::tuple_cat(std::make_tuple(*it), index_to_element(*std::get<Owned *>(pools))..., std::get<Get *>(pools)->get_as_tuple(*it)...);
}
[[nodiscard]] pointer operator->() const noexcept {
return operator*();
}
template<typename... Lhs, typename... Rhs>
friend constexpr bool operator==(const extended_group_iterator<Lhs...> &, const extended_group_iterator<Rhs...> &) noexcept;
private:
It it;
std::tuple<Owned *..., Get *...> pools;
};
template<typename... Lhs, typename... Rhs>
[[nodiscard]] constexpr bool operator==(const extended_group_iterator<Lhs...> &lhs, const extended_group_iterator<Rhs...> &rhs) noexcept {
return lhs.it == rhs.it;
}
template<typename... Lhs, typename... Rhs>
[[nodiscard]] constexpr bool operator!=(const extended_group_iterator<Lhs...> &lhs, const extended_group_iterator<Rhs...> &rhs) noexcept {
return !(lhs == rhs);
}
} // namespace internal
/**
* Internal details not to be documented.
* @endcond
*/
/**
* @brief Group.
*
* Primary template isn't defined on purpose. All the specializations give a
* compile-time error, but for a few reasonable cases.
*/
template<typename, typename, typename>
class basic_group;
/**
* @brief Non-owning group.
*
* A non-owning group returns all entities and only the entities that are at
* least in the given storage. Moreover, it's guaranteed that the entity list is
* tightly packed in memory for fast iterations.
*
* @b Important
*
* Iterators aren't invalidated if:
*
* * New elements are added to the storage.
* * The entity currently pointed is modified (for example, components are added
* or removed from it).
* * The entity currently pointed is destroyed.
*
* In all other cases, modifying the pools iterated by the group in any way
* invalidates all the iterators and using them results in undefined behavior.
*
* @tparam Get Types of storage _observed_ by the group.
* @tparam Exclude Types of storage used to filter the group.
*/
template<typename... Get, typename... Exclude>
class basic_group<owned_t<>, get_t<Get...>, exclude_t<Exclude...>> {
using underlying_type = std::common_type_t<typename Get::entity_type..., typename Exclude::entity_type...>;
using basic_common_type = std::common_type_t<typename Get::base_type..., typename Exclude::base_type...>;
template<typename Type>
static constexpr std::size_t index_of = type_list_index_v<std::remove_const_t<Type>, type_list<typename Get::value_type...>>;
public:
/*! @brief Underlying entity identifier. */
using entity_type = underlying_type;
/*! @brief Unsigned integer type. */
using size_type = std::size_t;
/*! @brief Common type among all storage types. */
using base_type = basic_common_type;
/*! @brief Random access iterator type. */
using iterator = typename base_type::iterator;
/*! @brief Reversed iterator type. */
using reverse_iterator = typename base_type::reverse_iterator;
/*! @brief Iterable group type. */
using iterable = iterable_adaptor<internal::extended_group_iterator<iterator, owned_t<>, get_t<Get...>>>;
/*! @brief Default constructor to use to create empty, invalid groups. */
basic_group() noexcept
: handler{} {}
/**
* @brief Constructs a group from a set of storage classes.
* @param ref The actual entities to iterate.
* @param gpool Storage types to iterate _observed_ by the group.
*/
basic_group(basic_common_type &ref, Get &...gpool) noexcept
: handler{&ref},
pools{&gpool...} {}
/**
* @brief Returns a const reference to the underlying handler.
* @return A const reference to the underlying handler.
*/
[[nodiscard]] const base_type &handle() const noexcept {
return *handler;
}
/**
* @brief Returns the storage for a given component type.
* @tparam Type Type of component of which to return the storage.
* @return The storage for the given component type.
*/
template<typename Type>
[[nodiscard]] decltype(auto) storage() const noexcept {
return storage<index_of<Type>>();
}
/**
* @brief Returns the storage for a given index.
* @tparam Index Index of the storage to return.
* @return The storage for the given index.
*/
template<std::size_t Index>
[[nodiscard]] decltype(auto) storage() const noexcept {
return *std::get<Index>(pools);
}
/**
* @brief Returns the number of entities that are part of the group.
* @return Number of entities that are part of the group.
*/
[[nodiscard]] size_type size() const noexcept {
return *this ? handler->size() : size_type{};
}
/**
* @brief Returns the number of elements that a group has currently
* allocated space for.
* @return Capacity of the group.
*/
[[nodiscard]] size_type capacity() const noexcept {
return *this ? handler->capacity() : size_type{};
}
/*! @brief Requests the removal of unused capacity. */
void shrink_to_fit() {
if(*this) {
handler->shrink_to_fit();
}
}
/**
* @brief Checks whether a group is empty.
* @return True if the group is empty, false otherwise.
*/
[[nodiscard]] bool empty() const noexcept {
return !*this || handler->empty();
}
/**
* @brief Returns an iterator to the first entity of the group.
*
* The returned iterator points to the first entity of the group. If the
* group is empty, the returned iterator will be equal to `end()`.
*
* @return An iterator to the first entity of the group.
*/
[[nodiscard]] iterator begin() const noexcept {
return *this ? handler->begin() : iterator{};
}
/**
* @brief Returns an iterator that is past the last entity of the group.
*
* The returned iterator points to the entity following the last entity of
* the group. Attempting to dereference the returned iterator results in
* undefined behavior.
*
* @return An iterator to the entity following the last entity of the
* group.
*/
[[nodiscard]] iterator end() const noexcept {
return *this ? handler->end() : iterator{};
}
/**
* @brief Returns an iterator to the first entity of the reversed group.
*
* The returned iterator points to the first entity of the reversed group.
* If the group is empty, the returned iterator will be equal to `rend()`.
*
* @return An iterator to the first entity of the reversed group.
*/
[[nodiscard]] reverse_iterator rbegin() const noexcept {
return *this ? handler->rbegin() : reverse_iterator{};
}
/**
* @brief Returns an iterator that is past the last entity of the reversed
* group.
*
* The returned iterator points to the entity following the last entity of
* the reversed group. Attempting to dereference the returned iterator
* results in undefined behavior.
*
* @return An iterator to the entity following the last entity of the
* reversed group.
*/
[[nodiscard]] reverse_iterator rend() const noexcept {
return *this ? handler->rend() : reverse_iterator{};
}
/**
* @brief Returns the first entity of the group, if any.
* @return The first entity of the group if one exists, the null entity
* otherwise.
*/
[[nodiscard]] entity_type front() const noexcept {
const auto it = begin();
return it != end() ? *it : null;
}
/**
* @brief Returns the last entity of the group, if any.
* @return The last entity of the group if one exists, the null entity
* otherwise.
*/
[[nodiscard]] entity_type back() const noexcept {
const auto it = rbegin();
return it != rend() ? *it : null;
}
/**
* @brief Finds an entity.
* @param entt A valid identifier.
* @return An iterator to the given entity if it's found, past the end
* iterator otherwise.
*/
[[nodiscard]] iterator find(const entity_type entt) const noexcept {
const auto it = *this ? handler->find(entt) : iterator{};
return it != end() && *it == entt ? it : end();
}
/**
* @brief Returns the identifier that occupies the given position.
* @param pos Position of the element to return.
* @return The identifier that occupies the given position.
*/
[[nodiscard]] entity_type operator[](const size_type pos) const {
return begin()[pos];
}
/**
* @brief Checks if a group is properly initialized.
* @return True if the group is properly initialized, false otherwise.
*/
[[nodiscard]] explicit operator bool() const noexcept {
return handler != nullptr;
}
/**
* @brief Checks if a group contains an entity.
* @param entt A valid identifier.
* @return True if the group contains the given entity, false otherwise.
*/
[[nodiscard]] bool contains(const entity_type entt) const noexcept {
return *this && handler->contains(entt);
}
/**
* @brief Returns the components assigned to the given entity.
*
* Prefer this function instead of `registry::get` during iterations. It has
* far better performance than its counterpart.
*
* @warning
* Attempting to use an invalid component type results in a compilation
* error. Attempting to use an entity that doesn't belong to the group
* results in undefined behavior.
*
* @tparam Type Types of components to get.
* @param entt A valid identifier.
* @return The components assigned to the entity.
*/
template<typename... Type>
[[nodiscard]] decltype(auto) get(const entity_type entt) const {
if constexpr(sizeof...(Type) == 0) {
return std::apply([entt](auto *...curr) { return std::tuple_cat(curr->get_as_tuple(entt)...); }, pools);
} else if constexpr(sizeof...(Type) == 1) {
return (std::get<index_of<Type>>(pools)->get(entt), ...);
} else {
return std::tuple_cat(std::get<index_of<Type>>(pools)->get_as_tuple(entt)...);
}
}
/**
* @brief Iterates entities and components and applies the given function
* object to them.
*
* The function object is invoked for each entity. It is provided with the
* entity itself and a set of references to non-empty components. The
* _constness_ of the components is as requested.<br/>
* The signature of the function must be equivalent to one of the following
* forms:
*
* @code{.cpp}
* void(const entity_type, Type &...);
* void(Type &...);
* @endcode
*
* @note
* Empty types aren't explicitly instantiated and therefore they are never
* returned during iterations.
*
* @tparam Func Type of the function object to invoke.
* @param func A valid function object.
*/
template<typename Func>
void each(Func func) const {
for(const auto entt: *this) {
if constexpr(is_applicable_v<Func, decltype(std::tuple_cat(std::tuple<entity_type>{}, std::declval<basic_group>().get({})))>) {
std::apply(func, std::tuple_cat(std::make_tuple(entt), get(entt)));
} else {
std::apply(func, get(entt));
}
}
}
/**
* @brief Returns an iterable object to use to _visit_ a group.
*
* The iterable object returns tuples that contain the current entity and a
* set of references to its non-empty components. The _constness_ of the
* components is as requested.
*
* @note
* Empty types aren't explicitly instantiated and therefore they are never
* returned during iterations.
*
* @return An iterable object to use to _visit_ the group.
*/
[[nodiscard]] iterable each() const noexcept {
return iterable{{begin(), pools}, {end(), pools}};
}
/**
* @brief Sort a group according to the given comparison function.
*
* Sort the group so that iterating it with a couple of iterators returns
* entities and components in the expected order. See `begin` and `end` for
* more details.
*
* The comparison function object must return `true` if the first element
* is _less_ than the second one, `false` otherwise. The signature of the
* comparison function should be equivalent to one of the following:
*
* @code{.cpp}
* bool(std::tuple<Type &...>, std::tuple<Type &...>);
* bool(const Type &..., const Type &...);
* bool(const Entity, const Entity);
* @endcode
*
* Where `Type` are such that they are iterated by the group.<br/>
* Moreover, the comparison function object shall induce a
* _strict weak ordering_ on the values.
*
* The sort function object must offer a member function template
* `operator()` that accepts three arguments:
*
* * An iterator to the first element of the range to sort.
* * An iterator past the last element of the range to sort.
* * A comparison function to use to compare the elements.
*
* @tparam Type Optional types of components to compare.
* @tparam Compare Type of comparison function object.
* @tparam Sort Type of sort function object.
* @tparam Args Types of arguments to forward to the sort function object.
* @param compare A valid comparison function object.
* @param algo A valid sort function object.
* @param args Arguments to forward to the sort function object, if any.
*/
template<typename... Type, typename Compare, typename Sort = std_sort, typename... Args>
void sort(Compare compare, Sort algo = Sort{}, Args &&...args) {
if(*this) {
if constexpr(sizeof...(Type) == 0) {
static_assert(std::is_invocable_v<Compare, const entity_type, const entity_type>, "Invalid comparison function");
handler->sort(std::move(compare), std::move(algo), std::forward<Args>(args)...);
} else {
auto comp = [this, &compare](const entity_type lhs, const entity_type rhs) {
if constexpr(sizeof...(Type) == 1) {
return compare((std::get<index_of<Type>>(pools)->get(lhs), ...), (std::get<index_of<Type>>(pools)->get(rhs), ...));
} else {
return compare(std::forward_as_tuple(std::get<index_of<Type>>(pools)->get(lhs)...), std::forward_as_tuple(std::get<index_of<Type>>(pools)->get(rhs)...));
}
};
handler->sort(std::move(comp), std::move(algo), std::forward<Args>(args)...);
}
}
}
/**
* @brief Sort the shared pool of entities according to the given component.
*
* Non-owning groups of the same type share with the registry a pool of
* entities with its own order that doesn't depend on the order of any pool
* of components. Users can order the underlying data structure so that it
* respects the order of the pool of the given component.
*
* @note
* The shared pool of entities and thus its order is affected by the changes
* to each and every pool that it tracks. Therefore changes to those pools
* can quickly ruin the order imposed to the pool of entities shared between
* the non-owning groups.
*
* @tparam Type Type of component to use to impose the order.
*/
template<typename Type>
void sort() const {
if(*this) {
handler->respect(*std::get<index_of<Type>>(pools));
}
}
private:
base_type *const handler;
const std::tuple<Get *...> pools;
};
/**
* @brief Owning group.
*
* Owning groups returns all entities and only the entities that are at
* least in the given storage. Moreover:
*
* * It's guaranteed that the entity list is tightly packed in memory for fast
* iterations.
* * It's guaranteed that all components in the owned storage are tightly packed
* in memory for even faster iterations and to allow direct access.
* * They stay true to the order of the owned storage and all instances have the
* same order in memory.
*
* The more types of storage are owned, the faster it is to iterate a group.
*
* @b Important
*
* Iterators aren't invalidated if:
*
* * New elements are added to the storage.
* * The entity currently pointed is modified (for example, components are added
* or removed from it).
* * The entity currently pointed is destroyed.
*
* In all other cases, modifying the pools iterated by the group in any way
* invalidates all the iterators and using them results in undefined behavior.
*
* @tparam Owned Types of storage _owned_ by the group.
* @tparam Get Types of storage _observed_ by the group.
* @tparam Exclude Types of storage used to filter the group.
*/
template<typename... Owned, typename... Get, typename... Exclude>
class basic_group<owned_t<Owned...>, get_t<Get...>, exclude_t<Exclude...>> {
using underlying_type = std::common_type_t<typename Owned::entity_type..., typename Get::entity_type..., typename Exclude::entity_type...>;
using basic_common_type = std::common_type_t<typename Owned::base_type..., typename Get::base_type..., typename Exclude::base_type...>;
template<typename Type>
static constexpr std::size_t index_of = type_list_index_v<std::remove_const_t<Type>, type_list<typename Owned::value_type..., typename Get::value_type...>>;
public:
/*! @brief Underlying entity identifier. */
using entity_type = underlying_type;
/*! @brief Unsigned integer type. */
using size_type = std::size_t;
/*! @brief Common type among all storage types. */
using base_type = basic_common_type;
/*! @brief Random access iterator type. */
using iterator = typename base_type::iterator;
/*! @brief Reversed iterator type. */
using reverse_iterator = typename base_type::reverse_iterator;
/*! @brief Iterable group type. */
using iterable = iterable_adaptor<internal::extended_group_iterator<iterator, owned_t<Owned...>, get_t<Get...>>>;
/*! @brief Default constructor to use to create empty, invalid groups. */
basic_group() noexcept
: length{} {}
/**
* @brief Constructs a group from a set of storage classes.
* @param extent The actual number of entities to iterate.
* @param opool Storage types to iterate _owned_ by the group.
* @param gpool Storage types to iterate _observed_ by the group.
*/
basic_group(const std::size_t &extent, Owned &...opool, Get &...gpool) noexcept
: pools{&opool..., &gpool...},
length{&extent} {}
/**
* @brief Returns the storage for a given component type.
* @tparam Type Type of component of which to return the storage.
* @return The storage for the given component type.
*/
template<typename Type>
[[nodiscard]] decltype(auto) storage() const noexcept {
return storage<index_of<Type>>();
}
/**
* @brief Returns the storage for a given index.
* @tparam Index Index of the storage to return.
* @return The storage for the given index.
*/
template<std::size_t Index>
[[nodiscard]] decltype(auto) storage() const noexcept {
return *std::get<Index>(pools);
}
/**
* @brief Returns the number of entities that that are part of the group.
* @return Number of entities that that are part of the group.
*/
[[nodiscard]] size_type size() const noexcept {
return *this ? *length : size_type{};
}
/**
* @brief Checks whether a group is empty.
* @return True if the group is empty, false otherwise.
*/
[[nodiscard]] bool empty() const noexcept {
return !*this || !*length;
}
/**
* @brief Returns an iterator to the first entity of the group.
*
* The returned iterator points to the first entity of the group. If the
* group is empty, the returned iterator will be equal to `end()`.
*
* @return An iterator to the first entity of the group.
*/
[[nodiscard]] iterator begin() const noexcept {
return *this ? (std::get<0>(pools)->base_type::end() - *length) : iterator{};
}
/**
* @brief Returns an iterator that is past the last entity of the group.
*
* The returned iterator points to the entity following the last entity of
* the group. Attempting to dereference the returned iterator results in
* undefined behavior.
*
* @return An iterator to the entity following the last entity of the
* group.
*/
[[nodiscard]] iterator end() const noexcept {
return *this ? std::get<0>(pools)->base_type::end() : iterator{};
}
/**
* @brief Returns an iterator to the first entity of the reversed group.
*
* The returned iterator points to the first entity of the reversed group.
* If the group is empty, the returned iterator will be equal to `rend()`.
*
* @return An iterator to the first entity of the reversed group.
*/
[[nodiscard]] reverse_iterator rbegin() const noexcept {
return *this ? std::get<0>(pools)->base_type::rbegin() : reverse_iterator{};
}
/**
* @brief Returns an iterator that is past the last entity of the reversed
* group.
*
* The returned iterator points to the entity following the last entity of
* the reversed group. Attempting to dereference the returned iterator
* results in undefined behavior.
*
* @return An iterator to the entity following the last entity of the
* reversed group.
*/
[[nodiscard]] reverse_iterator rend() const noexcept {
return *this ? (std::get<0>(pools)->base_type::rbegin() + *length) : reverse_iterator{};
}
/**
* @brief Returns the first entity of the group, if any.
* @return The first entity of the group if one exists, the null entity
* otherwise.
*/
[[nodiscard]] entity_type front() const noexcept {
const auto it = begin();
return it != end() ? *it : null;
}
/**
* @brief Returns the last entity of the group, if any.
* @return The last entity of the group if one exists, the null entity
* otherwise.
*/
[[nodiscard]] entity_type back() const noexcept {
const auto it = rbegin();
return it != rend() ? *it : null;
}
/**
* @brief Finds an entity.
* @param entt A valid identifier.
* @return An iterator to the given entity if it's found, past the end
* iterator otherwise.
*/
[[nodiscard]] iterator find(const entity_type entt) const noexcept {
const auto it = *this ? std::get<0>(pools)->find(entt) : iterator{};
return it != end() && it >= begin() && *it == entt ? it : end();
}
/**
* @brief Returns the identifier that occupies the given position.
* @param pos Position of the element to return.
* @return The identifier that occupies the given position.
*/
[[nodiscard]] entity_type operator[](const size_type pos) const {
return begin()[pos];
}
/**
* @brief Checks if a group is properly initialized.
* @return True if the group is properly initialized, false otherwise.
*/
[[nodiscard]] explicit operator bool() const noexcept {
return length != nullptr;
}
/**
* @brief Checks if a group contains an entity.
* @param entt A valid identifier.
* @return True if the group contains the given entity, false otherwise.
*/
[[nodiscard]] bool contains(const entity_type entt) const noexcept {
return *this && std::get<0>(pools)->contains(entt) && (std::get<0>(pools)->index(entt) < (*length));
}
/**
* @brief Returns the components assigned to the given entity.
*
* Prefer this function instead of `registry::get` during iterations. It has
* far better performance than its counterpart.
*
* @warning
* Attempting to use an invalid component type results in a compilation
* error. Attempting to use an entity that doesn't belong to the group
* results in undefined behavior.
*
* @tparam Type Types of components to get.
* @param entt A valid identifier.
* @return The components assigned to the entity.
*/
template<typename... Type>
[[nodiscard]] decltype(auto) get(const entity_type entt) const {
if constexpr(sizeof...(Type) == 0) {
return std::apply([entt](auto *...curr) { return std::tuple_cat(curr->get_as_tuple(entt)...); }, pools);
} else if constexpr(sizeof...(Type) == 1) {
return (std::get<index_of<Type>>(pools)->get(entt), ...);
} else {
return std::tuple_cat(std::get<index_of<Type>>(pools)->get_as_tuple(entt)...);
}
}
/**
* @brief Iterates entities and components and applies the given function
* object to them.
*
* The function object is invoked for each entity. It is provided with the
* entity itself and a set of references to non-empty components. The
* _constness_ of the components is as requested.<br/>
* The signature of the function must be equivalent to one of the following
* forms:
*
* @code{.cpp}
* void(const entity_type, Type &...);
* void(Type &...);
* @endcode
*
* @note
* Empty types aren't explicitly instantiated and therefore they are never
* returned during iterations.
*
* @tparam Func Type of the function object to invoke.
* @param func A valid function object.
*/
template<typename Func>
void each(Func func) const {
for(auto args: each()) {
if constexpr(is_applicable_v<Func, decltype(std::tuple_cat(std::tuple<entity_type>{}, std::declval<basic_group>().get({})))>) {
std::apply(func, args);
} else {
std::apply([&func](auto, auto &&...less) { func(std::forward<decltype(less)>(less)...); }, args);
}
}
}
/**
* @brief Returns an iterable object to use to _visit_ a group.
*
* The iterable object returns tuples that contain the current entity and a
* set of references to its non-empty components. The _constness_ of the
* components is as requested.
*
* @note
* Empty types aren't explicitly instantiated and therefore they are never
* returned during iterations.
*
* @return An iterable object to use to _visit_ the group.
*/
[[nodiscard]] iterable each() const noexcept {
return {{begin(), pools}, {end(), pools}};
}
/**
* @brief Sort a group according to the given comparison function.
*
* Sort the group so that iterating it with a couple of iterators returns
* entities and components in the expected order. See `begin` and `end` for
* more details.
*
* The comparison function object must return `true` if the first element
* is _less_ than the second one, `false` otherwise. The signature of the
* comparison function should be equivalent to one of the following:
*
* @code{.cpp}
* bool(std::tuple<Type &...>, std::tuple<Type &...>);
* bool(const Type &, const Type &);
* bool(const Entity, const Entity);
* @endcode
*
* Where `Type` are either owned types or not but still such that they are
* iterated by the group.<br/>
* Moreover, the comparison function object shall induce a
* _strict weak ordering_ on the values.
*
* The sort function object must offer a member function template
* `operator()` that accepts three arguments:
*
* * An iterator to the first element of the range to sort.
* * An iterator past the last element of the range to sort.
* * A comparison function to use to compare the elements.
*
* @tparam Type Optional types of components to compare.
* @tparam Compare Type of comparison function object.
* @tparam Sort Type of sort function object.
* @tparam Args Types of arguments to forward to the sort function object.
* @param compare A valid comparison function object.
* @param algo A valid sort function object.
* @param args Arguments to forward to the sort function object, if any.
*/
template<typename... Type, typename Compare, typename Sort = std_sort, typename... Args>
void sort(Compare compare, Sort algo = Sort{}, Args &&...args) const {
if constexpr(sizeof...(Type) == 0) {
static_assert(std::is_invocable_v<Compare, const entity_type, const entity_type>, "Invalid comparison function");
std::get<0>(pools)->sort_n(*length, std::move(compare), std::move(algo), std::forward<Args>(args)...);
} else {
auto comp = [this, &compare](const entity_type lhs, const entity_type rhs) {
if constexpr(sizeof...(Type) == 1) {
return compare((std::get<index_of<Type>>(pools)->get(lhs), ...), (std::get<index_of<Type>>(pools)->get(rhs), ...));
} else {
return compare(std::forward_as_tuple(std::get<index_of<Type>>(pools)->get(lhs)...), std::forward_as_tuple(std::get<index_of<Type>>(pools)->get(rhs)...));
}
};
std::get<0>(pools)->sort_n(*length, std::move(comp), std::move(algo), std::forward<Args>(args)...);
}
std::apply([this](auto *head, auto *...other) {
for(auto next = *length; next; --next) {
const auto pos = next - 1;
[[maybe_unused]] const auto entt = head->data()[pos];
(other->swap_elements(other->data()[pos], entt), ...);
}
},
pools);
}
private:
const std::tuple<Owned *..., Get *...> pools;
const size_type *const length;
};
} // namespace entt
#endif
// #include "entity/handle.hpp"
#ifndef ENTT_ENTITY_HANDLE_HPP
#define ENTT_ENTITY_HANDLE_HPP
#include <iterator>
#include <tuple>
#include <type_traits>
#include <utility>
// #include "../core/iterator.hpp"
// #include "../core/type_traits.hpp"
// #include "entity.hpp"
// #include "fwd.hpp"
namespace entt {
/**
* @cond TURN_OFF_DOXYGEN
* Internal details not to be documented.
*/
namespace internal {
template<typename It>
class handle_storage_iterator final {
template<typename Other>
friend class handle_storage_iterator;
using underlying_type = std::remove_reference_t<typename It::value_type::second_type>;
using entity_type = typename underlying_type::entity_type;
public:
using value_type = typename std::iterator_traits<It>::value_type;
using pointer = input_iterator_pointer<value_type>;
using reference = value_type;
using difference_type = std::ptrdiff_t;
using iterator_category = std::input_iterator_tag;
constexpr handle_storage_iterator() noexcept
: entt{null},
it{},
last{} {}
constexpr handle_storage_iterator(entity_type value, It from, It to) noexcept
: entt{value},
it{from},
last{to} {
while(it != last && !it->second.contains(entt)) { ++it; }
}
constexpr handle_storage_iterator &operator++() noexcept {
while(++it != last && !it->second.contains(entt)) {}
return *this;
}
constexpr handle_storage_iterator operator++(int) noexcept {
handle_storage_iterator orig = *this;
return ++(*this), orig;
}
[[nodiscard]] constexpr reference operator*() const noexcept {
return *it;
}
[[nodiscard]] constexpr pointer operator->() const noexcept {
return operator*();
}
template<typename ILhs, typename IRhs>
friend constexpr bool operator==(const handle_storage_iterator<ILhs> &, const handle_storage_iterator<IRhs> &) noexcept;
private:
entity_type entt;
It it;
It last;
};
template<typename ILhs, typename IRhs>
[[nodiscard]] constexpr bool operator==(const handle_storage_iterator<ILhs> &lhs, const handle_storage_iterator<IRhs> &rhs) noexcept {
return lhs.it == rhs.it;
}
template<typename ILhs, typename IRhs>
[[nodiscard]] constexpr bool operator!=(const handle_storage_iterator<ILhs> &lhs, const handle_storage_iterator<IRhs> &rhs) noexcept {
return !(lhs == rhs);
}
} // namespace internal
/**
* Internal details not to be documented.
* @endcond
*/
/**
* @brief Non-owning handle to an entity.
*
* Tiny wrapper around a registry and an entity.
*
* @tparam Registry Basic registry type.
* @tparam Scope Types to which to restrict the scope of a handle.
*/
template<typename Registry, typename... Scope>
struct basic_handle {
/*! @brief Type of registry accepted by the handle. */
using registry_type = Registry;
/*! @brief Underlying entity identifier. */
using entity_type = typename registry_type::entity_type;
/*! @brief Underlying version type. */
using version_type = typename registry_type::version_type;
/*! @brief Unsigned integer type. */
using size_type = typename registry_type::size_type;
/*! @brief Constructs an invalid handle. */
basic_handle() noexcept
: reg{},
entt{null} {}
/**
* @brief Constructs a handle from a given registry and entity.
* @param ref An instance of the registry class.
* @param value A valid identifier.
*/
basic_handle(registry_type &ref, entity_type value) noexcept
: reg{&ref},
entt{value} {}
/**
* @brief Returns an iterable object to use to _visit_ a handle.
*
* The iterable object returns a pair that contains the name and a reference
* to the current storage.<br/>
* Returned storage are those that contain the entity associated with the
* handle.
*
* @return An iterable object to use to _visit_ the handle.
*/
[[nodiscard]] auto storage() const noexcept {
auto iterable = reg->storage();
using iterator_type = internal::handle_storage_iterator<typename decltype(iterable)::iterator>;
return iterable_adaptor{iterator_type{entt, iterable.begin(), iterable.end()}, iterator_type{entt, iterable.end(), iterable.end()}};
}
/**
* @brief Constructs a const handle from a non-const one.
* @tparam Other A valid entity type (see entt_traits for more details).
* @tparam Args Scope of the handle to construct.
* @return A const handle referring to the same registry and the same
* entity.
*/
template<typename Other, typename... Args>
operator basic_handle<Other, Args...>() const noexcept {
static_assert(std::is_same_v<Other, Registry> || std::is_same_v<std::remove_const_t<Other>, Registry>, "Invalid conversion between different handles");
static_assert((sizeof...(Scope) == 0 || ((sizeof...(Args) != 0 && sizeof...(Args) <= sizeof...(Scope)) && ... && (type_list_contains_v<type_list<Scope...>, Args>))), "Invalid conversion between different handles");
return reg ? basic_handle<Other, Args...>{*reg, entt} : basic_handle<Other, Args...>{};
}
/**
* @brief Converts a handle to its underlying entity.
* @return The contained identifier.
*/
[[nodiscard]] operator entity_type() const noexcept {
return entity();
}
/**
* @brief Checks if a handle refers to non-null registry pointer and entity.
* @return True if the handle refers to non-null registry and entity, false otherwise.
*/
[[nodiscard]] explicit operator bool() const noexcept {
return reg && reg->valid(entt);
}
/**
* @brief Checks if a handle refers to a valid entity or not.
* @return True if the handle refers to a valid entity, false otherwise.
*/
[[nodiscard]] bool valid() const {
return reg->valid(entt);
}
/**
* @brief Returns a pointer to the underlying registry, if any.
* @return A pointer to the underlying registry, if any.
*/
[[nodiscard]] registry_type *registry() const noexcept {
return reg;
}
/**
* @brief Returns the entity associated with a handle.
* @return The entity associated with the handle.
*/
[[nodiscard]] entity_type entity() const noexcept {
return entt;
}
/*! @brief Destroys the entity associated with a handle. */
void destroy() {
reg->destroy(entt);
}
/**
* @brief Destroys the entity associated with a handle.
* @param version A desired version upon destruction.
*/
void destroy(const version_type version) {
reg->destroy(entt, version);
}
/**
* @brief Assigns the given component to a handle.
* @tparam Component Type of component to create.
* @tparam Args Types of arguments to use to construct the component.
* @param args Parameters to use to initialize the component.
* @return A reference to the newly created component.
*/
template<typename Component, typename... Args>
decltype(auto) emplace(Args &&...args) const {
static_assert(((sizeof...(Scope) == 0) || ... || std::is_same_v<Component, Scope>), "Invalid type");
return reg->template emplace<Component>(entt, std::forward<Args>(args)...);
}
/**
* @brief Assigns or replaces the given component for a handle.
* @tparam Component Type of component to assign or replace.
* @tparam Args Types of arguments to use to construct the component.
* @param args Parameters to use to initialize the component.
* @return A reference to the newly created component.
*/
template<typename Component, typename... Args>
decltype(auto) emplace_or_replace(Args &&...args) const {
static_assert(((sizeof...(Scope) == 0) || ... || std::is_same_v<Component, Scope>), "Invalid type");
return reg->template emplace_or_replace<Component>(entt, std::forward<Args>(args)...);
}
/**
* @brief Patches the given component for a handle.
* @tparam Component Type of component to patch.
* @tparam Func Types of the function objects to invoke.
* @param func Valid function objects.
* @return A reference to the patched component.
*/
template<typename Component, typename... Func>
decltype(auto) patch(Func &&...func) const {
static_assert(((sizeof...(Scope) == 0) || ... || std::is_same_v<Component, Scope>), "Invalid type");
return reg->template patch<Component>(entt, std::forward<Func>(func)...);
}
/**
* @brief Replaces the given component for a handle.
* @tparam Component Type of component to replace.
* @tparam Args Types of arguments to use to construct the component.
* @param args Parameters to use to initialize the component.
* @return A reference to the component being replaced.
*/
template<typename Component, typename... Args>
decltype(auto) replace(Args &&...args) const {
static_assert(((sizeof...(Scope) == 0) || ... || std::is_same_v<Component, Scope>), "Invalid type");
return reg->template replace<Component>(entt, std::forward<Args>(args)...);
}
/**
* @brief Removes the given components from a handle.
* @tparam Component Types of components to remove.
* @return The number of components actually removed.
*/
template<typename... Component>
size_type remove() const {
static_assert(sizeof...(Scope) == 0 || (type_list_contains_v<type_list<Scope...>, Component> && ...), "Invalid type");
return reg->template remove<Component...>(entt);
}
/**
* @brief Erases the given components from a handle.
* @tparam Component Types of components to erase.
*/
template<typename... Component>
void erase() const {
static_assert(sizeof...(Scope) == 0 || (type_list_contains_v<type_list<Scope...>, Component> && ...), "Invalid type");
reg->template erase<Component...>(entt);
}
/**
* @brief Checks if a handle has all the given components.
* @tparam Component Components for which to perform the check.
* @return True if the handle has all the components, false otherwise.
*/
template<typename... Component>
[[nodiscard]] decltype(auto) all_of() const {
return reg->template all_of<Component...>(entt);
}
/**
* @brief Checks if a handle has at least one of the given components.
* @tparam Component Components for which to perform the check.
* @return True if the handle has at least one of the given components,
* false otherwise.
*/
template<typename... Component>
[[nodiscard]] decltype(auto) any_of() const {
return reg->template any_of<Component...>(entt);
}
/**
* @brief Returns references to the given components for a handle.
* @tparam Component Types of components to get.
* @return References to the components owned by the handle.
*/
template<typename... Component>
[[nodiscard]] decltype(auto) get() const {
static_assert(sizeof...(Scope) == 0 || (type_list_contains_v<type_list<Scope...>, Component> && ...), "Invalid type");
return reg->template get<Component...>(entt);
}
/**
* @brief Returns a reference to the given component for a handle.
* @tparam Component Type of component to get.
* @tparam Args Types of arguments to use to construct the component.
* @param args Parameters to use to initialize the component.
* @return Reference to the component owned by the handle.
*/
template<typename Component, typename... Args>
[[nodiscard]] decltype(auto) get_or_emplace(Args &&...args) const {
static_assert(((sizeof...(Scope) == 0) || ... || std::is_same_v<Component, Scope>), "Invalid type");
return reg->template get_or_emplace<Component>(entt, std::forward<Args>(args)...);
}
/**
* @brief Returns pointers to the given components for a handle.
* @tparam Component Types of components to get.
* @return Pointers to the components owned by the handle.
*/
template<typename... Component>
[[nodiscard]] auto try_get() const {
static_assert(sizeof...(Scope) == 0 || (type_list_contains_v<type_list<Scope...>, Component> && ...), "Invalid type");
return reg->template try_get<Component...>(entt);
}
/**
* @brief Checks if a handle has components assigned.
* @return True if the handle has no components assigned, false otherwise.
*/
[[nodiscard]] bool orphan() const {
return reg->orphan(entt);
}
private:
registry_type *reg;
entity_type entt;
};
/**
* @brief Compares two handles.
* @tparam Args Scope of the first handle.
* @tparam Other Scope of the second handle.
* @param lhs A valid handle.
* @param rhs A valid handle.
* @return True if both handles refer to the same registry and the same
* entity, false otherwise.
*/
template<typename... Args, typename... Other>
[[nodiscard]] bool operator==(const basic_handle<Args...> &lhs, const basic_handle<Other...> &rhs) noexcept {
return lhs.registry() == rhs.registry() && lhs.entity() == rhs.entity();
}
/**
* @brief Compares two handles.
* @tparam Args Scope of the first handle.
* @tparam Other Scope of the second handle.
* @param lhs A valid handle.
* @param rhs A valid handle.
* @return False if both handles refer to the same registry and the same
* entity, true otherwise.
*/
template<typename... Args, typename... Other>
[[nodiscard]] bool operator!=(const basic_handle<Args...> &lhs, const basic_handle<Other...> &rhs) noexcept {
return !(lhs == rhs);
}
} // namespace entt
#endif
// #include "entity/helper.hpp"
#ifndef ENTT_ENTITY_HELPER_HPP
#define ENTT_ENTITY_HELPER_HPP
#include <memory>
#include <type_traits>
// #include "../core/fwd.hpp"
// #include "../core/type_traits.hpp"
// #include "../signal/delegate.hpp"
#ifndef ENTT_SIGNAL_DELEGATE_HPP
#define ENTT_SIGNAL_DELEGATE_HPP
#include <cstddef>
#include <functional>
#include <tuple>
#include <type_traits>
#include <utility>
// #include "../config/config.h"
// #include "../core/type_traits.hpp"
// #include "fwd.hpp"
namespace entt {
/**
* @cond TURN_OFF_DOXYGEN
* Internal details not to be documented.
*/
namespace internal {
template<typename Ret, typename... Args>
constexpr auto function_pointer(Ret (*)(Args...)) -> Ret (*)(Args...);
template<typename Ret, typename Type, typename... Args, typename Other>
constexpr auto function_pointer(Ret (*)(Type, Args...), Other &&) -> Ret (*)(Args...);
template<typename Class, typename Ret, typename... Args, typename... Other>
constexpr auto function_pointer(Ret (Class::*)(Args...), Other &&...) -> Ret (*)(Args...);
template<typename Class, typename Ret, typename... Args, typename... Other>
constexpr auto function_pointer(Ret (Class::*)(Args...) const, Other &&...) -> Ret (*)(Args...);
template<typename Class, typename Type, typename... Other>
constexpr auto function_pointer(Type Class::*, Other &&...) -> Type (*)();
template<typename... Type>
using function_pointer_t = decltype(function_pointer(std::declval<Type>()...));
template<typename... Class, typename Ret, typename... Args>
[[nodiscard]] constexpr auto index_sequence_for(Ret (*)(Args...)) {
return std::index_sequence_for<Class..., Args...>{};
}
} // namespace internal
/**
* Internal details not to be documented.
* @endcond
*/
/**
* @brief Basic delegate implementation.
*
* Primary template isn't defined on purpose. All the specializations give a
* compile-time error unless the template parameter is a function type.
*/
template<typename>
class delegate;
/**
* @brief Utility class to use to send around functions and members.
*
* Unmanaged delegate for function pointers and members. Users of this class are
* in charge of disconnecting instances before deleting them.
*
* A delegate can be used as a general purpose invoker without memory overhead
* for free functions possibly with payloads and bound or unbound members.
*
* @tparam Ret Return type of a function type.
* @tparam Args Types of arguments of a function type.
*/
template<typename Ret, typename... Args>
class delegate<Ret(Args...)> {
template<auto Candidate, std::size_t... Index>
[[nodiscard]] auto wrap(std::index_sequence<Index...>) noexcept {
return [](const void *, Args... args) -> Ret {
[[maybe_unused]] const auto arguments = std::forward_as_tuple(std::forward<Args>(args)...);
return static_cast<Ret>(std::invoke(Candidate, std::forward<type_list_element_t<Index, type_list<Args...>>>(std::get<Index>(arguments))...));
};
}
template<auto Candidate, typename Type, std::size_t... Index>
[[nodiscard]] auto wrap(Type &, std::index_sequence<Index...>) noexcept {
return [](const void *payload, Args... args) -> Ret {
[[maybe_unused]] const auto arguments = std::forward_as_tuple(std::forward<Args>(args)...);
Type *curr = static_cast<Type *>(const_cast<constness_as_t<void, Type> *>(payload));
return static_cast<Ret>(std::invoke(Candidate, *curr, std::forward<type_list_element_t<Index, type_list<Args...>>>(std::get<Index>(arguments))...));
};
}
template<auto Candidate, typename Type, std::size_t... Index>
[[nodiscard]] auto wrap(Type *, std::index_sequence<Index...>) noexcept {
return [](const void *payload, Args... args) -> Ret {
[[maybe_unused]] const auto arguments = std::forward_as_tuple(std::forward<Args>(args)...);
Type *curr = static_cast<Type *>(const_cast<constness_as_t<void, Type> *>(payload));
return static_cast<Ret>(std::invoke(Candidate, curr, std::forward<type_list_element_t<Index, type_list<Args...>>>(std::get<Index>(arguments))...));
};
}
public:
/*! @brief Function type of the contained target. */
using function_type = Ret(const void *, Args...);
/*! @brief Function type of the delegate. */
using type = Ret(Args...);
/*! @brief Return type of the delegate. */
using result_type = Ret;
/*! @brief Default constructor. */
delegate() noexcept
: instance{nullptr},
fn{nullptr} {}
/**
* @brief Constructs a delegate with a given object or payload, if any.
* @tparam Candidate Function or member to connect to the delegate.
* @tparam Type Type of class or type of payload, if any.
* @param value_or_instance Optional valid object that fits the purpose.
*/
template<auto Candidate, typename... Type>
delegate(connect_arg_t<Candidate>, Type &&...value_or_instance) noexcept {
connect<Candidate>(std::forward<Type>(value_or_instance)...);
}
/**
* @brief Constructs a delegate and connects an user defined function with
* optional payload.
* @param function Function to connect to the delegate.
* @param payload User defined arbitrary data.
*/
delegate(function_type *function, const void *payload = nullptr) noexcept {
connect(function, payload);
}
/**
* @brief Connects a free function or an unbound member to a delegate.
* @tparam Candidate Function or member to connect to the delegate.
*/
template<auto Candidate>
void connect() noexcept {
instance = nullptr;
if constexpr(std::is_invocable_r_v<Ret, decltype(Candidate), Args...>) {
fn = [](const void *, Args... args) -> Ret {
return Ret(std::invoke(Candidate, std::forward<Args>(args)...));
};
} else if constexpr(std::is_member_pointer_v<decltype(Candidate)>) {
fn = wrap<Candidate>(internal::index_sequence_for<type_list_element_t<0, type_list<Args...>>>(internal::function_pointer_t<decltype(Candidate)>{}));
} else {
fn = wrap<Candidate>(internal::index_sequence_for(internal::function_pointer_t<decltype(Candidate)>{}));
}
}
/**
* @brief Connects a free function with payload or a bound member to a
* delegate.
*
* The delegate isn't responsible for the connected object or the payload.
* Users must always guarantee that the lifetime of the instance overcomes
* the one of the delegate.<br/>
* When used to connect a free function with payload, its signature must be
* such that the instance is the first argument before the ones used to
* define the delegate itself.
*
* @tparam Candidate Function or member to connect to the delegate.
* @tparam Type Type of class or type of payload.
* @param value_or_instance A valid reference that fits the purpose.
*/
template<auto Candidate, typename Type>
void connect(Type &value_or_instance) noexcept {
instance = &value_or_instance;
if constexpr(std::is_invocable_r_v<Ret, decltype(Candidate), Type &, Args...>) {
fn = [](const void *payload, Args... args) -> Ret {
Type *curr = static_cast<Type *>(const_cast<constness_as_t<void, Type> *>(payload));
return Ret(std::invoke(Candidate, *curr, std::forward<Args>(args)...));
};
} else {
fn = wrap<Candidate>(value_or_instance, internal::index_sequence_for(internal::function_pointer_t<decltype(Candidate), Type>{}));
}
}
/**
* @brief Connects a free function with payload or a bound member to a
* delegate.
*
* @sa connect(Type &)
*
* @tparam Candidate Function or member to connect to the delegate.
* @tparam Type Type of class or type of payload.
* @param value_or_instance A valid pointer that fits the purpose.
*/
template<auto Candidate, typename Type>
void connect(Type *value_or_instance) noexcept {
instance = value_or_instance;
if constexpr(std::is_invocable_r_v<Ret, decltype(Candidate), Type *, Args...>) {
fn = [](const void *payload, Args... args) -> Ret {
Type *curr = static_cast<Type *>(const_cast<constness_as_t<void, Type> *>(payload));
return Ret(std::invoke(Candidate, curr, std::forward<Args>(args)...));
};
} else {
fn = wrap<Candidate>(value_or_instance, internal::index_sequence_for(internal::function_pointer_t<decltype(Candidate), Type>{}));
}
}
/**
* @brief Connects an user defined function with optional payload to a
* delegate.
*
* The delegate isn't responsible for the connected object or the payload.
* Users must always guarantee that the lifetime of an instance overcomes
* the one of the delegate.<br/>
* The payload is returned as the first argument to the target function in
* all cases.
*
* @param function Function to connect to the delegate.
* @param payload User defined arbitrary data.
*/
void connect(function_type *function, const void *payload = nullptr) noexcept {
ENTT_ASSERT(function != nullptr, "Uninitialized function pointer");
instance = payload;
fn = function;
}
/**
* @brief Resets a delegate.
*
* After a reset, a delegate cannot be invoked anymore.
*/
void reset() noexcept {
instance = nullptr;
fn = nullptr;
}
/**
* @brief Returns the instance or the payload linked to a delegate, if any.
* @return An opaque pointer to the underlying data.
*/
[[nodiscard]] const void *data() const noexcept {
return instance;
}
/**
* @brief Triggers a delegate.
*
* The delegate invokes the underlying function and returns the result.
*
* @warning
* Attempting to trigger an invalid delegate results in undefined
* behavior.
*
* @param args Arguments to use to invoke the underlying function.
* @return The value returned by the underlying function.
*/
Ret operator()(Args... args) const {
ENTT_ASSERT(static_cast<bool>(*this), "Uninitialized delegate");
return fn(instance, std::forward<Args>(args)...);
}
/**
* @brief Checks whether a delegate actually stores a listener.
* @return False if the delegate is empty, true otherwise.
*/
[[nodiscard]] explicit operator bool() const noexcept {
// no need to also test instance
return !(fn == nullptr);
}
/**
* @brief Compares the contents of two delegates.
* @param other Delegate with which to compare.
* @return False if the two contents differ, true otherwise.
*/
[[nodiscard]] bool operator==(const delegate<Ret(Args...)> &other) const noexcept {
return fn == other.fn && instance == other.instance;
}
private:
const void *instance;
function_type *fn;
};
/**
* @brief Compares the contents of two delegates.
* @tparam Ret Return type of a function type.
* @tparam Args Types of arguments of a function type.
* @param lhs A valid delegate object.
* @param rhs A valid delegate object.
* @return True if the two contents differ, false otherwise.
*/
template<typename Ret, typename... Args>
[[nodiscard]] bool operator!=(const delegate<Ret(Args...)> &lhs, const delegate<Ret(Args...)> &rhs) noexcept {
return !(lhs == rhs);
}
/**
* @brief Deduction guide.
* @tparam Candidate Function or member to connect to the delegate.
*/
template<auto Candidate>
delegate(connect_arg_t<Candidate>) -> delegate<std::remove_pointer_t<internal::function_pointer_t<decltype(Candidate)>>>;
/**
* @brief Deduction guide.
* @tparam Candidate Function or member to connect to the delegate.
* @tparam Type Type of class or type of payload.
*/
template<auto Candidate, typename Type>
delegate(connect_arg_t<Candidate>, Type &&) -> delegate<std::remove_pointer_t<internal::function_pointer_t<decltype(Candidate), Type>>>;
/**
* @brief Deduction guide.
* @tparam Ret Return type of a function type.
* @tparam Args Types of arguments of a function type.
*/
template<typename Ret, typename... Args>
delegate(Ret (*)(const void *, Args...), const void * = nullptr) -> delegate<Ret(Args...)>;
} // namespace entt
#endif
// #include "component.hpp"
// #include "fwd.hpp"
// #include "group.hpp"
#ifndef ENTT_ENTITY_GROUP_HPP
#define ENTT_ENTITY_GROUP_HPP
#include <tuple>
#include <type_traits>
#include <utility>
// #include "../config/config.h"
// #include "../core/iterator.hpp"
// #include "../core/type_traits.hpp"
// #include "component.hpp"
// #include "entity.hpp"
// #include "fwd.hpp"
// #include "sparse_set.hpp"
// #include "storage.hpp"
namespace entt {
/**
* @cond TURN_OFF_DOXYGEN
* Internal details not to be documented.
*/
namespace internal {
template<typename, typename, typename>
class extended_group_iterator;
template<typename It, typename... Owned, typename... Get>
class extended_group_iterator<It, owned_t<Owned...>, get_t<Get...>> {
template<typename Type>
auto index_to_element([[maybe_unused]] Type &cpool) const {
if constexpr(ignore_as_empty_v<typename Type::value_type>) {
return std::make_tuple();
} else {
return std::forward_as_tuple(cpool.rbegin()[it.index()]);
}
}
public:
using difference_type = std::ptrdiff_t;
using value_type = decltype(std::tuple_cat(std::make_tuple(*std::declval<It>()), std::declval<Owned>().get_as_tuple({})..., std::declval<Get>().get_as_tuple({})...));
using pointer = input_iterator_pointer<value_type>;
using reference = value_type;
using iterator_category = std::input_iterator_tag;
constexpr extended_group_iterator()
: it{},
pools{} {}
extended_group_iterator(It from, const std::tuple<Owned *..., Get *...> &cpools)
: it{from},
pools{cpools} {}
extended_group_iterator &operator++() noexcept {
return ++it, *this;
}
extended_group_iterator operator++(int) noexcept {
extended_group_iterator orig = *this;
return ++(*this), orig;
}
[[nodiscard]] reference operator*() const noexcept {
return std::tuple_cat(std::make_tuple(*it), index_to_element(*std::get<Owned *>(pools))..., std::get<Get *>(pools)->get_as_tuple(*it)...);
}
[[nodiscard]] pointer operator->() const noexcept {
return operator*();
}
template<typename... Lhs, typename... Rhs>
friend constexpr bool operator==(const extended_group_iterator<Lhs...> &, const extended_group_iterator<Rhs...> &) noexcept;
private:
It it;
std::tuple<Owned *..., Get *...> pools;
};
template<typename... Lhs, typename... Rhs>
[[nodiscard]] constexpr bool operator==(const extended_group_iterator<Lhs...> &lhs, const extended_group_iterator<Rhs...> &rhs) noexcept {
return lhs.it == rhs.it;
}
template<typename... Lhs, typename... Rhs>
[[nodiscard]] constexpr bool operator!=(const extended_group_iterator<Lhs...> &lhs, const extended_group_iterator<Rhs...> &rhs) noexcept {
return !(lhs == rhs);
}
} // namespace internal
/**
* Internal details not to be documented.
* @endcond
*/
/**
* @brief Group.
*
* Primary template isn't defined on purpose. All the specializations give a
* compile-time error, but for a few reasonable cases.
*/
template<typename, typename, typename>
class basic_group;
/**
* @brief Non-owning group.
*
* A non-owning group returns all entities and only the entities that are at
* least in the given storage. Moreover, it's guaranteed that the entity list is
* tightly packed in memory for fast iterations.
*
* @b Important
*
* Iterators aren't invalidated if:
*
* * New elements are added to the storage.
* * The entity currently pointed is modified (for example, components are added
* or removed from it).
* * The entity currently pointed is destroyed.
*
* In all other cases, modifying the pools iterated by the group in any way
* invalidates all the iterators and using them results in undefined behavior.
*
* @tparam Get Types of storage _observed_ by the group.
* @tparam Exclude Types of storage used to filter the group.
*/
template<typename... Get, typename... Exclude>
class basic_group<owned_t<>, get_t<Get...>, exclude_t<Exclude...>> {
using underlying_type = std::common_type_t<typename Get::entity_type..., typename Exclude::entity_type...>;
using basic_common_type = std::common_type_t<typename Get::base_type..., typename Exclude::base_type...>;
template<typename Type>
static constexpr std::size_t index_of = type_list_index_v<std::remove_const_t<Type>, type_list<typename Get::value_type...>>;
public:
/*! @brief Underlying entity identifier. */
using entity_type = underlying_type;
/*! @brief Unsigned integer type. */
using size_type = std::size_t;
/*! @brief Common type among all storage types. */
using base_type = basic_common_type;
/*! @brief Random access iterator type. */
using iterator = typename base_type::iterator;
/*! @brief Reversed iterator type. */
using reverse_iterator = typename base_type::reverse_iterator;
/*! @brief Iterable group type. */
using iterable = iterable_adaptor<internal::extended_group_iterator<iterator, owned_t<>, get_t<Get...>>>;
/*! @brief Default constructor to use to create empty, invalid groups. */
basic_group() noexcept
: handler{} {}
/**
* @brief Constructs a group from a set of storage classes.
* @param ref The actual entities to iterate.
* @param gpool Storage types to iterate _observed_ by the group.
*/
basic_group(basic_common_type &ref, Get &...gpool) noexcept
: handler{&ref},
pools{&gpool...} {}
/**
* @brief Returns a const reference to the underlying handler.
* @return A const reference to the underlying handler.
*/
[[nodiscard]] const base_type &handle() const noexcept {
return *handler;
}
/**
* @brief Returns the storage for a given component type.
* @tparam Type Type of component of which to return the storage.
* @return The storage for the given component type.
*/
template<typename Type>
[[nodiscard]] decltype(auto) storage() const noexcept {
return storage<index_of<Type>>();
}
/**
* @brief Returns the storage for a given index.
* @tparam Index Index of the storage to return.
* @return The storage for the given index.
*/
template<std::size_t Index>
[[nodiscard]] decltype(auto) storage() const noexcept {
return *std::get<Index>(pools);
}
/**
* @brief Returns the number of entities that are part of the group.
* @return Number of entities that are part of the group.
*/
[[nodiscard]] size_type size() const noexcept {
return *this ? handler->size() : size_type{};
}
/**
* @brief Returns the number of elements that a group has currently
* allocated space for.
* @return Capacity of the group.
*/
[[nodiscard]] size_type capacity() const noexcept {
return *this ? handler->capacity() : size_type{};
}
/*! @brief Requests the removal of unused capacity. */
void shrink_to_fit() {
if(*this) {
handler->shrink_to_fit();
}
}
/**
* @brief Checks whether a group is empty.
* @return True if the group is empty, false otherwise.
*/
[[nodiscard]] bool empty() const noexcept {
return !*this || handler->empty();
}
/**
* @brief Returns an iterator to the first entity of the group.
*
* The returned iterator points to the first entity of the group. If the
* group is empty, the returned iterator will be equal to `end()`.
*
* @return An iterator to the first entity of the group.
*/
[[nodiscard]] iterator begin() const noexcept {
return *this ? handler->begin() : iterator{};
}
/**
* @brief Returns an iterator that is past the last entity of the group.
*
* The returned iterator points to the entity following the last entity of
* the group. Attempting to dereference the returned iterator results in
* undefined behavior.
*
* @return An iterator to the entity following the last entity of the
* group.
*/
[[nodiscard]] iterator end() const noexcept {
return *this ? handler->end() : iterator{};
}
/**
* @brief Returns an iterator to the first entity of the reversed group.
*
* The returned iterator points to the first entity of the reversed group.
* If the group is empty, the returned iterator will be equal to `rend()`.
*
* @return An iterator to the first entity of the reversed group.
*/
[[nodiscard]] reverse_iterator rbegin() const noexcept {
return *this ? handler->rbegin() : reverse_iterator{};
}
/**
* @brief Returns an iterator that is past the last entity of the reversed
* group.
*
* The returned iterator points to the entity following the last entity of
* the reversed group. Attempting to dereference the returned iterator
* results in undefined behavior.
*
* @return An iterator to the entity following the last entity of the
* reversed group.
*/
[[nodiscard]] reverse_iterator rend() const noexcept {
return *this ? handler->rend() : reverse_iterator{};
}
/**
* @brief Returns the first entity of the group, if any.
* @return The first entity of the group if one exists, the null entity
* otherwise.
*/
[[nodiscard]] entity_type front() const noexcept {
const auto it = begin();
return it != end() ? *it : null;
}
/**
* @brief Returns the last entity of the group, if any.
* @return The last entity of the group if one exists, the null entity
* otherwise.
*/
[[nodiscard]] entity_type back() const noexcept {
const auto it = rbegin();
return it != rend() ? *it : null;
}
/**
* @brief Finds an entity.
* @param entt A valid identifier.
* @return An iterator to the given entity if it's found, past the end
* iterator otherwise.
*/
[[nodiscard]] iterator find(const entity_type entt) const noexcept {
const auto it = *this ? handler->find(entt) : iterator{};
return it != end() && *it == entt ? it : end();
}
/**
* @brief Returns the identifier that occupies the given position.
* @param pos Position of the element to return.
* @return The identifier that occupies the given position.
*/
[[nodiscard]] entity_type operator[](const size_type pos) const {
return begin()[pos];
}
/**
* @brief Checks if a group is properly initialized.
* @return True if the group is properly initialized, false otherwise.
*/
[[nodiscard]] explicit operator bool() const noexcept {
return handler != nullptr;
}
/**
* @brief Checks if a group contains an entity.
* @param entt A valid identifier.
* @return True if the group contains the given entity, false otherwise.
*/
[[nodiscard]] bool contains(const entity_type entt) const noexcept {
return *this && handler->contains(entt);
}
/**
* @brief Returns the components assigned to the given entity.
*
* Prefer this function instead of `registry::get` during iterations. It has
* far better performance than its counterpart.
*
* @warning
* Attempting to use an invalid component type results in a compilation
* error. Attempting to use an entity that doesn't belong to the group
* results in undefined behavior.
*
* @tparam Type Types of components to get.
* @param entt A valid identifier.
* @return The components assigned to the entity.
*/
template<typename... Type>
[[nodiscard]] decltype(auto) get(const entity_type entt) const {
if constexpr(sizeof...(Type) == 0) {
return std::apply([entt](auto *...curr) { return std::tuple_cat(curr->get_as_tuple(entt)...); }, pools);
} else if constexpr(sizeof...(Type) == 1) {
return (std::get<index_of<Type>>(pools)->get(entt), ...);
} else {
return std::tuple_cat(std::get<index_of<Type>>(pools)->get_as_tuple(entt)...);
}
}
/**
* @brief Iterates entities and components and applies the given function
* object to them.
*
* The function object is invoked for each entity. It is provided with the
* entity itself and a set of references to non-empty components. The
* _constness_ of the components is as requested.<br/>
* The signature of the function must be equivalent to one of the following
* forms:
*
* @code{.cpp}
* void(const entity_type, Type &...);
* void(Type &...);
* @endcode
*
* @note
* Empty types aren't explicitly instantiated and therefore they are never
* returned during iterations.
*
* @tparam Func Type of the function object to invoke.
* @param func A valid function object.
*/
template<typename Func>
void each(Func func) const {
for(const auto entt: *this) {
if constexpr(is_applicable_v<Func, decltype(std::tuple_cat(std::tuple<entity_type>{}, std::declval<basic_group>().get({})))>) {
std::apply(func, std::tuple_cat(std::make_tuple(entt), get(entt)));
} else {
std::apply(func, get(entt));
}
}
}
/**
* @brief Returns an iterable object to use to _visit_ a group.
*
* The iterable object returns tuples that contain the current entity and a
* set of references to its non-empty components. The _constness_ of the
* components is as requested.
*
* @note
* Empty types aren't explicitly instantiated and therefore they are never
* returned during iterations.
*
* @return An iterable object to use to _visit_ the group.
*/
[[nodiscard]] iterable each() const noexcept {
return iterable{{begin(), pools}, {end(), pools}};
}
/**
* @brief Sort a group according to the given comparison function.
*
* Sort the group so that iterating it with a couple of iterators returns
* entities and components in the expected order. See `begin` and `end` for
* more details.
*
* The comparison function object must return `true` if the first element
* is _less_ than the second one, `false` otherwise. The signature of the
* comparison function should be equivalent to one of the following:
*
* @code{.cpp}
* bool(std::tuple<Type &...>, std::tuple<Type &...>);
* bool(const Type &..., const Type &...);
* bool(const Entity, const Entity);
* @endcode
*
* Where `Type` are such that they are iterated by the group.<br/>
* Moreover, the comparison function object shall induce a
* _strict weak ordering_ on the values.
*
* The sort function object must offer a member function template
* `operator()` that accepts three arguments:
*
* * An iterator to the first element of the range to sort.
* * An iterator past the last element of the range to sort.
* * A comparison function to use to compare the elements.
*
* @tparam Type Optional types of components to compare.
* @tparam Compare Type of comparison function object.
* @tparam Sort Type of sort function object.
* @tparam Args Types of arguments to forward to the sort function object.
* @param compare A valid comparison function object.
* @param algo A valid sort function object.
* @param args Arguments to forward to the sort function object, if any.
*/
template<typename... Type, typename Compare, typename Sort = std_sort, typename... Args>
void sort(Compare compare, Sort algo = Sort{}, Args &&...args) {
if(*this) {
if constexpr(sizeof...(Type) == 0) {
static_assert(std::is_invocable_v<Compare, const entity_type, const entity_type>, "Invalid comparison function");
handler->sort(std::move(compare), std::move(algo), std::forward<Args>(args)...);
} else {
auto comp = [this, &compare](const entity_type lhs, const entity_type rhs) {
if constexpr(sizeof...(Type) == 1) {
return compare((std::get<index_of<Type>>(pools)->get(lhs), ...), (std::get<index_of<Type>>(pools)->get(rhs), ...));
} else {
return compare(std::forward_as_tuple(std::get<index_of<Type>>(pools)->get(lhs)...), std::forward_as_tuple(std::get<index_of<Type>>(pools)->get(rhs)...));
}
};
handler->sort(std::move(comp), std::move(algo), std::forward<Args>(args)...);
}
}
}
/**
* @brief Sort the shared pool of entities according to the given component.
*
* Non-owning groups of the same type share with the registry a pool of
* entities with its own order that doesn't depend on the order of any pool
* of components. Users can order the underlying data structure so that it
* respects the order of the pool of the given component.
*
* @note
* The shared pool of entities and thus its order is affected by the changes
* to each and every pool that it tracks. Therefore changes to those pools
* can quickly ruin the order imposed to the pool of entities shared between
* the non-owning groups.
*
* @tparam Type Type of component to use to impose the order.
*/
template<typename Type>
void sort() const {
if(*this) {
handler->respect(*std::get<index_of<Type>>(pools));
}
}
private:
base_type *const handler;
const std::tuple<Get *...> pools;
};
/**
* @brief Owning group.
*
* Owning groups returns all entities and only the entities that are at
* least in the given storage. Moreover:
*
* * It's guaranteed that the entity list is tightly packed in memory for fast
* iterations.
* * It's guaranteed that all components in the owned storage are tightly packed
* in memory for even faster iterations and to allow direct access.
* * They stay true to the order of the owned storage and all instances have the
* same order in memory.
*
* The more types of storage are owned, the faster it is to iterate a group.
*
* @b Important
*
* Iterators aren't invalidated if:
*
* * New elements are added to the storage.
* * The entity currently pointed is modified (for example, components are added
* or removed from it).
* * The entity currently pointed is destroyed.
*
* In all other cases, modifying the pools iterated by the group in any way
* invalidates all the iterators and using them results in undefined behavior.
*
* @tparam Owned Types of storage _owned_ by the group.
* @tparam Get Types of storage _observed_ by the group.
* @tparam Exclude Types of storage used to filter the group.
*/
template<typename... Owned, typename... Get, typename... Exclude>
class basic_group<owned_t<Owned...>, get_t<Get...>, exclude_t<Exclude...>> {
using underlying_type = std::common_type_t<typename Owned::entity_type..., typename Get::entity_type..., typename Exclude::entity_type...>;
using basic_common_type = std::common_type_t<typename Owned::base_type..., typename Get::base_type..., typename Exclude::base_type...>;
template<typename Type>
static constexpr std::size_t index_of = type_list_index_v<std::remove_const_t<Type>, type_list<typename Owned::value_type..., typename Get::value_type...>>;
public:
/*! @brief Underlying entity identifier. */
using entity_type = underlying_type;
/*! @brief Unsigned integer type. */
using size_type = std::size_t;
/*! @brief Common type among all storage types. */
using base_type = basic_common_type;
/*! @brief Random access iterator type. */
using iterator = typename base_type::iterator;
/*! @brief Reversed iterator type. */
using reverse_iterator = typename base_type::reverse_iterator;
/*! @brief Iterable group type. */
using iterable = iterable_adaptor<internal::extended_group_iterator<iterator, owned_t<Owned...>, get_t<Get...>>>;
/*! @brief Default constructor to use to create empty, invalid groups. */
basic_group() noexcept
: length{} {}
/**
* @brief Constructs a group from a set of storage classes.
* @param extent The actual number of entities to iterate.
* @param opool Storage types to iterate _owned_ by the group.
* @param gpool Storage types to iterate _observed_ by the group.
*/
basic_group(const std::size_t &extent, Owned &...opool, Get &...gpool) noexcept
: pools{&opool..., &gpool...},
length{&extent} {}
/**
* @brief Returns the storage for a given component type.
* @tparam Type Type of component of which to return the storage.
* @return The storage for the given component type.
*/
template<typename Type>
[[nodiscard]] decltype(auto) storage() const noexcept {
return storage<index_of<Type>>();
}
/**
* @brief Returns the storage for a given index.
* @tparam Index Index of the storage to return.
* @return The storage for the given index.
*/
template<std::size_t Index>
[[nodiscard]] decltype(auto) storage() const noexcept {
return *std::get<Index>(pools);
}
/**
* @brief Returns the number of entities that that are part of the group.
* @return Number of entities that that are part of the group.
*/
[[nodiscard]] size_type size() const noexcept {
return *this ? *length : size_type{};
}
/**
* @brief Checks whether a group is empty.
* @return True if the group is empty, false otherwise.
*/
[[nodiscard]] bool empty() const noexcept {
return !*this || !*length;
}
/**
* @brief Returns an iterator to the first entity of the group.
*
* The returned iterator points to the first entity of the group. If the
* group is empty, the returned iterator will be equal to `end()`.
*
* @return An iterator to the first entity of the group.
*/
[[nodiscard]] iterator begin() const noexcept {
return *this ? (std::get<0>(pools)->base_type::end() - *length) : iterator{};
}
/**
* @brief Returns an iterator that is past the last entity of the group.
*
* The returned iterator points to the entity following the last entity of
* the group. Attempting to dereference the returned iterator results in
* undefined behavior.
*
* @return An iterator to the entity following the last entity of the
* group.
*/
[[nodiscard]] iterator end() const noexcept {
return *this ? std::get<0>(pools)->base_type::end() : iterator{};
}
/**
* @brief Returns an iterator to the first entity of the reversed group.
*
* The returned iterator points to the first entity of the reversed group.
* If the group is empty, the returned iterator will be equal to `rend()`.
*
* @return An iterator to the first entity of the reversed group.
*/
[[nodiscard]] reverse_iterator rbegin() const noexcept {
return *this ? std::get<0>(pools)->base_type::rbegin() : reverse_iterator{};
}
/**
* @brief Returns an iterator that is past the last entity of the reversed
* group.
*
* The returned iterator points to the entity following the last entity of
* the reversed group. Attempting to dereference the returned iterator
* results in undefined behavior.
*
* @return An iterator to the entity following the last entity of the
* reversed group.
*/
[[nodiscard]] reverse_iterator rend() const noexcept {
return *this ? (std::get<0>(pools)->base_type::rbegin() + *length) : reverse_iterator{};
}
/**
* @brief Returns the first entity of the group, if any.
* @return The first entity of the group if one exists, the null entity
* otherwise.
*/
[[nodiscard]] entity_type front() const noexcept {
const auto it = begin();
return it != end() ? *it : null;
}
/**
* @brief Returns the last entity of the group, if any.
* @return The last entity of the group if one exists, the null entity
* otherwise.
*/
[[nodiscard]] entity_type back() const noexcept {
const auto it = rbegin();
return it != rend() ? *it : null;
}
/**
* @brief Finds an entity.
* @param entt A valid identifier.
* @return An iterator to the given entity if it's found, past the end
* iterator otherwise.
*/
[[nodiscard]] iterator find(const entity_type entt) const noexcept {
const auto it = *this ? std::get<0>(pools)->find(entt) : iterator{};
return it != end() && it >= begin() && *it == entt ? it : end();
}
/**
* @brief Returns the identifier that occupies the given position.
* @param pos Position of the element to return.
* @return The identifier that occupies the given position.
*/
[[nodiscard]] entity_type operator[](const size_type pos) const {
return begin()[pos];
}
/**
* @brief Checks if a group is properly initialized.
* @return True if the group is properly initialized, false otherwise.
*/
[[nodiscard]] explicit operator bool() const noexcept {
return length != nullptr;
}
/**
* @brief Checks if a group contains an entity.
* @param entt A valid identifier.
* @return True if the group contains the given entity, false otherwise.
*/
[[nodiscard]] bool contains(const entity_type entt) const noexcept {
return *this && std::get<0>(pools)->contains(entt) && (std::get<0>(pools)->index(entt) < (*length));
}
/**
* @brief Returns the components assigned to the given entity.
*
* Prefer this function instead of `registry::get` during iterations. It has
* far better performance than its counterpart.
*
* @warning
* Attempting to use an invalid component type results in a compilation
* error. Attempting to use an entity that doesn't belong to the group
* results in undefined behavior.
*
* @tparam Type Types of components to get.
* @param entt A valid identifier.
* @return The components assigned to the entity.
*/
template<typename... Type>
[[nodiscard]] decltype(auto) get(const entity_type entt) const {
if constexpr(sizeof...(Type) == 0) {
return std::apply([entt](auto *...curr) { return std::tuple_cat(curr->get_as_tuple(entt)...); }, pools);
} else if constexpr(sizeof...(Type) == 1) {
return (std::get<index_of<Type>>(pools)->get(entt), ...);
} else {
return std::tuple_cat(std::get<index_of<Type>>(pools)->get_as_tuple(entt)...);
}
}
/**
* @brief Iterates entities and components and applies the given function
* object to them.
*
* The function object is invoked for each entity. It is provided with the
* entity itself and a set of references to non-empty components. The
* _constness_ of the components is as requested.<br/>
* The signature of the function must be equivalent to one of the following
* forms:
*
* @code{.cpp}
* void(const entity_type, Type &...);
* void(Type &...);
* @endcode
*
* @note
* Empty types aren't explicitly instantiated and therefore they are never
* returned during iterations.
*
* @tparam Func Type of the function object to invoke.
* @param func A valid function object.
*/
template<typename Func>
void each(Func func) const {
for(auto args: each()) {
if constexpr(is_applicable_v<Func, decltype(std::tuple_cat(std::tuple<entity_type>{}, std::declval<basic_group>().get({})))>) {
std::apply(func, args);
} else {
std::apply([&func](auto, auto &&...less) { func(std::forward<decltype(less)>(less)...); }, args);
}
}
}
/**
* @brief Returns an iterable object to use to _visit_ a group.
*
* The iterable object returns tuples that contain the current entity and a
* set of references to its non-empty components. The _constness_ of the
* components is as requested.
*
* @note
* Empty types aren't explicitly instantiated and therefore they are never
* returned during iterations.
*
* @return An iterable object to use to _visit_ the group.
*/
[[nodiscard]] iterable each() const noexcept {
return {{begin(), pools}, {end(), pools}};
}
/**
* @brief Sort a group according to the given comparison function.
*
* Sort the group so that iterating it with a couple of iterators returns
* entities and components in the expected order. See `begin` and `end` for
* more details.
*
* The comparison function object must return `true` if the first element
* is _less_ than the second one, `false` otherwise. The signature of the
* comparison function should be equivalent to one of the following:
*
* @code{.cpp}
* bool(std::tuple<Type &...>, std::tuple<Type &...>);
* bool(const Type &, const Type &);
* bool(const Entity, const Entity);
* @endcode
*
* Where `Type` are either owned types or not but still such that they are
* iterated by the group.<br/>
* Moreover, the comparison function object shall induce a
* _strict weak ordering_ on the values.
*
* The sort function object must offer a member function template
* `operator()` that accepts three arguments:
*
* * An iterator to the first element of the range to sort.
* * An iterator past the last element of the range to sort.
* * A comparison function to use to compare the elements.
*
* @tparam Type Optional types of components to compare.
* @tparam Compare Type of comparison function object.
* @tparam Sort Type of sort function object.
* @tparam Args Types of arguments to forward to the sort function object.
* @param compare A valid comparison function object.
* @param algo A valid sort function object.
* @param args Arguments to forward to the sort function object, if any.
*/
template<typename... Type, typename Compare, typename Sort = std_sort, typename... Args>
void sort(Compare compare, Sort algo = Sort{}, Args &&...args) const {
if constexpr(sizeof...(Type) == 0) {
static_assert(std::is_invocable_v<Compare, const entity_type, const entity_type>, "Invalid comparison function");
std::get<0>(pools)->sort_n(*length, std::move(compare), std::move(algo), std::forward<Args>(args)...);
} else {
auto comp = [this, &compare](const entity_type lhs, const entity_type rhs) {
if constexpr(sizeof...(Type) == 1) {
return compare((std::get<index_of<Type>>(pools)->get(lhs), ...), (std::get<index_of<Type>>(pools)->get(rhs), ...));
} else {
return compare(std::forward_as_tuple(std::get<index_of<Type>>(pools)->get(lhs)...), std::forward_as_tuple(std::get<index_of<Type>>(pools)->get(rhs)...));
}
};
std::get<0>(pools)->sort_n(*length, std::move(comp), std::move(algo), std::forward<Args>(args)...);
}
std::apply([this](auto *head, auto *...other) {
for(auto next = *length; next; --next) {
const auto pos = next - 1;
[[maybe_unused]] const auto entt = head->data()[pos];
(other->swap_elements(other->data()[pos], entt), ...);
}
},
pools);
}
private:
const std::tuple<Owned *..., Get *...> pools;
const size_type *const length;
};
} // namespace entt
#endif
// #include "view.hpp"
#ifndef ENTT_ENTITY_VIEW_HPP
#define ENTT_ENTITY_VIEW_HPP
#include <array>
#include <iterator>
#include <tuple>
#include <type_traits>
#include <utility>
// #include "../config/config.h"
// #include "../core/iterator.hpp"
// #include "../core/type_traits.hpp"
// #include "component.hpp"
// #include "entity.hpp"
// #include "fwd.hpp"
// #include "sparse_set.hpp"
// #include "storage.hpp"
namespace entt {
/**
* @cond TURN_OFF_DOXYGEN
* Internal details not to be documented.
*/
namespace internal {
template<typename Type, std::size_t Get, std::size_t Exclude>
class view_iterator final {
using iterator_type = typename Type::const_iterator;
[[nodiscard]] bool valid() const noexcept {
return ((Get != 0u) || (*it != tombstone))
&& std::apply([entt = *it](const auto *...curr) { return (curr->contains(entt) && ...); }, pools)
&& std::apply([entt = *it](const auto *...curr) { return (!curr->contains(entt) && ...); }, filter);
}
public:
using value_type = typename iterator_type::value_type;
using pointer = typename iterator_type::pointer;
using reference = typename iterator_type::reference;
using difference_type = typename iterator_type::difference_type;
using iterator_category = std::forward_iterator_tag;
constexpr view_iterator() noexcept
: it{},
last{},
pools{},
filter{} {}
view_iterator(iterator_type curr, iterator_type to, std::array<const Type *, Get> all_of, std::array<const Type *, Exclude> none_of) noexcept
: it{curr},
last{to},
pools{all_of},
filter{none_of} {
while(it != last && !valid()) {
++it;
}
}
view_iterator &operator++() noexcept {
while(++it != last && !valid()) {}
return *this;
}
view_iterator operator++(int) noexcept {
view_iterator orig = *this;
return ++(*this), orig;
}
[[nodiscard]] pointer operator->() const noexcept {
return &*it;
}
[[nodiscard]] reference operator*() const noexcept {
return *operator->();
}
template<typename LhsType, auto... LhsArgs, typename RhsType, auto... RhsArgs>
friend constexpr bool operator==(const view_iterator<LhsType, LhsArgs...> &, const view_iterator<RhsType, RhsArgs...> &) noexcept;
private:
iterator_type it;
iterator_type last;
std::array<const Type *, Get> pools;
std::array<const Type *, Exclude> filter;
};
template<typename LhsType, auto... LhsArgs, typename RhsType, auto... RhsArgs>
[[nodiscard]] constexpr bool operator==(const view_iterator<LhsType, LhsArgs...> &lhs, const view_iterator<RhsType, RhsArgs...> &rhs) noexcept {
return lhs.it == rhs.it;
}
template<typename LhsType, auto... LhsArgs, typename RhsType, auto... RhsArgs>
[[nodiscard]] constexpr bool operator!=(const view_iterator<LhsType, LhsArgs...> &lhs, const view_iterator<RhsType, RhsArgs...> &rhs) noexcept {
return !(lhs == rhs);
}
template<typename It, typename... Type>
struct extended_view_iterator final {
using difference_type = std::ptrdiff_t;
using value_type = decltype(std::tuple_cat(std::make_tuple(*std::declval<It>()), std::declval<Type>().get_as_tuple({})...));
using pointer = input_iterator_pointer<value_type>;
using reference = value_type;
using iterator_category = std::input_iterator_tag;
constexpr extended_view_iterator()
: it{},
pools{} {}
extended_view_iterator(It from, std::tuple<Type *...> storage)
: it{from},
pools{storage} {}
extended_view_iterator &operator++() noexcept {
return ++it, *this;
}
extended_view_iterator operator++(int) noexcept {
extended_view_iterator orig = *this;
return ++(*this), orig;
}
[[nodiscard]] reference operator*() const noexcept {
return std::apply([entt = *it](auto *...curr) { return std::tuple_cat(std::make_tuple(entt), curr->get_as_tuple(entt)...); }, pools);
}
[[nodiscard]] pointer operator->() const noexcept {
return operator*();
}
template<typename... Lhs, typename... Rhs>
friend bool constexpr operator==(const extended_view_iterator<Lhs...> &, const extended_view_iterator<Rhs...> &) noexcept;
private:
It it;
std::tuple<Type *...> pools;
};
template<typename... Lhs, typename... Rhs>
[[nodiscard]] constexpr bool operator==(const extended_view_iterator<Lhs...> &lhs, const extended_view_iterator<Rhs...> &rhs) noexcept {
return lhs.it == rhs.it;
}
template<typename... Lhs, typename... Rhs>
[[nodiscard]] constexpr bool operator!=(const extended_view_iterator<Lhs...> &lhs, const extended_view_iterator<Rhs...> &rhs) noexcept {
return !(lhs == rhs);
}
} // namespace internal
/**
* Internal details not to be documented.
* @endcond
*/
/**
* @brief View implementation.
*
* Primary template isn't defined on purpose. All the specializations give a
* compile-time error, but for a few reasonable cases.
*/
template<typename, typename, typename>
class basic_view;
/**
* @brief Multi component view.
*
* Multi component views iterate over those entities that are at least in the
* given storage. During initialization, a multi component view looks at the
* number of entities available for each component and uses the smallest set in
* order to get a performance boost when iterating.
*
* @b Important
*
* Iterators aren't invalidated if:
*
* * New elements are added to the storage.
* * The entity currently pointed is modified (for example, components are added
* or removed from it).
* * The entity currently pointed is destroyed.
*
* In all other cases, modifying the pools iterated by the view in any way
* invalidates all the iterators and using them results in undefined behavior.
*
* @tparam Get Types of storage iterated by the view.
* @tparam Exclude Types of storage used to filter the view.
*/
template<typename... Get, typename... Exclude>
class basic_view<get_t<Get...>, exclude_t<Exclude...>> {
using underlying_type = std::common_type_t<typename Get::entity_type..., typename Exclude::entity_type...>;
using basic_common_type = std::common_type_t<typename Get::base_type..., typename Exclude::base_type...>;
template<typename, typename, typename>
friend class basic_view;
template<typename Type>
static constexpr std::size_t index_of = type_list_index_v<std::remove_const_t<Type>, type_list<typename Get::value_type...>>;
[[nodiscard]] auto opaque_check_set() const noexcept {
std::array<const base_type *, sizeof...(Get) - 1u> other{};
std::apply([&other, pos = 0u, view = view](const auto *...curr) mutable { ((curr == view ? void() : void(other[pos++] = curr)), ...); }, pools);
return other;
}
[[nodiscard]] auto filter_as_array() const noexcept {
return std::apply([](const auto *...curr) { return std::array<const base_type *, sizeof...(Exclude)>{curr...}; }, filter);
}
template<std::size_t Curr, std::size_t Other, typename... Args>
[[nodiscard]] auto dispatch_get(const std::tuple<underlying_type, Args...> &curr) const {
if constexpr(Curr == Other) {
return std::forward_as_tuple(std::get<Args>(curr)...);
} else {
return storage<Other>().get_as_tuple(std::get<0>(curr));
}
}
[[nodiscard]] auto reject(const underlying_type entt) const noexcept {
return std::apply([entt](const auto *...curr) { return (curr->contains(entt) || ...); }, filter);
}
template<std::size_t Curr, typename Func, std::size_t... Index>
void each(Func &func, std::index_sequence<Index...>) const {
for(const auto curr: storage<Curr>().each()) {
if(const auto entt = std::get<0>(curr); ((sizeof...(Get) != 1u) || (entt != tombstone)) && ((Curr == Index || storage<Index>().contains(entt)) && ...) && !reject(entt)) {
if constexpr(is_applicable_v<Func, decltype(std::tuple_cat(std::tuple<entity_type>{}, std::declval<basic_view>().get({})))>) {
std::apply(func, std::tuple_cat(std::make_tuple(entt), dispatch_get<Curr, Index>(curr)...));
} else {
std::apply(func, std::tuple_cat(dispatch_get<Curr, Index>(curr)...));
}
}
}
}
template<typename Func, std::size_t... Index>
void pick_and_each(Func &func, std::index_sequence<Index...> seq) const {
((&storage<Index>() == view ? each<Index>(func, seq) : void()), ...);
}
public:
/*! @brief Underlying entity identifier. */
using entity_type = underlying_type;
/*! @brief Unsigned integer type. */
using size_type = std::size_t;
/*! @brief Common type among all storage types. */
using base_type = basic_common_type;
/*! @brief Bidirectional iterator type. */
using iterator = internal::view_iterator<base_type, sizeof...(Get) - 1u, sizeof...(Exclude)>;
/*! @brief Iterable view type. */
using iterable = iterable_adaptor<internal::extended_view_iterator<iterator, Get...>>;
/*! @brief Default constructor to use to create empty, invalid views. */
basic_view() noexcept
: pools{},
filter{},
view{} {}
/**
* @brief Constructs a multi-type view from a set of storage classes.
* @param value The storage for the types to iterate.
* @param exclude The storage for the types used to filter the view.
*/
basic_view(Get &...value, Exclude &...exclude) noexcept
: pools{&value...},
filter{&exclude...},
view{[](const base_type *first, const auto *...other) { ((first = other->size() < first->size() ? other : first), ...); return first; }(&value...)} {}
/**
* @brief Constructs a multi-type view from a set of storage classes.
* @param value The storage for the types to iterate.
* @param excl The storage for the types used to filter the view.
*/
basic_view(std::tuple<Get &...> value, std::tuple<Exclude &...> excl = {}) noexcept
: pools{std::apply([](auto &...curr) { return std::make_tuple(&curr...); }, value)},
filter{std::apply([](auto &...curr) { return std::make_tuple(&curr...); }, excl)},
view{std::apply([](const base_type *first, const auto *...other) { ((first = other->size() < first->size() ? other : first), ...); return first; }, pools)} {}
/**
* @brief Creates a new view driven by a given component in its iterations.
* @tparam Type Type of component used to drive the iteration.
* @return A new view driven by the given component in its iterations.
*/
template<typename Type>
[[nodiscard]] basic_view use() const noexcept {
return use<index_of<Type>>();
}
/**
* @brief Creates a new view driven by a given component in its iterations.
* @tparam Index Index of the component used to drive the iteration.
* @return A new view driven by the given component in its iterations.
*/
template<std::size_t Index>
[[nodiscard]] basic_view use() const noexcept {
basic_view other{*this};
other.view = &storage<Index>();
return other;
}
/**
* @brief Updates the internal leading view if required.
* @return A newly created and internally optimized view.
*/
[[nodiscard]] basic_view refresh() const noexcept {
return std::apply([](auto *...elem) { return basic_view{*elem...}; }, std::tuple_cat(pools, filter));
}
/**
* @brief Returns the leading storage of a view.
* @return The leading storage of the view.
*/
[[nodiscard]] const base_type &handle() const noexcept {
return *view;
}
/**
* @brief Returns the storage for a given component type.
* @tparam Comp Type of component of which to return the storage.
* @return The storage for the given component type.
*/
template<typename Type>
[[nodiscard]] decltype(auto) storage() const noexcept {
return storage<index_of<Type>>();
}
/**
* @brief Returns the storage for a given index.
* @tparam Index Index of the storage to return.
* @return The storage for the given index.
*/
template<std::size_t Index>
[[nodiscard]] decltype(auto) storage() const noexcept {
return *std::get<Index>(pools);
}
/**
* @brief Estimates the number of entities iterated by the view.
* @return Estimated number of entities iterated by the view.
*/
[[nodiscard]] size_type size_hint() const noexcept {
return view->size();
}
/**
* @brief Returns an iterator to the first entity of the view.
*
* The returned iterator points to the first entity of the view. If the view
* is empty, the returned iterator will be equal to `end()`.
*
* @return An iterator to the first entity of the view.
*/
[[nodiscard]] iterator begin() const noexcept {
return iterator{view->begin(), view->end(), opaque_check_set(), filter_as_array()};
}
/**
* @brief Returns an iterator that is past the last entity of the view.
*
* The returned iterator points to the entity following the last entity of
* the view. Attempting to dereference the returned iterator results in
* undefined behavior.
*
* @return An iterator to the entity following the last entity of the view.
*/
[[nodiscard]] iterator end() const noexcept {
return iterator{view->end(), view->end(), opaque_check_set(), filter_as_array()};
}
/**
* @brief Returns the first entity of the view, if any.
* @return The first entity of the view if one exists, the null entity
* otherwise.
*/
[[nodiscard]] entity_type front() const noexcept {
const auto it = begin();
return it != end() ? *it : null;
}
/**
* @brief Returns the last entity of the view, if any.
* @return The last entity of the view if one exists, the null entity
* otherwise.
*/
[[nodiscard]] entity_type back() const noexcept {
auto it = view->rbegin();
for(const auto last = view->rend(); it != last && !contains(*it); ++it) {}
return it == view->rend() ? null : *it;
}
/**
* @brief Finds an entity.
* @param entt A valid identifier.
* @return An iterator to the given entity if it's found, past the end
* iterator otherwise.
*/
[[nodiscard]] iterator find(const entity_type entt) const noexcept {
return contains(entt) ? iterator{view->find(entt), view->end(), opaque_check_set(), filter_as_array()} : end();
}
/**
* @brief Returns the components assigned to the given entity.
* @param entt A valid identifier.
* @return The components assigned to the given entity.
*/
[[nodiscard]] decltype(auto) operator[](const entity_type entt) const {
return get(entt);
}
/**
* @brief Checks if a view is properly initialized.
* @return True if the view is properly initialized, false otherwise.
*/
[[nodiscard]] explicit operator bool() const noexcept {
return view != nullptr;
}
/**
* @brief Checks if a view contains an entity.
* @param entt A valid identifier.
* @return True if the view contains the given entity, false otherwise.
*/
[[nodiscard]] bool contains(const entity_type entt) const noexcept {
return std::apply([entt](const auto *...curr) { return (curr->contains(entt) && ...); }, pools)
&& std::apply([entt](const auto *...curr) { return (!curr->contains(entt) && ...); }, filter);
}
/**
* @brief Returns the components assigned to the given entity.
*
* @warning
* Attempting to use an entity that doesn't belong to the view results in
* undefined behavior.
*
* @tparam Type Types of components to get.
* @param entt A valid identifier.
* @return The components assigned to the entity.
*/
template<typename... Type>
[[nodiscard]] decltype(auto) get(const entity_type entt) const {
if constexpr(sizeof...(Type) == 0) {
return std::apply([entt](auto *...curr) { return std::tuple_cat(curr->get_as_tuple(entt)...); }, pools);
} else if constexpr(sizeof...(Type) == 1) {
return (storage<index_of<Type>>().get(entt), ...);
} else {
return std::tuple_cat(storage<index_of<Type>>().get_as_tuple(entt)...);
}
}
/**
* @brief Returns the components assigned to the given entity.
*
* @warning
* Attempting to use an entity that doesn't belong to the view results in
* undefined behavior.
*
* @tparam First Index of a component to get.
* @tparam Other Indexes of other components to get.
* @param entt A valid identifier.
* @return The components assigned to the entity.
*/
template<std::size_t First, std::size_t... Other>
[[nodiscard]] decltype(auto) get(const entity_type entt) const {
if constexpr(sizeof...(Other) == 0) {
return storage<First>().get(entt);
} else {
return std::tuple_cat(storage<First>().get_as_tuple(entt), storage<Other>().get_as_tuple(entt)...);
}
}
/**
* @brief Iterates entities and components and applies the given function
* object to them.
*
* The function object is invoked for each entity. It is provided with the
* entity itself and a set of references to non-empty components. The
* _constness_ of the components is as requested.<br/>
* The signature of the function must be equivalent to one of the following
* forms:
*
* @code{.cpp}
* void(const entity_type, Type &...);
* void(Type &...);
* @endcode
*
* @tparam Func Type of the function object to invoke.
* @param func A valid function object.
*/
template<typename Func>
void each(Func func) const {
pick_and_each(func, std::index_sequence_for<Get...>{});
}
/**
* @brief Returns an iterable object to use to _visit_ a view.
*
* The iterable object returns a tuple that contains the current entity and
* a set of references to its non-empty components. The _constness_ of the
* components is as requested.
*
* @return An iterable object to use to _visit_ the view.
*/
[[nodiscard]] iterable each() const noexcept {
return {internal::extended_view_iterator{begin(), pools}, internal::extended_view_iterator{end(), pools}};
}
/**
* @brief Combines two views in a _more specific_ one (friend function).
* @tparam OGet Component list of the view to combine with.
* @tparam OExclude Filter list of the view to combine with.
* @param other The view to combine with.
* @return A more specific view.
*/
template<typename... OGet, typename... OExclude>
[[nodiscard]] auto operator|(const basic_view<get_t<OGet...>, exclude_t<OExclude...>> &other) const noexcept {
return std::make_from_tuple<basic_view<get_t<Get..., OGet...>, exclude_t<Exclude..., OExclude...>>>(
std::apply([](auto *...curr) { return std::forward_as_tuple(*curr...); }, std::tuple_cat(pools, other.pools, filter, other.filter)));
}
private:
std::tuple<Get *...> pools;
std::tuple<Exclude *...> filter;
const base_type *view;
};
/**
* @brief Single component view specialization.
*
* Single component views are specialized in order to get a boost in terms of
* performance. This kind of views can access the underlying data structure
* directly and avoid superfluous checks.
*
* @b Important
*
* Iterators aren't invalidated if:
*
* * New elements are added to the storage.
* * The entity currently pointed is modified (for example, components are added
* or removed from it).
* * The entity currently pointed is destroyed.
*
* In all other cases, modifying the pool iterated by the view in any way
* invalidates all the iterators and using them results in undefined behavior.
*
* @tparam Get Type of storage iterated by the view.
*/
template<typename Get>
class basic_view<get_t<Get>, exclude_t<>, std::void_t<std::enable_if_t<!component_traits<typename Get::value_type>::in_place_delete>>> {
template<typename, typename, typename>
friend class basic_view;
public:
/*! @brief Underlying entity identifier. */
using entity_type = typename Get::entity_type;
/*! @brief Unsigned integer type. */
using size_type = std::size_t;
/*! @brief Common type among all storage types. */
using base_type = typename Get::base_type;
/*! @brief Random access iterator type. */
using iterator = typename base_type::iterator;
/*! @brief Reversed iterator type. */
using reverse_iterator = typename base_type::reverse_iterator;
/*! @brief Iterable view type. */
using iterable = decltype(std::declval<Get>().each());
/*! @brief Default constructor to use to create empty, invalid views. */
basic_view() noexcept
: pools{},
filter{} {}
/**
* @brief Constructs a single-type view from a storage class.
* @param ref The storage for the type to iterate.
*/
basic_view(Get &ref) noexcept
: pools{&ref},
filter{} {}
/**
* @brief Constructs a single-type view from a storage class.
* @param ref The storage for the type to iterate.
*/
basic_view(std::tuple<Get &> ref, std::tuple<> = {}) noexcept
: pools{&std::get<0>(ref)},
filter{} {}
/**
* @brief Returns the leading storage of a view.
* @return The leading storage of the view.
*/
[[nodiscard]] const base_type &handle() const noexcept {
return storage();
}
/**
* @brief Returns the storage for a given component type.
* @tparam Type Type of component of which to return the storage.
* @return The storage for the given component type.
*/
template<typename Type = typename Get::value_type>
[[nodiscard]] decltype(auto) storage() const noexcept {
static_assert(std::is_same_v<std::remove_const_t<Type>, typename Get::value_type>, "Invalid component type");
return storage<0>();
}
/**
* @brief Returns the storage for a given index.
* @tparam Index Index of the storage to return.
* @return The storage for the given index.
*/
template<std::size_t Index>
[[nodiscard]] decltype(auto) storage() const noexcept {
return *std::get<Index>(pools);
}
/**
* @brief Returns the number of entities that have the given component.
* @return Number of entities that have the given component.
*/
[[nodiscard]] size_type size() const noexcept {
return handle().size();
}
/**
* @brief Checks whether a view is empty.
* @return True if the view is empty, false otherwise.
*/
[[nodiscard]] bool empty() const noexcept {
return handle().empty();
}
/**
* @brief Returns an iterator to the first entity of the view.
*
* The returned iterator points to the first entity of the view. If the view
* is empty, the returned iterator will be equal to `end()`.
*
* @return An iterator to the first entity of the view.
*/
[[nodiscard]] iterator begin() const noexcept {
return handle().begin();
}
/**
* @brief Returns an iterator that is past the last entity of the view.
*
* The returned iterator points to the entity following the last entity of
* the view. Attempting to dereference the returned iterator results in
* undefined behavior.
*
* @return An iterator to the entity following the last entity of the view.
*/
[[nodiscard]] iterator end() const noexcept {
return handle().end();
}
/**
* @brief Returns an iterator to the first entity of the reversed view.
*
* The returned iterator points to the first entity of the reversed view. If
* the view is empty, the returned iterator will be equal to `rend()`.
*
* @return An iterator to the first entity of the reversed view.
*/
[[nodiscard]] reverse_iterator rbegin() const noexcept {
return handle().rbegin();
}
/**
* @brief Returns an iterator that is past the last entity of the reversed
* view.
*
* The returned iterator points to the entity following the last entity of
* the reversed view. Attempting to dereference the returned iterator
* results in undefined behavior.
*
* @return An iterator to the entity following the last entity of the
* reversed view.
*/
[[nodiscard]] reverse_iterator rend() const noexcept {
return handle().rend();
}
/**
* @brief Returns the first entity of the view, if any.
* @return The first entity of the view if one exists, the null entity
* otherwise.
*/
[[nodiscard]] entity_type front() const noexcept {
return empty() ? null : *begin();
}
/**
* @brief Returns the last entity of the view, if any.
* @return The last entity of the view if one exists, the null entity
* otherwise.
*/
[[nodiscard]] entity_type back() const noexcept {
return empty() ? null : *rbegin();
}
/**
* @brief Finds an entity.
* @param entt A valid identifier.
* @return An iterator to the given entity if it's found, past the end
* iterator otherwise.
*/
[[nodiscard]] iterator find(const entity_type entt) const noexcept {
return contains(entt) ? handle().find(entt) : end();
}
/**
* @brief Returns the identifier that occupies the given position.
* @param pos Position of the element to return.
* @return The identifier that occupies the given position.
*/
[[nodiscard]] entity_type operator[](const size_type pos) const {
return begin()[pos];
}
/**
* @brief Returns the component assigned to the given entity.
* @param entt A valid identifier.
* @return The component assigned to the given entity.
*/
[[nodiscard]] decltype(auto) operator[](const entity_type entt) const {
return storage().get(entt);
}
/**
* @brief Checks if a view is properly initialized.
* @return True if the view is properly initialized, false otherwise.
*/
[[nodiscard]] explicit operator bool() const noexcept {
return std::get<0>(pools) != nullptr;
}
/**
* @brief Checks if a view contains an entity.
* @param entt A valid identifier.
* @return True if the view contains the given entity, false otherwise.
*/
[[nodiscard]] bool contains(const entity_type entt) const noexcept {
return handle().contains(entt);
}
/**
* @brief Returns the component assigned to the given entity.
*
* @warning
* Attempting to use an entity that doesn't belong to the view results in
* undefined behavior.
*
* @tparam Type Type or index of the component to get.
* @param entt A valid identifier.
* @return The component assigned to the entity.
*/
template<typename... Type>
[[nodiscard]] decltype(auto) get(const entity_type entt) const {
if constexpr(sizeof...(Type) == 0) {
return storage().get_as_tuple(entt);
} else {
static_assert((std::is_same_v<std::remove_const_t<Type>, typename Get::value_type> && ...), "Invalid component type");
return storage().get(entt);
}
}
/*! @copydoc get */
template<std::size_t Index>
[[nodiscard]] decltype(auto) get(const entity_type entt) const {
return storage().get(entt);
}
/**
* @brief Iterates entities and components and applies the given function
* object to them.
*
* The function object is invoked for each entity. It is provided with the
* entity itself and a reference to the component if it's a non-empty one.
* The _constness_ of the component is as requested.<br/>
* The signature of the function must be equivalent to one of the following
* forms:
*
* @code{.cpp}
* void(const entity_type, Type &);
* void(typename Type &);
* @endcode
*
* @note
* Empty types aren't explicitly instantiated and therefore they are never
* returned during iterations.
*
* @tparam Func Type of the function object to invoke.
* @param func A valid function object.
*/
template<typename Func>
void each(Func func) const {
if constexpr(is_applicable_v<Func, decltype(*each().begin())>) {
for(const auto pack: each()) {
std::apply(func, pack);
}
} else if constexpr(ignore_as_empty_v<typename Get::value_type>) {
for(size_type pos{}, last = size(); pos < last; ++pos) {
func();
}
} else {
for(auto &&component: storage()) {
func(component);
}
}
}
/**
* @brief Returns an iterable object to use to _visit_ a view.
*
* The iterable object returns a tuple that contains the current entity and
* a reference to its component if it's a non-empty one. The _constness_ of
* the component is as requested.
*
* @return An iterable object to use to _visit_ the view.
*/
[[nodiscard]] iterable each() const noexcept {
return storage().each();
}
/**
* @brief Combines two views in a _more specific_ one (friend function).
* @tparam OGet Component list of the view to combine with.
* @tparam OExclude Filter list of the view to combine with.
* @param other The view to combine with.
* @return A more specific view.
*/
template<typename... OGet, typename... OExclude>
[[nodiscard]] auto operator|(const basic_view<get_t<OGet...>, exclude_t<OExclude...>> &other) const noexcept {
return std::make_from_tuple<basic_view<get_t<Get, OGet...>, exclude_t<OExclude...>>>(
std::apply([](auto *...curr) { return std::forward_as_tuple(*curr...); }, std::tuple_cat(pools, other.pools, other.filter)));
}
private:
std::tuple<Get *> pools;
std::tuple<> filter;
};
/**
* @brief Deduction guide.
* @tparam Type Type of storage classes used to create the view.
* @param storage The storage for the types to iterate.
*/
template<typename... Type>
basic_view(Type &...storage) -> basic_view<get_t<Type...>, exclude_t<>>;
/**
* @brief Deduction guide.
* @tparam Get Types of components iterated by the view.
* @tparam Exclude Types of components used to filter the view.
*/
template<typename... Get, typename... Exclude>
basic_view(std::tuple<Get &...>, std::tuple<Exclude &...> = {}) -> basic_view<get_t<Get...>, exclude_t<Exclude...>>;
} // namespace entt
#endif
namespace entt {
/**
* @brief Converts a registry to a view.
* @tparam Registry Basic registry type.
*/
template<typename Registry>
class as_view {
template<typename... Get, typename... Exclude>
auto dispatch(get_t<Get...>, exclude_t<Exclude...>) const {
return reg.template view<constness_as_t<typename Get::value_type, Get>...>(exclude_t<constness_as_t<typename Exclude::value_type, Exclude>...>{});
}
public:
/*! @brief Type of registry to convert. */
using registry_type = Registry;
/*! @brief Underlying entity identifier. */
using entity_type = std::remove_const_t<typename registry_type::entity_type>;
/**
* @brief Constructs a converter for a given registry.
* @param source A valid reference to a registry.
*/
as_view(registry_type &source) noexcept
: reg{source} {}
/**
* @brief Conversion function from a registry to a view.
* @tparam Get Type of storage used to construct the view.
* @tparam Exclude Types of storage used to filter the view.
* @return A newly created view.
*/
template<typename Get, typename Exclude>
operator basic_view<Get, Exclude>() const {
return dispatch(Get{}, Exclude{});
}
private:
registry_type &reg;
};
/**
* @brief Converts a registry to a group.
* @tparam Registry Basic registry type.
*/
template<typename Registry>
class as_group {
template<typename... Owned, typename... Get, typename... Exclude>
auto dispatch(owned_t<Owned...>, get_t<Get...>, exclude_t<Exclude...>) const {
if constexpr(std::is_const_v<registry_type>) {
return reg.template group_if_exists<typename Owned::value_type...>(get_t<typename Get::value_type...>{}, exclude_t<typename Exclude::value_type...>{});
} else {
return reg.template group<constness_as_t<typename Owned::value_type, Owned>...>(get_t<constness_as_t<typename Get::value_type, Get>...>{}, exclude_t<constness_as_t<typename Exclude::value_type, Exclude>...>{});
}
}
public:
/*! @brief Type of registry to convert. */
using registry_type = Registry;
/*! @brief Underlying entity identifier. */
using entity_type = std::remove_const_t<typename registry_type::entity_type>;
/**
* @brief Constructs a converter for a given registry.
* @param source A valid reference to a registry.
*/
as_group(registry_type &source) noexcept
: reg{source} {}
/**
* @brief Conversion function from a registry to a group.
* @tparam Owned Types of _owned_ by the group.
* @tparam Get Types of storage _observed_ by the group.
* @tparam Exclude Types of storage used to filter the group.
* @return A newly created group.
*/
template<typename Owned, typename Get, typename Exclude>
operator basic_group<Owned, Get, Exclude>() const {
return dispatch(Owned{}, Get{}, Exclude{});
}
private:
registry_type &reg;
};
/**
* @brief Helper to create a listener that directly invokes a member function.
* @tparam Member Member function to invoke on a component of the given type.
* @tparam Registry Basic registry type.
* @param reg A registry that contains the given entity and its components.
* @param entt Entity from which to get the component.
*/
template<auto Member, typename Registry = std::decay_t<nth_argument_t<0u, Member>>>
void invoke(Registry &reg, const typename Registry::entity_type entt) {
static_assert(std::is_member_function_pointer_v<decltype(Member)>, "Invalid pointer to non-static member function");
delegate<void(Registry &, const typename Registry::entity_type)> func;
func.template connect<Member>(reg.template get<member_class_t<decltype(Member)>>(entt));
func(reg, entt);
}
/**
* @brief Returns the entity associated with a given component.
*
* @warning
* Currently, this function only works correctly with the default pool as it
* makes assumptions about how the components are laid out.
*
* @tparam Registry Basic registry type.
* @tparam Component Type of component.
* @param reg A registry that contains the given entity and its components.
* @param instance A valid component instance.
* @return The entity associated with the given component.
*/
template<typename Registry, typename Component>
typename Registry::entity_type to_entity(const Registry &reg, const Component &instance) {
const auto &storage = reg.template storage<Component>();
const typename Registry::base_type &base = storage;
const auto *addr = std::addressof(instance);
for(auto it = base.rbegin(), last = base.rend(); it < last; it += component_traits<Component>::page_size) {
if(const auto dist = (addr - std::addressof(storage.get(*it))); dist >= 0 && dist < static_cast<decltype(dist)>(component_traits<Component>::page_size)) {
return *(it + dist);
}
}
return null;
}
} // namespace entt
#endif
// #include "entity/observer.hpp"
#ifndef ENTT_ENTITY_OBSERVER_HPP
#define ENTT_ENTITY_OBSERVER_HPP
#include <cstddef>
#include <cstdint>
#include <limits>
#include <type_traits>
#include <utility>
// #include "../core/type_traits.hpp"
// #include "../signal/delegate.hpp"
// #include "fwd.hpp"
// #include "storage.hpp"
namespace entt {
/*! @brief Grouping matcher. */
template<typename...>
struct matcher {};
/**
* @brief Collector.
*
* Primary template isn't defined on purpose. All the specializations give a
* compile-time error, but for a few reasonable cases.
*/
template<typename...>
struct basic_collector;
/**
* @brief Collector.
*
* A collector contains a set of rules (literally, matchers) to use to track
* entities.<br/>
* Its main purpose is to generate a descriptor that allows an observer to know
* how to connect to a registry.
*/
template<>
struct basic_collector<> {
/**
* @brief Adds a grouping matcher to the collector.
* @tparam AllOf Types of components tracked by the matcher.
* @tparam NoneOf Types of components used to filter out entities.
* @return The updated collector.
*/
template<typename... AllOf, typename... NoneOf>
static constexpr auto group(exclude_t<NoneOf...> = {}) noexcept {
return basic_collector<matcher<type_list<>, type_list<>, type_list<NoneOf...>, AllOf...>>{};
}
/**
* @brief Adds an observing matcher to the collector.
* @tparam AnyOf Type of component for which changes should be detected.
* @return The updated collector.
*/
template<typename AnyOf>
static constexpr auto update() noexcept {
return basic_collector<matcher<type_list<>, type_list<>, AnyOf>>{};
}
};
/**
* @brief Collector.
* @copydetails basic_collector<>
* @tparam Reject Untracked types used to filter out entities.
* @tparam Require Untracked types required by the matcher.
* @tparam Rule Specific details of the current matcher.
* @tparam Other Other matchers.
*/
template<typename... Reject, typename... Require, typename... Rule, typename... Other>
struct basic_collector<matcher<type_list<Reject...>, type_list<Require...>, Rule...>, Other...> {
/*! @brief Current matcher. */
using current_type = matcher<type_list<Reject...>, type_list<Require...>, Rule...>;
/**
* @brief Adds a grouping matcher to the collector.
* @tparam AllOf Types of components tracked by the matcher.
* @tparam NoneOf Types of components used to filter out entities.
* @return The updated collector.
*/
template<typename... AllOf, typename... NoneOf>
static constexpr auto group(exclude_t<NoneOf...> = {}) noexcept {
return basic_collector<matcher<type_list<>, type_list<>, type_list<NoneOf...>, AllOf...>, current_type, Other...>{};
}
/**
* @brief Adds an observing matcher to the collector.
* @tparam AnyOf Type of component for which changes should be detected.
* @return The updated collector.
*/
template<typename AnyOf>
static constexpr auto update() noexcept {
return basic_collector<matcher<type_list<>, type_list<>, AnyOf>, current_type, Other...>{};
}
/**
* @brief Updates the filter of the last added matcher.
* @tparam AllOf Types of components required by the matcher.
* @tparam NoneOf Types of components used to filter out entities.
* @return The updated collector.
*/
template<typename... AllOf, typename... NoneOf>
static constexpr auto where(exclude_t<NoneOf...> = {}) noexcept {
using extended_type = matcher<type_list<Reject..., NoneOf...>, type_list<Require..., AllOf...>, Rule...>;
return basic_collector<extended_type, Other...>{};
}
};
/*! @brief Variable template used to ease the definition of collectors. */
inline constexpr basic_collector<> collector{};
/**
* @brief Observer.
*
* An observer returns all the entities and only the entities that fit the
* requirements of at least one matcher. Moreover, it's guaranteed that the
* entity list is tightly packed in memory for fast iterations.<br/>
* In general, observers don't stay true to the order of any set of components.
*
* Observers work mainly with two types of matchers, provided through a
* collector:
*
* * Observing matcher: an observer will return at least all the living entities
* for which one or more of the given components have been updated and not yet
* destroyed.
* * Grouping matcher: an observer will return at least all the living entities
* that would have entered the given group if it existed and that would have
* not yet left it.
*
* If an entity respects the requirements of multiple matchers, it will be
* returned once and only once by the observer in any case.
*
* Matchers support also filtering by means of a _where_ clause that accepts
* both a list of types and an exclusion list.<br/>
* Whenever a matcher finds that an entity matches its requirements, the
* condition of the filter is verified before to register the entity itself.
* Moreover, a registered entity isn't returned by the observer if the condition
* set by the filter is broken in the meantime.
*
* @b Important
*
* Iterators aren't invalidated if:
*
* * New instances of the given components are created and assigned to entities.
* * The entity currently pointed is modified (as an example, if one of the
* given components is removed from the entity to which the iterator points).
* * The entity currently pointed is destroyed.
*
* In all the other cases, modifying the pools of the given components in any
* way invalidates all the iterators and using them results in undefined
* behavior.
*
* @warning
* Lifetime of an observer doesn't necessarily have to overcome that of the
* registry to which it is connected. However, the observer must be disconnected
* from the registry before being destroyed to avoid crashes due to dangling
* pointers.
*
* @tparam Registry Basic registry type.
*/
template<typename Registry>
class basic_observer: private basic_storage<std::uint32_t, typename Registry::entity_type> {
using base_type = basic_storage<std::uint32_t, typename Registry::entity_type>;
template<typename>
struct matcher_handler;
template<typename... Reject, typename... Require, typename AnyOf>
struct matcher_handler<matcher<type_list<Reject...>, type_list<Require...>, AnyOf>> {
template<std::size_t Index>
static void maybe_valid_if(basic_observer &obs, Registry &reg, const typename Registry::entity_type entt) {
if(reg.template all_of<Require...>(entt) && !reg.template any_of<Reject...>(entt)) {
if(!obs.contains(entt)) {
obs.emplace(entt);
}
obs.get(entt) |= (1 << Index);
}
}
template<std::size_t Index>
static void discard_if(basic_observer &obs, Registry &, const typename Registry::entity_type entt) {
if(obs.contains(entt) && !(obs.get(entt) &= (~(1 << Index)))) {
obs.erase(entt);
}
}
template<std::size_t Index>
static void connect(basic_observer &obs, Registry &reg) {
(reg.template on_destroy<Require>().template connect<&discard_if<Index>>(obs), ...);
(reg.template on_construct<Reject>().template connect<&discard_if<Index>>(obs), ...);
reg.template on_update<AnyOf>().template connect<&maybe_valid_if<Index>>(obs);
reg.template on_destroy<AnyOf>().template connect<&discard_if<Index>>(obs);
}
static void disconnect(basic_observer &obs, Registry &reg) {
(reg.template on_destroy<Require>().disconnect(obs), ...);
(reg.template on_construct<Reject>().disconnect(obs), ...);
reg.template on_update<AnyOf>().disconnect(obs);
reg.template on_destroy<AnyOf>().disconnect(obs);
}
};
template<typename... Reject, typename... Require, typename... NoneOf, typename... AllOf>
struct matcher_handler<matcher<type_list<Reject...>, type_list<Require...>, type_list<NoneOf...>, AllOf...>> {
template<std::size_t Index, typename... Ignore>
static void maybe_valid_if(basic_observer &obs, Registry &reg, const typename Registry::entity_type entt) {
auto condition = [&reg, entt]() {
if constexpr(sizeof...(Ignore) == 0) {
return reg.template all_of<AllOf..., Require...>(entt) && !reg.template any_of<NoneOf..., Reject...>(entt);
} else {
return reg.template all_of<AllOf..., Require...>(entt) && ((std::is_same_v<Ignore..., NoneOf> || !reg.template any_of<NoneOf>(entt)) && ...) && !reg.template any_of<Reject...>(entt);
}
};
if(condition()) {
if(!obs.contains(entt)) {
obs.emplace(entt);
}
obs.get(entt) |= (1 << Index);
}
}
template<std::size_t Index>
static void discard_if(basic_observer &obs, Registry &, const typename Registry::entity_type entt) {
if(obs.contains(entt) && !(obs.get(entt) &= (~(1 << Index)))) {
obs.erase(entt);
}
}
template<std::size_t Index>
static void connect(basic_observer &obs, Registry &reg) {
(reg.template on_destroy<Require>().template connect<&discard_if<Index>>(obs), ...);
(reg.template on_construct<Reject>().template connect<&discard_if<Index>>(obs), ...);
(reg.template on_construct<AllOf>().template connect<&maybe_valid_if<Index>>(obs), ...);
(reg.template on_destroy<NoneOf>().template connect<&maybe_valid_if<Index, NoneOf>>(obs), ...);
(reg.template on_destroy<AllOf>().template connect<&discard_if<Index>>(obs), ...);
(reg.template on_construct<NoneOf>().template connect<&discard_if<Index>>(obs), ...);
}
static void disconnect(basic_observer &obs, Registry &reg) {
(reg.template on_destroy<Require>().disconnect(obs), ...);
(reg.template on_construct<Reject>().disconnect(obs), ...);
(reg.template on_construct<AllOf>().disconnect(obs), ...);
(reg.template on_destroy<NoneOf>().disconnect(obs), ...);
(reg.template on_destroy<AllOf>().disconnect(obs), ...);
(reg.template on_construct<NoneOf>().disconnect(obs), ...);
}
};
template<typename... Matcher>
static void disconnect(Registry &reg, basic_observer &obs) {
(matcher_handler<Matcher>::disconnect(obs, reg), ...);
}
template<typename... Matcher, std::size_t... Index>
void connect(Registry &reg, std::index_sequence<Index...>) {
static_assert(sizeof...(Matcher) < std::numeric_limits<typename base_type::value_type>::digits, "Too many matchers");
(matcher_handler<Matcher>::template connect<Index>(*this, reg), ...);
release.template connect<&basic_observer::disconnect<Matcher...>>(reg);
}
public:
/*! Basic registry type. */
using registry_type = Registry;
/*! @brief Underlying entity identifier. */
using entity_type = typename registry_type::entity_type;
/*! @brief Unsigned integer type. */
using size_type = std::size_t;
/*! @brief Random access iterator type. */
using iterator = typename registry_type::base_type::iterator;
/*! @brief Default constructor. */
basic_observer()
: release{} {}
/*! @brief Default copy constructor, deleted on purpose. */
basic_observer(const basic_observer &) = delete;
/*! @brief Default move constructor, deleted on purpose. */
basic_observer(basic_observer &&) = delete;
/**
* @brief Creates an observer and connects it to a given registry.
* @tparam Matcher Types of matchers to use to initialize the observer.
* @param reg A valid reference to a registry.
*/
template<typename... Matcher>
basic_observer(registry_type &reg, basic_collector<Matcher...>)
: basic_observer{} {
connect<Matcher...>(reg, std::index_sequence_for<Matcher...>{});
}
/*! @brief Default destructor. */
~basic_observer() = default;
/**
* @brief Default copy assignment operator, deleted on purpose.
* @return This observer.
*/
basic_observer &operator=(const basic_observer &) = delete;
/**
* @brief Default move assignment operator, deleted on purpose.
* @return This observer.
*/
basic_observer &operator=(basic_observer &&) = delete;
/**
* @brief Connects an observer to a given registry.
* @tparam Matcher Types of matchers to use to initialize the observer.
* @param reg A valid reference to a registry.
*/
template<typename... Matcher>
void connect(registry_type &reg, basic_collector<Matcher...>) {
disconnect();
connect<Matcher...>(reg, std::index_sequence_for<Matcher...>{});
base_type::clear();
}
/*! @brief Disconnects an observer from the registry it keeps track of. */
void disconnect() {
if(release) {
release(*this);
release.reset();
}
}
/**
* @brief Returns the number of elements in an observer.
* @return Number of elements.
*/
[[nodiscard]] size_type size() const noexcept {
return base_type::size();
}
/**
* @brief Checks whether an observer is empty.
* @return True if the observer is empty, false otherwise.
*/
[[nodiscard]] bool empty() const noexcept {
return base_type::empty();
}
/**
* @brief Direct access to the list of entities of the observer.
*
* The returned pointer is such that range `[data(), data() + size())` is
* always a valid range, even if the container is empty.
*
* @note
* Entities are in the reverse order as returned by the `begin`/`end`
* iterators.
*
* @return A pointer to the array of entities.
*/
[[nodiscard]] const entity_type *data() const noexcept {
return base_type::data();
}
/**
* @brief Returns an iterator to the first entity of the observer.
*
* The returned iterator points to the first entity of the observer. If the
* container is empty, the returned iterator will be equal to `end()`.
*
* @return An iterator to the first entity of the observer.
*/
[[nodiscard]] iterator begin() const noexcept {
return base_type::base_type::begin();
}
/**
* @brief Returns an iterator that is past the last entity of the observer.
*
* The returned iterator points to the entity following the last entity of
* the observer. Attempting to dereference the returned iterator results in
* undefined behavior.
*
* @return An iterator to the entity following the last entity of the
* observer.
*/
[[nodiscard]] iterator end() const noexcept {
return base_type::base_type::end();
}
/*! @brief Clears the underlying container. */
void clear() noexcept {
base_type::clear();
}
/**
* @brief Iterates entities and applies the given function object to them.
*
* The function object is invoked for each entity.<br/>
* The signature of the function must be equivalent to the following form:
*
* @code{.cpp}
* void(const entity_type);
* @endcode
*
* @tparam Func Type of the function object to invoke.
* @param func A valid function object.
*/
template<typename Func>
void each(Func func) const {
for(const auto entity: *this) {
func(entity);
}
}
/**
* @brief Iterates entities and applies the given function object to them,
* then clears the observer.
*
* @sa each
*
* @tparam Func Type of the function object to invoke.
* @param func A valid function object.
*/
template<typename Func>
void each(Func func) {
std::as_const(*this).each(std::move(func));
clear();
}
private:
delegate<void(basic_observer &)> release;
};
} // namespace entt
#endif
// #include "entity/organizer.hpp"
#ifndef ENTT_ENTITY_ORGANIZER_HPP
#define ENTT_ENTITY_ORGANIZER_HPP
#include <cstddef>
#include <type_traits>
#include <utility>
#include <vector>
// #include "../core/type_info.hpp"
// #include "../core/type_traits.hpp"
// #include "../core/utility.hpp"
#ifndef ENTT_CORE_UTILITY_HPP
#define ENTT_CORE_UTILITY_HPP
#include <type_traits>
#include <utility>
namespace entt {
/*! @brief Identity function object (waiting for C++20). */
struct identity {
/*! @brief Indicates that this is a transparent function object. */
using is_transparent = void;
/**
* @brief Returns its argument unchanged.
* @tparam Type Type of the argument.
* @param value The actual argument.
* @return The submitted value as-is.
*/
template<class Type>
[[nodiscard]] constexpr Type &&operator()(Type &&value) const noexcept {
return std::forward<Type>(value);
}
};
/**
* @brief Constant utility to disambiguate overloaded members of a class.
* @tparam Type Type of the desired overload.
* @tparam Class Type of class to which the member belongs.
* @param member A valid pointer to a member.
* @return Pointer to the member.
*/
template<typename Type, typename Class>
[[nodiscard]] constexpr auto overload(Type Class::*member) noexcept {
return member;
}
/**
* @brief Constant utility to disambiguate overloaded functions.
* @tparam Func Function type of the desired overload.
* @param func A valid pointer to a function.
* @return Pointer to the function.
*/
template<typename Func>
[[nodiscard]] constexpr auto overload(Func *func) noexcept {
return func;
}
/**
* @brief Helper type for visitors.
* @tparam Func Types of function objects.
*/
template<class... Func>
struct overloaded: Func... {
using Func::operator()...;
};
/**
* @brief Deduction guide.
* @tparam Func Types of function objects.
*/
template<class... Func>
overloaded(Func...) -> overloaded<Func...>;
/**
* @brief Basic implementation of a y-combinator.
* @tparam Func Type of a potentially recursive function.
*/
template<class Func>
struct y_combinator {
/**
* @brief Constructs a y-combinator from a given function.
* @param recursive A potentially recursive function.
*/
constexpr y_combinator(Func recursive) noexcept(std::is_nothrow_move_constructible_v<Func>)
: func{std::move(recursive)} {}
/**
* @brief Invokes a y-combinator and therefore its underlying function.
* @tparam Args Types of arguments to use to invoke the underlying function.
* @param args Parameters to use to invoke the underlying function.
* @return Return value of the underlying function, if any.
*/
template<class... Args>
constexpr decltype(auto) operator()(Args &&...args) const noexcept(std::is_nothrow_invocable_v<Func, const y_combinator &, Args...>) {
return func(*this, std::forward<Args>(args)...);
}
/*! @copydoc operator()() */
template<class... Args>
constexpr decltype(auto) operator()(Args &&...args) noexcept(std::is_nothrow_invocable_v<Func, y_combinator &, Args...>) {
return func(*this, std::forward<Args>(args)...);
}
private:
Func func;
};
} // namespace entt
#endif
// #include "../graph/adjacency_matrix.hpp"
#ifndef ENTT_GRAPH_ADJACENCY_MATRIX_HPP
#define ENTT_GRAPH_ADJACENCY_MATRIX_HPP
#include <cstddef>
#include <iterator>
#include <memory>
#include <type_traits>
#include <utility>
#include <vector>
// #include "../config/config.h"
#ifndef ENTT_CONFIG_CONFIG_H
#define ENTT_CONFIG_CONFIG_H
// #include "version.h"
#ifndef ENTT_CONFIG_VERSION_H
#define ENTT_CONFIG_VERSION_H
// #include "macro.h"
#ifndef ENTT_CONFIG_MACRO_H
#define ENTT_CONFIG_MACRO_H
#define ENTT_STR(arg) #arg
#define ENTT_XSTR(arg) ENTT_STR(arg)
#endif
#define ENTT_VERSION_MAJOR 3
#define ENTT_VERSION_MINOR 11
#define ENTT_VERSION_PATCH 1
#define ENTT_VERSION \
ENTT_XSTR(ENTT_VERSION_MAJOR) \
"." ENTT_XSTR(ENTT_VERSION_MINOR) "." ENTT_XSTR(ENTT_VERSION_PATCH)
#endif
#if defined(__cpp_exceptions) && !defined(ENTT_NOEXCEPTION)
# define ENTT_CONSTEXPR
# define ENTT_THROW throw
# define ENTT_TRY try
# define ENTT_CATCH catch(...)
#else
# define ENTT_CONSTEXPR constexpr // use only with throwing functions (waiting for C++20)
# define ENTT_THROW
# define ENTT_TRY if(true)
# define ENTT_CATCH if(false)
#endif
#ifdef ENTT_USE_ATOMIC
# include <atomic>
# define ENTT_MAYBE_ATOMIC(Type) std::atomic<Type>
#else
# define ENTT_MAYBE_ATOMIC(Type) Type
#endif
#ifndef ENTT_ID_TYPE
# include <cstdint>
# define ENTT_ID_TYPE std::uint32_t
#endif
#ifndef ENTT_SPARSE_PAGE
# define ENTT_SPARSE_PAGE 4096
#endif
#ifndef ENTT_PACKED_PAGE
# define ENTT_PACKED_PAGE 1024
#endif
#ifdef ENTT_DISABLE_ASSERT
# undef ENTT_ASSERT
# define ENTT_ASSERT(condition, msg) (void(0))
#elif !defined ENTT_ASSERT
# include <cassert>
# define ENTT_ASSERT(condition, msg) assert(condition)
#endif
#ifdef ENTT_DISABLE_ASSERT
# undef ENTT_ASSERT_CONSTEXPR
# define ENTT_ASSERT_CONSTEXPR(condition, msg) (void(0))
#elif !defined ENTT_ASSERT_CONSTEXPR
# define ENTT_ASSERT_CONSTEXPR(condition, msg) ENTT_ASSERT(condition, msg)
#endif
#ifdef ENTT_NO_ETO
# define ENTT_ETO_TYPE(Type) void
#else
# define ENTT_ETO_TYPE(Type) Type
#endif
#ifdef ENTT_STANDARD_CPP
# define ENTT_NONSTD false
#else
# define ENTT_NONSTD true
# if defined __clang__ || defined __GNUC__
# define ENTT_PRETTY_FUNCTION __PRETTY_FUNCTION__
# define ENTT_PRETTY_FUNCTION_PREFIX '='
# define ENTT_PRETTY_FUNCTION_SUFFIX ']'
# elif defined _MSC_VER
# define ENTT_PRETTY_FUNCTION __FUNCSIG__
# define ENTT_PRETTY_FUNCTION_PREFIX '<'
# define ENTT_PRETTY_FUNCTION_SUFFIX '>'
# endif
#endif
#if defined _MSC_VER
# pragma detect_mismatch("entt.version", ENTT_VERSION)
# pragma detect_mismatch("entt.noexcept", ENTT_XSTR(ENTT_TRY))
# pragma detect_mismatch("entt.id", ENTT_XSTR(ENTT_ID_TYPE))
# pragma detect_mismatch("entt.nonstd", ENTT_XSTR(ENTT_NONSTD))
#endif
#endif
// #include "../core/iterator.hpp"
#ifndef ENTT_CORE_ITERATOR_HPP
#define ENTT_CORE_ITERATOR_HPP
#include <iterator>
#include <memory>
#include <type_traits>
#include <utility>
namespace entt {
/**
* @brief Helper type to use as pointer with input iterators.
* @tparam Type of wrapped value.
*/
template<typename Type>
struct input_iterator_pointer final {
/*! @brief Value type. */
using value_type = Type;
/*! @brief Pointer type. */
using pointer = Type *;
/*! @brief Reference type. */
using reference = Type &;
/**
* @brief Constructs a proxy object by move.
* @param val Value to use to initialize the proxy object.
*/
constexpr input_iterator_pointer(value_type &&val) noexcept(std::is_nothrow_move_constructible_v<value_type>)
: value{std::move(val)} {}
/**
* @brief Access operator for accessing wrapped values.
* @return A pointer to the wrapped value.
*/
[[nodiscard]] constexpr pointer operator->() noexcept {
return std::addressof(value);
}
/**
* @brief Dereference operator for accessing wrapped values.
* @return A reference to the wrapped value.
*/
[[nodiscard]] constexpr reference operator*() noexcept {
return value;
}
private:
Type value;
};
/**
* @brief Plain iota iterator (waiting for C++20).
* @tparam Type Value type.
*/
template<typename Type>
class iota_iterator final {
static_assert(std::is_integral_v<Type>, "Not an integral type");
public:
/*! @brief Value type, likely an integral one. */
using value_type = Type;
/*! @brief Invalid pointer type. */
using pointer = void;
/*! @brief Non-reference type, same as value type. */
using reference = value_type;
/*! @brief Difference type. */
using difference_type = std::ptrdiff_t;
/*! @brief Iterator category. */
using iterator_category = std::input_iterator_tag;
/*! @brief Default constructor. */
constexpr iota_iterator() noexcept
: current{} {}
/**
* @brief Constructs an iota iterator from a given value.
* @param init The initial value assigned to the iota iterator.
*/
constexpr iota_iterator(const value_type init) noexcept
: current{init} {}
/**
* @brief Pre-increment operator.
* @return This iota iterator.
*/
constexpr iota_iterator &operator++() noexcept {
return ++current, *this;
}
/**
* @brief Post-increment operator.
* @return This iota iterator.
*/
constexpr iota_iterator operator++(int) noexcept {
iota_iterator orig = *this;
return ++(*this), orig;
}
/**
* @brief Dereference operator.
* @return The underlying value.
*/
[[nodiscard]] constexpr reference operator*() const noexcept {
return current;
}
private:
value_type current;
};
/**
* @brief Comparison operator.
* @tparam Type Value type of the iota iterator.
* @param lhs A properly initialized iota iterator.
* @param rhs A properly initialized iota iterator.
* @return True if the two iterators are identical, false otherwise.
*/
template<typename Type>
[[nodiscard]] constexpr bool operator==(const iota_iterator<Type> &lhs, const iota_iterator<Type> &rhs) noexcept {
return *lhs == *rhs;
}
/**
* @brief Comparison operator.
* @tparam Type Value type of the iota iterator.
* @param lhs A properly initialized iota iterator.
* @param rhs A properly initialized iota iterator.
* @return True if the two iterators differ, false otherwise.
*/
template<typename Type>
[[nodiscard]] constexpr bool operator!=(const iota_iterator<Type> &lhs, const iota_iterator<Type> &rhs) noexcept {
return !(lhs == rhs);
}
/**
* @brief Utility class to create an iterable object from a pair of iterators.
* @tparam It Type of iterator.
* @tparam Sentinel Type of sentinel.
*/
template<typename It, typename Sentinel = It>
struct iterable_adaptor final {
/*! @brief Value type. */
using value_type = typename std::iterator_traits<It>::value_type;
/*! @brief Iterator type. */
using iterator = It;
/*! @brief Sentinel type. */
using sentinel = Sentinel;
/*! @brief Default constructor. */
constexpr iterable_adaptor() noexcept(std::is_nothrow_default_constructible_v<iterator> &&std::is_nothrow_default_constructible_v<sentinel>)
: first{},
last{} {}
/**
* @brief Creates an iterable object from a pair of iterators.
* @param from Begin iterator.
* @param to End iterator.
*/
constexpr iterable_adaptor(iterator from, sentinel to) noexcept(std::is_nothrow_move_constructible_v<iterator> &&std::is_nothrow_move_constructible_v<sentinel>)
: first{std::move(from)},
last{std::move(to)} {}
/**
* @brief Returns an iterator to the beginning.
* @return An iterator to the first element of the range.
*/
[[nodiscard]] constexpr iterator begin() const noexcept {
return first;
}
/**
* @brief Returns an iterator to the end.
* @return An iterator to the element following the last element of the
* range.
*/
[[nodiscard]] constexpr sentinel end() const noexcept {
return last;
}
/*! @copydoc begin */
[[nodiscard]] constexpr iterator cbegin() const noexcept {
return begin();
}
/*! @copydoc end */
[[nodiscard]] constexpr sentinel cend() const noexcept {
return end();
}
private:
It first;
Sentinel last;
};
} // namespace entt
#endif
// #include "fwd.hpp"
#ifndef ENTT_GRAPH_FWD_HPP
#define ENTT_GRAPH_FWD_HPP
#include <cstddef>
#include <memory>
// #include "../core/fwd.hpp"
#ifndef ENTT_CORE_FWD_HPP
#define ENTT_CORE_FWD_HPP
#include <cstddef>
// #include "../config/config.h"
#ifndef ENTT_CONFIG_CONFIG_H
#define ENTT_CONFIG_CONFIG_H
// #include "version.h"
#ifndef ENTT_CONFIG_VERSION_H
#define ENTT_CONFIG_VERSION_H
// #include "macro.h"
#ifndef ENTT_CONFIG_MACRO_H
#define ENTT_CONFIG_MACRO_H
#define ENTT_STR(arg) #arg
#define ENTT_XSTR(arg) ENTT_STR(arg)
#endif
#define ENTT_VERSION_MAJOR 3
#define ENTT_VERSION_MINOR 11
#define ENTT_VERSION_PATCH 1
#define ENTT_VERSION \
ENTT_XSTR(ENTT_VERSION_MAJOR) \
"." ENTT_XSTR(ENTT_VERSION_MINOR) "." ENTT_XSTR(ENTT_VERSION_PATCH)
#endif
#if defined(__cpp_exceptions) && !defined(ENTT_NOEXCEPTION)
# define ENTT_CONSTEXPR
# define ENTT_THROW throw
# define ENTT_TRY try
# define ENTT_CATCH catch(...)
#else
# define ENTT_CONSTEXPR constexpr // use only with throwing functions (waiting for C++20)
# define ENTT_THROW
# define ENTT_TRY if(true)
# define ENTT_CATCH if(false)
#endif
#ifdef ENTT_USE_ATOMIC
# include <atomic>
# define ENTT_MAYBE_ATOMIC(Type) std::atomic<Type>
#else
# define ENTT_MAYBE_ATOMIC(Type) Type
#endif
#ifndef ENTT_ID_TYPE
# include <cstdint>
# define ENTT_ID_TYPE std::uint32_t
#endif
#ifndef ENTT_SPARSE_PAGE
# define ENTT_SPARSE_PAGE 4096
#endif
#ifndef ENTT_PACKED_PAGE
# define ENTT_PACKED_PAGE 1024
#endif
#ifdef ENTT_DISABLE_ASSERT
# undef ENTT_ASSERT
# define ENTT_ASSERT(condition, msg) (void(0))
#elif !defined ENTT_ASSERT
# include <cassert>
# define ENTT_ASSERT(condition, msg) assert(condition)
#endif
#ifdef ENTT_DISABLE_ASSERT
# undef ENTT_ASSERT_CONSTEXPR
# define ENTT_ASSERT_CONSTEXPR(condition, msg) (void(0))
#elif !defined ENTT_ASSERT_CONSTEXPR
# define ENTT_ASSERT_CONSTEXPR(condition, msg) ENTT_ASSERT(condition, msg)
#endif
#ifdef ENTT_NO_ETO
# define ENTT_ETO_TYPE(Type) void
#else
# define ENTT_ETO_TYPE(Type) Type
#endif
#ifdef ENTT_STANDARD_CPP
# define ENTT_NONSTD false
#else
# define ENTT_NONSTD true
# if defined __clang__ || defined __GNUC__
# define ENTT_PRETTY_FUNCTION __PRETTY_FUNCTION__
# define ENTT_PRETTY_FUNCTION_PREFIX '='
# define ENTT_PRETTY_FUNCTION_SUFFIX ']'
# elif defined _MSC_VER
# define ENTT_PRETTY_FUNCTION __FUNCSIG__
# define ENTT_PRETTY_FUNCTION_PREFIX '<'
# define ENTT_PRETTY_FUNCTION_SUFFIX '>'
# endif
#endif
#if defined _MSC_VER
# pragma detect_mismatch("entt.version", ENTT_VERSION)
# pragma detect_mismatch("entt.noexcept", ENTT_XSTR(ENTT_TRY))
# pragma detect_mismatch("entt.id", ENTT_XSTR(ENTT_ID_TYPE))
# pragma detect_mismatch("entt.nonstd", ENTT_XSTR(ENTT_NONSTD))
#endif
#endif
namespace entt {
template<std::size_t Len = sizeof(double[2]), std::size_t = alignof(double[2])>
class basic_any;
/*! @brief Alias declaration for type identifiers. */
using id_type = ENTT_ID_TYPE;
/*! @brief Alias declaration for the most common use case. */
using any = basic_any<>;
} // namespace entt
#endif
namespace entt {
/*! @brief Undirected graph category tag. */
struct directed_tag {};
/*! @brief Directed graph category tag. */
struct undirected_tag: directed_tag {};
template<typename, typename = std::allocator<std::size_t>>
class adjacency_matrix;
template<typename = std::allocator<id_type>>
class basic_flow;
/*! @brief Alias declaration for the most common use case. */
using flow = basic_flow<>;
} // namespace entt
#endif
namespace entt {
/**
* @cond TURN_OFF_DOXYGEN
* Internal details not to be documented.
*/
namespace internal {
template<typename It>
class edge_iterator {
using size_type = std::size_t;
public:
using value_type = std::pair<size_type, size_type>;
using pointer = input_iterator_pointer<value_type>;
using reference = value_type;
using difference_type = std::ptrdiff_t;
using iterator_category = std::input_iterator_tag;
constexpr edge_iterator() noexcept
: it{},
vert{},
pos{},
last{},
offset{} {}
constexpr edge_iterator(It base, const size_type vertices, const size_type from, const size_type to, const size_type step) noexcept
: it{std::move(base)},
vert{vertices},
pos{from},
last{to},
offset{step} {
for(; pos != last && !it[pos]; pos += offset) {}
}
constexpr edge_iterator &operator++() noexcept {
for(pos += offset; pos != last && !it[pos]; pos += offset) {}
return *this;
}
constexpr edge_iterator operator++(int) noexcept {
edge_iterator orig = *this;
return ++(*this), orig;
}
[[nodiscard]] constexpr reference operator*() const noexcept {
return *operator->();
}
[[nodiscard]] constexpr pointer operator->() const noexcept {
return std::make_pair<size_type>(pos / vert, pos % vert);
}
template<typename Type>
friend constexpr bool operator==(const edge_iterator<Type> &, const edge_iterator<Type> &) noexcept;
private:
It it;
size_type vert;
size_type pos;
size_type last;
size_type offset{};
};
template<typename Container>
[[nodiscard]] inline constexpr bool operator==(const edge_iterator<Container> &lhs, const edge_iterator<Container> &rhs) noexcept {
return lhs.pos == rhs.pos;
}
template<typename Container>
[[nodiscard]] inline constexpr bool operator!=(const edge_iterator<Container> &lhs, const edge_iterator<Container> &rhs) noexcept {
return !(lhs == rhs);
}
} // namespace internal
/**
* Internal details not to be documented.
* @endcond
*/
/**
* @brief Basic implementation of a directed adjacency matrix.
* @tparam Category Either a directed or undirected category tag.
* @tparam Allocator Type of allocator used to manage memory and elements.
*/
template<typename Category, typename Allocator>
class adjacency_matrix {
using alloc_traits = std::allocator_traits<Allocator>;
static_assert(std::is_base_of_v<directed_tag, Category>, "Invalid graph category");
static_assert(std::is_same_v<typename alloc_traits::value_type, std::size_t>, "Invalid value type");
using container_type = std::vector<std::size_t, typename alloc_traits::template rebind_alloc<std::size_t>>;
public:
/*! @brief Allocator type. */
using allocator_type = Allocator;
/*! @brief Unsigned integer type. */
using size_type = std::size_t;
/*! @brief Vertex type. */
using vertex_type = size_type;
/*! @brief Edge type. */
using edge_type = std::pair<vertex_type, vertex_type>;
/*! @brief Vertex iterator type. */
using vertex_iterator = iota_iterator<vertex_type>;
/*! @brief Edge iterator type. */
using edge_iterator = internal::edge_iterator<typename container_type::const_iterator>;
/*! @brief Out edge iterator type. */
using out_edge_iterator = edge_iterator;
/*! @brief In edge iterator type. */
using in_edge_iterator = edge_iterator;
/*! @brief Graph category tag. */
using graph_category = Category;
/*! @brief Default constructor. */
adjacency_matrix() noexcept(noexcept(allocator_type{}))
: adjacency_matrix{0u} {}
/**
* @brief Constructs an empty container with a given allocator.
* @param allocator The allocator to use.
*/
explicit adjacency_matrix(const allocator_type &allocator) noexcept
: adjacency_matrix{0u, allocator} {}
/**
* @brief Constructs an empty container with a given allocator and user
* supplied number of vertices.
* @param vertices Number of vertices.
* @param allocator The allocator to use.
*/
adjacency_matrix(const size_type vertices, const allocator_type &allocator = allocator_type{})
: matrix{vertices * vertices, allocator},
vert{vertices} {}
/**
* @brief Copy constructor.
* @param other The instance to copy from.
*/
adjacency_matrix(const adjacency_matrix &other)
: adjacency_matrix{other, other.get_allocator()} {}
/**
* @brief Allocator-extended copy constructor.
* @param other The instance to copy from.
* @param allocator The allocator to use.
*/
adjacency_matrix(const adjacency_matrix &other, const allocator_type &allocator)
: matrix{other.matrix, allocator},
vert{other.vert} {}
/**
* @brief Move constructor.
* @param other The instance to move from.
*/
adjacency_matrix(adjacency_matrix &&other) noexcept
: adjacency_matrix{std::move(other), other.get_allocator()} {}
/**
* @brief Allocator-extended move constructor.
* @param other The instance to move from.
* @param allocator The allocator to use.
*/
adjacency_matrix(adjacency_matrix &&other, const allocator_type &allocator)
: matrix{std::move(other.matrix), allocator},
vert{std::exchange(other.vert, 0u)} {}
/**
* @brief Default copy assignment operator.
* @param other The instance to copy from.
* @return This container.
*/
adjacency_matrix &operator=(const adjacency_matrix &other) {
matrix = other.matrix;
vert = other.vert;
return *this;
}
/**
* @brief Default move assignment operator.
* @param other The instance to move from.
* @return This container.
*/
adjacency_matrix &operator=(adjacency_matrix &&other) noexcept {
matrix = std::move(other.matrix);
vert = std::exchange(other.vert, 0u);
return *this;
}
/**
* @brief Returns the associated allocator.
* @return The associated allocator.
*/
[[nodiscard]] constexpr allocator_type get_allocator() const noexcept {
return matrix.get_allocator();
}
/*! @brief Clears the adjacency matrix. */
void clear() noexcept {
matrix.clear();
vert = {};
}
/**
* @brief Exchanges the contents with those of a given adjacency matrix.
* @param other Adjacency matrix to exchange the content with.
*/
void swap(adjacency_matrix &other) {
using std::swap;
swap(matrix, other.matrix);
swap(vert, other.vert);
}
/**
* @brief Returns the number of vertices.
* @return The number of vertices.
*/
[[nodiscard]] size_type size() const noexcept {
return vert;
}
/**
* @brief Returns an iterable object to visit all vertices of a matrix.
* @return An iterable object to visit all vertices of a matrix.
*/
[[nodiscard]] iterable_adaptor<vertex_iterator> vertices() const noexcept {
return {0u, vert};
}
/**
* @brief Returns an iterable object to visit all edges of a matrix.
* @return An iterable object to visit all edges of a matrix.
*/
[[nodiscard]] iterable_adaptor<edge_iterator> edges() const noexcept {
const auto it = matrix.cbegin();
const auto sz = matrix.size();
return {{it, vert, 0u, sz, 1u}, {it, vert, sz, sz, 1u}};
}
/**
* @brief Returns an iterable object to visit all out edges of a vertex.
* @param vertex The vertex of which to return all out edges.
* @return An iterable object to visit all out edges of a vertex.
*/
[[nodiscard]] iterable_adaptor<out_edge_iterator> out_edges(const vertex_type vertex) const noexcept {
const auto it = matrix.cbegin();
const auto from = vertex * vert;
const auto to = vertex * vert + vert;
return {{it, vert, from, to, 1u}, {it, vert, to, to, 1u}};
}
/**
* @brief Returns an iterable object to visit all in edges of a vertex.
* @param vertex The vertex of which to return all in edges.
* @return An iterable object to visit all in edges of a vertex.
*/
[[nodiscard]] iterable_adaptor<in_edge_iterator> in_edges(const vertex_type vertex) const noexcept {
const auto it = matrix.cbegin();
const auto from = vertex;
const auto to = vert * (vert - 1u) + vertex;
return {{it, vert, from, to, vert}, {it, vert, to, to, vert}};
}
/**
* @brief Resizes an adjacency matrix.
* @param vertices The new number of vertices.
*/
void resize(const size_type vertices) {
adjacency_matrix other{vertices, get_allocator()};
for(auto [lhs, rhs]: edges()) {
other.insert(lhs, rhs);
}
other.swap(*this);
}
/**
* @brief Inserts an edge into the adjacency matrix, if it does not exist.
* @param lhs The left hand vertex of the edge.
* @param rhs The right hand vertex of the edge.
* @return A pair consisting of an iterator to the inserted element (or to
* the element that prevented the insertion) and a bool denoting whether the
* insertion took place.
*/
std::pair<edge_iterator, bool> insert(const vertex_type lhs, const vertex_type rhs) {
const auto pos = lhs * vert + rhs;
if constexpr(std::is_same_v<graph_category, undirected_tag>) {
const auto rev = rhs * vert + lhs;
ENTT_ASSERT(matrix[pos] == matrix[rev], "Something went really wrong");
matrix[rev] = 1u;
}
const auto inserted = !std::exchange(matrix[pos], 1u);
return {edge_iterator{matrix.cbegin(), vert, pos, matrix.size(), 1u}, inserted};
}
/**
* @brief Removes the edge associated with a pair of given vertices.
* @param lhs The left hand vertex of the edge.
* @param rhs The right hand vertex of the edge.
* @return Number of elements removed (either 0 or 1).
*/
size_type erase(const vertex_type lhs, const vertex_type rhs) {
const auto pos = lhs * vert + rhs;
if constexpr(std::is_same_v<graph_category, undirected_tag>) {
const auto rev = rhs * vert + lhs;
ENTT_ASSERT(matrix[pos] == matrix[rev], "Something went really wrong");
matrix[rev] = 0u;
}
return std::exchange(matrix[pos], 0u);
}
/**
* @brief Checks if an adjacency matrix contains a given edge.
* @param lhs The left hand vertex of the edge.
* @param rhs The right hand vertex of the edge.
* @return True if there is such an edge, false otherwise.
*/
[[nodiscard]] bool contains(const vertex_type lhs, const vertex_type rhs) const {
const auto pos = lhs * vert + rhs;
return pos < matrix.size() && matrix[pos];
}
private:
container_type matrix;
size_type vert;
};
} // namespace entt
#endif
// #include "../graph/flow.hpp"
#ifndef ENTT_GRAPH_FLOW_HPP
#define ENTT_GRAPH_FLOW_HPP
#include <algorithm>
#include <cstddef>
#include <functional>
#include <iterator>
#include <memory>
#include <type_traits>
#include <utility>
#include <vector>
// #include "../config/config.h"
// #include "../container/dense_map.hpp"
#ifndef ENTT_CONTAINER_DENSE_MAP_HPP
#define ENTT_CONTAINER_DENSE_MAP_HPP
#include <cmath>
#include <cstddef>
#include <functional>
#include <iterator>
#include <limits>
#include <memory>
#include <tuple>
#include <type_traits>
#include <utility>
#include <vector>
// #include "../config/config.h"
#ifndef ENTT_CONFIG_CONFIG_H
#define ENTT_CONFIG_CONFIG_H
// #include "version.h"
#ifndef ENTT_CONFIG_VERSION_H
#define ENTT_CONFIG_VERSION_H
// #include "macro.h"
#ifndef ENTT_CONFIG_MACRO_H
#define ENTT_CONFIG_MACRO_H
#define ENTT_STR(arg) #arg
#define ENTT_XSTR(arg) ENTT_STR(arg)
#endif
#define ENTT_VERSION_MAJOR 3
#define ENTT_VERSION_MINOR 11
#define ENTT_VERSION_PATCH 1
#define ENTT_VERSION \
ENTT_XSTR(ENTT_VERSION_MAJOR) \
"." ENTT_XSTR(ENTT_VERSION_MINOR) "." ENTT_XSTR(ENTT_VERSION_PATCH)
#endif
#if defined(__cpp_exceptions) && !defined(ENTT_NOEXCEPTION)
# define ENTT_CONSTEXPR
# define ENTT_THROW throw
# define ENTT_TRY try
# define ENTT_CATCH catch(...)
#else
# define ENTT_CONSTEXPR constexpr // use only with throwing functions (waiting for C++20)
# define ENTT_THROW
# define ENTT_TRY if(true)
# define ENTT_CATCH if(false)
#endif
#ifdef ENTT_USE_ATOMIC
# include <atomic>
# define ENTT_MAYBE_ATOMIC(Type) std::atomic<Type>
#else
# define ENTT_MAYBE_ATOMIC(Type) Type
#endif
#ifndef ENTT_ID_TYPE
# include <cstdint>
# define ENTT_ID_TYPE std::uint32_t
#endif
#ifndef ENTT_SPARSE_PAGE
# define ENTT_SPARSE_PAGE 4096
#endif
#ifndef ENTT_PACKED_PAGE
# define ENTT_PACKED_PAGE 1024
#endif
#ifdef ENTT_DISABLE_ASSERT
# undef ENTT_ASSERT
# define ENTT_ASSERT(condition, msg) (void(0))
#elif !defined ENTT_ASSERT
# include <cassert>
# define ENTT_ASSERT(condition, msg) assert(condition)
#endif
#ifdef ENTT_DISABLE_ASSERT
# undef ENTT_ASSERT_CONSTEXPR
# define ENTT_ASSERT_CONSTEXPR(condition, msg) (void(0))
#elif !defined ENTT_ASSERT_CONSTEXPR
# define ENTT_ASSERT_CONSTEXPR(condition, msg) ENTT_ASSERT(condition, msg)
#endif
#ifdef ENTT_NO_ETO
# define ENTT_ETO_TYPE(Type) void
#else
# define ENTT_ETO_TYPE(Type) Type
#endif
#ifdef ENTT_STANDARD_CPP
# define ENTT_NONSTD false
#else
# define ENTT_NONSTD true
# if defined __clang__ || defined __GNUC__
# define ENTT_PRETTY_FUNCTION __PRETTY_FUNCTION__
# define ENTT_PRETTY_FUNCTION_PREFIX '='
# define ENTT_PRETTY_FUNCTION_SUFFIX ']'
# elif defined _MSC_VER
# define ENTT_PRETTY_FUNCTION __FUNCSIG__
# define ENTT_PRETTY_FUNCTION_PREFIX '<'
# define ENTT_PRETTY_FUNCTION_SUFFIX '>'
# endif
#endif
#if defined _MSC_VER
# pragma detect_mismatch("entt.version", ENTT_VERSION)
# pragma detect_mismatch("entt.noexcept", ENTT_XSTR(ENTT_TRY))
# pragma detect_mismatch("entt.id", ENTT_XSTR(ENTT_ID_TYPE))
# pragma detect_mismatch("entt.nonstd", ENTT_XSTR(ENTT_NONSTD))
#endif
#endif
// #include "../core/compressed_pair.hpp"
#ifndef ENTT_CORE_COMPRESSED_PAIR_HPP
#define ENTT_CORE_COMPRESSED_PAIR_HPP
#include <cstddef>
#include <tuple>
#include <type_traits>
#include <utility>
// #include "type_traits.hpp"
#ifndef ENTT_CORE_TYPE_TRAITS_HPP
#define ENTT_CORE_TYPE_TRAITS_HPP
#include <cstddef>
#include <iterator>
#include <type_traits>
#include <utility>
// #include "../config/config.h"
#ifndef ENTT_CONFIG_CONFIG_H
#define ENTT_CONFIG_CONFIG_H
// #include "version.h"
#ifndef ENTT_CONFIG_VERSION_H
#define ENTT_CONFIG_VERSION_H
// #include "macro.h"
#ifndef ENTT_CONFIG_MACRO_H
#define ENTT_CONFIG_MACRO_H
#define ENTT_STR(arg) #arg
#define ENTT_XSTR(arg) ENTT_STR(arg)
#endif
#define ENTT_VERSION_MAJOR 3
#define ENTT_VERSION_MINOR 11
#define ENTT_VERSION_PATCH 1
#define ENTT_VERSION \
ENTT_XSTR(ENTT_VERSION_MAJOR) \
"." ENTT_XSTR(ENTT_VERSION_MINOR) "." ENTT_XSTR(ENTT_VERSION_PATCH)
#endif
#if defined(__cpp_exceptions) && !defined(ENTT_NOEXCEPTION)
# define ENTT_CONSTEXPR
# define ENTT_THROW throw
# define ENTT_TRY try
# define ENTT_CATCH catch(...)
#else
# define ENTT_CONSTEXPR constexpr // use only with throwing functions (waiting for C++20)
# define ENTT_THROW
# define ENTT_TRY if(true)
# define ENTT_CATCH if(false)
#endif
#ifdef ENTT_USE_ATOMIC
# include <atomic>
# define ENTT_MAYBE_ATOMIC(Type) std::atomic<Type>
#else
# define ENTT_MAYBE_ATOMIC(Type) Type
#endif
#ifndef ENTT_ID_TYPE
# include <cstdint>
# define ENTT_ID_TYPE std::uint32_t
#endif
#ifndef ENTT_SPARSE_PAGE
# define ENTT_SPARSE_PAGE 4096
#endif
#ifndef ENTT_PACKED_PAGE
# define ENTT_PACKED_PAGE 1024
#endif
#ifdef ENTT_DISABLE_ASSERT
# undef ENTT_ASSERT
# define ENTT_ASSERT(condition, msg) (void(0))
#elif !defined ENTT_ASSERT
# include <cassert>
# define ENTT_ASSERT(condition, msg) assert(condition)
#endif
#ifdef ENTT_DISABLE_ASSERT
# undef ENTT_ASSERT_CONSTEXPR
# define ENTT_ASSERT_CONSTEXPR(condition, msg) (void(0))
#elif !defined ENTT_ASSERT_CONSTEXPR
# define ENTT_ASSERT_CONSTEXPR(condition, msg) ENTT_ASSERT(condition, msg)
#endif
#ifdef ENTT_NO_ETO
# define ENTT_ETO_TYPE(Type) void
#else
# define ENTT_ETO_TYPE(Type) Type
#endif
#ifdef ENTT_STANDARD_CPP
# define ENTT_NONSTD false
#else
# define ENTT_NONSTD true
# if defined __clang__ || defined __GNUC__
# define ENTT_PRETTY_FUNCTION __PRETTY_FUNCTION__
# define ENTT_PRETTY_FUNCTION_PREFIX '='
# define ENTT_PRETTY_FUNCTION_SUFFIX ']'
# elif defined _MSC_VER
# define ENTT_PRETTY_FUNCTION __FUNCSIG__
# define ENTT_PRETTY_FUNCTION_PREFIX '<'
# define ENTT_PRETTY_FUNCTION_SUFFIX '>'
# endif
#endif
#if defined _MSC_VER
# pragma detect_mismatch("entt.version", ENTT_VERSION)
# pragma detect_mismatch("entt.noexcept", ENTT_XSTR(ENTT_TRY))
# pragma detect_mismatch("entt.id", ENTT_XSTR(ENTT_ID_TYPE))
# pragma detect_mismatch("entt.nonstd", ENTT_XSTR(ENTT_NONSTD))
#endif
#endif
// #include "fwd.hpp"
#ifndef ENTT_CORE_FWD_HPP
#define ENTT_CORE_FWD_HPP
#include <cstddef>
// #include "../config/config.h"
namespace entt {
template<std::size_t Len = sizeof(double[2]), std::size_t = alignof(double[2])>
class basic_any;
/*! @brief Alias declaration for type identifiers. */
using id_type = ENTT_ID_TYPE;
/*! @brief Alias declaration for the most common use case. */
using any = basic_any<>;
} // namespace entt
#endif
namespace entt {
/**
* @brief Utility class to disambiguate overloaded functions.
* @tparam N Number of choices available.
*/
template<std::size_t N>
struct choice_t
// Unfortunately, doxygen cannot parse such a construct.
: /*! @cond TURN_OFF_DOXYGEN */ choice_t<N - 1> /*! @endcond */
{};
/*! @copybrief choice_t */
template<>
struct choice_t<0> {};
/**
* @brief Variable template for the choice trick.
* @tparam N Number of choices available.
*/
template<std::size_t N>
inline constexpr choice_t<N> choice{};
/**
* @brief Identity type trait.
*
* Useful to establish non-deduced contexts in template argument deduction
* (waiting for C++20) or to provide types through function arguments.
*
* @tparam Type A type.
*/
template<typename Type>
struct type_identity {
/*! @brief Identity type. */
using type = Type;
};
/**
* @brief Helper type.
* @tparam Type A type.
*/
template<typename Type>
using type_identity_t = typename type_identity<Type>::type;
/**
* @brief A type-only `sizeof` wrapper that returns 0 where `sizeof` complains.
* @tparam Type The type of which to return the size.
* @tparam The size of the type if `sizeof` accepts it, 0 otherwise.
*/
template<typename Type, typename = void>
struct size_of: std::integral_constant<std::size_t, 0u> {};
/*! @copydoc size_of */
template<typename Type>
struct size_of<Type, std::void_t<decltype(sizeof(Type))>>
: std::integral_constant<std::size_t, sizeof(Type)> {};
/**
* @brief Helper variable template.
* @tparam Type The type of which to return the size.
*/
template<typename Type>
inline constexpr std::size_t size_of_v = size_of<Type>::value;
/**
* @brief Using declaration to be used to _repeat_ the same type a number of
* times equal to the size of a given parameter pack.
* @tparam Type A type to repeat.
*/
template<typename Type, typename>
using unpack_as_type = Type;
/**
* @brief Helper variable template to be used to _repeat_ the same value a
* number of times equal to the size of a given parameter pack.
* @tparam Value A value to repeat.
*/
template<auto Value, typename>
inline constexpr auto unpack_as_value = Value;
/**
* @brief Wraps a static constant.
* @tparam Value A static constant.
*/
template<auto Value>
using integral_constant = std::integral_constant<decltype(Value), Value>;
/**
* @brief Alias template to facilitate the creation of named values.
* @tparam Value A constant value at least convertible to `id_type`.
*/
template<id_type Value>
using tag = integral_constant<Value>;
/**
* @brief A class to use to push around lists of types, nothing more.
* @tparam Type Types provided by the type list.
*/
template<typename... Type>
struct type_list {
/*! @brief Type list type. */
using type = type_list;
/*! @brief Compile-time number of elements in the type list. */
static constexpr auto size = sizeof...(Type);
};
/*! @brief Primary template isn't defined on purpose. */
template<std::size_t, typename>
struct type_list_element;
/**
* @brief Provides compile-time indexed access to the types of a type list.
* @tparam Index Index of the type to return.
* @tparam First First type provided by the type list.
* @tparam Other Other types provided by the type list.
*/
template<std::size_t Index, typename First, typename... Other>
struct type_list_element<Index, type_list<First, Other...>>
: type_list_element<Index - 1u, type_list<Other...>> {};
/**
* @brief Provides compile-time indexed access to the types of a type list.
* @tparam First First type provided by the type list.
* @tparam Other Other types provided by the type list.
*/
template<typename First, typename... Other>
struct type_list_element<0u, type_list<First, Other...>> {
/*! @brief Searched type. */
using type = First;
};
/**
* @brief Helper type.
* @tparam Index Index of the type to return.
* @tparam List Type list to search into.
*/
template<std::size_t Index, typename List>
using type_list_element_t = typename type_list_element<Index, List>::type;
/*! @brief Primary template isn't defined on purpose. */
template<typename, typename>
struct type_list_index;
/**
* @brief Provides compile-time type access to the types of a type list.
* @tparam Type Type to look for and for which to return the index.
* @tparam First First type provided by the type list.
* @tparam Other Other types provided by the type list.
*/
template<typename Type, typename First, typename... Other>
struct type_list_index<Type, type_list<First, Other...>> {
/*! @brief Unsigned integer type. */
using value_type = std::size_t;
/*! @brief Compile-time position of the given type in the sublist. */
static constexpr value_type value = 1u + type_list_index<Type, type_list<Other...>>::value;
};
/**
* @brief Provides compile-time type access to the types of a type list.
* @tparam Type Type to look for and for which to return the index.
* @tparam Other Other types provided by the type list.
*/
template<typename Type, typename... Other>
struct type_list_index<Type, type_list<Type, Other...>> {
static_assert(type_list_index<Type, type_list<Other...>>::value == sizeof...(Other), "Non-unique type");
/*! @brief Unsigned integer type. */
using value_type = std::size_t;
/*! @brief Compile-time position of the given type in the sublist. */
static constexpr value_type value = 0u;
};
/**
* @brief Provides compile-time type access to the types of a type list.
* @tparam Type Type to look for and for which to return the index.
*/
template<typename Type>
struct type_list_index<Type, type_list<>> {
/*! @brief Unsigned integer type. */
using value_type = std::size_t;
/*! @brief Compile-time position of the given type in the sublist. */
static constexpr value_type value = 0u;
};
/**
* @brief Helper variable template.
* @tparam List Type list.
* @tparam Type Type to look for and for which to return the index.
*/
template<typename Type, typename List>
inline constexpr std::size_t type_list_index_v = type_list_index<Type, List>::value;
/**
* @brief Concatenates multiple type lists.
* @tparam Type Types provided by the first type list.
* @tparam Other Types provided by the second type list.
* @return A type list composed by the types of both the type lists.
*/
template<typename... Type, typename... Other>
constexpr type_list<Type..., Other...> operator+(type_list<Type...>, type_list<Other...>) {
return {};
}
/*! @brief Primary template isn't defined on purpose. */
template<typename...>
struct type_list_cat;
/*! @brief Concatenates multiple type lists. */
template<>
struct type_list_cat<> {
/*! @brief A type list composed by the types of all the type lists. */
using type = type_list<>;
};
/**
* @brief Concatenates multiple type lists.
* @tparam Type Types provided by the first type list.
* @tparam Other Types provided by the second type list.
* @tparam List Other type lists, if any.
*/
template<typename... Type, typename... Other, typename... List>
struct type_list_cat<type_list<Type...>, type_list<Other...>, List...> {
/*! @brief A type list composed by the types of all the type lists. */
using type = typename type_list_cat<type_list<Type..., Other...>, List...>::type;
};
/**
* @brief Concatenates multiple type lists.
* @tparam Type Types provided by the type list.
*/
template<typename... Type>
struct type_list_cat<type_list<Type...>> {
/*! @brief A type list composed by the types of all the type lists. */
using type = type_list<Type...>;
};
/**
* @brief Helper type.
* @tparam List Type lists to concatenate.
*/
template<typename... List>
using type_list_cat_t = typename type_list_cat<List...>::type;
/*! @brief Primary template isn't defined on purpose. */
template<typename>
struct type_list_unique;
/**
* @brief Removes duplicates types from a type list.
* @tparam Type One of the types provided by the given type list.
* @tparam Other The other types provided by the given type list.
*/
template<typename Type, typename... Other>
struct type_list_unique<type_list<Type, Other...>> {
/*! @brief A type list without duplicate types. */
using type = std::conditional_t<
(std::is_same_v<Type, Other> || ...),
typename type_list_unique<type_list<Other...>>::type,
type_list_cat_t<type_list<Type>, typename type_list_unique<type_list<Other...>>::type>>;
};
/*! @brief Removes duplicates types from a type list. */
template<>
struct type_list_unique<type_list<>> {
/*! @brief A type list without duplicate types. */
using type = type_list<>;
};
/**
* @brief Helper type.
* @tparam Type A type list.
*/
template<typename Type>
using type_list_unique_t = typename type_list_unique<Type>::type;
/**
* @brief Provides the member constant `value` to true if a type list contains a
* given type, false otherwise.
* @tparam List Type list.
* @tparam Type Type to look for.
*/
template<typename List, typename Type>
struct type_list_contains;
/**
* @copybrief type_list_contains
* @tparam Type Types provided by the type list.
* @tparam Other Type to look for.
*/
template<typename... Type, typename Other>
struct type_list_contains<type_list<Type...>, Other>: std::disjunction<std::is_same<Type, Other>...> {};
/**
* @brief Helper variable template.
* @tparam List Type list.
* @tparam Type Type to look for.
*/
template<typename List, typename Type>
inline constexpr bool type_list_contains_v = type_list_contains<List, Type>::value;
/*! @brief Primary template isn't defined on purpose. */
template<typename...>
struct type_list_diff;
/**
* @brief Computes the difference between two type lists.
* @tparam Type Types provided by the first type list.
* @tparam Other Types provided by the second type list.
*/
template<typename... Type, typename... Other>
struct type_list_diff<type_list<Type...>, type_list<Other...>> {
/*! @brief A type list that is the difference between the two type lists. */
using type = type_list_cat_t<std::conditional_t<type_list_contains_v<type_list<Other...>, Type>, type_list<>, type_list<Type>>...>;
};
/**
* @brief Helper type.
* @tparam List Type lists between which to compute the difference.
*/
template<typename... List>
using type_list_diff_t = typename type_list_diff<List...>::type;
/*! @brief Primary template isn't defined on purpose. */
template<typename, template<typename...> class>
struct type_list_transform;
/**
* @brief Applies a given _function_ to a type list and generate a new list.
* @tparam Type Types provided by the type list.
* @tparam Op Unary operation as template class with a type member named `type`.
*/
template<typename... Type, template<typename...> class Op>
struct type_list_transform<type_list<Type...>, Op> {
/*! @brief Resulting type list after applying the transform function. */
using type = type_list<typename Op<Type>::type...>;
};
/**
* @brief Helper type.
* @tparam List Type list.
* @tparam Op Unary operation as template class with a type member named `type`.
*/
template<typename List, template<typename...> class Op>
using type_list_transform_t = typename type_list_transform<List, Op>::type;
/**
* @brief A class to use to push around lists of constant values, nothing more.
* @tparam Value Values provided by the value list.
*/
template<auto... Value>
struct value_list {
/*! @brief Value list type. */
using type = value_list;
/*! @brief Compile-time number of elements in the value list. */
static constexpr auto size = sizeof...(Value);
};
/*! @brief Primary template isn't defined on purpose. */
template<std::size_t, typename>
struct value_list_element;
/**
* @brief Provides compile-time indexed access to the values of a value list.
* @tparam Index Index of the value to return.
* @tparam Value First value provided by the value list.
* @tparam Other Other values provided by the value list.
*/
template<std::size_t Index, auto Value, auto... Other>
struct value_list_element<Index, value_list<Value, Other...>>
: value_list_element<Index - 1u, value_list<Other...>> {};
/**
* @brief Provides compile-time indexed access to the types of a type list.
* @tparam Value First value provided by the value list.
* @tparam Other Other values provided by the value list.
*/
template<auto Value, auto... Other>
struct value_list_element<0u, value_list<Value, Other...>> {
/*! @brief Searched value. */
static constexpr auto value = Value;
};
/**
* @brief Helper type.
* @tparam Index Index of the value to return.
* @tparam List Value list to search into.
*/
template<std::size_t Index, typename List>
inline constexpr auto value_list_element_v = value_list_element<Index, List>::value;
/**
* @brief Concatenates multiple value lists.
* @tparam Value Values provided by the first value list.
* @tparam Other Values provided by the second value list.
* @return A value list composed by the values of both the value lists.
*/
template<auto... Value, auto... Other>
constexpr value_list<Value..., Other...> operator+(value_list<Value...>, value_list<Other...>) {
return {};
}
/*! @brief Primary template isn't defined on purpose. */
template<typename...>
struct value_list_cat;
/*! @brief Concatenates multiple value lists. */
template<>
struct value_list_cat<> {
/*! @brief A value list composed by the values of all the value lists. */
using type = value_list<>;
};
/**
* @brief Concatenates multiple value lists.
* @tparam Value Values provided by the first value list.
* @tparam Other Values provided by the second value list.
* @tparam List Other value lists, if any.
*/
template<auto... Value, auto... Other, typename... List>
struct value_list_cat<value_list<Value...>, value_list<Other...>, List...> {
/*! @brief A value list composed by the values of all the value lists. */
using type = typename value_list_cat<value_list<Value..., Other...>, List...>::type;
};
/**
* @brief Concatenates multiple value lists.
* @tparam Value Values provided by the value list.
*/
template<auto... Value>
struct value_list_cat<value_list<Value...>> {
/*! @brief A value list composed by the values of all the value lists. */
using type = value_list<Value...>;
};
/**
* @brief Helper type.
* @tparam List Value lists to concatenate.
*/
template<typename... List>
using value_list_cat_t = typename value_list_cat<List...>::type;
/*! @brief Same as std::is_invocable, but with tuples. */
template<typename, typename>
struct is_applicable: std::false_type {};
/**
* @copybrief is_applicable
* @tparam Func A valid function type.
* @tparam Tuple Tuple-like type.
* @tparam Args The list of arguments to use to probe the function type.
*/
template<typename Func, template<typename...> class Tuple, typename... Args>
struct is_applicable<Func, Tuple<Args...>>: std::is_invocable<Func, Args...> {};
/**
* @copybrief is_applicable
* @tparam Func A valid function type.
* @tparam Tuple Tuple-like type.
* @tparam Args The list of arguments to use to probe the function type.
*/
template<typename Func, template<typename...> class Tuple, typename... Args>
struct is_applicable<Func, const Tuple<Args...>>: std::is_invocable<Func, Args...> {};
/**
* @brief Helper variable template.
* @tparam Func A valid function type.
* @tparam Args The list of arguments to use to probe the function type.
*/
template<typename Func, typename Args>
inline constexpr bool is_applicable_v = is_applicable<Func, Args>::value;
/*! @brief Same as std::is_invocable_r, but with tuples for arguments. */
template<typename, typename, typename>
struct is_applicable_r: std::false_type {};
/**
* @copybrief is_applicable_r
* @tparam Ret The type to which the return type of the function should be
* convertible.
* @tparam Func A valid function type.
* @tparam Args The list of arguments to use to probe the function type.
*/
template<typename Ret, typename Func, typename... Args>
struct is_applicable_r<Ret, Func, std::tuple<Args...>>: std::is_invocable_r<Ret, Func, Args...> {};
/**
* @brief Helper variable template.
* @tparam Ret The type to which the return type of the function should be
* convertible.
* @tparam Func A valid function type.
* @tparam Args The list of arguments to use to probe the function type.
*/
template<typename Ret, typename Func, typename Args>
inline constexpr bool is_applicable_r_v = is_applicable_r<Ret, Func, Args>::value;
/**
* @brief Provides the member constant `value` to true if a given type is
* complete, false otherwise.
* @tparam Type The type to test.
*/
template<typename Type, typename = void>
struct is_complete: std::false_type {};
/*! @copydoc is_complete */
template<typename Type>
struct is_complete<Type, std::void_t<decltype(sizeof(Type))>>: std::true_type {};
/**
* @brief Helper variable template.
* @tparam Type The type to test.
*/
template<typename Type>
inline constexpr bool is_complete_v = is_complete<Type>::value;
/**
* @brief Provides the member constant `value` to true if a given type is an
* iterator, false otherwise.
* @tparam Type The type to test.
*/
template<typename Type, typename = void>
struct is_iterator: std::false_type {};
/**
* @cond TURN_OFF_DOXYGEN
* Internal details not to be documented.
*/
namespace internal {
template<typename, typename = void>
struct has_iterator_category: std::false_type {};
template<typename Type>
struct has_iterator_category<Type, std::void_t<typename std::iterator_traits<Type>::iterator_category>>: std::true_type {};
} // namespace internal
/**
* Internal details not to be documented.
* @endcond
*/
/*! @copydoc is_iterator */
template<typename Type>
struct is_iterator<Type, std::enable_if_t<!std::is_same_v<std::remove_cv_t<std::remove_pointer_t<Type>>, void>>>
: internal::has_iterator_category<Type> {};
/**
* @brief Helper variable template.
* @tparam Type The type to test.
*/
template<typename Type>
inline constexpr bool is_iterator_v = is_iterator<Type>::value;
/**
* @brief Provides the member constant `value` to true if a given type is both
* an empty and non-final class, false otherwise.
* @tparam Type The type to test
*/
template<typename Type>
struct is_ebco_eligible
: std::conjunction<std::is_empty<Type>, std::negation<std::is_final<Type>>> {};
/**
* @brief Helper variable template.
* @tparam Type The type to test.
*/
template<typename Type>
inline constexpr bool is_ebco_eligible_v = is_ebco_eligible<Type>::value;
/**
* @brief Provides the member constant `value` to true if `Type::is_transparent`
* is valid and denotes a type, false otherwise.
* @tparam Type The type to test.
*/
template<typename Type, typename = void>
struct is_transparent: std::false_type {};
/*! @copydoc is_transparent */
template<typename Type>
struct is_transparent<Type, std::void_t<typename Type::is_transparent>>: std::true_type {};
/**
* @brief Helper variable template.
* @tparam Type The type to test.
*/
template<typename Type>
inline constexpr bool is_transparent_v = is_transparent<Type>::value;
/**
* @brief Provides the member constant `value` to true if a given type is
* equality comparable, false otherwise.
* @tparam Type The type to test.
*/
template<typename Type, typename = void>
struct is_equality_comparable: std::false_type {};
/**
* @cond TURN_OFF_DOXYGEN
* Internal details not to be documented.
*/
namespace internal {
template<typename, typename = void>
struct has_tuple_size_value: std::false_type {};
template<typename Type>
struct has_tuple_size_value<Type, std::void_t<decltype(std::tuple_size<const Type>::value)>>: std::true_type {};
template<typename Type, std::size_t... Index>
[[nodiscard]] constexpr bool unpack_maybe_equality_comparable(std::index_sequence<Index...>) {
return (is_equality_comparable<std::tuple_element_t<Index, Type>>::value && ...);
}
template<typename>
[[nodiscard]] constexpr bool maybe_equality_comparable(choice_t<0>) {
return true;
}
template<typename Type>
[[nodiscard]] constexpr auto maybe_equality_comparable(choice_t<1>) -> decltype(std::declval<typename Type::value_type>(), bool{}) {
if constexpr(is_iterator_v<Type>) {
return true;
} else if constexpr(std::is_same_v<typename Type::value_type, Type>) {
return maybe_equality_comparable<Type>(choice<0>);
} else {
return is_equality_comparable<typename Type::value_type>::value;
}
}
template<typename Type>
[[nodiscard]] constexpr std::enable_if_t<is_complete_v<std::tuple_size<std::remove_cv_t<Type>>>, bool> maybe_equality_comparable(choice_t<2>) {
if constexpr(has_tuple_size_value<Type>::value) {
return unpack_maybe_equality_comparable<Type>(std::make_index_sequence<std::tuple_size<Type>::value>{});
} else {
return maybe_equality_comparable<Type>(choice<1>);
}
}
} // namespace internal
/**
* Internal details not to be documented.
* @endcond
*/
/*! @copydoc is_equality_comparable */
template<typename Type>
struct is_equality_comparable<Type, std::void_t<decltype(std::declval<Type>() == std::declval<Type>())>>
: std::bool_constant<internal::maybe_equality_comparable<Type>(choice<2>)> {};
/**
* @brief Helper variable template.
* @tparam Type The type to test.
*/
template<typename Type>
inline constexpr bool is_equality_comparable_v = is_equality_comparable<Type>::value;
/**
* @brief Transcribes the constness of a type to another type.
* @tparam To The type to which to transcribe the constness.
* @tparam From The type from which to transcribe the constness.
*/
template<typename To, typename From>
struct constness_as {
/*! @brief The type resulting from the transcription of the constness. */
using type = std::remove_const_t<To>;
};
/*! @copydoc constness_as */
template<typename To, typename From>
struct constness_as<To, const From> {
/*! @brief The type resulting from the transcription of the constness. */
using type = const To;
};
/**
* @brief Alias template to facilitate the transcription of the constness.
* @tparam To The type to which to transcribe the constness.
* @tparam From The type from which to transcribe the constness.
*/
template<typename To, typename From>
using constness_as_t = typename constness_as<To, From>::type;
/**
* @brief Extracts the class of a non-static member object or function.
* @tparam Member A pointer to a non-static member object or function.
*/
template<typename Member>
class member_class {
static_assert(std::is_member_pointer_v<Member>, "Invalid pointer type to non-static member object or function");
template<typename Class, typename Ret, typename... Args>
static Class *clazz(Ret (Class::*)(Args...));
template<typename Class, typename Ret, typename... Args>
static Class *clazz(Ret (Class::*)(Args...) const);
template<typename Class, typename Type>
static Class *clazz(Type Class::*);
public:
/*! @brief The class of the given non-static member object or function. */
using type = std::remove_pointer_t<decltype(clazz(std::declval<Member>()))>;
};
/**
* @brief Helper type.
* @tparam Member A pointer to a non-static member object or function.
*/
template<typename Member>
using member_class_t = typename member_class<Member>::type;
/**
* @brief Extracts the n-th argument of a given function or member function.
* @tparam Index The index of the argument to extract.
* @tparam Candidate A valid function, member function or data member.
*/
template<std::size_t Index, auto Candidate>
class nth_argument {
template<typename Ret, typename... Args>
static constexpr type_list<Args...> pick_up(Ret (*)(Args...));
template<typename Ret, typename Class, typename... Args>
static constexpr type_list<Args...> pick_up(Ret (Class ::*)(Args...));
template<typename Ret, typename Class, typename... Args>
static constexpr type_list<Args...> pick_up(Ret (Class ::*)(Args...) const);
template<typename Type, typename Class>
static constexpr type_list<Type> pick_up(Type Class ::*);
public:
/*! @brief N-th argument of the given function or member function. */
using type = type_list_element_t<Index, decltype(pick_up(Candidate))>;
};
/**
* @brief Helper type.
* @tparam Index The index of the argument to extract.
* @tparam Candidate A valid function, member function or data member.
*/
template<std::size_t Index, auto Candidate>
using nth_argument_t = typename nth_argument<Index, Candidate>::type;
} // namespace entt
#endif
namespace entt {
/**
* @cond TURN_OFF_DOXYGEN
* Internal details not to be documented.
*/
namespace internal {
template<typename Type, std::size_t, typename = void>
struct compressed_pair_element {
using reference = Type &;
using const_reference = const Type &;
template<bool Dummy = true, typename = std::enable_if_t<Dummy && std::is_default_constructible_v<Type>>>
constexpr compressed_pair_element() noexcept(std::is_nothrow_default_constructible_v<Type>)
: value{} {}
template<typename Arg, typename = std::enable_if_t<!std::is_same_v<std::remove_cv_t<std::remove_reference_t<Arg>>, compressed_pair_element>>>
constexpr compressed_pair_element(Arg &&arg) noexcept(std::is_nothrow_constructible_v<Type, Arg>)
: value{std::forward<Arg>(arg)} {}
template<typename... Args, std::size_t... Index>
constexpr compressed_pair_element(std::tuple<Args...> args, std::index_sequence<Index...>) noexcept(std::is_nothrow_constructible_v<Type, Args...>)
: value{std::forward<Args>(std::get<Index>(args))...} {}
[[nodiscard]] constexpr reference get() noexcept {
return value;
}
[[nodiscard]] constexpr const_reference get() const noexcept {
return value;
}
private:
Type value;
};
template<typename Type, std::size_t Tag>
struct compressed_pair_element<Type, Tag, std::enable_if_t<is_ebco_eligible_v<Type>>>: Type {
using reference = Type &;
using const_reference = const Type &;
using base_type = Type;
template<bool Dummy = true, typename = std::enable_if_t<Dummy && std::is_default_constructible_v<base_type>>>
constexpr compressed_pair_element() noexcept(std::is_nothrow_default_constructible_v<base_type>)
: base_type{} {}
template<typename Arg, typename = std::enable_if_t<!std::is_same_v<std::remove_cv_t<std::remove_reference_t<Arg>>, compressed_pair_element>>>
constexpr compressed_pair_element(Arg &&arg) noexcept(std::is_nothrow_constructible_v<base_type, Arg>)
: base_type{std::forward<Arg>(arg)} {}
template<typename... Args, std::size_t... Index>
constexpr compressed_pair_element(std::tuple<Args...> args, std::index_sequence<Index...>) noexcept(std::is_nothrow_constructible_v<base_type, Args...>)
: base_type{std::forward<Args>(std::get<Index>(args))...} {}
[[nodiscard]] constexpr reference get() noexcept {
return *this;
}
[[nodiscard]] constexpr const_reference get() const noexcept {
return *this;
}
};
} // namespace internal
/**
* Internal details not to be documented.
* @endcond
*/
/**
* @brief A compressed pair.
*
* A pair that exploits the _Empty Base Class Optimization_ (or _EBCO_) to
* reduce its final size to a minimum.
*
* @tparam First The type of the first element that the pair stores.
* @tparam Second The type of the second element that the pair stores.
*/
template<typename First, typename Second>
class compressed_pair final
: internal::compressed_pair_element<First, 0u>,
internal::compressed_pair_element<Second, 1u> {
using first_base = internal::compressed_pair_element<First, 0u>;
using second_base = internal::compressed_pair_element<Second, 1u>;
public:
/*! @brief The type of the first element that the pair stores. */
using first_type = First;
/*! @brief The type of the second element that the pair stores. */
using second_type = Second;
/**
* @brief Default constructor, conditionally enabled.
*
* This constructor is only available when the types that the pair stores
* are both at least default constructible.
*
* @tparam Dummy Dummy template parameter used for internal purposes.
*/
template<bool Dummy = true, typename = std::enable_if_t<Dummy && std::is_default_constructible_v<first_type> && std::is_default_constructible_v<second_type>>>
constexpr compressed_pair() noexcept(std::is_nothrow_default_constructible_v<first_base> &&std::is_nothrow_default_constructible_v<second_base>)
: first_base{},
second_base{} {}
/**
* @brief Copy constructor.
* @param other The instance to copy from.
*/
constexpr compressed_pair(const compressed_pair &other) noexcept(std::is_nothrow_copy_constructible_v<first_base> &&std::is_nothrow_copy_constructible_v<second_base>) = default;
/**
* @brief Move constructor.
* @param other The instance to move from.
*/
constexpr compressed_pair(compressed_pair &&other) noexcept(std::is_nothrow_move_constructible_v<first_base> &&std::is_nothrow_move_constructible_v<second_base>) = default;
/**
* @brief Constructs a pair from its values.
* @tparam Arg Type of value to use to initialize the first element.
* @tparam Other Type of value to use to initialize the second element.
* @param arg Value to use to initialize the first element.
* @param other Value to use to initialize the second element.
*/
template<typename Arg, typename Other>
constexpr compressed_pair(Arg &&arg, Other &&other) noexcept(std::is_nothrow_constructible_v<first_base, Arg> &&std::is_nothrow_constructible_v<second_base, Other>)
: first_base{std::forward<Arg>(arg)},
second_base{std::forward<Other>(other)} {}
/**
* @brief Constructs a pair by forwarding the arguments to its parts.
* @tparam Args Types of arguments to use to initialize the first element.
* @tparam Other Types of arguments to use to initialize the second element.
* @param args Arguments to use to initialize the first element.
* @param other Arguments to use to initialize the second element.
*/
template<typename... Args, typename... Other>
constexpr compressed_pair(std::piecewise_construct_t, std::tuple<Args...> args, std::tuple<Other...> other) noexcept(std::is_nothrow_constructible_v<first_base, Args...> &&std::is_nothrow_constructible_v<second_base, Other...>)
: first_base{std::move(args), std::index_sequence_for<Args...>{}},
second_base{std::move(other), std::index_sequence_for<Other...>{}} {}
/**
* @brief Copy assignment operator.
* @param other The instance to copy from.
* @return This compressed pair object.
*/
constexpr compressed_pair &operator=(const compressed_pair &other) noexcept(std::is_nothrow_copy_assignable_v<first_base> &&std::is_nothrow_copy_assignable_v<second_base>) = default;
/**
* @brief Move assignment operator.
* @param other The instance to move from.
* @return This compressed pair object.
*/
constexpr compressed_pair &operator=(compressed_pair &&other) noexcept(std::is_nothrow_move_assignable_v<first_base> &&std::is_nothrow_move_assignable_v<second_base>) = default;
/**
* @brief Returns the first element that a pair stores.
* @return The first element that a pair stores.
*/
[[nodiscard]] constexpr first_type &first() noexcept {
return static_cast<first_base &>(*this).get();
}
/*! @copydoc first */
[[nodiscard]] constexpr const first_type &first() const noexcept {
return static_cast<const first_base &>(*this).get();
}
/**
* @brief Returns the second element that a pair stores.
* @return The second element that a pair stores.
*/
[[nodiscard]] constexpr second_type &second() noexcept {
return static_cast<second_base &>(*this).get();
}
/*! @copydoc second */
[[nodiscard]] constexpr const second_type &second() const noexcept {
return static_cast<const second_base &>(*this).get();
}
/**
* @brief Swaps two compressed pair objects.
* @param other The compressed pair to swap with.
*/
constexpr void swap(compressed_pair &other) noexcept(std::is_nothrow_swappable_v<first_type> &&std::is_nothrow_swappable_v<second_type>) {
using std::swap;
swap(first(), other.first());
swap(second(), other.second());
}
/**
* @brief Extracts an element from the compressed pair.
* @tparam Index An integer value that is either 0 or 1.
* @return Returns a reference to the first element if `Index` is 0 and a
* reference to the second element if `Index` is 1.
*/
template<std::size_t Index>
constexpr decltype(auto) get() noexcept {
if constexpr(Index == 0u) {
return first();
} else {
static_assert(Index == 1u, "Index out of bounds");
return second();
}
}
/*! @copydoc get */
template<std::size_t Index>
constexpr decltype(auto) get() const noexcept {
if constexpr(Index == 0u) {
return first();
} else {
static_assert(Index == 1u, "Index out of bounds");
return second();
}
}
};
/**
* @brief Deduction guide.
* @tparam Type Type of value to use to initialize the first element.
* @tparam Other Type of value to use to initialize the second element.
*/
template<typename Type, typename Other>
compressed_pair(Type &&, Other &&) -> compressed_pair<std::decay_t<Type>, std::decay_t<Other>>;
/**
* @brief Swaps two compressed pair objects.
* @tparam First The type of the first element that the pairs store.
* @tparam Second The type of the second element that the pairs store.
* @param lhs A valid compressed pair object.
* @param rhs A valid compressed pair object.
*/
template<typename First, typename Second>
inline constexpr void swap(compressed_pair<First, Second> &lhs, compressed_pair<First, Second> &rhs) {
lhs.swap(rhs);
}
} // namespace entt
// disable structured binding support for clang 6, it messes when specializing tuple_size
#if !defined __clang_major__ || __clang_major__ > 6
namespace std {
/**
* @brief `std::tuple_size` specialization for `compressed_pair`s.
* @tparam First The type of the first element that the pair stores.
* @tparam Second The type of the second element that the pair stores.
*/
template<typename First, typename Second>
struct tuple_size<entt::compressed_pair<First, Second>>: integral_constant<size_t, 2u> {};
/**
* @brief `std::tuple_element` specialization for `compressed_pair`s.
* @tparam Index The index of the type to return.
* @tparam First The type of the first element that the pair stores.
* @tparam Second The type of the second element that the pair stores.
*/
template<size_t Index, typename First, typename Second>
struct tuple_element<Index, entt::compressed_pair<First, Second>>: conditional<Index == 0u, First, Second> {
static_assert(Index < 2u, "Index out of bounds");
};
} // namespace std
#endif
#endif
// #include "../core/iterator.hpp"
#ifndef ENTT_CORE_ITERATOR_HPP
#define ENTT_CORE_ITERATOR_HPP
#include <iterator>
#include <memory>
#include <type_traits>
#include <utility>
namespace entt {
/**
* @brief Helper type to use as pointer with input iterators.
* @tparam Type of wrapped value.
*/
template<typename Type>
struct input_iterator_pointer final {
/*! @brief Value type. */
using value_type = Type;
/*! @brief Pointer type. */
using pointer = Type *;
/*! @brief Reference type. */
using reference = Type &;
/**
* @brief Constructs a proxy object by move.
* @param val Value to use to initialize the proxy object.
*/
constexpr input_iterator_pointer(value_type &&val) noexcept(std::is_nothrow_move_constructible_v<value_type>)
: value{std::move(val)} {}
/**
* @brief Access operator for accessing wrapped values.
* @return A pointer to the wrapped value.
*/
[[nodiscard]] constexpr pointer operator->() noexcept {
return std::addressof(value);
}
/**
* @brief Dereference operator for accessing wrapped values.
* @return A reference to the wrapped value.
*/
[[nodiscard]] constexpr reference operator*() noexcept {
return value;
}
private:
Type value;
};
/**
* @brief Plain iota iterator (waiting for C++20).
* @tparam Type Value type.
*/
template<typename Type>
class iota_iterator final {
static_assert(std::is_integral_v<Type>, "Not an integral type");
public:
/*! @brief Value type, likely an integral one. */
using value_type = Type;
/*! @brief Invalid pointer type. */
using pointer = void;
/*! @brief Non-reference type, same as value type. */
using reference = value_type;
/*! @brief Difference type. */
using difference_type = std::ptrdiff_t;
/*! @brief Iterator category. */
using iterator_category = std::input_iterator_tag;
/*! @brief Default constructor. */
constexpr iota_iterator() noexcept
: current{} {}
/**
* @brief Constructs an iota iterator from a given value.
* @param init The initial value assigned to the iota iterator.
*/
constexpr iota_iterator(const value_type init) noexcept
: current{init} {}
/**
* @brief Pre-increment operator.
* @return This iota iterator.
*/
constexpr iota_iterator &operator++() noexcept {
return ++current, *this;
}
/**
* @brief Post-increment operator.
* @return This iota iterator.
*/
constexpr iota_iterator operator++(int) noexcept {
iota_iterator orig = *this;
return ++(*this), orig;
}
/**
* @brief Dereference operator.
* @return The underlying value.
*/
[[nodiscard]] constexpr reference operator*() const noexcept {
return current;
}
private:
value_type current;
};
/**
* @brief Comparison operator.
* @tparam Type Value type of the iota iterator.
* @param lhs A properly initialized iota iterator.
* @param rhs A properly initialized iota iterator.
* @return True if the two iterators are identical, false otherwise.
*/
template<typename Type>
[[nodiscard]] constexpr bool operator==(const iota_iterator<Type> &lhs, const iota_iterator<Type> &rhs) noexcept {
return *lhs == *rhs;
}
/**
* @brief Comparison operator.
* @tparam Type Value type of the iota iterator.
* @param lhs A properly initialized iota iterator.
* @param rhs A properly initialized iota iterator.
* @return True if the two iterators differ, false otherwise.
*/
template<typename Type>
[[nodiscard]] constexpr bool operator!=(const iota_iterator<Type> &lhs, const iota_iterator<Type> &rhs) noexcept {
return !(lhs == rhs);
}
/**
* @brief Utility class to create an iterable object from a pair of iterators.
* @tparam It Type of iterator.
* @tparam Sentinel Type of sentinel.
*/
template<typename It, typename Sentinel = It>
struct iterable_adaptor final {
/*! @brief Value type. */
using value_type = typename std::iterator_traits<It>::value_type;
/*! @brief Iterator type. */
using iterator = It;
/*! @brief Sentinel type. */
using sentinel = Sentinel;
/*! @brief Default constructor. */
constexpr iterable_adaptor() noexcept(std::is_nothrow_default_constructible_v<iterator> &&std::is_nothrow_default_constructible_v<sentinel>)
: first{},
last{} {}
/**
* @brief Creates an iterable object from a pair of iterators.
* @param from Begin iterator.
* @param to End iterator.
*/
constexpr iterable_adaptor(iterator from, sentinel to) noexcept(std::is_nothrow_move_constructible_v<iterator> &&std::is_nothrow_move_constructible_v<sentinel>)
: first{std::move(from)},
last{std::move(to)} {}
/**
* @brief Returns an iterator to the beginning.
* @return An iterator to the first element of the range.
*/
[[nodiscard]] constexpr iterator begin() const noexcept {
return first;
}
/**
* @brief Returns an iterator to the end.
* @return An iterator to the element following the last element of the
* range.
*/
[[nodiscard]] constexpr sentinel end() const noexcept {
return last;
}
/*! @copydoc begin */
[[nodiscard]] constexpr iterator cbegin() const noexcept {
return begin();
}
/*! @copydoc end */
[[nodiscard]] constexpr sentinel cend() const noexcept {
return end();
}
private:
It first;
Sentinel last;
};
} // namespace entt
#endif
// #include "../core/memory.hpp"
#ifndef ENTT_CORE_MEMORY_HPP
#define ENTT_CORE_MEMORY_HPP
#include <cstddef>
#include <limits>
#include <memory>
#include <tuple>
#include <type_traits>
#include <utility>
// #include "../config/config.h"
namespace entt {
/**
* @brief Checks whether a value is a power of two or not.
* @param value A value that may or may not be a power of two.
* @return True if the value is a power of two, false otherwise.
*/
[[nodiscard]] inline constexpr bool is_power_of_two(const std::size_t value) noexcept {
return value && ((value & (value - 1)) == 0);
}
/**
* @brief Computes the smallest power of two greater than or equal to a value.
* @param value The value to use.
* @return The smallest power of two greater than or equal to the given value.
*/
[[nodiscard]] inline constexpr std::size_t next_power_of_two(const std::size_t value) noexcept {
ENTT_ASSERT_CONSTEXPR(value < (std::size_t{1u} << (std::numeric_limits<std::size_t>::digits - 1)), "Numeric limits exceeded");
std::size_t curr = value - (value != 0u);
for(int next = 1; next < std::numeric_limits<std::size_t>::digits; next = next * 2) {
curr |= curr >> next;
}
return ++curr;
}
/**
* @brief Fast module utility function (powers of two only).
* @param value A value for which to calculate the modulus.
* @param mod _Modulus_, it must be a power of two.
* @return The common remainder.
*/
[[nodiscard]] inline constexpr std::size_t fast_mod(const std::size_t value, const std::size_t mod) noexcept {
ENTT_ASSERT_CONSTEXPR(is_power_of_two(mod), "Value must be a power of two");
return value & (mod - 1u);
}
/**
* @brief Unwraps fancy pointers, does nothing otherwise (waiting for C++20).
* @tparam Type Pointer type.
* @param ptr Fancy or raw pointer.
* @return A raw pointer that represents the address of the original pointer.
*/
template<typename Type>
[[nodiscard]] constexpr auto to_address(Type &&ptr) noexcept {
if constexpr(std::is_pointer_v<std::decay_t<Type>>) {
return ptr;
} else {
return to_address(std::forward<Type>(ptr).operator->());
}
}
/**
* @brief Utility function to design allocation-aware containers.
* @tparam Allocator Type of allocator.
* @param lhs A valid allocator.
* @param rhs Another valid allocator.
*/
template<typename Allocator>
constexpr void propagate_on_container_copy_assignment([[maybe_unused]] Allocator &lhs, [[maybe_unused]] Allocator &rhs) noexcept {
if constexpr(std::allocator_traits<Allocator>::propagate_on_container_copy_assignment::value) {
lhs = rhs;
}
}
/**
* @brief Utility function to design allocation-aware containers.
* @tparam Allocator Type of allocator.
* @param lhs A valid allocator.
* @param rhs Another valid allocator.
*/
template<typename Allocator>
constexpr void propagate_on_container_move_assignment([[maybe_unused]] Allocator &lhs, [[maybe_unused]] Allocator &rhs) noexcept {
if constexpr(std::allocator_traits<Allocator>::propagate_on_container_move_assignment::value) {
lhs = std::move(rhs);
}
}
/**
* @brief Utility function to design allocation-aware containers.
* @tparam Allocator Type of allocator.
* @param lhs A valid allocator.
* @param rhs Another valid allocator.
*/
template<typename Allocator>
constexpr void propagate_on_container_swap([[maybe_unused]] Allocator &lhs, [[maybe_unused]] Allocator &rhs) noexcept {
if constexpr(std::allocator_traits<Allocator>::propagate_on_container_swap::value) {
using std::swap;
swap(lhs, rhs);
} else {
ENTT_ASSERT_CONSTEXPR(lhs == rhs, "Cannot swap the containers");
}
}
/**
* @brief Deleter for allocator-aware unique pointers (waiting for C++20).
* @tparam Args Types of arguments to use to construct the object.
*/
template<typename Allocator>
struct allocation_deleter: private Allocator {
/*! @brief Allocator type. */
using allocator_type = Allocator;
/*! @brief Pointer type. */
using pointer = typename std::allocator_traits<Allocator>::pointer;
/**
* @brief Inherited constructors.
* @param alloc The allocator to use.
*/
constexpr allocation_deleter(const allocator_type &alloc) noexcept(std::is_nothrow_copy_constructible_v<allocator_type>)
: Allocator{alloc} {}
/**
* @brief Destroys the pointed object and deallocates its memory.
* @param ptr A valid pointer to an object of the given type.
*/
constexpr void operator()(pointer ptr) noexcept(std::is_nothrow_destructible_v<typename allocator_type::value_type>) {
using alloc_traits = typename std::allocator_traits<Allocator>;
alloc_traits::destroy(*this, to_address(ptr));
alloc_traits::deallocate(*this, ptr, 1u);
}
};
/**
* @brief Allows `std::unique_ptr` to use allocators (waiting for C++20).
* @tparam Type Type of object to allocate for and to construct.
* @tparam Allocator Type of allocator used to manage memory and elements.
* @tparam Args Types of arguments to use to construct the object.
* @param allocator The allocator to use.
* @param args Parameters to use to construct the object.
* @return A properly initialized unique pointer with a custom deleter.
*/
template<typename Type, typename Allocator, typename... Args>
ENTT_CONSTEXPR auto allocate_unique(Allocator &allocator, Args &&...args) {
static_assert(!std::is_array_v<Type>, "Array types are not supported");
using alloc_traits = typename std::allocator_traits<Allocator>::template rebind_traits<Type>;
using allocator_type = typename alloc_traits::allocator_type;
allocator_type alloc{allocator};
auto ptr = alloc_traits::allocate(alloc, 1u);
ENTT_TRY {
alloc_traits::construct(alloc, to_address(ptr), std::forward<Args>(args)...);
}
ENTT_CATCH {
alloc_traits::deallocate(alloc, ptr, 1u);
ENTT_THROW;
}
return std::unique_ptr<Type, allocation_deleter<allocator_type>>{ptr, alloc};
}
/**
* @cond TURN_OFF_DOXYGEN
* Internal details not to be documented.
*/
namespace internal {
template<typename Type>
struct uses_allocator_construction {
template<typename Allocator, typename... Params>
static constexpr auto args([[maybe_unused]] const Allocator &allocator, Params &&...params) noexcept {
if constexpr(!std::uses_allocator_v<Type, Allocator> && std::is_constructible_v<Type, Params...>) {
return std::forward_as_tuple(std::forward<Params>(params)...);
} else {
static_assert(std::uses_allocator_v<Type, Allocator>, "Ill-formed request");
if constexpr(std::is_constructible_v<Type, std::allocator_arg_t, const Allocator &, Params...>) {
return std::tuple<std::allocator_arg_t, const Allocator &, Params &&...>{std::allocator_arg, allocator, std::forward<Params>(params)...};
} else {
static_assert(std::is_constructible_v<Type, Params..., const Allocator &>, "Ill-formed request");
return std::forward_as_tuple(std::forward<Params>(params)..., allocator);
}
}
}
};
template<typename Type, typename Other>
struct uses_allocator_construction<std::pair<Type, Other>> {
using type = std::pair<Type, Other>;
template<typename Allocator, typename First, typename Second>
static constexpr auto args(const Allocator &allocator, std::piecewise_construct_t, First &&first, Second &&second) noexcept {
return std::make_tuple(
std::piecewise_construct,
std::apply([&allocator](auto &&...curr) { return uses_allocator_construction<Type>::args(allocator, std::forward<decltype(curr)>(curr)...); }, std::forward<First>(first)),
std::apply([&allocator](auto &&...curr) { return uses_allocator_construction<Other>::args(allocator, std::forward<decltype(curr)>(curr)...); }, std::forward<Second>(second)));
}
template<typename Allocator>
static constexpr auto args(const Allocator &allocator) noexcept {
return uses_allocator_construction<type>::args(allocator, std::piecewise_construct, std::tuple<>{}, std::tuple<>{});
}
template<typename Allocator, typename First, typename Second>
static constexpr auto args(const Allocator &allocator, First &&first, Second &&second) noexcept {
return uses_allocator_construction<type>::args(allocator, std::piecewise_construct, std::forward_as_tuple(std::forward<First>(first)), std::forward_as_tuple(std::forward<Second>(second)));
}
template<typename Allocator, typename First, typename Second>
static constexpr auto args(const Allocator &allocator, const std::pair<First, Second> &value) noexcept {
return uses_allocator_construction<type>::args(allocator, std::piecewise_construct, std::forward_as_tuple(value.first), std::forward_as_tuple(value.second));
}
template<typename Allocator, typename First, typename Second>
static constexpr auto args(const Allocator &allocator, std::pair<First, Second> &&value) noexcept {
return uses_allocator_construction<type>::args(allocator, std::piecewise_construct, std::forward_as_tuple(std::move(value.first)), std::forward_as_tuple(std::move(value.second)));
}
};
} // namespace internal
/**
* Internal details not to be documented.
* @endcond
*/
/**
* @brief Uses-allocator construction utility (waiting for C++20).
*
* Primarily intended for internal use. Prepares the argument list needed to
* create an object of a given type by means of uses-allocator construction.
*
* @tparam Type Type to return arguments for.
* @tparam Allocator Type of allocator used to manage memory and elements.
* @tparam Args Types of arguments to use to construct the object.
* @param allocator The allocator to use.
* @param args Parameters to use to construct the object.
* @return The arguments needed to create an object of the given type.
*/
template<typename Type, typename Allocator, typename... Args>
constexpr auto uses_allocator_construction_args(const Allocator &allocator, Args &&...args) noexcept {
return internal::uses_allocator_construction<Type>::args(allocator, std::forward<Args>(args)...);
}
/**
* @brief Uses-allocator construction utility (waiting for C++20).
*
* Primarily intended for internal use. Creates an object of a given type by
* means of uses-allocator construction.
*
* @tparam Type Type of object to create.
* @tparam Allocator Type of allocator used to manage memory and elements.
* @tparam Args Types of arguments to use to construct the object.
* @param allocator The allocator to use.
* @param args Parameters to use to construct the object.
* @return A newly created object of the given type.
*/
template<typename Type, typename Allocator, typename... Args>
constexpr Type make_obj_using_allocator(const Allocator &allocator, Args &&...args) {
return std::make_from_tuple<Type>(internal::uses_allocator_construction<Type>::args(allocator, std::forward<Args>(args)...));
}
/**
* @brief Uses-allocator construction utility (waiting for C++20).
*
* Primarily intended for internal use. Creates an object of a given type by
* means of uses-allocator construction at an uninitialized memory location.
*
* @tparam Type Type of object to create.
* @tparam Allocator Type of allocator used to manage memory and elements.
* @tparam Args Types of arguments to use to construct the object.
* @param value Memory location in which to place the object.
* @param allocator The allocator to use.
* @param args Parameters to use to construct the object.
* @return A pointer to the newly created object of the given type.
*/
template<typename Type, typename Allocator, typename... Args>
constexpr Type *uninitialized_construct_using_allocator(Type *value, const Allocator &allocator, Args &&...args) {
return std::apply([value](auto &&...curr) { return new(value) Type(std::forward<decltype(curr)>(curr)...); }, internal::uses_allocator_construction<Type>::args(allocator, std::forward<Args>(args)...));
}
} // namespace entt
#endif
// #include "../core/type_traits.hpp"
#ifndef ENTT_CORE_TYPE_TRAITS_HPP
#define ENTT_CORE_TYPE_TRAITS_HPP
#include <cstddef>
#include <iterator>
#include <type_traits>
#include <utility>
// #include "../config/config.h"
// #include "fwd.hpp"
namespace entt {
/**
* @brief Utility class to disambiguate overloaded functions.
* @tparam N Number of choices available.
*/
template<std::size_t N>
struct choice_t
// Unfortunately, doxygen cannot parse such a construct.
: /*! @cond TURN_OFF_DOXYGEN */ choice_t<N - 1> /*! @endcond */
{};
/*! @copybrief choice_t */
template<>
struct choice_t<0> {};
/**
* @brief Variable template for the choice trick.
* @tparam N Number of choices available.
*/
template<std::size_t N>
inline constexpr choice_t<N> choice{};
/**
* @brief Identity type trait.
*
* Useful to establish non-deduced contexts in template argument deduction
* (waiting for C++20) or to provide types through function arguments.
*
* @tparam Type A type.
*/
template<typename Type>
struct type_identity {
/*! @brief Identity type. */
using type = Type;
};
/**
* @brief Helper type.
* @tparam Type A type.
*/
template<typename Type>
using type_identity_t = typename type_identity<Type>::type;
/**
* @brief A type-only `sizeof` wrapper that returns 0 where `sizeof` complains.
* @tparam Type The type of which to return the size.
* @tparam The size of the type if `sizeof` accepts it, 0 otherwise.
*/
template<typename Type, typename = void>
struct size_of: std::integral_constant<std::size_t, 0u> {};
/*! @copydoc size_of */
template<typename Type>
struct size_of<Type, std::void_t<decltype(sizeof(Type))>>
: std::integral_constant<std::size_t, sizeof(Type)> {};
/**
* @brief Helper variable template.
* @tparam Type The type of which to return the size.
*/
template<typename Type>
inline constexpr std::size_t size_of_v = size_of<Type>::value;
/**
* @brief Using declaration to be used to _repeat_ the same type a number of
* times equal to the size of a given parameter pack.
* @tparam Type A type to repeat.
*/
template<typename Type, typename>
using unpack_as_type = Type;
/**
* @brief Helper variable template to be used to _repeat_ the same value a
* number of times equal to the size of a given parameter pack.
* @tparam Value A value to repeat.
*/
template<auto Value, typename>
inline constexpr auto unpack_as_value = Value;
/**
* @brief Wraps a static constant.
* @tparam Value A static constant.
*/
template<auto Value>
using integral_constant = std::integral_constant<decltype(Value), Value>;
/**
* @brief Alias template to facilitate the creation of named values.
* @tparam Value A constant value at least convertible to `id_type`.
*/
template<id_type Value>
using tag = integral_constant<Value>;
/**
* @brief A class to use to push around lists of types, nothing more.
* @tparam Type Types provided by the type list.
*/
template<typename... Type>
struct type_list {
/*! @brief Type list type. */
using type = type_list;
/*! @brief Compile-time number of elements in the type list. */
static constexpr auto size = sizeof...(Type);
};
/*! @brief Primary template isn't defined on purpose. */
template<std::size_t, typename>
struct type_list_element;
/**
* @brief Provides compile-time indexed access to the types of a type list.
* @tparam Index Index of the type to return.
* @tparam First First type provided by the type list.
* @tparam Other Other types provided by the type list.
*/
template<std::size_t Index, typename First, typename... Other>
struct type_list_element<Index, type_list<First, Other...>>
: type_list_element<Index - 1u, type_list<Other...>> {};
/**
* @brief Provides compile-time indexed access to the types of a type list.
* @tparam First First type provided by the type list.
* @tparam Other Other types provided by the type list.
*/
template<typename First, typename... Other>
struct type_list_element<0u, type_list<First, Other...>> {
/*! @brief Searched type. */
using type = First;
};
/**
* @brief Helper type.
* @tparam Index Index of the type to return.
* @tparam List Type list to search into.
*/
template<std::size_t Index, typename List>
using type_list_element_t = typename type_list_element<Index, List>::type;
/*! @brief Primary template isn't defined on purpose. */
template<typename, typename>
struct type_list_index;
/**
* @brief Provides compile-time type access to the types of a type list.
* @tparam Type Type to look for and for which to return the index.
* @tparam First First type provided by the type list.
* @tparam Other Other types provided by the type list.
*/
template<typename Type, typename First, typename... Other>
struct type_list_index<Type, type_list<First, Other...>> {
/*! @brief Unsigned integer type. */
using value_type = std::size_t;
/*! @brief Compile-time position of the given type in the sublist. */
static constexpr value_type value = 1u + type_list_index<Type, type_list<Other...>>::value;
};
/**
* @brief Provides compile-time type access to the types of a type list.
* @tparam Type Type to look for and for which to return the index.
* @tparam Other Other types provided by the type list.
*/
template<typename Type, typename... Other>
struct type_list_index<Type, type_list<Type, Other...>> {
static_assert(type_list_index<Type, type_list<Other...>>::value == sizeof...(Other), "Non-unique type");
/*! @brief Unsigned integer type. */
using value_type = std::size_t;
/*! @brief Compile-time position of the given type in the sublist. */
static constexpr value_type value = 0u;
};
/**
* @brief Provides compile-time type access to the types of a type list.
* @tparam Type Type to look for and for which to return the index.
*/
template<typename Type>
struct type_list_index<Type, type_list<>> {
/*! @brief Unsigned integer type. */
using value_type = std::size_t;
/*! @brief Compile-time position of the given type in the sublist. */
static constexpr value_type value = 0u;
};
/**
* @brief Helper variable template.
* @tparam List Type list.
* @tparam Type Type to look for and for which to return the index.
*/
template<typename Type, typename List>
inline constexpr std::size_t type_list_index_v = type_list_index<Type, List>::value;
/**
* @brief Concatenates multiple type lists.
* @tparam Type Types provided by the first type list.
* @tparam Other Types provided by the second type list.
* @return A type list composed by the types of both the type lists.
*/
template<typename... Type, typename... Other>
constexpr type_list<Type..., Other...> operator+(type_list<Type...>, type_list<Other...>) {
return {};
}
/*! @brief Primary template isn't defined on purpose. */
template<typename...>
struct type_list_cat;
/*! @brief Concatenates multiple type lists. */
template<>
struct type_list_cat<> {
/*! @brief A type list composed by the types of all the type lists. */
using type = type_list<>;
};
/**
* @brief Concatenates multiple type lists.
* @tparam Type Types provided by the first type list.
* @tparam Other Types provided by the second type list.
* @tparam List Other type lists, if any.
*/
template<typename... Type, typename... Other, typename... List>
struct type_list_cat<type_list<Type...>, type_list<Other...>, List...> {
/*! @brief A type list composed by the types of all the type lists. */
using type = typename type_list_cat<type_list<Type..., Other...>, List...>::type;
};
/**
* @brief Concatenates multiple type lists.
* @tparam Type Types provided by the type list.
*/
template<typename... Type>
struct type_list_cat<type_list<Type...>> {
/*! @brief A type list composed by the types of all the type lists. */
using type = type_list<Type...>;
};
/**
* @brief Helper type.
* @tparam List Type lists to concatenate.
*/
template<typename... List>
using type_list_cat_t = typename type_list_cat<List...>::type;
/*! @brief Primary template isn't defined on purpose. */
template<typename>
struct type_list_unique;
/**
* @brief Removes duplicates types from a type list.
* @tparam Type One of the types provided by the given type list.
* @tparam Other The other types provided by the given type list.
*/
template<typename Type, typename... Other>
struct type_list_unique<type_list<Type, Other...>> {
/*! @brief A type list without duplicate types. */
using type = std::conditional_t<
(std::is_same_v<Type, Other> || ...),
typename type_list_unique<type_list<Other...>>::type,
type_list_cat_t<type_list<Type>, typename type_list_unique<type_list<Other...>>::type>>;
};
/*! @brief Removes duplicates types from a type list. */
template<>
struct type_list_unique<type_list<>> {
/*! @brief A type list without duplicate types. */
using type = type_list<>;
};
/**
* @brief Helper type.
* @tparam Type A type list.
*/
template<typename Type>
using type_list_unique_t = typename type_list_unique<Type>::type;
/**
* @brief Provides the member constant `value` to true if a type list contains a
* given type, false otherwise.
* @tparam List Type list.
* @tparam Type Type to look for.
*/
template<typename List, typename Type>
struct type_list_contains;
/**
* @copybrief type_list_contains
* @tparam Type Types provided by the type list.
* @tparam Other Type to look for.
*/
template<typename... Type, typename Other>
struct type_list_contains<type_list<Type...>, Other>: std::disjunction<std::is_same<Type, Other>...> {};
/**
* @brief Helper variable template.
* @tparam List Type list.
* @tparam Type Type to look for.
*/
template<typename List, typename Type>
inline constexpr bool type_list_contains_v = type_list_contains<List, Type>::value;
/*! @brief Primary template isn't defined on purpose. */
template<typename...>
struct type_list_diff;
/**
* @brief Computes the difference between two type lists.
* @tparam Type Types provided by the first type list.
* @tparam Other Types provided by the second type list.
*/
template<typename... Type, typename... Other>
struct type_list_diff<type_list<Type...>, type_list<Other...>> {
/*! @brief A type list that is the difference between the two type lists. */
using type = type_list_cat_t<std::conditional_t<type_list_contains_v<type_list<Other...>, Type>, type_list<>, type_list<Type>>...>;
};
/**
* @brief Helper type.
* @tparam List Type lists between which to compute the difference.
*/
template<typename... List>
using type_list_diff_t = typename type_list_diff<List...>::type;
/*! @brief Primary template isn't defined on purpose. */
template<typename, template<typename...> class>
struct type_list_transform;
/**
* @brief Applies a given _function_ to a type list and generate a new list.
* @tparam Type Types provided by the type list.
* @tparam Op Unary operation as template class with a type member named `type`.
*/
template<typename... Type, template<typename...> class Op>
struct type_list_transform<type_list<Type...>, Op> {
/*! @brief Resulting type list after applying the transform function. */
using type = type_list<typename Op<Type>::type...>;
};
/**
* @brief Helper type.
* @tparam List Type list.
* @tparam Op Unary operation as template class with a type member named `type`.
*/
template<typename List, template<typename...> class Op>
using type_list_transform_t = typename type_list_transform<List, Op>::type;
/**
* @brief A class to use to push around lists of constant values, nothing more.
* @tparam Value Values provided by the value list.
*/
template<auto... Value>
struct value_list {
/*! @brief Value list type. */
using type = value_list;
/*! @brief Compile-time number of elements in the value list. */
static constexpr auto size = sizeof...(Value);
};
/*! @brief Primary template isn't defined on purpose. */
template<std::size_t, typename>
struct value_list_element;
/**
* @brief Provides compile-time indexed access to the values of a value list.
* @tparam Index Index of the value to return.
* @tparam Value First value provided by the value list.
* @tparam Other Other values provided by the value list.
*/
template<std::size_t Index, auto Value, auto... Other>
struct value_list_element<Index, value_list<Value, Other...>>
: value_list_element<Index - 1u, value_list<Other...>> {};
/**
* @brief Provides compile-time indexed access to the types of a type list.
* @tparam Value First value provided by the value list.
* @tparam Other Other values provided by the value list.
*/
template<auto Value, auto... Other>
struct value_list_element<0u, value_list<Value, Other...>> {
/*! @brief Searched value. */
static constexpr auto value = Value;
};
/**
* @brief Helper type.
* @tparam Index Index of the value to return.
* @tparam List Value list to search into.
*/
template<std::size_t Index, typename List>
inline constexpr auto value_list_element_v = value_list_element<Index, List>::value;
/**
* @brief Concatenates multiple value lists.
* @tparam Value Values provided by the first value list.
* @tparam Other Values provided by the second value list.
* @return A value list composed by the values of both the value lists.
*/
template<auto... Value, auto... Other>
constexpr value_list<Value..., Other...> operator+(value_list<Value...>, value_list<Other...>) {
return {};
}
/*! @brief Primary template isn't defined on purpose. */
template<typename...>
struct value_list_cat;
/*! @brief Concatenates multiple value lists. */
template<>
struct value_list_cat<> {
/*! @brief A value list composed by the values of all the value lists. */
using type = value_list<>;
};
/**
* @brief Concatenates multiple value lists.
* @tparam Value Values provided by the first value list.
* @tparam Other Values provided by the second value list.
* @tparam List Other value lists, if any.
*/
template<auto... Value, auto... Other, typename... List>
struct value_list_cat<value_list<Value...>, value_list<Other...>, List...> {
/*! @brief A value list composed by the values of all the value lists. */
using type = typename value_list_cat<value_list<Value..., Other...>, List...>::type;
};
/**
* @brief Concatenates multiple value lists.
* @tparam Value Values provided by the value list.
*/
template<auto... Value>
struct value_list_cat<value_list<Value...>> {
/*! @brief A value list composed by the values of all the value lists. */
using type = value_list<Value...>;
};
/**
* @brief Helper type.
* @tparam List Value lists to concatenate.
*/
template<typename... List>
using value_list_cat_t = typename value_list_cat<List...>::type;
/*! @brief Same as std::is_invocable, but with tuples. */
template<typename, typename>
struct is_applicable: std::false_type {};
/**
* @copybrief is_applicable
* @tparam Func A valid function type.
* @tparam Tuple Tuple-like type.
* @tparam Args The list of arguments to use to probe the function type.
*/
template<typename Func, template<typename...> class Tuple, typename... Args>
struct is_applicable<Func, Tuple<Args...>>: std::is_invocable<Func, Args...> {};
/**
* @copybrief is_applicable
* @tparam Func A valid function type.
* @tparam Tuple Tuple-like type.
* @tparam Args The list of arguments to use to probe the function type.
*/
template<typename Func, template<typename...> class Tuple, typename... Args>
struct is_applicable<Func, const Tuple<Args...>>: std::is_invocable<Func, Args...> {};
/**
* @brief Helper variable template.
* @tparam Func A valid function type.
* @tparam Args The list of arguments to use to probe the function type.
*/
template<typename Func, typename Args>
inline constexpr bool is_applicable_v = is_applicable<Func, Args>::value;
/*! @brief Same as std::is_invocable_r, but with tuples for arguments. */
template<typename, typename, typename>
struct is_applicable_r: std::false_type {};
/**
* @copybrief is_applicable_r
* @tparam Ret The type to which the return type of the function should be
* convertible.
* @tparam Func A valid function type.
* @tparam Args The list of arguments to use to probe the function type.
*/
template<typename Ret, typename Func, typename... Args>
struct is_applicable_r<Ret, Func, std::tuple<Args...>>: std::is_invocable_r<Ret, Func, Args...> {};
/**
* @brief Helper variable template.
* @tparam Ret The type to which the return type of the function should be
* convertible.
* @tparam Func A valid function type.
* @tparam Args The list of arguments to use to probe the function type.
*/
template<typename Ret, typename Func, typename Args>
inline constexpr bool is_applicable_r_v = is_applicable_r<Ret, Func, Args>::value;
/**
* @brief Provides the member constant `value` to true if a given type is
* complete, false otherwise.
* @tparam Type The type to test.
*/
template<typename Type, typename = void>
struct is_complete: std::false_type {};
/*! @copydoc is_complete */
template<typename Type>
struct is_complete<Type, std::void_t<decltype(sizeof(Type))>>: std::true_type {};
/**
* @brief Helper variable template.
* @tparam Type The type to test.
*/
template<typename Type>
inline constexpr bool is_complete_v = is_complete<Type>::value;
/**
* @brief Provides the member constant `value` to true if a given type is an
* iterator, false otherwise.
* @tparam Type The type to test.
*/
template<typename Type, typename = void>
struct is_iterator: std::false_type {};
/**
* @cond TURN_OFF_DOXYGEN
* Internal details not to be documented.
*/
namespace internal {
template<typename, typename = void>
struct has_iterator_category: std::false_type {};
template<typename Type>
struct has_iterator_category<Type, std::void_t<typename std::iterator_traits<Type>::iterator_category>>: std::true_type {};
} // namespace internal
/**
* Internal details not to be documented.
* @endcond
*/
/*! @copydoc is_iterator */
template<typename Type>
struct is_iterator<Type, std::enable_if_t<!std::is_same_v<std::remove_cv_t<std::remove_pointer_t<Type>>, void>>>
: internal::has_iterator_category<Type> {};
/**
* @brief Helper variable template.
* @tparam Type The type to test.
*/
template<typename Type>
inline constexpr bool is_iterator_v = is_iterator<Type>::value;
/**
* @brief Provides the member constant `value` to true if a given type is both
* an empty and non-final class, false otherwise.
* @tparam Type The type to test
*/
template<typename Type>
struct is_ebco_eligible
: std::conjunction<std::is_empty<Type>, std::negation<std::is_final<Type>>> {};
/**
* @brief Helper variable template.
* @tparam Type The type to test.
*/
template<typename Type>
inline constexpr bool is_ebco_eligible_v = is_ebco_eligible<Type>::value;
/**
* @brief Provides the member constant `value` to true if `Type::is_transparent`
* is valid and denotes a type, false otherwise.
* @tparam Type The type to test.
*/
template<typename Type, typename = void>
struct is_transparent: std::false_type {};
/*! @copydoc is_transparent */
template<typename Type>
struct is_transparent<Type, std::void_t<typename Type::is_transparent>>: std::true_type {};
/**
* @brief Helper variable template.
* @tparam Type The type to test.
*/
template<typename Type>
inline constexpr bool is_transparent_v = is_transparent<Type>::value;
/**
* @brief Provides the member constant `value` to true if a given type is
* equality comparable, false otherwise.
* @tparam Type The type to test.
*/
template<typename Type, typename = void>
struct is_equality_comparable: std::false_type {};
/**
* @cond TURN_OFF_DOXYGEN
* Internal details not to be documented.
*/
namespace internal {
template<typename, typename = void>
struct has_tuple_size_value: std::false_type {};
template<typename Type>
struct has_tuple_size_value<Type, std::void_t<decltype(std::tuple_size<const Type>::value)>>: std::true_type {};
template<typename Type, std::size_t... Index>
[[nodiscard]] constexpr bool unpack_maybe_equality_comparable(std::index_sequence<Index...>) {
return (is_equality_comparable<std::tuple_element_t<Index, Type>>::value && ...);
}
template<typename>
[[nodiscard]] constexpr bool maybe_equality_comparable(choice_t<0>) {
return true;
}
template<typename Type>
[[nodiscard]] constexpr auto maybe_equality_comparable(choice_t<1>) -> decltype(std::declval<typename Type::value_type>(), bool{}) {
if constexpr(is_iterator_v<Type>) {
return true;
} else if constexpr(std::is_same_v<typename Type::value_type, Type>) {
return maybe_equality_comparable<Type>(choice<0>);
} else {
return is_equality_comparable<typename Type::value_type>::value;
}
}
template<typename Type>
[[nodiscard]] constexpr std::enable_if_t<is_complete_v<std::tuple_size<std::remove_cv_t<Type>>>, bool> maybe_equality_comparable(choice_t<2>) {
if constexpr(has_tuple_size_value<Type>::value) {
return unpack_maybe_equality_comparable<Type>(std::make_index_sequence<std::tuple_size<Type>::value>{});
} else {
return maybe_equality_comparable<Type>(choice<1>);
}
}
} // namespace internal
/**
* Internal details not to be documented.
* @endcond
*/
/*! @copydoc is_equality_comparable */
template<typename Type>
struct is_equality_comparable<Type, std::void_t<decltype(std::declval<Type>() == std::declval<Type>())>>
: std::bool_constant<internal::maybe_equality_comparable<Type>(choice<2>)> {};
/**
* @brief Helper variable template.
* @tparam Type The type to test.
*/
template<typename Type>
inline constexpr bool is_equality_comparable_v = is_equality_comparable<Type>::value;
/**
* @brief Transcribes the constness of a type to another type.
* @tparam To The type to which to transcribe the constness.
* @tparam From The type from which to transcribe the constness.
*/
template<typename To, typename From>
struct constness_as {
/*! @brief The type resulting from the transcription of the constness. */
using type = std::remove_const_t<To>;
};
/*! @copydoc constness_as */
template<typename To, typename From>
struct constness_as<To, const From> {
/*! @brief The type resulting from the transcription of the constness. */
using type = const To;
};
/**
* @brief Alias template to facilitate the transcription of the constness.
* @tparam To The type to which to transcribe the constness.
* @tparam From The type from which to transcribe the constness.
*/
template<typename To, typename From>
using constness_as_t = typename constness_as<To, From>::type;
/**
* @brief Extracts the class of a non-static member object or function.
* @tparam Member A pointer to a non-static member object or function.
*/
template<typename Member>
class member_class {
static_assert(std::is_member_pointer_v<Member>, "Invalid pointer type to non-static member object or function");
template<typename Class, typename Ret, typename... Args>
static Class *clazz(Ret (Class::*)(Args...));
template<typename Class, typename Ret, typename... Args>
static Class *clazz(Ret (Class::*)(Args...) const);
template<typename Class, typename Type>
static Class *clazz(Type Class::*);
public:
/*! @brief The class of the given non-static member object or function. */
using type = std::remove_pointer_t<decltype(clazz(std::declval<Member>()))>;
};
/**
* @brief Helper type.
* @tparam Member A pointer to a non-static member object or function.
*/
template<typename Member>
using member_class_t = typename member_class<Member>::type;
/**
* @brief Extracts the n-th argument of a given function or member function.
* @tparam Index The index of the argument to extract.
* @tparam Candidate A valid function, member function or data member.
*/
template<std::size_t Index, auto Candidate>
class nth_argument {
template<typename Ret, typename... Args>
static constexpr type_list<Args...> pick_up(Ret (*)(Args...));
template<typename Ret, typename Class, typename... Args>
static constexpr type_list<Args...> pick_up(Ret (Class ::*)(Args...));
template<typename Ret, typename Class, typename... Args>
static constexpr type_list<Args...> pick_up(Ret (Class ::*)(Args...) const);
template<typename Type, typename Class>
static constexpr type_list<Type> pick_up(Type Class ::*);
public:
/*! @brief N-th argument of the given function or member function. */
using type = type_list_element_t<Index, decltype(pick_up(Candidate))>;
};
/**
* @brief Helper type.
* @tparam Index The index of the argument to extract.
* @tparam Candidate A valid function, member function or data member.
*/
template<std::size_t Index, auto Candidate>
using nth_argument_t = typename nth_argument<Index, Candidate>::type;
} // namespace entt
#endif
// #include "fwd.hpp"
#ifndef ENTT_CONTAINER_FWD_HPP
#define ENTT_CONTAINER_FWD_HPP
#include <functional>
#include <memory>
namespace entt {
template<
typename Key,
typename Type,
typename = std::hash<Key>,
typename = std::equal_to<Key>,
typename = std::allocator<std::pair<const Key, Type>>>
class dense_map;
template<
typename Type,
typename = std::hash<Type>,
typename = std::equal_to<Type>,
typename = std::allocator<Type>>
class dense_set;
} // namespace entt
#endif
namespace entt {
/**
* @cond TURN_OFF_DOXYGEN
* Internal details not to be documented.
*/
namespace internal {
template<typename Key, typename Type>
struct dense_map_node final {
using value_type = std::pair<Key, Type>;
template<typename... Args>
dense_map_node(const std::size_t pos, Args &&...args)
: next{pos},
element{std::forward<Args>(args)...} {}
template<typename Allocator, typename... Args>
dense_map_node(std::allocator_arg_t, const Allocator &allocator, const std::size_t pos, Args &&...args)
: next{pos},
element{entt::make_obj_using_allocator<value_type>(allocator, std::forward<Args>(args)...)} {}
template<typename Allocator>
dense_map_node(std::allocator_arg_t, const Allocator &allocator, const dense_map_node &other)
: next{other.next},
element{entt::make_obj_using_allocator<value_type>(allocator, other.element)} {}
template<typename Allocator>
dense_map_node(std::allocator_arg_t, const Allocator &allocator, dense_map_node &&other)
: next{other.next},
element{entt::make_obj_using_allocator<value_type>(allocator, std::move(other.element))} {}
std::size_t next;
value_type element;
};
template<typename It>
class dense_map_iterator final {
template<typename>
friend class dense_map_iterator;
using first_type = decltype(std::as_const(std::declval<It>()->element.first));
using second_type = decltype((std::declval<It>()->element.second));
public:
using value_type = std::pair<first_type, second_type>;
using pointer = input_iterator_pointer<value_type>;
using reference = value_type;
using difference_type = std::ptrdiff_t;
using iterator_category = std::input_iterator_tag;
constexpr dense_map_iterator() noexcept
: it{} {}
constexpr dense_map_iterator(const It iter) noexcept
: it{iter} {}
template<typename Other, typename = std::enable_if_t<!std::is_same_v<It, Other> && std::is_constructible_v<It, Other>>>
constexpr dense_map_iterator(const dense_map_iterator<Other> &other) noexcept
: it{other.it} {}
constexpr dense_map_iterator &operator++() noexcept {
return ++it, *this;
}
constexpr dense_map_iterator operator++(int) noexcept {
dense_map_iterator orig = *this;
return ++(*this), orig;
}
constexpr dense_map_iterator &operator--() noexcept {
return --it, *this;
}
constexpr dense_map_iterator operator--(int) noexcept {
dense_map_iterator orig = *this;
return operator--(), orig;
}
constexpr dense_map_iterator &operator+=(const difference_type value) noexcept {
it += value;
return *this;
}
constexpr dense_map_iterator operator+(const difference_type value) const noexcept {
dense_map_iterator copy = *this;
return (copy += value);
}
constexpr dense_map_iterator &operator-=(const difference_type value) noexcept {
return (*this += -value);
}
constexpr dense_map_iterator operator-(const difference_type value) const noexcept {
return (*this + -value);
}
[[nodiscard]] constexpr reference operator[](const difference_type value) const noexcept {
return {it[value].element.first, it[value].element.second};
}
[[nodiscard]] constexpr pointer operator->() const noexcept {
return operator*();
}
[[nodiscard]] constexpr reference operator*() const noexcept {
return {it->element.first, it->element.second};
}
template<typename ILhs, typename IRhs>
friend constexpr std::ptrdiff_t operator-(const dense_map_iterator<ILhs> &, const dense_map_iterator<IRhs> &) noexcept;
template<typename ILhs, typename IRhs>
friend constexpr bool operator==(const dense_map_iterator<ILhs> &, const dense_map_iterator<IRhs> &) noexcept;
template<typename ILhs, typename IRhs>
friend constexpr bool operator<(const dense_map_iterator<ILhs> &, const dense_map_iterator<IRhs> &) noexcept;
private:
It it;
};
template<typename ILhs, typename IRhs>
[[nodiscard]] constexpr std::ptrdiff_t operator-(const dense_map_iterator<ILhs> &lhs, const dense_map_iterator<IRhs> &rhs) noexcept {
return lhs.it - rhs.it;
}
template<typename ILhs, typename IRhs>
[[nodiscard]] constexpr bool operator==(const dense_map_iterator<ILhs> &lhs, const dense_map_iterator<IRhs> &rhs) noexcept {
return lhs.it == rhs.it;
}
template<typename ILhs, typename IRhs>
[[nodiscard]] constexpr bool operator!=(const dense_map_iterator<ILhs> &lhs, const dense_map_iterator<IRhs> &rhs) noexcept {
return !(lhs == rhs);
}
template<typename ILhs, typename IRhs>
[[nodiscard]] constexpr bool operator<(const dense_map_iterator<ILhs> &lhs, const dense_map_iterator<IRhs> &rhs) noexcept {
return lhs.it < rhs.it;
}
template<typename ILhs, typename IRhs>
[[nodiscard]] constexpr bool operator>(const dense_map_iterator<ILhs> &lhs, const dense_map_iterator<IRhs> &rhs) noexcept {
return rhs < lhs;
}
template<typename ILhs, typename IRhs>
[[nodiscard]] constexpr bool operator<=(const dense_map_iterator<ILhs> &lhs, const dense_map_iterator<IRhs> &rhs) noexcept {
return !(lhs > rhs);
}
template<typename ILhs, typename IRhs>
[[nodiscard]] constexpr bool operator>=(const dense_map_iterator<ILhs> &lhs, const dense_map_iterator<IRhs> &rhs) noexcept {
return !(lhs < rhs);
}
template<typename It>
class dense_map_local_iterator final {
template<typename>
friend class dense_map_local_iterator;
using first_type = decltype(std::as_const(std::declval<It>()->element.first));
using second_type = decltype((std::declval<It>()->element.second));
public:
using value_type = std::pair<first_type, second_type>;
using pointer = input_iterator_pointer<value_type>;
using reference = value_type;
using difference_type = std::ptrdiff_t;
using iterator_category = std::input_iterator_tag;
constexpr dense_map_local_iterator() noexcept
: it{},
offset{} {}
constexpr dense_map_local_iterator(It iter, const std::size_t pos) noexcept
: it{iter},
offset{pos} {}
template<typename Other, typename = std::enable_if_t<!std::is_same_v<It, Other> && std::is_constructible_v<It, Other>>>
constexpr dense_map_local_iterator(const dense_map_local_iterator<Other> &other) noexcept
: it{other.it},
offset{other.offset} {}
constexpr dense_map_local_iterator &operator++() noexcept {
return offset = it[offset].next, *this;
}
constexpr dense_map_local_iterator operator++(int) noexcept {
dense_map_local_iterator orig = *this;
return ++(*this), orig;
}
[[nodiscard]] constexpr pointer operator->() const noexcept {
return operator*();
}
[[nodiscard]] constexpr reference operator*() const noexcept {
return {it[offset].element.first, it[offset].element.second};
}
[[nodiscard]] constexpr std::size_t index() const noexcept {
return offset;
}
private:
It it;
std::size_t offset;
};
template<typename ILhs, typename IRhs>
[[nodiscard]] constexpr bool operator==(const dense_map_local_iterator<ILhs> &lhs, const dense_map_local_iterator<IRhs> &rhs) noexcept {
return lhs.index() == rhs.index();
}
template<typename ILhs, typename IRhs>
[[nodiscard]] constexpr bool operator!=(const dense_map_local_iterator<ILhs> &lhs, const dense_map_local_iterator<IRhs> &rhs) noexcept {
return !(lhs == rhs);
}
} // namespace internal
/**
* Internal details not to be documented.
* @endcond
*/
/**
* @brief Associative container for key-value pairs with unique keys.
*
* Internally, elements are organized into buckets. Which bucket an element is
* placed into depends entirely on the hash of its key. Keys with the same hash
* code appear in the same bucket.
*
* @tparam Key Key type of the associative container.
* @tparam Type Mapped type of the associative container.
* @tparam Hash Type of function to use to hash the keys.
* @tparam KeyEqual Type of function to use to compare the keys for equality.
* @tparam Allocator Type of allocator used to manage memory and elements.
*/
template<typename Key, typename Type, typename Hash, typename KeyEqual, typename Allocator>
class dense_map {
static constexpr float default_threshold = 0.875f;
static constexpr std::size_t minimum_capacity = 8u;
using node_type = internal::dense_map_node<Key, Type>;
using alloc_traits = typename std::allocator_traits<Allocator>;
static_assert(std::is_same_v<typename alloc_traits::value_type, std::pair<const Key, Type>>, "Invalid value type");
using sparse_container_type = std::vector<std::size_t, typename alloc_traits::template rebind_alloc<std::size_t>>;
using packed_container_type = std::vector<node_type, typename alloc_traits::template rebind_alloc<node_type>>;
template<typename Other>
[[nodiscard]] std::size_t key_to_bucket(const Other &key) const noexcept {
return fast_mod(static_cast<size_type>(sparse.second()(key)), bucket_count());
}
template<typename Other>
[[nodiscard]] auto constrained_find(const Other &key, std::size_t bucket) {
for(auto it = begin(bucket), last = end(bucket); it != last; ++it) {
if(packed.second()(it->first, key)) {
return begin() + static_cast<typename iterator::difference_type>(it.index());
}
}
return end();
}
template<typename Other>
[[nodiscard]] auto constrained_find(const Other &key, std::size_t bucket) const {
for(auto it = cbegin(bucket), last = cend(bucket); it != last; ++it) {
if(packed.second()(it->first, key)) {
return cbegin() + static_cast<typename iterator::difference_type>(it.index());
}
}
return cend();
}
template<typename Other, typename... Args>
[[nodiscard]] auto insert_or_do_nothing(Other &&key, Args &&...args) {
const auto index = key_to_bucket(key);
if(auto it = constrained_find(key, index); it != end()) {
return std::make_pair(it, false);
}
packed.first().emplace_back(sparse.first()[index], std::piecewise_construct, std::forward_as_tuple(std::forward<Other>(key)), std::forward_as_tuple(std::forward<Args>(args)...));
sparse.first()[index] = packed.first().size() - 1u;
rehash_if_required();
return std::make_pair(--end(), true);
}
template<typename Other, typename Arg>
[[nodiscard]] auto insert_or_overwrite(Other &&key, Arg &&value) {
const auto index = key_to_bucket(key);
if(auto it = constrained_find(key, index); it != end()) {
it->second = std::forward<Arg>(value);
return std::make_pair(it, false);
}
packed.first().emplace_back(sparse.first()[index], std::forward<Other>(key), std::forward<Arg>(value));
sparse.first()[index] = packed.first().size() - 1u;
rehash_if_required();
return std::make_pair(--end(), true);
}
void move_and_pop(const std::size_t pos) {
if(const auto last = size() - 1u; pos != last) {
size_type *curr = sparse.first().data() + key_to_bucket(packed.first().back().element.first);
packed.first()[pos] = std::move(packed.first().back());
for(; *curr != last; curr = &packed.first()[*curr].next) {}
*curr = pos;
}
packed.first().pop_back();
}
void rehash_if_required() {
if(size() > (bucket_count() * max_load_factor())) {
rehash(bucket_count() * 2u);
}
}
public:
/*! @brief Key type of the container. */
using key_type = Key;
/*! @brief Mapped type of the container. */
using mapped_type = Type;
/*! @brief Key-value type of the container. */
using value_type = std::pair<const Key, Type>;
/*! @brief Unsigned integer type. */
using size_type = std::size_t;
/*! @brief Type of function to use to hash the keys. */
using hasher = Hash;
/*! @brief Type of function to use to compare the keys for equality. */
using key_equal = KeyEqual;
/*! @brief Allocator type. */
using allocator_type = Allocator;
/*! @brief Input iterator type. */
using iterator = internal::dense_map_iterator<typename packed_container_type::iterator>;
/*! @brief Constant input iterator type. */
using const_iterator = internal::dense_map_iterator<typename packed_container_type::const_iterator>;
/*! @brief Input iterator type. */
using local_iterator = internal::dense_map_local_iterator<typename packed_container_type::iterator>;
/*! @brief Constant input iterator type. */
using const_local_iterator = internal::dense_map_local_iterator<typename packed_container_type::const_iterator>;
/*! @brief Default constructor. */
dense_map()
: dense_map{minimum_capacity} {}
/**
* @brief Constructs an empty container with a given allocator.
* @param allocator The allocator to use.
*/
explicit dense_map(const allocator_type &allocator)
: dense_map{minimum_capacity, hasher{}, key_equal{}, allocator} {}
/**
* @brief Constructs an empty container with a given allocator and user
* supplied minimal number of buckets.
* @param cnt Minimal number of buckets.
* @param allocator The allocator to use.
*/
dense_map(const size_type cnt, const allocator_type &allocator)
: dense_map{cnt, hasher{}, key_equal{}, allocator} {}
/**
* @brief Constructs an empty container with a given allocator, hash
* function and user supplied minimal number of buckets.
* @param cnt Minimal number of buckets.
* @param hash Hash function to use.
* @param allocator The allocator to use.
*/
dense_map(const size_type cnt, const hasher &hash, const allocator_type &allocator)
: dense_map{cnt, hash, key_equal{}, allocator} {}
/**
* @brief Constructs an empty container with a given allocator, hash
* function, compare function and user supplied minimal number of buckets.
* @param cnt Minimal number of buckets.
* @param hash Hash function to use.
* @param equal Compare function to use.
* @param allocator The allocator to use.
*/
explicit dense_map(const size_type cnt, const hasher &hash = hasher{}, const key_equal &equal = key_equal{}, const allocator_type &allocator = allocator_type{})
: sparse{allocator, hash},
packed{allocator, equal},
threshold{default_threshold} {
rehash(cnt);
}
/*! @brief Default copy constructor. */
dense_map(const dense_map &) = default;
/**
* @brief Allocator-extended copy constructor.
* @param other The instance to copy from.
* @param allocator The allocator to use.
*/
dense_map(const dense_map &other, const allocator_type &allocator)
: sparse{std::piecewise_construct, std::forward_as_tuple(other.sparse.first(), allocator), std::forward_as_tuple(other.sparse.second())},
packed{std::piecewise_construct, std::forward_as_tuple(other.packed.first(), allocator), std::forward_as_tuple(other.packed.second())},
threshold{other.threshold} {}
/*! @brief Default move constructor. */
dense_map(dense_map &&) noexcept(std::is_nothrow_move_constructible_v<compressed_pair<sparse_container_type, hasher>> &&std::is_nothrow_move_constructible_v<compressed_pair<packed_container_type, key_equal>>) = default;
/**
* @brief Allocator-extended move constructor.
* @param other The instance to move from.
* @param allocator The allocator to use.
*/
dense_map(dense_map &&other, const allocator_type &allocator)
: sparse{std::piecewise_construct, std::forward_as_tuple(std::move(other.sparse.first()), allocator), std::forward_as_tuple(std::move(other.sparse.second()))},
packed{std::piecewise_construct, std::forward_as_tuple(std::move(other.packed.first()), allocator), std::forward_as_tuple(std::move(other.packed.second()))},
threshold{other.threshold} {}
/**
* @brief Default copy assignment operator.
* @return This container.
*/
dense_map &operator=(const dense_map &) = default;
/**
* @brief Default move assignment operator.
* @return This container.
*/
dense_map &operator=(dense_map &&) noexcept(std::is_nothrow_move_assignable_v<compressed_pair<sparse_container_type, hasher>> &&std::is_nothrow_move_assignable_v<compressed_pair<packed_container_type, key_equal>>) = default;
/**
* @brief Returns the associated allocator.
* @return The associated allocator.
*/
[[nodiscard]] constexpr allocator_type get_allocator() const noexcept {
return sparse.first().get_allocator();
}
/**
* @brief Returns an iterator to the beginning.
*
* The returned iterator points to the first instance of the internal array.
* If the array is empty, the returned iterator will be equal to `end()`.
*
* @return An iterator to the first instance of the internal array.
*/
[[nodiscard]] const_iterator cbegin() const noexcept {
return packed.first().begin();
}
/*! @copydoc cbegin */
[[nodiscard]] const_iterator begin() const noexcept {
return cbegin();
}
/*! @copydoc begin */
[[nodiscard]] iterator begin() noexcept {
return packed.first().begin();
}
/**
* @brief Returns an iterator to the end.
*
* The returned iterator points to the element following the last instance
* of the internal array. Attempting to dereference the returned iterator
* results in undefined behavior.
*
* @return An iterator to the element following the last instance of the
* internal array.
*/
[[nodiscard]] const_iterator cend() const noexcept {
return packed.first().end();
}
/*! @copydoc cend */
[[nodiscard]] const_iterator end() const noexcept {
return cend();
}
/*! @copydoc end */
[[nodiscard]] iterator end() noexcept {
return packed.first().end();
}
/**
* @brief Checks whether a container is empty.
* @return True if the container is empty, false otherwise.
*/
[[nodiscard]] bool empty() const noexcept {
return packed.first().empty();
}
/**
* @brief Returns the number of elements in a container.
* @return Number of elements in a container.
*/
[[nodiscard]] size_type size() const noexcept {
return packed.first().size();
}
/**
* @brief Returns the maximum possible number of elements.
* @return Maximum possible number of elements.
*/
[[nodiscard]] size_type max_size() const noexcept {
return packed.first().max_size();
}
/*! @brief Clears the container. */
void clear() noexcept {
sparse.first().clear();
packed.first().clear();
rehash(0u);
}
/**
* @brief Inserts an element into the container, if the key does not exist.
* @param value A key-value pair eventually convertible to the value type.
* @return A pair consisting of an iterator to the inserted element (or to
* the element that prevented the insertion) and a bool denoting whether the
* insertion took place.
*/
std::pair<iterator, bool> insert(const value_type &value) {
return insert_or_do_nothing(value.first, value.second);
}
/*! @copydoc insert */
std::pair<iterator, bool> insert(value_type &&value) {
return insert_or_do_nothing(std::move(value.first), std::move(value.second));
}
/**
* @copydoc insert
* @tparam Arg Type of the key-value pair to insert into the container.
*/
template<typename Arg>
std::enable_if_t<std::is_constructible_v<value_type, Arg &&>, std::pair<iterator, bool>>
insert(Arg &&value) {
return insert_or_do_nothing(std::forward<Arg>(value).first, std::forward<Arg>(value).second);
}
/**
* @brief Inserts elements into the container, if their keys do not exist.
* @tparam It Type of input iterator.
* @param first An iterator to the first element of the range of elements.
* @param last An iterator past the last element of the range of elements.
*/
template<typename It>
void insert(It first, It last) {
for(; first != last; ++first) {
insert(*first);
}
}
/**
* @brief Inserts an element into the container or assigns to the current
* element if the key already exists.
* @tparam Arg Type of the value to insert or assign.
* @param key A key used both to look up and to insert if not found.
* @param value A value to insert or assign.
* @return A pair consisting of an iterator to the element and a bool
* denoting whether the insertion took place.
*/
template<typename Arg>
std::pair<iterator, bool> insert_or_assign(const key_type &key, Arg &&value) {
return insert_or_overwrite(key, std::forward<Arg>(value));
}
/*! @copydoc insert_or_assign */
template<typename Arg>
std::pair<iterator, bool> insert_or_assign(key_type &&key, Arg &&value) {
return insert_or_overwrite(std::move(key), std::forward<Arg>(value));
}
/**
* @brief Constructs an element in-place, if the key does not exist.
*
* The element is also constructed when the container already has the key,
* in which case the newly constructed object is destroyed immediately.
*
* @tparam Args Types of arguments to forward to the constructor of the
* element.
* @param args Arguments to forward to the constructor of the element.
* @return A pair consisting of an iterator to the inserted element (or to
* the element that prevented the insertion) and a bool denoting whether the
* insertion took place.
*/
template<typename... Args>
std::pair<iterator, bool> emplace([[maybe_unused]] Args &&...args) {
if constexpr(sizeof...(Args) == 0u) {
return insert_or_do_nothing(key_type{});
} else if constexpr(sizeof...(Args) == 1u) {
return insert_or_do_nothing(std::forward<Args>(args).first..., std::forward<Args>(args).second...);
} else if constexpr(sizeof...(Args) == 2u) {
return insert_or_do_nothing(std::forward<Args>(args)...);
} else {
auto &node = packed.first().emplace_back(packed.first().size(), std::forward<Args>(args)...);
const auto index = key_to_bucket(node.element.first);
if(auto it = constrained_find(node.element.first, index); it != end()) {
packed.first().pop_back();
return std::make_pair(it, false);
}
std::swap(node.next, sparse.first()[index]);
rehash_if_required();
return std::make_pair(--end(), true);
}
}
/**
* @brief Inserts in-place if the key does not exist, does nothing if the
* key exists.
* @tparam Args Types of arguments to forward to the constructor of the
* element.
* @param key A key used both to look up and to insert if not found.
* @param args Arguments to forward to the constructor of the element.
* @return A pair consisting of an iterator to the inserted element (or to
* the element that prevented the insertion) and a bool denoting whether the
* insertion took place.
*/
template<typename... Args>
std::pair<iterator, bool> try_emplace(const key_type &key, Args &&...args) {
return insert_or_do_nothing(key, std::forward<Args>(args)...);
}
/*! @copydoc try_emplace */
template<typename... Args>
std::pair<iterator, bool> try_emplace(key_type &&key, Args &&...args) {
return insert_or_do_nothing(std::move(key), std::forward<Args>(args)...);
}
/**
* @brief Removes an element from a given position.
* @param pos An iterator to the element to remove.
* @return An iterator following the removed element.
*/
iterator erase(const_iterator pos) {
const auto diff = pos - cbegin();
erase(pos->first);
return begin() + diff;
}
/**
* @brief Removes the given elements from a container.
* @param first An iterator to the first element of the range of elements.
* @param last An iterator past the last element of the range of elements.
* @return An iterator following the last removed element.
*/
iterator erase(const_iterator first, const_iterator last) {
const auto dist = first - cbegin();
for(auto from = last - cbegin(); from != dist; --from) {
erase(packed.first()[from - 1u].element.first);
}
return (begin() + dist);
}
/**
* @brief Removes the element associated with a given key.
* @param key A key value of an element to remove.
* @return Number of elements removed (either 0 or 1).
*/
size_type erase(const key_type &key) {
for(size_type *curr = sparse.first().data() + key_to_bucket(key); *curr != (std::numeric_limits<size_type>::max)(); curr = &packed.first()[*curr].next) {
if(packed.second()(packed.first()[*curr].element.first, key)) {
const auto index = *curr;
*curr = packed.first()[*curr].next;
move_and_pop(index);
return 1u;
}
}
return 0u;
}
/**
* @brief Exchanges the contents with those of a given container.
* @param other Container to exchange the content with.
*/
void swap(dense_map &other) {
using std::swap;
swap(sparse, other.sparse);
swap(packed, other.packed);
swap(threshold, other.threshold);
}
/**
* @brief Accesses a given element with bounds checking.
* @param key A key of an element to find.
* @return A reference to the mapped value of the requested element.
*/
[[nodiscard]] mapped_type &at(const key_type &key) {
auto it = find(key);
ENTT_ASSERT(it != end(), "Invalid key");
return it->second;
}
/*! @copydoc at */
[[nodiscard]] const mapped_type &at(const key_type &key) const {
auto it = find(key);
ENTT_ASSERT(it != cend(), "Invalid key");
return it->second;
}
/**
* @brief Accesses or inserts a given element.
* @param key A key of an element to find or insert.
* @return A reference to the mapped value of the requested element.
*/
[[nodiscard]] mapped_type &operator[](const key_type &key) {
return insert_or_do_nothing(key).first->second;
}
/**
* @brief Accesses or inserts a given element.
* @param key A key of an element to find or insert.
* @return A reference to the mapped value of the requested element.
*/
[[nodiscard]] mapped_type &operator[](key_type &&key) {
return insert_or_do_nothing(std::move(key)).first->second;
}
/**
* @brief Returns the number of elements matching a key (either 1 or 0).
* @param key Key value of an element to search for.
* @return Number of elements matching the key (either 1 or 0).
*/
[[nodiscard]] size_type count(const key_type &key) const {
return find(key) != end();
}
/**
* @brief Returns the number of elements matching a key (either 1 or 0).
* @tparam Other Type of the key value of an element to search for.
* @param key Key value of an element to search for.
* @return Number of elements matching the key (either 1 or 0).
*/
template<typename Other>
[[nodiscard]] std::enable_if_t<is_transparent_v<hasher> && is_transparent_v<key_equal>, std::conditional_t<false, Other, size_type>>
count(const Other &key) const {
return find(key) != end();
}
/**
* @brief Finds an element with a given key.
* @param key Key value of an element to search for.
* @return An iterator to an element with the given key. If no such element
* is found, a past-the-end iterator is returned.
*/
[[nodiscard]] iterator find(const key_type &key) {
return constrained_find(key, key_to_bucket(key));
}
/*! @copydoc find */
[[nodiscard]] const_iterator find(const key_type &key) const {
return constrained_find(key, key_to_bucket(key));
}
/**
* @brief Finds an element with a key that compares _equivalent_ to a given
* key.
* @tparam Other Type of the key value of an element to search for.
* @param key Key value of an element to search for.
* @return An iterator to an element with the given key. If no such element
* is found, a past-the-end iterator is returned.
*/
template<typename Other>
[[nodiscard]] std::enable_if_t<is_transparent_v<hasher> && is_transparent_v<key_equal>, std::conditional_t<false, Other, iterator>>
find(const Other &key) {
return constrained_find(key, key_to_bucket(key));
}
/*! @copydoc find */
template<typename Other>
[[nodiscard]] std::enable_if_t<is_transparent_v<hasher> && is_transparent_v<key_equal>, std::conditional_t<false, Other, const_iterator>>
find(const Other &key) const {
return constrained_find(key, key_to_bucket(key));
}
/**
* @brief Returns a range containing all elements with a given key.
* @param key Key value of an element to search for.
* @return A pair of iterators pointing to the first element and past the
* last element of the range.
*/
[[nodiscard]] std::pair<iterator, iterator> equal_range(const key_type &key) {
const auto it = find(key);
return {it, it + !(it == end())};
}
/*! @copydoc equal_range */
[[nodiscard]] std::pair<const_iterator, const_iterator> equal_range(const key_type &key) const {
const auto it = find(key);
return {it, it + !(it == cend())};
}
/**
* @brief Returns a range containing all elements that compare _equivalent_
* to a given key.
* @tparam Other Type of an element to search for.
* @param key Key value of an element to search for.
* @return A pair of iterators pointing to the first element and past the
* last element of the range.
*/
template<typename Other>
[[nodiscard]] std::enable_if_t<is_transparent_v<hasher> && is_transparent_v<key_equal>, std::conditional_t<false, Other, std::pair<iterator, iterator>>>
equal_range(const Other &key) {
const auto it = find(key);
return {it, it + !(it == end())};
}
/*! @copydoc equal_range */
template<class Other>
[[nodiscard]] std::enable_if_t<is_transparent_v<hasher> && is_transparent_v<key_equal>, std::conditional_t<false, Other, std::pair<const_iterator, const_iterator>>>
equal_range(const Other &key) const {
const auto it = find(key);
return {it, it + !(it == cend())};
}
/**
* @brief Checks if the container contains an element with a given key.
* @param key Key value of an element to search for.
* @return True if there is such an element, false otherwise.
*/
[[nodiscard]] bool contains(const key_type &key) const {
return (find(key) != cend());
}
/**
* @brief Checks if the container contains an element with a key that
* compares _equivalent_ to a given value.
* @tparam Other Type of the key value of an element to search for.
* @param key Key value of an element to search for.
* @return True if there is such an element, false otherwise.
*/
template<typename Other>
[[nodiscard]] std::enable_if_t<is_transparent_v<hasher> && is_transparent_v<key_equal>, std::conditional_t<false, Other, bool>>
contains(const Other &key) const {
return (find(key) != cend());
}
/**
* @brief Returns an iterator to the beginning of a given bucket.
* @param index An index of a bucket to access.
* @return An iterator to the beginning of the given bucket.
*/
[[nodiscard]] const_local_iterator cbegin(const size_type index) const {
return {packed.first().begin(), sparse.first()[index]};
}
/**
* @brief Returns an iterator to the beginning of a given bucket.
* @param index An index of a bucket to access.
* @return An iterator to the beginning of the given bucket.
*/
[[nodiscard]] const_local_iterator begin(const size_type index) const {
return cbegin(index);
}
/**
* @brief Returns an iterator to the beginning of a given bucket.
* @param index An index of a bucket to access.
* @return An iterator to the beginning of the given bucket.
*/
[[nodiscard]] local_iterator begin(const size_type index) {
return {packed.first().begin(), sparse.first()[index]};
}
/**
* @brief Returns an iterator to the end of a given bucket.
* @param index An index of a bucket to access.
* @return An iterator to the end of the given bucket.
*/
[[nodiscard]] const_local_iterator cend([[maybe_unused]] const size_type index) const {
return {packed.first().begin(), (std::numeric_limits<size_type>::max)()};
}
/**
* @brief Returns an iterator to the end of a given bucket.
* @param index An index of a bucket to access.
* @return An iterator to the end of the given bucket.
*/
[[nodiscard]] const_local_iterator end(const size_type index) const {
return cend(index);
}
/**
* @brief Returns an iterator to the end of a given bucket.
* @param index An index of a bucket to access.
* @return An iterator to the end of the given bucket.
*/
[[nodiscard]] local_iterator end([[maybe_unused]] const size_type index) {
return {packed.first().begin(), (std::numeric_limits<size_type>::max)()};
}
/**
* @brief Returns the number of buckets.
* @return The number of buckets.
*/
[[nodiscard]] size_type bucket_count() const {
return sparse.first().size();
}
/**
* @brief Returns the maximum number of buckets.
* @return The maximum number of buckets.
*/
[[nodiscard]] size_type max_bucket_count() const {
return sparse.first().max_size();
}
/**
* @brief Returns the number of elements in a given bucket.
* @param index The index of the bucket to examine.
* @return The number of elements in the given bucket.
*/
[[nodiscard]] size_type bucket_size(const size_type index) const {
return static_cast<size_type>(std::distance(begin(index), end(index)));
}
/**
* @brief Returns the bucket for a given key.
* @param key The value of the key to examine.
* @return The bucket for the given key.
*/
[[nodiscard]] size_type bucket(const key_type &key) const {
return key_to_bucket(key);
}
/**
* @brief Returns the average number of elements per bucket.
* @return The average number of elements per bucket.
*/
[[nodiscard]] float load_factor() const {
return size() / static_cast<float>(bucket_count());
}
/**
* @brief Returns the maximum average number of elements per bucket.
* @return The maximum average number of elements per bucket.
*/
[[nodiscard]] float max_load_factor() const {
return threshold;
}
/**
* @brief Sets the desired maximum average number of elements per bucket.
* @param value A desired maximum average number of elements per bucket.
*/
void max_load_factor(const float value) {
ENTT_ASSERT(value > 0.f, "Invalid load factor");
threshold = value;
rehash(0u);
}
/**
* @brief Reserves at least the specified number of buckets and regenerates
* the hash table.
* @param cnt New number of buckets.
*/
void rehash(const size_type cnt) {
auto value = cnt > minimum_capacity ? cnt : minimum_capacity;
const auto cap = static_cast<size_type>(size() / max_load_factor());
value = value > cap ? value : cap;
if(const auto sz = next_power_of_two(value); sz != bucket_count()) {
sparse.first().resize(sz);
for(auto &&elem: sparse.first()) {
elem = std::numeric_limits<size_type>::max();
}
for(size_type pos{}, last = size(); pos < last; ++pos) {
const auto index = key_to_bucket(packed.first()[pos].element.first);
packed.first()[pos].next = std::exchange(sparse.first()[index], pos);
}
}
}
/**
* @brief Reserves space for at least the specified number of elements and
* regenerates the hash table.
* @param cnt New number of elements.
*/
void reserve(const size_type cnt) {
packed.first().reserve(cnt);
rehash(static_cast<size_type>(std::ceil(cnt / max_load_factor())));
}
/**
* @brief Returns the function used to hash the keys.
* @return The function used to hash the keys.
*/
[[nodiscard]] hasher hash_function() const {
return sparse.second();
}
/**
* @brief Returns the function used to compare keys for equality.
* @return The function used to compare keys for equality.
*/
[[nodiscard]] key_equal key_eq() const {
return packed.second();
}
private:
compressed_pair<sparse_container_type, hasher> sparse;
compressed_pair<packed_container_type, key_equal> packed;
float threshold;
};
} // namespace entt
/**
* @cond TURN_OFF_DOXYGEN
* Internal details not to be documented.
*/
namespace std {
template<typename Key, typename Value, typename Allocator>
struct uses_allocator<entt::internal::dense_map_node<Key, Value>, Allocator>
: std::true_type {};
} // namespace std
/**
* Internal details not to be documented.
* @endcond
*/
#endif
// #include "../container/dense_set.hpp"
#ifndef ENTT_CONTAINER_DENSE_SET_HPP
#define ENTT_CONTAINER_DENSE_SET_HPP
#include <cmath>
#include <cstddef>
#include <functional>
#include <iterator>
#include <limits>
#include <memory>
#include <tuple>
#include <type_traits>
#include <utility>
#include <vector>
// #include "../config/config.h"
// #include "../core/compressed_pair.hpp"
// #include "../core/memory.hpp"
// #include "../core/type_traits.hpp"
// #include "fwd.hpp"
namespace entt {
/**
* @cond TURN_OFF_DOXYGEN
* Internal details not to be documented.
*/
namespace internal {
template<typename It>
class dense_set_iterator final {
template<typename>
friend class dense_set_iterator;
public:
using value_type = typename It::value_type::second_type;
using pointer = const value_type *;
using reference = const value_type &;
using difference_type = std::ptrdiff_t;
using iterator_category = std::random_access_iterator_tag;
constexpr dense_set_iterator() noexcept
: it{} {}
constexpr dense_set_iterator(const It iter) noexcept
: it{iter} {}
template<typename Other, typename = std::enable_if_t<!std::is_same_v<It, Other> && std::is_constructible_v<It, Other>>>
constexpr dense_set_iterator(const dense_set_iterator<Other> &other) noexcept
: it{other.it} {}
constexpr dense_set_iterator &operator++() noexcept {
return ++it, *this;
}
constexpr dense_set_iterator operator++(int) noexcept {
dense_set_iterator orig = *this;
return ++(*this), orig;
}
constexpr dense_set_iterator &operator--() noexcept {
return --it, *this;
}
constexpr dense_set_iterator operator--(int) noexcept {
dense_set_iterator orig = *this;
return operator--(), orig;
}
constexpr dense_set_iterator &operator+=(const difference_type value) noexcept {
it += value;
return *this;
}
constexpr dense_set_iterator operator+(const difference_type value) const noexcept {
dense_set_iterator copy = *this;
return (copy += value);
}
constexpr dense_set_iterator &operator-=(const difference_type value) noexcept {
return (*this += -value);
}
constexpr dense_set_iterator operator-(const difference_type value) const noexcept {
return (*this + -value);
}
[[nodiscard]] constexpr reference operator[](const difference_type value) const noexcept {
return it[value].second;
}
[[nodiscard]] constexpr pointer operator->() const noexcept {
return std::addressof(it->second);
}
[[nodiscard]] constexpr reference operator*() const noexcept {
return *operator->();
}
template<typename ILhs, typename IRhs>
friend constexpr std::ptrdiff_t operator-(const dense_set_iterator<ILhs> &, const dense_set_iterator<IRhs> &) noexcept;
template<typename ILhs, typename IRhs>
friend constexpr bool operator==(const dense_set_iterator<ILhs> &, const dense_set_iterator<IRhs> &) noexcept;
template<typename ILhs, typename IRhs>
friend constexpr bool operator<(const dense_set_iterator<ILhs> &, const dense_set_iterator<IRhs> &) noexcept;
private:
It it;
};
template<typename ILhs, typename IRhs>
[[nodiscard]] constexpr std::ptrdiff_t operator-(const dense_set_iterator<ILhs> &lhs, const dense_set_iterator<IRhs> &rhs) noexcept {
return lhs.it - rhs.it;
}
template<typename ILhs, typename IRhs>
[[nodiscard]] constexpr bool operator==(const dense_set_iterator<ILhs> &lhs, const dense_set_iterator<IRhs> &rhs) noexcept {
return lhs.it == rhs.it;
}
template<typename ILhs, typename IRhs>
[[nodiscard]] constexpr bool operator!=(const dense_set_iterator<ILhs> &lhs, const dense_set_iterator<IRhs> &rhs) noexcept {
return !(lhs == rhs);
}
template<typename ILhs, typename IRhs>
[[nodiscard]] constexpr bool operator<(const dense_set_iterator<ILhs> &lhs, const dense_set_iterator<IRhs> &rhs) noexcept {
return lhs.it < rhs.it;
}
template<typename ILhs, typename IRhs>
[[nodiscard]] constexpr bool operator>(const dense_set_iterator<ILhs> &lhs, const dense_set_iterator<IRhs> &rhs) noexcept {
return rhs < lhs;
}
template<typename ILhs, typename IRhs>
[[nodiscard]] constexpr bool operator<=(const dense_set_iterator<ILhs> &lhs, const dense_set_iterator<IRhs> &rhs) noexcept {
return !(lhs > rhs);
}
template<typename ILhs, typename IRhs>
[[nodiscard]] constexpr bool operator>=(const dense_set_iterator<ILhs> &lhs, const dense_set_iterator<IRhs> &rhs) noexcept {
return !(lhs < rhs);
}
template<typename It>
class dense_set_local_iterator final {
template<typename>
friend class dense_set_local_iterator;
public:
using value_type = typename It::value_type::second_type;
using pointer = const value_type *;
using reference = const value_type &;
using difference_type = std::ptrdiff_t;
using iterator_category = std::forward_iterator_tag;
constexpr dense_set_local_iterator() noexcept
: it{},
offset{} {}
constexpr dense_set_local_iterator(It iter, const std::size_t pos) noexcept
: it{iter},
offset{pos} {}
template<typename Other, typename = std::enable_if_t<!std::is_same_v<It, Other> && std::is_constructible_v<It, Other>>>
constexpr dense_set_local_iterator(const dense_set_local_iterator<Other> &other) noexcept
: it{other.it},
offset{other.offset} {}
constexpr dense_set_local_iterator &operator++() noexcept {
return offset = it[offset].first, *this;
}
constexpr dense_set_local_iterator operator++(int) noexcept {
dense_set_local_iterator orig = *this;
return ++(*this), orig;
}
[[nodiscard]] constexpr pointer operator->() const noexcept {
return std::addressof(it[offset].second);
}
[[nodiscard]] constexpr reference operator*() const noexcept {
return *operator->();
}
[[nodiscard]] constexpr std::size_t index() const noexcept {
return offset;
}
private:
It it;
std::size_t offset;
};
template<typename ILhs, typename IRhs>
[[nodiscard]] constexpr bool operator==(const dense_set_local_iterator<ILhs> &lhs, const dense_set_local_iterator<IRhs> &rhs) noexcept {
return lhs.index() == rhs.index();
}
template<typename ILhs, typename IRhs>
[[nodiscard]] constexpr bool operator!=(const dense_set_local_iterator<ILhs> &lhs, const dense_set_local_iterator<IRhs> &rhs) noexcept {
return !(lhs == rhs);
}
} // namespace internal
/**
* Internal details not to be documented.
* @endcond
*/
/**
* @brief Associative container for unique objects of a given type.
*
* Internally, elements are organized into buckets. Which bucket an element is
* placed into depends entirely on its hash. Elements with the same hash code
* appear in the same bucket.
*
* @tparam Type Value type of the associative container.
* @tparam Hash Type of function to use to hash the values.
* @tparam KeyEqual Type of function to use to compare the values for equality.
* @tparam Allocator Type of allocator used to manage memory and elements.
*/
template<typename Type, typename Hash, typename KeyEqual, typename Allocator>
class dense_set {
static constexpr float default_threshold = 0.875f;
static constexpr std::size_t minimum_capacity = 8u;
using node_type = std::pair<std::size_t, Type>;
using alloc_traits = std::allocator_traits<Allocator>;
static_assert(std::is_same_v<typename alloc_traits::value_type, Type>, "Invalid value type");
using sparse_container_type = std::vector<std::size_t, typename alloc_traits::template rebind_alloc<std::size_t>>;
using packed_container_type = std::vector<node_type, typename alloc_traits::template rebind_alloc<node_type>>;
template<typename Other>
[[nodiscard]] std::size_t value_to_bucket(const Other &value) const noexcept {
return fast_mod(static_cast<size_type>(sparse.second()(value)), bucket_count());
}
template<typename Other>
[[nodiscard]] auto constrained_find(const Other &value, std::size_t bucket) {
for(auto it = begin(bucket), last = end(bucket); it != last; ++it) {
if(packed.second()(*it, value)) {
return begin() + static_cast<typename iterator::difference_type>(it.index());
}
}
return end();
}
template<typename Other>
[[nodiscard]] auto constrained_find(const Other &value, std::size_t bucket) const {
for(auto it = cbegin(bucket), last = cend(bucket); it != last; ++it) {
if(packed.second()(*it, value)) {
return cbegin() + static_cast<typename iterator::difference_type>(it.index());
}
}
return cend();
}
template<typename Other>
[[nodiscard]] auto insert_or_do_nothing(Other &&value) {
const auto index = value_to_bucket(value);
if(auto it = constrained_find(value, index); it != end()) {
return std::make_pair(it, false);
}
packed.first().emplace_back(sparse.first()[index], std::forward<Other>(value));
sparse.first()[index] = packed.first().size() - 1u;
rehash_if_required();
return std::make_pair(--end(), true);
}
void move_and_pop(const std::size_t pos) {
if(const auto last = size() - 1u; pos != last) {
size_type *curr = sparse.first().data() + value_to_bucket(packed.first().back().second);
packed.first()[pos] = std::move(packed.first().back());
for(; *curr != last; curr = &packed.first()[*curr].first) {}
*curr = pos;
}
packed.first().pop_back();
}
void rehash_if_required() {
if(size() > (bucket_count() * max_load_factor())) {
rehash(bucket_count() * 2u);
}
}
public:
/*! @brief Key type of the container. */
using key_type = Type;
/*! @brief Value type of the container. */
using value_type = Type;
/*! @brief Unsigned integer type. */
using size_type = std::size_t;
/*! @brief Type of function to use to hash the elements. */
using hasher = Hash;
/*! @brief Type of function to use to compare the elements for equality. */
using key_equal = KeyEqual;
/*! @brief Allocator type. */
using allocator_type = Allocator;
/*! @brief Random access iterator type. */
using iterator = internal::dense_set_iterator<typename packed_container_type::iterator>;
/*! @brief Constant random access iterator type. */
using const_iterator = internal::dense_set_iterator<typename packed_container_type::const_iterator>;
/*! @brief Forward iterator type. */
using local_iterator = internal::dense_set_local_iterator<typename packed_container_type::iterator>;
/*! @brief Constant forward iterator type. */
using const_local_iterator = internal::dense_set_local_iterator<typename packed_container_type::const_iterator>;
/*! @brief Default constructor. */
dense_set()
: dense_set{minimum_capacity} {}
/**
* @brief Constructs an empty container with a given allocator.
* @param allocator The allocator to use.
*/
explicit dense_set(const allocator_type &allocator)
: dense_set{minimum_capacity, hasher{}, key_equal{}, allocator} {}
/**
* @brief Constructs an empty container with a given allocator and user
* supplied minimal number of buckets.
* @param cnt Minimal number of buckets.
* @param allocator The allocator to use.
*/
dense_set(const size_type cnt, const allocator_type &allocator)
: dense_set{cnt, hasher{}, key_equal{}, allocator} {}
/**
* @brief Constructs an empty container with a given allocator, hash
* function and user supplied minimal number of buckets.
* @param cnt Minimal number of buckets.
* @param hash Hash function to use.
* @param allocator The allocator to use.
*/
dense_set(const size_type cnt, const hasher &hash, const allocator_type &allocator)
: dense_set{cnt, hash, key_equal{}, allocator} {}
/**
* @brief Constructs an empty container with a given allocator, hash
* function, compare function and user supplied minimal number of buckets.
* @param cnt Minimal number of buckets.
* @param hash Hash function to use.
* @param equal Compare function to use.
* @param allocator The allocator to use.
*/
explicit dense_set(const size_type cnt, const hasher &hash = hasher{}, const key_equal &equal = key_equal{}, const allocator_type &allocator = allocator_type{})
: sparse{allocator, hash},
packed{allocator, equal},
threshold{default_threshold} {
rehash(cnt);
}
/*! @brief Default copy constructor. */
dense_set(const dense_set &) = default;
/**
* @brief Allocator-extended copy constructor.
* @param other The instance to copy from.
* @param allocator The allocator to use.
*/
dense_set(const dense_set &other, const allocator_type &allocator)
: sparse{std::piecewise_construct, std::forward_as_tuple(other.sparse.first(), allocator), std::forward_as_tuple(other.sparse.second())},
packed{std::piecewise_construct, std::forward_as_tuple(other.packed.first(), allocator), std::forward_as_tuple(other.packed.second())},
threshold{other.threshold} {}
/*! @brief Default move constructor. */
dense_set(dense_set &&) noexcept(std::is_nothrow_move_constructible_v<compressed_pair<sparse_container_type, hasher>> &&std::is_nothrow_move_constructible_v<compressed_pair<packed_container_type, key_equal>>) = default;
/**
* @brief Allocator-extended move constructor.
* @param other The instance to move from.
* @param allocator The allocator to use.
*/
dense_set(dense_set &&other, const allocator_type &allocator)
: sparse{std::piecewise_construct, std::forward_as_tuple(std::move(other.sparse.first()), allocator), std::forward_as_tuple(std::move(other.sparse.second()))},
packed{std::piecewise_construct, std::forward_as_tuple(std::move(other.packed.first()), allocator), std::forward_as_tuple(std::move(other.packed.second()))},
threshold{other.threshold} {}
/**
* @brief Default copy assignment operator.
* @return This container.
*/
dense_set &operator=(const dense_set &) = default;
/**
* @brief Default move assignment operator.
* @return This container.
*/
dense_set &operator=(dense_set &&) noexcept(std::is_nothrow_move_assignable_v<compressed_pair<sparse_container_type, hasher>> &&std::is_nothrow_move_assignable_v<compressed_pair<packed_container_type, key_equal>>) = default;
/**
* @brief Returns the associated allocator.
* @return The associated allocator.
*/
[[nodiscard]] constexpr allocator_type get_allocator() const noexcept {
return sparse.first().get_allocator();
}
/**
* @brief Returns an iterator to the beginning.
*
* The returned iterator points to the first instance of the internal array.
* If the array is empty, the returned iterator will be equal to `end()`.
*
* @return An iterator to the first instance of the internal array.
*/
[[nodiscard]] const_iterator cbegin() const noexcept {
return packed.first().begin();
}
/*! @copydoc cbegin */
[[nodiscard]] const_iterator begin() const noexcept {
return cbegin();
}
/*! @copydoc begin */
[[nodiscard]] iterator begin() noexcept {
return packed.first().begin();
}
/**
* @brief Returns an iterator to the end.
*
* The returned iterator points to the element following the last instance
* of the internal array. Attempting to dereference the returned iterator
* results in undefined behavior.
*
* @return An iterator to the element following the last instance of the
* internal array.
*/
[[nodiscard]] const_iterator cend() const noexcept {
return packed.first().end();
}
/*! @copydoc cend */
[[nodiscard]] const_iterator end() const noexcept {
return cend();
}
/*! @copydoc end */
[[nodiscard]] iterator end() noexcept {
return packed.first().end();
}
/**
* @brief Checks whether a container is empty.
* @return True if the container is empty, false otherwise.
*/
[[nodiscard]] bool empty() const noexcept {
return packed.first().empty();
}
/**
* @brief Returns the number of elements in a container.
* @return Number of elements in a container.
*/
[[nodiscard]] size_type size() const noexcept {
return packed.first().size();
}
/**
* @brief Returns the maximum possible number of elements.
* @return Maximum possible number of elements.
*/
[[nodiscard]] size_type max_size() const noexcept {
return packed.first().max_size();
}
/*! @brief Clears the container. */
void clear() noexcept {
sparse.first().clear();
packed.first().clear();
rehash(0u);
}
/**
* @brief Inserts an element into the container, if it does not exist.
* @param value An element to insert into the container.
* @return A pair consisting of an iterator to the inserted element (or to
* the element that prevented the insertion) and a bool denoting whether the
* insertion took place.
*/
std::pair<iterator, bool> insert(const value_type &value) {
return insert_or_do_nothing(value);
}
/*! @copydoc insert */
std::pair<iterator, bool> insert(value_type &&value) {
return insert_or_do_nothing(std::move(value));
}
/**
* @brief Inserts elements into the container, if they do not exist.
* @tparam It Type of input iterator.
* @param first An iterator to the first element of the range of elements.
* @param last An iterator past the last element of the range of elements.
*/
template<typename It>
void insert(It first, It last) {
for(; first != last; ++first) {
insert(*first);
}
}
/**
* @brief Constructs an element in-place, if it does not exist.
*
* The element is also constructed when the container already has the key,
* in which case the newly constructed object is destroyed immediately.
*
* @tparam Args Types of arguments to forward to the constructor of the
* element.
* @param args Arguments to forward to the constructor of the element.
* @return A pair consisting of an iterator to the inserted element (or to
* the element that prevented the insertion) and a bool denoting whether the
* insertion took place.
*/
template<typename... Args>
std::pair<iterator, bool> emplace(Args &&...args) {
if constexpr(((sizeof...(Args) == 1u) && ... && std::is_same_v<std::decay_t<Args>, value_type>)) {
return insert_or_do_nothing(std::forward<Args>(args)...);
} else {
auto &node = packed.first().emplace_back(std::piecewise_construct, std::make_tuple(packed.first().size()), std::forward_as_tuple(std::forward<Args>(args)...));
const auto index = value_to_bucket(node.second);
if(auto it = constrained_find(node.second, index); it != end()) {
packed.first().pop_back();
return std::make_pair(it, false);
}
std::swap(node.first, sparse.first()[index]);
rehash_if_required();
return std::make_pair(--end(), true);
}
}
/**
* @brief Removes an element from a given position.
* @param pos An iterator to the element to remove.
* @return An iterator following the removed element.
*/
iterator erase(const_iterator pos) {
const auto diff = pos - cbegin();
erase(*pos);
return begin() + diff;
}
/**
* @brief Removes the given elements from a container.
* @param first An iterator to the first element of the range of elements.
* @param last An iterator past the last element of the range of elements.
* @return An iterator following the last removed element.
*/
iterator erase(const_iterator first, const_iterator last) {
const auto dist = first - cbegin();
for(auto from = last - cbegin(); from != dist; --from) {
erase(packed.first()[from - 1u].second);
}
return (begin() + dist);
}
/**
* @brief Removes the element associated with a given value.
* @param value Value of an element to remove.
* @return Number of elements removed (either 0 or 1).
*/
size_type erase(const value_type &value) {
for(size_type *curr = sparse.first().data() + value_to_bucket(value); *curr != (std::numeric_limits<size_type>::max)(); curr = &packed.first()[*curr].first) {
if(packed.second()(packed.first()[*curr].second, value)) {
const auto index = *curr;
*curr = packed.first()[*curr].first;
move_and_pop(index);
return 1u;
}
}
return 0u;
}
/**
* @brief Exchanges the contents with those of a given container.
* @param other Container to exchange the content with.
*/
void swap(dense_set &other) {
using std::swap;
swap(sparse, other.sparse);
swap(packed, other.packed);
swap(threshold, other.threshold);
}
/**
* @brief Returns the number of elements matching a value (either 1 or 0).
* @param key Key value of an element to search for.
* @return Number of elements matching the key (either 1 or 0).
*/
[[nodiscard]] size_type count(const value_type &key) const {
return find(key) != end();
}
/**
* @brief Returns the number of elements matching a key (either 1 or 0).
* @tparam Other Type of the key value of an element to search for.
* @param key Key value of an element to search for.
* @return Number of elements matching the key (either 1 or 0).
*/
template<typename Other>
[[nodiscard]] std::enable_if_t<is_transparent_v<hasher> && is_transparent_v<key_equal>, std::conditional_t<false, Other, size_type>>
count(const Other &key) const {
return find(key) != end();
}
/**
* @brief Finds an element with a given value.
* @param value Value of an element to search for.
* @return An iterator to an element with the given value. If no such
* element is found, a past-the-end iterator is returned.
*/
[[nodiscard]] iterator find(const value_type &value) {
return constrained_find(value, value_to_bucket(value));
}
/*! @copydoc find */
[[nodiscard]] const_iterator find(const value_type &value) const {
return constrained_find(value, value_to_bucket(value));
}
/**
* @brief Finds an element that compares _equivalent_ to a given value.
* @tparam Other Type of an element to search for.
* @param value Value of an element to search for.
* @return An iterator to an element with the given value. If no such
* element is found, a past-the-end iterator is returned.
*/
template<typename Other>
[[nodiscard]] std::enable_if_t<is_transparent_v<hasher> && is_transparent_v<key_equal>, std::conditional_t<false, Other, iterator>>
find(const Other &value) {
return constrained_find(value, value_to_bucket(value));
}
/*! @copydoc find */
template<typename Other>
[[nodiscard]] std::enable_if_t<is_transparent_v<hasher> && is_transparent_v<key_equal>, std::conditional_t<false, Other, const_iterator>>
find(const Other &value) const {
return constrained_find(value, value_to_bucket(value));
}
/**
* @brief Returns a range containing all elements with a given value.
* @param value Value of an element to search for.
* @return A pair of iterators pointing to the first element and past the
* last element of the range.
*/
[[nodiscard]] std::pair<iterator, iterator> equal_range(const value_type &value) {
const auto it = find(value);
return {it, it + !(it == end())};
}
/*! @copydoc equal_range */
[[nodiscard]] std::pair<const_iterator, const_iterator> equal_range(const value_type &value) const {
const auto it = find(value);
return {it, it + !(it == cend())};
}
/**
* @brief Returns a range containing all elements that compare _equivalent_
* to a given value.
* @tparam Other Type of an element to search for.
* @param value Value of an element to search for.
* @return A pair of iterators pointing to the first element and past the
* last element of the range.
*/
template<typename Other>
[[nodiscard]] std::enable_if_t<is_transparent_v<hasher> && is_transparent_v<key_equal>, std::conditional_t<false, Other, std::pair<iterator, iterator>>>
equal_range(const Other &value) {
const auto it = find(value);
return {it, it + !(it == end())};
}
/*! @copydoc equal_range */
template<class Other>
[[nodiscard]] std::enable_if_t<is_transparent_v<hasher> && is_transparent_v<key_equal>, std::conditional_t<false, Other, std::pair<const_iterator, const_iterator>>>
equal_range(const Other &value) const {
const auto it = find(value);
return {it, it + !(it == cend())};
}
/**
* @brief Checks if the container contains an element with a given value.
* @param value Value of an element to search for.
* @return True if there is such an element, false otherwise.
*/
[[nodiscard]] bool contains(const value_type &value) const {
return (find(value) != cend());
}
/**
* @brief Checks if the container contains an element that compares
* _equivalent_ to a given value.
* @tparam Other Type of an element to search for.
* @param value Value of an element to search for.
* @return True if there is such an element, false otherwise.
*/
template<typename Other>
[[nodiscard]] std::enable_if_t<is_transparent_v<hasher> && is_transparent_v<key_equal>, std::conditional_t<false, Other, bool>>
contains(const Other &value) const {
return (find(value) != cend());
}
/**
* @brief Returns an iterator to the beginning of a given bucket.
* @param index An index of a bucket to access.
* @return An iterator to the beginning of the given bucket.
*/
[[nodiscard]] const_local_iterator cbegin(const size_type index) const {
return {packed.first().begin(), sparse.first()[index]};
}
/**
* @brief Returns an iterator to the beginning of a given bucket.
* @param index An index of a bucket to access.
* @return An iterator to the beginning of the given bucket.
*/
[[nodiscard]] const_local_iterator begin(const size_type index) const {
return cbegin(index);
}
/**
* @brief Returns an iterator to the beginning of a given bucket.
* @param index An index of a bucket to access.
* @return An iterator to the beginning of the given bucket.
*/
[[nodiscard]] local_iterator begin(const size_type index) {
return {packed.first().begin(), sparse.first()[index]};
}
/**
* @brief Returns an iterator to the end of a given bucket.
* @param index An index of a bucket to access.
* @return An iterator to the end of the given bucket.
*/
[[nodiscard]] const_local_iterator cend([[maybe_unused]] const size_type index) const {
return {packed.first().begin(), (std::numeric_limits<size_type>::max)()};
}
/**
* @brief Returns an iterator to the end of a given bucket.
* @param index An index of a bucket to access.
* @return An iterator to the end of the given bucket.
*/
[[nodiscard]] const_local_iterator end(const size_type index) const {
return cend(index);
}
/**
* @brief Returns an iterator to the end of a given bucket.
* @param index An index of a bucket to access.
* @return An iterator to the end of the given bucket.
*/
[[nodiscard]] local_iterator end([[maybe_unused]] const size_type index) {
return {packed.first().begin(), (std::numeric_limits<size_type>::max)()};
}
/**
* @brief Returns the number of buckets.
* @return The number of buckets.
*/
[[nodiscard]] size_type bucket_count() const {
return sparse.first().size();
}
/**
* @brief Returns the maximum number of buckets.
* @return The maximum number of buckets.
*/
[[nodiscard]] size_type max_bucket_count() const {
return sparse.first().max_size();
}
/**
* @brief Returns the number of elements in a given bucket.
* @param index The index of the bucket to examine.
* @return The number of elements in the given bucket.
*/
[[nodiscard]] size_type bucket_size(const size_type index) const {
return static_cast<size_type>(std::distance(begin(index), end(index)));
}
/**
* @brief Returns the bucket for a given element.
* @param value The value of the element to examine.
* @return The bucket for the given element.
*/
[[nodiscard]] size_type bucket(const value_type &value) const {
return value_to_bucket(value);
}
/**
* @brief Returns the average number of elements per bucket.
* @return The average number of elements per bucket.
*/
[[nodiscard]] float load_factor() const {
return size() / static_cast<float>(bucket_count());
}
/**
* @brief Returns the maximum average number of elements per bucket.
* @return The maximum average number of elements per bucket.
*/
[[nodiscard]] float max_load_factor() const {
return threshold;
}
/**
* @brief Sets the desired maximum average number of elements per bucket.
* @param value A desired maximum average number of elements per bucket.
*/
void max_load_factor(const float value) {
ENTT_ASSERT(value > 0.f, "Invalid load factor");
threshold = value;
rehash(0u);
}
/**
* @brief Reserves at least the specified number of buckets and regenerates
* the hash table.
* @param cnt New number of buckets.
*/
void rehash(const size_type cnt) {
auto value = cnt > minimum_capacity ? cnt : minimum_capacity;
const auto cap = static_cast<size_type>(size() / max_load_factor());
value = value > cap ? value : cap;
if(const auto sz = next_power_of_two(value); sz != bucket_count()) {
sparse.first().resize(sz);
for(auto &&elem: sparse.first()) {
elem = std::numeric_limits<size_type>::max();
}
for(size_type pos{}, last = size(); pos < last; ++pos) {
const auto index = value_to_bucket(packed.first()[pos].second);
packed.first()[pos].first = std::exchange(sparse.first()[index], pos);
}
}
}
/**
* @brief Reserves space for at least the specified number of elements and
* regenerates the hash table.
* @param cnt New number of elements.
*/
void reserve(const size_type cnt) {
packed.first().reserve(cnt);
rehash(static_cast<size_type>(std::ceil(cnt / max_load_factor())));
}
/**
* @brief Returns the function used to hash the elements.
* @return The function used to hash the elements.
*/
[[nodiscard]] hasher hash_function() const {
return sparse.second();
}
/**
* @brief Returns the function used to compare elements for equality.
* @return The function used to compare elements for equality.
*/
[[nodiscard]] key_equal key_eq() const {
return packed.second();
}
private:
compressed_pair<sparse_container_type, hasher> sparse;
compressed_pair<packed_container_type, key_equal> packed;
float threshold;
};
} // namespace entt
#endif
// #include "../core/compressed_pair.hpp"
#ifndef ENTT_CORE_COMPRESSED_PAIR_HPP
#define ENTT_CORE_COMPRESSED_PAIR_HPP
#include <cstddef>
#include <tuple>
#include <type_traits>
#include <utility>
// #include "type_traits.hpp"
#ifndef ENTT_CORE_TYPE_TRAITS_HPP
#define ENTT_CORE_TYPE_TRAITS_HPP
#include <cstddef>
#include <iterator>
#include <type_traits>
#include <utility>
// #include "../config/config.h"
// #include "fwd.hpp"
#ifndef ENTT_CORE_FWD_HPP
#define ENTT_CORE_FWD_HPP
#include <cstddef>
// #include "../config/config.h"
namespace entt {
template<std::size_t Len = sizeof(double[2]), std::size_t = alignof(double[2])>
class basic_any;
/*! @brief Alias declaration for type identifiers. */
using id_type = ENTT_ID_TYPE;
/*! @brief Alias declaration for the most common use case. */
using any = basic_any<>;
} // namespace entt
#endif
namespace entt {
/**
* @brief Utility class to disambiguate overloaded functions.
* @tparam N Number of choices available.
*/
template<std::size_t N>
struct choice_t
// Unfortunately, doxygen cannot parse such a construct.
: /*! @cond TURN_OFF_DOXYGEN */ choice_t<N - 1> /*! @endcond */
{};
/*! @copybrief choice_t */
template<>
struct choice_t<0> {};
/**
* @brief Variable template for the choice trick.
* @tparam N Number of choices available.
*/
template<std::size_t N>
inline constexpr choice_t<N> choice{};
/**
* @brief Identity type trait.
*
* Useful to establish non-deduced contexts in template argument deduction
* (waiting for C++20) or to provide types through function arguments.
*
* @tparam Type A type.
*/
template<typename Type>
struct type_identity {
/*! @brief Identity type. */
using type = Type;
};
/**
* @brief Helper type.
* @tparam Type A type.
*/
template<typename Type>
using type_identity_t = typename type_identity<Type>::type;
/**
* @brief A type-only `sizeof` wrapper that returns 0 where `sizeof` complains.
* @tparam Type The type of which to return the size.
* @tparam The size of the type if `sizeof` accepts it, 0 otherwise.
*/
template<typename Type, typename = void>
struct size_of: std::integral_constant<std::size_t, 0u> {};
/*! @copydoc size_of */
template<typename Type>
struct size_of<Type, std::void_t<decltype(sizeof(Type))>>
: std::integral_constant<std::size_t, sizeof(Type)> {};
/**
* @brief Helper variable template.
* @tparam Type The type of which to return the size.
*/
template<typename Type>
inline constexpr std::size_t size_of_v = size_of<Type>::value;
/**
* @brief Using declaration to be used to _repeat_ the same type a number of
* times equal to the size of a given parameter pack.
* @tparam Type A type to repeat.
*/
template<typename Type, typename>
using unpack_as_type = Type;
/**
* @brief Helper variable template to be used to _repeat_ the same value a
* number of times equal to the size of a given parameter pack.
* @tparam Value A value to repeat.
*/
template<auto Value, typename>
inline constexpr auto unpack_as_value = Value;
/**
* @brief Wraps a static constant.
* @tparam Value A static constant.
*/
template<auto Value>
using integral_constant = std::integral_constant<decltype(Value), Value>;
/**
* @brief Alias template to facilitate the creation of named values.
* @tparam Value A constant value at least convertible to `id_type`.
*/
template<id_type Value>
using tag = integral_constant<Value>;
/**
* @brief A class to use to push around lists of types, nothing more.
* @tparam Type Types provided by the type list.
*/
template<typename... Type>
struct type_list {
/*! @brief Type list type. */
using type = type_list;
/*! @brief Compile-time number of elements in the type list. */
static constexpr auto size = sizeof...(Type);
};
/*! @brief Primary template isn't defined on purpose. */
template<std::size_t, typename>
struct type_list_element;
/**
* @brief Provides compile-time indexed access to the types of a type list.
* @tparam Index Index of the type to return.
* @tparam First First type provided by the type list.
* @tparam Other Other types provided by the type list.
*/
template<std::size_t Index, typename First, typename... Other>
struct type_list_element<Index, type_list<First, Other...>>
: type_list_element<Index - 1u, type_list<Other...>> {};
/**
* @brief Provides compile-time indexed access to the types of a type list.
* @tparam First First type provided by the type list.
* @tparam Other Other types provided by the type list.
*/
template<typename First, typename... Other>
struct type_list_element<0u, type_list<First, Other...>> {
/*! @brief Searched type. */
using type = First;
};
/**
* @brief Helper type.
* @tparam Index Index of the type to return.
* @tparam List Type list to search into.
*/
template<std::size_t Index, typename List>
using type_list_element_t = typename type_list_element<Index, List>::type;
/*! @brief Primary template isn't defined on purpose. */
template<typename, typename>
struct type_list_index;
/**
* @brief Provides compile-time type access to the types of a type list.
* @tparam Type Type to look for and for which to return the index.
* @tparam First First type provided by the type list.
* @tparam Other Other types provided by the type list.
*/
template<typename Type, typename First, typename... Other>
struct type_list_index<Type, type_list<First, Other...>> {
/*! @brief Unsigned integer type. */
using value_type = std::size_t;
/*! @brief Compile-time position of the given type in the sublist. */
static constexpr value_type value = 1u + type_list_index<Type, type_list<Other...>>::value;
};
/**
* @brief Provides compile-time type access to the types of a type list.
* @tparam Type Type to look for and for which to return the index.
* @tparam Other Other types provided by the type list.
*/
template<typename Type, typename... Other>
struct type_list_index<Type, type_list<Type, Other...>> {
static_assert(type_list_index<Type, type_list<Other...>>::value == sizeof...(Other), "Non-unique type");
/*! @brief Unsigned integer type. */
using value_type = std::size_t;
/*! @brief Compile-time position of the given type in the sublist. */
static constexpr value_type value = 0u;
};
/**
* @brief Provides compile-time type access to the types of a type list.
* @tparam Type Type to look for and for which to return the index.
*/
template<typename Type>
struct type_list_index<Type, type_list<>> {
/*! @brief Unsigned integer type. */
using value_type = std::size_t;
/*! @brief Compile-time position of the given type in the sublist. */
static constexpr value_type value = 0u;
};
/**
* @brief Helper variable template.
* @tparam List Type list.
* @tparam Type Type to look for and for which to return the index.
*/
template<typename Type, typename List>
inline constexpr std::size_t type_list_index_v = type_list_index<Type, List>::value;
/**
* @brief Concatenates multiple type lists.
* @tparam Type Types provided by the first type list.
* @tparam Other Types provided by the second type list.
* @return A type list composed by the types of both the type lists.
*/
template<typename... Type, typename... Other>
constexpr type_list<Type..., Other...> operator+(type_list<Type...>, type_list<Other...>) {
return {};
}
/*! @brief Primary template isn't defined on purpose. */
template<typename...>
struct type_list_cat;
/*! @brief Concatenates multiple type lists. */
template<>
struct type_list_cat<> {
/*! @brief A type list composed by the types of all the type lists. */
using type = type_list<>;
};
/**
* @brief Concatenates multiple type lists.
* @tparam Type Types provided by the first type list.
* @tparam Other Types provided by the second type list.
* @tparam List Other type lists, if any.
*/
template<typename... Type, typename... Other, typename... List>
struct type_list_cat<type_list<Type...>, type_list<Other...>, List...> {
/*! @brief A type list composed by the types of all the type lists. */
using type = typename type_list_cat<type_list<Type..., Other...>, List...>::type;
};
/**
* @brief Concatenates multiple type lists.
* @tparam Type Types provided by the type list.
*/
template<typename... Type>
struct type_list_cat<type_list<Type...>> {
/*! @brief A type list composed by the types of all the type lists. */
using type = type_list<Type...>;
};
/**
* @brief Helper type.
* @tparam List Type lists to concatenate.
*/
template<typename... List>
using type_list_cat_t = typename type_list_cat<List...>::type;
/*! @brief Primary template isn't defined on purpose. */
template<typename>
struct type_list_unique;
/**
* @brief Removes duplicates types from a type list.
* @tparam Type One of the types provided by the given type list.
* @tparam Other The other types provided by the given type list.
*/
template<typename Type, typename... Other>
struct type_list_unique<type_list<Type, Other...>> {
/*! @brief A type list without duplicate types. */
using type = std::conditional_t<
(std::is_same_v<Type, Other> || ...),
typename type_list_unique<type_list<Other...>>::type,
type_list_cat_t<type_list<Type>, typename type_list_unique<type_list<Other...>>::type>>;
};
/*! @brief Removes duplicates types from a type list. */
template<>
struct type_list_unique<type_list<>> {
/*! @brief A type list without duplicate types. */
using type = type_list<>;
};
/**
* @brief Helper type.
* @tparam Type A type list.
*/
template<typename Type>
using type_list_unique_t = typename type_list_unique<Type>::type;
/**
* @brief Provides the member constant `value` to true if a type list contains a
* given type, false otherwise.
* @tparam List Type list.
* @tparam Type Type to look for.
*/
template<typename List, typename Type>
struct type_list_contains;
/**
* @copybrief type_list_contains
* @tparam Type Types provided by the type list.
* @tparam Other Type to look for.
*/
template<typename... Type, typename Other>
struct type_list_contains<type_list<Type...>, Other>: std::disjunction<std::is_same<Type, Other>...> {};
/**
* @brief Helper variable template.
* @tparam List Type list.
* @tparam Type Type to look for.
*/
template<typename List, typename Type>
inline constexpr bool type_list_contains_v = type_list_contains<List, Type>::value;
/*! @brief Primary template isn't defined on purpose. */
template<typename...>
struct type_list_diff;
/**
* @brief Computes the difference between two type lists.
* @tparam Type Types provided by the first type list.
* @tparam Other Types provided by the second type list.
*/
template<typename... Type, typename... Other>
struct type_list_diff<type_list<Type...>, type_list<Other...>> {
/*! @brief A type list that is the difference between the two type lists. */
using type = type_list_cat_t<std::conditional_t<type_list_contains_v<type_list<Other...>, Type>, type_list<>, type_list<Type>>...>;
};
/**
* @brief Helper type.
* @tparam List Type lists between which to compute the difference.
*/
template<typename... List>
using type_list_diff_t = typename type_list_diff<List...>::type;
/*! @brief Primary template isn't defined on purpose. */
template<typename, template<typename...> class>
struct type_list_transform;
/**
* @brief Applies a given _function_ to a type list and generate a new list.
* @tparam Type Types provided by the type list.
* @tparam Op Unary operation as template class with a type member named `type`.
*/
template<typename... Type, template<typename...> class Op>
struct type_list_transform<type_list<Type...>, Op> {
/*! @brief Resulting type list after applying the transform function. */
using type = type_list<typename Op<Type>::type...>;
};
/**
* @brief Helper type.
* @tparam List Type list.
* @tparam Op Unary operation as template class with a type member named `type`.
*/
template<typename List, template<typename...> class Op>
using type_list_transform_t = typename type_list_transform<List, Op>::type;
/**
* @brief A class to use to push around lists of constant values, nothing more.
* @tparam Value Values provided by the value list.
*/
template<auto... Value>
struct value_list {
/*! @brief Value list type. */
using type = value_list;
/*! @brief Compile-time number of elements in the value list. */
static constexpr auto size = sizeof...(Value);
};
/*! @brief Primary template isn't defined on purpose. */
template<std::size_t, typename>
struct value_list_element;
/**
* @brief Provides compile-time indexed access to the values of a value list.
* @tparam Index Index of the value to return.
* @tparam Value First value provided by the value list.
* @tparam Other Other values provided by the value list.
*/
template<std::size_t Index, auto Value, auto... Other>
struct value_list_element<Index, value_list<Value, Other...>>
: value_list_element<Index - 1u, value_list<Other...>> {};
/**
* @brief Provides compile-time indexed access to the types of a type list.
* @tparam Value First value provided by the value list.
* @tparam Other Other values provided by the value list.
*/
template<auto Value, auto... Other>
struct value_list_element<0u, value_list<Value, Other...>> {
/*! @brief Searched value. */
static constexpr auto value = Value;
};
/**
* @brief Helper type.
* @tparam Index Index of the value to return.
* @tparam List Value list to search into.
*/
template<std::size_t Index, typename List>
inline constexpr auto value_list_element_v = value_list_element<Index, List>::value;
/**
* @brief Concatenates multiple value lists.
* @tparam Value Values provided by the first value list.
* @tparam Other Values provided by the second value list.
* @return A value list composed by the values of both the value lists.
*/
template<auto... Value, auto... Other>
constexpr value_list<Value..., Other...> operator+(value_list<Value...>, value_list<Other...>) {
return {};
}
/*! @brief Primary template isn't defined on purpose. */
template<typename...>
struct value_list_cat;
/*! @brief Concatenates multiple value lists. */
template<>
struct value_list_cat<> {
/*! @brief A value list composed by the values of all the value lists. */
using type = value_list<>;
};
/**
* @brief Concatenates multiple value lists.
* @tparam Value Values provided by the first value list.
* @tparam Other Values provided by the second value list.
* @tparam List Other value lists, if any.
*/
template<auto... Value, auto... Other, typename... List>
struct value_list_cat<value_list<Value...>, value_list<Other...>, List...> {
/*! @brief A value list composed by the values of all the value lists. */
using type = typename value_list_cat<value_list<Value..., Other...>, List...>::type;
};
/**
* @brief Concatenates multiple value lists.
* @tparam Value Values provided by the value list.
*/
template<auto... Value>
struct value_list_cat<value_list<Value...>> {
/*! @brief A value list composed by the values of all the value lists. */
using type = value_list<Value...>;
};
/**
* @brief Helper type.
* @tparam List Value lists to concatenate.
*/
template<typename... List>
using value_list_cat_t = typename value_list_cat<List...>::type;
/*! @brief Same as std::is_invocable, but with tuples. */
template<typename, typename>
struct is_applicable: std::false_type {};
/**
* @copybrief is_applicable
* @tparam Func A valid function type.
* @tparam Tuple Tuple-like type.
* @tparam Args The list of arguments to use to probe the function type.
*/
template<typename Func, template<typename...> class Tuple, typename... Args>
struct is_applicable<Func, Tuple<Args...>>: std::is_invocable<Func, Args...> {};
/**
* @copybrief is_applicable
* @tparam Func A valid function type.
* @tparam Tuple Tuple-like type.
* @tparam Args The list of arguments to use to probe the function type.
*/
template<typename Func, template<typename...> class Tuple, typename... Args>
struct is_applicable<Func, const Tuple<Args...>>: std::is_invocable<Func, Args...> {};
/**
* @brief Helper variable template.
* @tparam Func A valid function type.
* @tparam Args The list of arguments to use to probe the function type.
*/
template<typename Func, typename Args>
inline constexpr bool is_applicable_v = is_applicable<Func, Args>::value;
/*! @brief Same as std::is_invocable_r, but with tuples for arguments. */
template<typename, typename, typename>
struct is_applicable_r: std::false_type {};
/**
* @copybrief is_applicable_r
* @tparam Ret The type to which the return type of the function should be
* convertible.
* @tparam Func A valid function type.
* @tparam Args The list of arguments to use to probe the function type.
*/
template<typename Ret, typename Func, typename... Args>
struct is_applicable_r<Ret, Func, std::tuple<Args...>>: std::is_invocable_r<Ret, Func, Args...> {};
/**
* @brief Helper variable template.
* @tparam Ret The type to which the return type of the function should be
* convertible.
* @tparam Func A valid function type.
* @tparam Args The list of arguments to use to probe the function type.
*/
template<typename Ret, typename Func, typename Args>
inline constexpr bool is_applicable_r_v = is_applicable_r<Ret, Func, Args>::value;
/**
* @brief Provides the member constant `value` to true if a given type is
* complete, false otherwise.
* @tparam Type The type to test.
*/
template<typename Type, typename = void>
struct is_complete: std::false_type {};
/*! @copydoc is_complete */
template<typename Type>
struct is_complete<Type, std::void_t<decltype(sizeof(Type))>>: std::true_type {};
/**
* @brief Helper variable template.
* @tparam Type The type to test.
*/
template<typename Type>
inline constexpr bool is_complete_v = is_complete<Type>::value;
/**
* @brief Provides the member constant `value` to true if a given type is an
* iterator, false otherwise.
* @tparam Type The type to test.
*/
template<typename Type, typename = void>
struct is_iterator: std::false_type {};
/**
* @cond TURN_OFF_DOXYGEN
* Internal details not to be documented.
*/
namespace internal {
template<typename, typename = void>
struct has_iterator_category: std::false_type {};
template<typename Type>
struct has_iterator_category<Type, std::void_t<typename std::iterator_traits<Type>::iterator_category>>: std::true_type {};
} // namespace internal
/**
* Internal details not to be documented.
* @endcond
*/
/*! @copydoc is_iterator */
template<typename Type>
struct is_iterator<Type, std::enable_if_t<!std::is_same_v<std::remove_cv_t<std::remove_pointer_t<Type>>, void>>>
: internal::has_iterator_category<Type> {};
/**
* @brief Helper variable template.
* @tparam Type The type to test.
*/
template<typename Type>
inline constexpr bool is_iterator_v = is_iterator<Type>::value;
/**
* @brief Provides the member constant `value` to true if a given type is both
* an empty and non-final class, false otherwise.
* @tparam Type The type to test
*/
template<typename Type>
struct is_ebco_eligible
: std::conjunction<std::is_empty<Type>, std::negation<std::is_final<Type>>> {};
/**
* @brief Helper variable template.
* @tparam Type The type to test.
*/
template<typename Type>
inline constexpr bool is_ebco_eligible_v = is_ebco_eligible<Type>::value;
/**
* @brief Provides the member constant `value` to true if `Type::is_transparent`
* is valid and denotes a type, false otherwise.
* @tparam Type The type to test.
*/
template<typename Type, typename = void>
struct is_transparent: std::false_type {};
/*! @copydoc is_transparent */
template<typename Type>
struct is_transparent<Type, std::void_t<typename Type::is_transparent>>: std::true_type {};
/**
* @brief Helper variable template.
* @tparam Type The type to test.
*/
template<typename Type>
inline constexpr bool is_transparent_v = is_transparent<Type>::value;
/**
* @brief Provides the member constant `value` to true if a given type is
* equality comparable, false otherwise.
* @tparam Type The type to test.
*/
template<typename Type, typename = void>
struct is_equality_comparable: std::false_type {};
/**
* @cond TURN_OFF_DOXYGEN
* Internal details not to be documented.
*/
namespace internal {
template<typename, typename = void>
struct has_tuple_size_value: std::false_type {};
template<typename Type>
struct has_tuple_size_value<Type, std::void_t<decltype(std::tuple_size<const Type>::value)>>: std::true_type {};
template<typename Type, std::size_t... Index>
[[nodiscard]] constexpr bool unpack_maybe_equality_comparable(std::index_sequence<Index...>) {
return (is_equality_comparable<std::tuple_element_t<Index, Type>>::value && ...);
}
template<typename>
[[nodiscard]] constexpr bool maybe_equality_comparable(choice_t<0>) {
return true;
}
template<typename Type>
[[nodiscard]] constexpr auto maybe_equality_comparable(choice_t<1>) -> decltype(std::declval<typename Type::value_type>(), bool{}) {
if constexpr(is_iterator_v<Type>) {
return true;
} else if constexpr(std::is_same_v<typename Type::value_type, Type>) {
return maybe_equality_comparable<Type>(choice<0>);
} else {
return is_equality_comparable<typename Type::value_type>::value;
}
}
template<typename Type>
[[nodiscard]] constexpr std::enable_if_t<is_complete_v<std::tuple_size<std::remove_cv_t<Type>>>, bool> maybe_equality_comparable(choice_t<2>) {
if constexpr(has_tuple_size_value<Type>::value) {
return unpack_maybe_equality_comparable<Type>(std::make_index_sequence<std::tuple_size<Type>::value>{});
} else {
return maybe_equality_comparable<Type>(choice<1>);
}
}
} // namespace internal
/**
* Internal details not to be documented.
* @endcond
*/
/*! @copydoc is_equality_comparable */
template<typename Type>
struct is_equality_comparable<Type, std::void_t<decltype(std::declval<Type>() == std::declval<Type>())>>
: std::bool_constant<internal::maybe_equality_comparable<Type>(choice<2>)> {};
/**
* @brief Helper variable template.
* @tparam Type The type to test.
*/
template<typename Type>
inline constexpr bool is_equality_comparable_v = is_equality_comparable<Type>::value;
/**
* @brief Transcribes the constness of a type to another type.
* @tparam To The type to which to transcribe the constness.
* @tparam From The type from which to transcribe the constness.
*/
template<typename To, typename From>
struct constness_as {
/*! @brief The type resulting from the transcription of the constness. */
using type = std::remove_const_t<To>;
};
/*! @copydoc constness_as */
template<typename To, typename From>
struct constness_as<To, const From> {
/*! @brief The type resulting from the transcription of the constness. */
using type = const To;
};
/**
* @brief Alias template to facilitate the transcription of the constness.
* @tparam To The type to which to transcribe the constness.
* @tparam From The type from which to transcribe the constness.
*/
template<typename To, typename From>
using constness_as_t = typename constness_as<To, From>::type;
/**
* @brief Extracts the class of a non-static member object or function.
* @tparam Member A pointer to a non-static member object or function.
*/
template<typename Member>
class member_class {
static_assert(std::is_member_pointer_v<Member>, "Invalid pointer type to non-static member object or function");
template<typename Class, typename Ret, typename... Args>
static Class *clazz(Ret (Class::*)(Args...));
template<typename Class, typename Ret, typename... Args>
static Class *clazz(Ret (Class::*)(Args...) const);
template<typename Class, typename Type>
static Class *clazz(Type Class::*);
public:
/*! @brief The class of the given non-static member object or function. */
using type = std::remove_pointer_t<decltype(clazz(std::declval<Member>()))>;
};
/**
* @brief Helper type.
* @tparam Member A pointer to a non-static member object or function.
*/
template<typename Member>
using member_class_t = typename member_class<Member>::type;
/**
* @brief Extracts the n-th argument of a given function or member function.
* @tparam Index The index of the argument to extract.
* @tparam Candidate A valid function, member function or data member.
*/
template<std::size_t Index, auto Candidate>
class nth_argument {
template<typename Ret, typename... Args>
static constexpr type_list<Args...> pick_up(Ret (*)(Args...));
template<typename Ret, typename Class, typename... Args>
static constexpr type_list<Args...> pick_up(Ret (Class ::*)(Args...));
template<typename Ret, typename Class, typename... Args>
static constexpr type_list<Args...> pick_up(Ret (Class ::*)(Args...) const);
template<typename Type, typename Class>
static constexpr type_list<Type> pick_up(Type Class ::*);
public:
/*! @brief N-th argument of the given function or member function. */
using type = type_list_element_t<Index, decltype(pick_up(Candidate))>;
};
/**
* @brief Helper type.
* @tparam Index The index of the argument to extract.
* @tparam Candidate A valid function, member function or data member.
*/
template<std::size_t Index, auto Candidate>
using nth_argument_t = typename nth_argument<Index, Candidate>::type;
} // namespace entt
#endif
namespace entt {
/**
* @cond TURN_OFF_DOXYGEN
* Internal details not to be documented.
*/
namespace internal {
template<typename Type, std::size_t, typename = void>
struct compressed_pair_element {
using reference = Type &;
using const_reference = const Type &;
template<bool Dummy = true, typename = std::enable_if_t<Dummy && std::is_default_constructible_v<Type>>>
constexpr compressed_pair_element() noexcept(std::is_nothrow_default_constructible_v<Type>)
: value{} {}
template<typename Arg, typename = std::enable_if_t<!std::is_same_v<std::remove_cv_t<std::remove_reference_t<Arg>>, compressed_pair_element>>>
constexpr compressed_pair_element(Arg &&arg) noexcept(std::is_nothrow_constructible_v<Type, Arg>)
: value{std::forward<Arg>(arg)} {}
template<typename... Args, std::size_t... Index>
constexpr compressed_pair_element(std::tuple<Args...> args, std::index_sequence<Index...>) noexcept(std::is_nothrow_constructible_v<Type, Args...>)
: value{std::forward<Args>(std::get<Index>(args))...} {}
[[nodiscard]] constexpr reference get() noexcept {
return value;
}
[[nodiscard]] constexpr const_reference get() const noexcept {
return value;
}
private:
Type value;
};
template<typename Type, std::size_t Tag>
struct compressed_pair_element<Type, Tag, std::enable_if_t<is_ebco_eligible_v<Type>>>: Type {
using reference = Type &;
using const_reference = const Type &;
using base_type = Type;
template<bool Dummy = true, typename = std::enable_if_t<Dummy && std::is_default_constructible_v<base_type>>>
constexpr compressed_pair_element() noexcept(std::is_nothrow_default_constructible_v<base_type>)
: base_type{} {}
template<typename Arg, typename = std::enable_if_t<!std::is_same_v<std::remove_cv_t<std::remove_reference_t<Arg>>, compressed_pair_element>>>
constexpr compressed_pair_element(Arg &&arg) noexcept(std::is_nothrow_constructible_v<base_type, Arg>)
: base_type{std::forward<Arg>(arg)} {}
template<typename... Args, std::size_t... Index>
constexpr compressed_pair_element(std::tuple<Args...> args, std::index_sequence<Index...>) noexcept(std::is_nothrow_constructible_v<base_type, Args...>)
: base_type{std::forward<Args>(std::get<Index>(args))...} {}
[[nodiscard]] constexpr reference get() noexcept {
return *this;
}
[[nodiscard]] constexpr const_reference get() const noexcept {
return *this;
}
};
} // namespace internal
/**
* Internal details not to be documented.
* @endcond
*/
/**
* @brief A compressed pair.
*
* A pair that exploits the _Empty Base Class Optimization_ (or _EBCO_) to
* reduce its final size to a minimum.
*
* @tparam First The type of the first element that the pair stores.
* @tparam Second The type of the second element that the pair stores.
*/
template<typename First, typename Second>
class compressed_pair final
: internal::compressed_pair_element<First, 0u>,
internal::compressed_pair_element<Second, 1u> {
using first_base = internal::compressed_pair_element<First, 0u>;
using second_base = internal::compressed_pair_element<Second, 1u>;
public:
/*! @brief The type of the first element that the pair stores. */
using first_type = First;
/*! @brief The type of the second element that the pair stores. */
using second_type = Second;
/**
* @brief Default constructor, conditionally enabled.
*
* This constructor is only available when the types that the pair stores
* are both at least default constructible.
*
* @tparam Dummy Dummy template parameter used for internal purposes.
*/
template<bool Dummy = true, typename = std::enable_if_t<Dummy && std::is_default_constructible_v<first_type> && std::is_default_constructible_v<second_type>>>
constexpr compressed_pair() noexcept(std::is_nothrow_default_constructible_v<first_base> &&std::is_nothrow_default_constructible_v<second_base>)
: first_base{},
second_base{} {}
/**
* @brief Copy constructor.
* @param other The instance to copy from.
*/
constexpr compressed_pair(const compressed_pair &other) noexcept(std::is_nothrow_copy_constructible_v<first_base> &&std::is_nothrow_copy_constructible_v<second_base>) = default;
/**
* @brief Move constructor.
* @param other The instance to move from.
*/
constexpr compressed_pair(compressed_pair &&other) noexcept(std::is_nothrow_move_constructible_v<first_base> &&std::is_nothrow_move_constructible_v<second_base>) = default;
/**
* @brief Constructs a pair from its values.
* @tparam Arg Type of value to use to initialize the first element.
* @tparam Other Type of value to use to initialize the second element.
* @param arg Value to use to initialize the first element.
* @param other Value to use to initialize the second element.
*/
template<typename Arg, typename Other>
constexpr compressed_pair(Arg &&arg, Other &&other) noexcept(std::is_nothrow_constructible_v<first_base, Arg> &&std::is_nothrow_constructible_v<second_base, Other>)
: first_base{std::forward<Arg>(arg)},
second_base{std::forward<Other>(other)} {}
/**
* @brief Constructs a pair by forwarding the arguments to its parts.
* @tparam Args Types of arguments to use to initialize the first element.
* @tparam Other Types of arguments to use to initialize the second element.
* @param args Arguments to use to initialize the first element.
* @param other Arguments to use to initialize the second element.
*/
template<typename... Args, typename... Other>
constexpr compressed_pair(std::piecewise_construct_t, std::tuple<Args...> args, std::tuple<Other...> other) noexcept(std::is_nothrow_constructible_v<first_base, Args...> &&std::is_nothrow_constructible_v<second_base, Other...>)
: first_base{std::move(args), std::index_sequence_for<Args...>{}},
second_base{std::move(other), std::index_sequence_for<Other...>{}} {}
/**
* @brief Copy assignment operator.
* @param other The instance to copy from.
* @return This compressed pair object.
*/
constexpr compressed_pair &operator=(const compressed_pair &other) noexcept(std::is_nothrow_copy_assignable_v<first_base> &&std::is_nothrow_copy_assignable_v<second_base>) = default;
/**
* @brief Move assignment operator.
* @param other The instance to move from.
* @return This compressed pair object.
*/
constexpr compressed_pair &operator=(compressed_pair &&other) noexcept(std::is_nothrow_move_assignable_v<first_base> &&std::is_nothrow_move_assignable_v<second_base>) = default;
/**
* @brief Returns the first element that a pair stores.
* @return The first element that a pair stores.
*/
[[nodiscard]] constexpr first_type &first() noexcept {
return static_cast<first_base &>(*this).get();
}
/*! @copydoc first */
[[nodiscard]] constexpr const first_type &first() const noexcept {
return static_cast<const first_base &>(*this).get();
}
/**
* @brief Returns the second element that a pair stores.
* @return The second element that a pair stores.
*/
[[nodiscard]] constexpr second_type &second() noexcept {
return static_cast<second_base &>(*this).get();
}
/*! @copydoc second */
[[nodiscard]] constexpr const second_type &second() const noexcept {
return static_cast<const second_base &>(*this).get();
}
/**
* @brief Swaps two compressed pair objects.
* @param other The compressed pair to swap with.
*/
constexpr void swap(compressed_pair &other) noexcept(std::is_nothrow_swappable_v<first_type> &&std::is_nothrow_swappable_v<second_type>) {
using std::swap;
swap(first(), other.first());
swap(second(), other.second());
}
/**
* @brief Extracts an element from the compressed pair.
* @tparam Index An integer value that is either 0 or 1.
* @return Returns a reference to the first element if `Index` is 0 and a
* reference to the second element if `Index` is 1.
*/
template<std::size_t Index>
constexpr decltype(auto) get() noexcept {
if constexpr(Index == 0u) {
return first();
} else {
static_assert(Index == 1u, "Index out of bounds");
return second();
}
}
/*! @copydoc get */
template<std::size_t Index>
constexpr decltype(auto) get() const noexcept {
if constexpr(Index == 0u) {
return first();
} else {
static_assert(Index == 1u, "Index out of bounds");
return second();
}
}
};
/**
* @brief Deduction guide.
* @tparam Type Type of value to use to initialize the first element.
* @tparam Other Type of value to use to initialize the second element.
*/
template<typename Type, typename Other>
compressed_pair(Type &&, Other &&) -> compressed_pair<std::decay_t<Type>, std::decay_t<Other>>;
/**
* @brief Swaps two compressed pair objects.
* @tparam First The type of the first element that the pairs store.
* @tparam Second The type of the second element that the pairs store.
* @param lhs A valid compressed pair object.
* @param rhs A valid compressed pair object.
*/
template<typename First, typename Second>
inline constexpr void swap(compressed_pair<First, Second> &lhs, compressed_pair<First, Second> &rhs) {
lhs.swap(rhs);
}
} // namespace entt
// disable structured binding support for clang 6, it messes when specializing tuple_size
#if !defined __clang_major__ || __clang_major__ > 6
namespace std {
/**
* @brief `std::tuple_size` specialization for `compressed_pair`s.
* @tparam First The type of the first element that the pair stores.
* @tparam Second The type of the second element that the pair stores.
*/
template<typename First, typename Second>
struct tuple_size<entt::compressed_pair<First, Second>>: integral_constant<size_t, 2u> {};
/**
* @brief `std::tuple_element` specialization for `compressed_pair`s.
* @tparam Index The index of the type to return.
* @tparam First The type of the first element that the pair stores.
* @tparam Second The type of the second element that the pair stores.
*/
template<size_t Index, typename First, typename Second>
struct tuple_element<Index, entt::compressed_pair<First, Second>>: conditional<Index == 0u, First, Second> {
static_assert(Index < 2u, "Index out of bounds");
};
} // namespace std
#endif
#endif
// #include "../core/fwd.hpp"
// #include "../core/iterator.hpp"
// #include "../core/utility.hpp"
#ifndef ENTT_CORE_UTILITY_HPP
#define ENTT_CORE_UTILITY_HPP
#include <type_traits>
#include <utility>
namespace entt {
/*! @brief Identity function object (waiting for C++20). */
struct identity {
/*! @brief Indicates that this is a transparent function object. */
using is_transparent = void;
/**
* @brief Returns its argument unchanged.
* @tparam Type Type of the argument.
* @param value The actual argument.
* @return The submitted value as-is.
*/
template<class Type>
[[nodiscard]] constexpr Type &&operator()(Type &&value) const noexcept {
return std::forward<Type>(value);
}
};
/**
* @brief Constant utility to disambiguate overloaded members of a class.
* @tparam Type Type of the desired overload.
* @tparam Class Type of class to which the member belongs.
* @param member A valid pointer to a member.
* @return Pointer to the member.
*/
template<typename Type, typename Class>
[[nodiscard]] constexpr auto overload(Type Class::*member) noexcept {
return member;
}
/**
* @brief Constant utility to disambiguate overloaded functions.
* @tparam Func Function type of the desired overload.
* @param func A valid pointer to a function.
* @return Pointer to the function.
*/
template<typename Func>
[[nodiscard]] constexpr auto overload(Func *func) noexcept {
return func;
}
/**
* @brief Helper type for visitors.
* @tparam Func Types of function objects.
*/
template<class... Func>
struct overloaded: Func... {
using Func::operator()...;
};
/**
* @brief Deduction guide.
* @tparam Func Types of function objects.
*/
template<class... Func>
overloaded(Func...) -> overloaded<Func...>;
/**
* @brief Basic implementation of a y-combinator.
* @tparam Func Type of a potentially recursive function.
*/
template<class Func>
struct y_combinator {
/**
* @brief Constructs a y-combinator from a given function.
* @param recursive A potentially recursive function.
*/
constexpr y_combinator(Func recursive) noexcept(std::is_nothrow_move_constructible_v<Func>)
: func{std::move(recursive)} {}
/**
* @brief Invokes a y-combinator and therefore its underlying function.
* @tparam Args Types of arguments to use to invoke the underlying function.
* @param args Parameters to use to invoke the underlying function.
* @return Return value of the underlying function, if any.
*/
template<class... Args>
constexpr decltype(auto) operator()(Args &&...args) const noexcept(std::is_nothrow_invocable_v<Func, const y_combinator &, Args...>) {
return func(*this, std::forward<Args>(args)...);
}
/*! @copydoc operator()() */
template<class... Args>
constexpr decltype(auto) operator()(Args &&...args) noexcept(std::is_nothrow_invocable_v<Func, y_combinator &, Args...>) {
return func(*this, std::forward<Args>(args)...);
}
private:
Func func;
};
} // namespace entt
#endif
// #include "adjacency_matrix.hpp"
#ifndef ENTT_GRAPH_ADJACENCY_MATRIX_HPP
#define ENTT_GRAPH_ADJACENCY_MATRIX_HPP
#include <cstddef>
#include <iterator>
#include <memory>
#include <type_traits>
#include <utility>
#include <vector>
// #include "../config/config.h"
// #include "../core/iterator.hpp"
// #include "fwd.hpp"
namespace entt {
/**
* @cond TURN_OFF_DOXYGEN
* Internal details not to be documented.
*/
namespace internal {
template<typename It>
class edge_iterator {
using size_type = std::size_t;
public:
using value_type = std::pair<size_type, size_type>;
using pointer = input_iterator_pointer<value_type>;
using reference = value_type;
using difference_type = std::ptrdiff_t;
using iterator_category = std::input_iterator_tag;
constexpr edge_iterator() noexcept
: it{},
vert{},
pos{},
last{},
offset{} {}
constexpr edge_iterator(It base, const size_type vertices, const size_type from, const size_type to, const size_type step) noexcept
: it{std::move(base)},
vert{vertices},
pos{from},
last{to},
offset{step} {
for(; pos != last && !it[pos]; pos += offset) {}
}
constexpr edge_iterator &operator++() noexcept {
for(pos += offset; pos != last && !it[pos]; pos += offset) {}
return *this;
}
constexpr edge_iterator operator++(int) noexcept {
edge_iterator orig = *this;
return ++(*this), orig;
}
[[nodiscard]] constexpr reference operator*() const noexcept {
return *operator->();
}
[[nodiscard]] constexpr pointer operator->() const noexcept {
return std::make_pair<size_type>(pos / vert, pos % vert);
}
template<typename Type>
friend constexpr bool operator==(const edge_iterator<Type> &, const edge_iterator<Type> &) noexcept;
private:
It it;
size_type vert;
size_type pos;
size_type last;
size_type offset{};
};
template<typename Container>
[[nodiscard]] inline constexpr bool operator==(const edge_iterator<Container> &lhs, const edge_iterator<Container> &rhs) noexcept {
return lhs.pos == rhs.pos;
}
template<typename Container>
[[nodiscard]] inline constexpr bool operator!=(const edge_iterator<Container> &lhs, const edge_iterator<Container> &rhs) noexcept {
return !(lhs == rhs);
}
} // namespace internal
/**
* Internal details not to be documented.
* @endcond
*/
/**
* @brief Basic implementation of a directed adjacency matrix.
* @tparam Category Either a directed or undirected category tag.
* @tparam Allocator Type of allocator used to manage memory and elements.
*/
template<typename Category, typename Allocator>
class adjacency_matrix {
using alloc_traits = std::allocator_traits<Allocator>;
static_assert(std::is_base_of_v<directed_tag, Category>, "Invalid graph category");
static_assert(std::is_same_v<typename alloc_traits::value_type, std::size_t>, "Invalid value type");
using container_type = std::vector<std::size_t, typename alloc_traits::template rebind_alloc<std::size_t>>;
public:
/*! @brief Allocator type. */
using allocator_type = Allocator;
/*! @brief Unsigned integer type. */
using size_type = std::size_t;
/*! @brief Vertex type. */
using vertex_type = size_type;
/*! @brief Edge type. */
using edge_type = std::pair<vertex_type, vertex_type>;
/*! @brief Vertex iterator type. */
using vertex_iterator = iota_iterator<vertex_type>;
/*! @brief Edge iterator type. */
using edge_iterator = internal::edge_iterator<typename container_type::const_iterator>;
/*! @brief Out edge iterator type. */
using out_edge_iterator = edge_iterator;
/*! @brief In edge iterator type. */
using in_edge_iterator = edge_iterator;
/*! @brief Graph category tag. */
using graph_category = Category;
/*! @brief Default constructor. */
adjacency_matrix() noexcept(noexcept(allocator_type{}))
: adjacency_matrix{0u} {}
/**
* @brief Constructs an empty container with a given allocator.
* @param allocator The allocator to use.
*/
explicit adjacency_matrix(const allocator_type &allocator) noexcept
: adjacency_matrix{0u, allocator} {}
/**
* @brief Constructs an empty container with a given allocator and user
* supplied number of vertices.
* @param vertices Number of vertices.
* @param allocator The allocator to use.
*/
adjacency_matrix(const size_type vertices, const allocator_type &allocator = allocator_type{})
: matrix{vertices * vertices, allocator},
vert{vertices} {}
/**
* @brief Copy constructor.
* @param other The instance to copy from.
*/
adjacency_matrix(const adjacency_matrix &other)
: adjacency_matrix{other, other.get_allocator()} {}
/**
* @brief Allocator-extended copy constructor.
* @param other The instance to copy from.
* @param allocator The allocator to use.
*/
adjacency_matrix(const adjacency_matrix &other, const allocator_type &allocator)
: matrix{other.matrix, allocator},
vert{other.vert} {}
/**
* @brief Move constructor.
* @param other The instance to move from.
*/
adjacency_matrix(adjacency_matrix &&other) noexcept
: adjacency_matrix{std::move(other), other.get_allocator()} {}
/**
* @brief Allocator-extended move constructor.
* @param other The instance to move from.
* @param allocator The allocator to use.
*/
adjacency_matrix(adjacency_matrix &&other, const allocator_type &allocator)
: matrix{std::move(other.matrix), allocator},
vert{std::exchange(other.vert, 0u)} {}
/**
* @brief Default copy assignment operator.
* @param other The instance to copy from.
* @return This container.
*/
adjacency_matrix &operator=(const adjacency_matrix &other) {
matrix = other.matrix;
vert = other.vert;
return *this;
}
/**
* @brief Default move assignment operator.
* @param other The instance to move from.
* @return This container.
*/
adjacency_matrix &operator=(adjacency_matrix &&other) noexcept {
matrix = std::move(other.matrix);
vert = std::exchange(other.vert, 0u);
return *this;
}
/**
* @brief Returns the associated allocator.
* @return The associated allocator.
*/
[[nodiscard]] constexpr allocator_type get_allocator() const noexcept {
return matrix.get_allocator();
}
/*! @brief Clears the adjacency matrix. */
void clear() noexcept {
matrix.clear();
vert = {};
}
/**
* @brief Exchanges the contents with those of a given adjacency matrix.
* @param other Adjacency matrix to exchange the content with.
*/
void swap(adjacency_matrix &other) {
using std::swap;
swap(matrix, other.matrix);
swap(vert, other.vert);
}
/**
* @brief Returns the number of vertices.
* @return The number of vertices.
*/
[[nodiscard]] size_type size() const noexcept {
return vert;
}
/**
* @brief Returns an iterable object to visit all vertices of a matrix.
* @return An iterable object to visit all vertices of a matrix.
*/
[[nodiscard]] iterable_adaptor<vertex_iterator> vertices() const noexcept {
return {0u, vert};
}
/**
* @brief Returns an iterable object to visit all edges of a matrix.
* @return An iterable object to visit all edges of a matrix.
*/
[[nodiscard]] iterable_adaptor<edge_iterator> edges() const noexcept {
const auto it = matrix.cbegin();
const auto sz = matrix.size();
return {{it, vert, 0u, sz, 1u}, {it, vert, sz, sz, 1u}};
}
/**
* @brief Returns an iterable object to visit all out edges of a vertex.
* @param vertex The vertex of which to return all out edges.
* @return An iterable object to visit all out edges of a vertex.
*/
[[nodiscard]] iterable_adaptor<out_edge_iterator> out_edges(const vertex_type vertex) const noexcept {
const auto it = matrix.cbegin();
const auto from = vertex * vert;
const auto to = vertex * vert + vert;
return {{it, vert, from, to, 1u}, {it, vert, to, to, 1u}};
}
/**
* @brief Returns an iterable object to visit all in edges of a vertex.
* @param vertex The vertex of which to return all in edges.
* @return An iterable object to visit all in edges of a vertex.
*/
[[nodiscard]] iterable_adaptor<in_edge_iterator> in_edges(const vertex_type vertex) const noexcept {
const auto it = matrix.cbegin();
const auto from = vertex;
const auto to = vert * (vert - 1u) + vertex;
return {{it, vert, from, to, vert}, {it, vert, to, to, vert}};
}
/**
* @brief Resizes an adjacency matrix.
* @param vertices The new number of vertices.
*/
void resize(const size_type vertices) {
adjacency_matrix other{vertices, get_allocator()};
for(auto [lhs, rhs]: edges()) {
other.insert(lhs, rhs);
}
other.swap(*this);
}
/**
* @brief Inserts an edge into the adjacency matrix, if it does not exist.
* @param lhs The left hand vertex of the edge.
* @param rhs The right hand vertex of the edge.
* @return A pair consisting of an iterator to the inserted element (or to
* the element that prevented the insertion) and a bool denoting whether the
* insertion took place.
*/
std::pair<edge_iterator, bool> insert(const vertex_type lhs, const vertex_type rhs) {
const auto pos = lhs * vert + rhs;
if constexpr(std::is_same_v<graph_category, undirected_tag>) {
const auto rev = rhs * vert + lhs;
ENTT_ASSERT(matrix[pos] == matrix[rev], "Something went really wrong");
matrix[rev] = 1u;
}
const auto inserted = !std::exchange(matrix[pos], 1u);
return {edge_iterator{matrix.cbegin(), vert, pos, matrix.size(), 1u}, inserted};
}
/**
* @brief Removes the edge associated with a pair of given vertices.
* @param lhs The left hand vertex of the edge.
* @param rhs The right hand vertex of the edge.
* @return Number of elements removed (either 0 or 1).
*/
size_type erase(const vertex_type lhs, const vertex_type rhs) {
const auto pos = lhs * vert + rhs;
if constexpr(std::is_same_v<graph_category, undirected_tag>) {
const auto rev = rhs * vert + lhs;
ENTT_ASSERT(matrix[pos] == matrix[rev], "Something went really wrong");
matrix[rev] = 0u;
}
return std::exchange(matrix[pos], 0u);
}
/**
* @brief Checks if an adjacency matrix contains a given edge.
* @param lhs The left hand vertex of the edge.
* @param rhs The right hand vertex of the edge.
* @return True if there is such an edge, false otherwise.
*/
[[nodiscard]] bool contains(const vertex_type lhs, const vertex_type rhs) const {
const auto pos = lhs * vert + rhs;
return pos < matrix.size() && matrix[pos];
}
private:
container_type matrix;
size_type vert;
};
} // namespace entt
#endif
// #include "fwd.hpp"
namespace entt {
/**
* @brief Utility class for creating task graphs.
* @tparam Allocator Type of allocator used to manage memory and elements.
*/
template<typename Allocator>
class basic_flow {
using alloc_traits = std::allocator_traits<Allocator>;
static_assert(std::is_same_v<typename alloc_traits::value_type, id_type>, "Invalid value type");
using task_container_type = dense_set<id_type, identity, std::equal_to<id_type>, typename alloc_traits::template rebind_alloc<id_type>>;
using ro_rw_container_type = std::vector<std::pair<std::size_t, bool>, typename alloc_traits::template rebind_alloc<std::pair<std::size_t, bool>>>;
using deps_container_type = dense_map<id_type, ro_rw_container_type, identity, std::equal_to<id_type>, typename alloc_traits::template rebind_alloc<std::pair<const id_type, ro_rw_container_type>>>;
void emplace(const id_type res, const bool is_rw) {
ENTT_ASSERT(index.first() < vertices.size(), "Invalid node");
if(!deps.contains(res) && sync_on != vertices.size()) {
deps[res].emplace_back(sync_on, true);
}
deps[res].emplace_back(index.first(), is_rw);
}
public:
/*! @brief Allocator type. */
using allocator_type = Allocator;
/*! @brief Unsigned integer type. */
using size_type = std::size_t;
/*! @brief Iterable task list. */
using iterable = iterable_adaptor<typename task_container_type::const_iterator>;
/*! @brief Default constructor. */
basic_flow()
: basic_flow{allocator_type{}} {}
/**
* @brief Constructs a flow builder with a given allocator.
* @param allocator The allocator to use.
*/
explicit basic_flow(const allocator_type &allocator)
: index{0u, allocator},
vertices{},
deps{},
sync_on{} {}
/*! @brief Default copy constructor. */
basic_flow(const basic_flow &) = default;
/**
* @brief Allocator-extended copy constructor.
* @param other The instance to copy from.
* @param allocator The allocator to use.
*/
basic_flow(const basic_flow &other, const allocator_type &allocator)
: index{other.index.first(), allocator},
vertices{other.vertices, allocator},
deps{other.deps, allocator},
sync_on{other.sync_on} {}
/*! @brief Default move constructor. */
basic_flow(basic_flow &&) noexcept = default;
/**
* @brief Allocator-extended move constructor.
* @param other The instance to move from.
* @param allocator The allocator to use.
*/
basic_flow(basic_flow &&other, const allocator_type &allocator)
: index{other.index.first(), allocator},
vertices{std::move(other.vertices), allocator},
deps{std::move(other.deps), allocator},
sync_on{other.sync_on} {}
/**
* @brief Default copy assignment operator.
* @return This flow builder.
*/
basic_flow &operator=(const basic_flow &) = default;
/**
* @brief Default move assignment operator.
* @return This flow builder.
*/
basic_flow &operator=(basic_flow &&) noexcept = default;
/**
* @brief Returns the associated allocator.
* @return The associated allocator.
*/
[[nodiscard]] constexpr allocator_type get_allocator() const noexcept {
return allocator_type{index.second()};
}
/**
* @brief Returns the identifier at specified location.
* @param pos Position of the identifier to return.
* @return The requested identifier.
*/
[[nodiscard]] id_type operator[](const size_type pos) const {
return vertices.cbegin()[pos];
}
/*! @brief Clears the flow builder. */
void clear() noexcept {
index.first() = sync_on = {};
vertices.clear();
deps.clear();
}
/**
* @brief Exchanges the contents with those of a given flow builder.
* @param other Flow builder to exchange the content with.
*/
void swap(basic_flow &other) {
using std::swap;
std::swap(index, other.index);
std::swap(vertices, other.vertices);
std::swap(deps, other.deps);
std::swap(sync_on, other.sync_on);
}
/**
* @brief Returns the number of tasks.
* @return The number of tasks.
*/
[[nodiscard]] size_type size() const noexcept {
return vertices.size();
}
/**
* @brief Binds a task to a flow builder.
* @param value Task identifier.
* @return This flow builder.
*/
basic_flow &bind(const id_type value) {
sync_on += (sync_on == vertices.size());
const auto it = vertices.emplace(value).first;
index.first() = size_type(it - vertices.begin());
return *this;
}
/**
* @brief Turns the current task into a sync point.
* @return This flow builder.
*/
basic_flow &sync() {
ENTT_ASSERT(index.first() < vertices.size(), "Invalid node");
sync_on = index.first();
for(const auto &elem: deps) {
elem.second.emplace_back(sync_on, true);
}
return *this;
}
/**
* @brief Assigns a resource to the current task with a given access mode.
* @param res Resource identifier.
* @param is_rw Access mode.
* @return This flow builder.
*/
basic_flow &set(const id_type res, bool is_rw = false) {
emplace(res, is_rw);
return *this;
}
/**
* @brief Assigns a read-only resource to the current task.
* @param res Resource identifier.
* @return This flow builder.
*/
basic_flow &ro(const id_type res) {
emplace(res, false);
return *this;
}
/**
* @brief Assigns a range of read-only resources to the current task.
* @tparam It Type of input iterator.
* @param first An iterator to the first element of the range of elements.
* @param last An iterator past the last element of the range of elements.
* @return This flow builder.
*/
template<typename It>
std::enable_if_t<std::is_same_v<std::remove_const_t<typename std::iterator_traits<It>::value_type>, id_type>, basic_flow &>
ro(It first, It last) {
for(; first != last; ++first) {
emplace(*first, false);
}
return *this;
}
/**
* @brief Assigns a writable resource to the current task.
* @param res Resource identifier.
* @return This flow builder.
*/
basic_flow &rw(const id_type res) {
emplace(res, true);
return *this;
}
/**
* @brief Assigns a range of writable resources to the current task.
* @tparam It Type of input iterator.
* @param first An iterator to the first element of the range of elements.
* @param last An iterator past the last element of the range of elements.
* @return This flow builder.
*/
template<typename It>
std::enable_if_t<std::is_same_v<std::remove_const_t<typename std::iterator_traits<It>::value_type>, id_type>, basic_flow &>
rw(It first, It last) {
for(; first != last; ++first) {
emplace(*first, true);
}
return *this;
}
/**
* @brief Generates a task graph for the current content.
* @return The adjacency matrix of the task graph.
*/
[[nodiscard]] adjacency_matrix<directed_tag> graph() const {
const auto length = vertices.size();
adjacency_matrix<directed_tag> matrix{length};
// creates the adjacency matrix
for(const auto &elem: deps) {
const auto last = elem.second.cend();
auto it = elem.second.cbegin();
while(it != last) {
if(it->second) {
// rw item
if(auto curr = it++; it != last) {
if(it->second) {
matrix.insert(curr->first, it->first);
} else if(const auto next = std::find_if(it, last, [](const auto &value) { return value.second; }); next != last) {
for(; it != next; ++it) {
matrix.insert(curr->first, it->first);
matrix.insert(it->first, next->first);
}
} else {
for(; it != next; ++it) {
matrix.insert(curr->first, it->first);
}
}
}
} else {
// ro item (first iteration only)
if(const auto next = std::find_if(it, last, [](const auto &value) { return value.second; }); next != last) {
for(; it != next; ++it) {
matrix.insert(it->first, next->first);
}
} else {
it = last;
}
}
}
}
// computes the transitive closure
for(std::size_t vk{}; vk < length; ++vk) {
for(std::size_t vi{}; vi < length; ++vi) {
for(std::size_t vj{}; vj < length; ++vj) {
if(matrix.contains(vi, vk) && matrix.contains(vk, vj)) {
matrix.insert(vi, vj);
}
}
}
}
// applies the transitive reduction
for(std::size_t vert{}; vert < length; ++vert) {
matrix.erase(vert, vert);
}
for(std::size_t vj{}; vj < length; ++vj) {
for(std::size_t vi{}; vi < length; ++vi) {
if(matrix.contains(vi, vj)) {
for(std::size_t vk{}; vk < length; ++vk) {
if(matrix.contains(vj, vk)) {
matrix.erase(vi, vk);
}
}
}
}
}
return matrix;
}
private:
compressed_pair<size_type, allocator_type> index;
task_container_type vertices;
deps_container_type deps;
size_type sync_on;
};
} // namespace entt
#endif
// #include "fwd.hpp"
// #include "helper.hpp"
#ifndef ENTT_ENTITY_HELPER_HPP
#define ENTT_ENTITY_HELPER_HPP
#include <memory>
#include <type_traits>
// #include "../core/fwd.hpp"
// #include "../core/type_traits.hpp"
// #include "../signal/delegate.hpp"
// #include "component.hpp"
// #include "fwd.hpp"
// #include "group.hpp"
// #include "view.hpp"
namespace entt {
/**
* @brief Converts a registry to a view.
* @tparam Registry Basic registry type.
*/
template<typename Registry>
class as_view {
template<typename... Get, typename... Exclude>
auto dispatch(get_t<Get...>, exclude_t<Exclude...>) const {
return reg.template view<constness_as_t<typename Get::value_type, Get>...>(exclude_t<constness_as_t<typename Exclude::value_type, Exclude>...>{});
}
public:
/*! @brief Type of registry to convert. */
using registry_type = Registry;
/*! @brief Underlying entity identifier. */
using entity_type = std::remove_const_t<typename registry_type::entity_type>;
/**
* @brief Constructs a converter for a given registry.
* @param source A valid reference to a registry.
*/
as_view(registry_type &source) noexcept
: reg{source} {}
/**
* @brief Conversion function from a registry to a view.
* @tparam Get Type of storage used to construct the view.
* @tparam Exclude Types of storage used to filter the view.
* @return A newly created view.
*/
template<typename Get, typename Exclude>
operator basic_view<Get, Exclude>() const {
return dispatch(Get{}, Exclude{});
}
private:
registry_type &reg;
};
/**
* @brief Converts a registry to a group.
* @tparam Registry Basic registry type.
*/
template<typename Registry>
class as_group {
template<typename... Owned, typename... Get, typename... Exclude>
auto dispatch(owned_t<Owned...>, get_t<Get...>, exclude_t<Exclude...>) const {
if constexpr(std::is_const_v<registry_type>) {
return reg.template group_if_exists<typename Owned::value_type...>(get_t<typename Get::value_type...>{}, exclude_t<typename Exclude::value_type...>{});
} else {
return reg.template group<constness_as_t<typename Owned::value_type, Owned>...>(get_t<constness_as_t<typename Get::value_type, Get>...>{}, exclude_t<constness_as_t<typename Exclude::value_type, Exclude>...>{});
}
}
public:
/*! @brief Type of registry to convert. */
using registry_type = Registry;
/*! @brief Underlying entity identifier. */
using entity_type = std::remove_const_t<typename registry_type::entity_type>;
/**
* @brief Constructs a converter for a given registry.
* @param source A valid reference to a registry.
*/
as_group(registry_type &source) noexcept
: reg{source} {}
/**
* @brief Conversion function from a registry to a group.
* @tparam Owned Types of _owned_ by the group.
* @tparam Get Types of storage _observed_ by the group.
* @tparam Exclude Types of storage used to filter the group.
* @return A newly created group.
*/
template<typename Owned, typename Get, typename Exclude>
operator basic_group<Owned, Get, Exclude>() const {
return dispatch(Owned{}, Get{}, Exclude{});
}
private:
registry_type &reg;
};
/**
* @brief Helper to create a listener that directly invokes a member function.
* @tparam Member Member function to invoke on a component of the given type.
* @tparam Registry Basic registry type.
* @param reg A registry that contains the given entity and its components.
* @param entt Entity from which to get the component.
*/
template<auto Member, typename Registry = std::decay_t<nth_argument_t<0u, Member>>>
void invoke(Registry &reg, const typename Registry::entity_type entt) {
static_assert(std::is_member_function_pointer_v<decltype(Member)>, "Invalid pointer to non-static member function");
delegate<void(Registry &, const typename Registry::entity_type)> func;
func.template connect<Member>(reg.template get<member_class_t<decltype(Member)>>(entt));
func(reg, entt);
}
/**
* @brief Returns the entity associated with a given component.
*
* @warning
* Currently, this function only works correctly with the default pool as it
* makes assumptions about how the components are laid out.
*
* @tparam Registry Basic registry type.
* @tparam Component Type of component.
* @param reg A registry that contains the given entity and its components.
* @param instance A valid component instance.
* @return The entity associated with the given component.
*/
template<typename Registry, typename Component>
typename Registry::entity_type to_entity(const Registry &reg, const Component &instance) {
const auto &storage = reg.template storage<Component>();
const typename Registry::base_type &base = storage;
const auto *addr = std::addressof(instance);
for(auto it = base.rbegin(), last = base.rend(); it < last; it += component_traits<Component>::page_size) {
if(const auto dist = (addr - std::addressof(storage.get(*it))); dist >= 0 && dist < static_cast<decltype(dist)>(component_traits<Component>::page_size)) {
return *(it + dist);
}
}
return null;
}
} // namespace entt
#endif
namespace entt {
/**
* @cond TURN_OFF_DOXYGEN
* Internal details not to be documented.
*/
namespace internal {
template<typename>
struct is_view: std::false_type {};
template<typename... Args>
struct is_view<basic_view<Args...>>: std::true_type {};
template<typename Type>
inline constexpr bool is_view_v = is_view<Type>::value;
template<typename Type, typename Override>
struct unpack_type {
using ro = std::conditional_t<
type_list_contains_v<Override, const Type> || (std::is_const_v<Type> && !type_list_contains_v<Override, std::remove_const_t<Type>>),
type_list<std::remove_const_t<Type>>,
type_list<>>;
using rw = std::conditional_t<
type_list_contains_v<Override, std::remove_const_t<Type>> || (!std::is_const_v<Type> && !type_list_contains_v<Override, const Type>),
type_list<Type>,
type_list<>>;
};
template<typename... Args, typename... Override>
struct unpack_type<basic_registry<Args...>, type_list<Override...>> {
using ro = type_list<>;
using rw = type_list<>;
};
template<typename... Args, typename... Override>
struct unpack_type<const basic_registry<Args...>, type_list<Override...>>
: unpack_type<basic_registry<Args...>, type_list<Override...>> {};
template<typename... Get, typename... Exclude, typename... Override>
struct unpack_type<basic_view<get_t<Get...>, exclude_t<Exclude...>>, type_list<Override...>> {
using ro = type_list_cat_t<type_list<typename Exclude::value_type...>, typename unpack_type<constness_as_t<typename Get::value_type, Get>, type_list<Override...>>::ro...>;
using rw = type_list_cat_t<typename unpack_type<constness_as_t<typename Get::value_type, Get>, type_list<Override...>>::rw...>;
};
template<typename... Get, typename... Exclude, typename... Override>
struct unpack_type<const basic_view<get_t<Get...>, exclude_t<Exclude...>>, type_list<Override...>>
: unpack_type<basic_view<get_t<Get...>, exclude_t<Exclude...>>, type_list<Override...>> {};
template<typename, typename>
struct resource_traits;
template<typename... Args, typename... Req>
struct resource_traits<type_list<Args...>, type_list<Req...>> {
using args = type_list<std::remove_const_t<Args>...>;
using ro = type_list_cat_t<typename unpack_type<Args, type_list<Req...>>::ro..., typename unpack_type<Req, type_list<>>::ro...>;
using rw = type_list_cat_t<typename unpack_type<Args, type_list<Req...>>::rw..., typename unpack_type<Req, type_list<>>::rw...>;
};
template<typename... Req, typename Ret, typename... Args>
resource_traits<type_list<std::remove_reference_t<Args>...>, type_list<Req...>> free_function_to_resource_traits(Ret (*)(Args...));
template<typename... Req, typename Ret, typename Type, typename... Args>
resource_traits<type_list<std::remove_reference_t<Args>...>, type_list<Req...>> constrained_function_to_resource_traits(Ret (*)(Type &, Args...));
template<typename... Req, typename Ret, typename Class, typename... Args>
resource_traits<type_list<std::remove_reference_t<Args>...>, type_list<Req...>> constrained_function_to_resource_traits(Ret (Class::*)(Args...));
template<typename... Req, typename Ret, typename Class, typename... Args>
resource_traits<type_list<std::remove_reference_t<Args>...>, type_list<Req...>> constrained_function_to_resource_traits(Ret (Class::*)(Args...) const);
} // namespace internal
/**
* Internal details not to be documented.
* @endcond
*/
/**
* @brief Utility class for creating a static task graph.
*
* This class offers minimal support (but sufficient in many cases) for creating
* an execution graph from functions and their requirements on resources.<br/>
* Note that the resulting tasks aren't executed in any case. This isn't the
* goal of the tool. Instead, they are returned to the user in the form of a
* graph that allows for safe execution.
*
* @tparam Registry Basic registry type.
*/
template<typename Registry>
class basic_organizer final {
using callback_type = void(const void *, Registry &);
using prepare_type = void(Registry &);
using dependency_type = std::size_t(const bool, const type_info **, const std::size_t);
struct vertex_data final {
std::size_t ro_count{};
std::size_t rw_count{};
const char *name{};
const void *payload{};
callback_type *callback{};
dependency_type *dependency;
prepare_type *prepare{};
const type_info *info{};
};
template<typename Type>
[[nodiscard]] static decltype(auto) extract(Registry &reg) {
if constexpr(std::is_same_v<Type, Registry>) {
return reg;
} else if constexpr(internal::is_view_v<Type>) {
return as_view{reg};
} else {
return reg.ctx().template emplace<std::remove_reference_t<Type>>();
}
}
template<typename... Args>
[[nodiscard]] static auto to_args(Registry &reg, type_list<Args...>) {
return std::tuple<decltype(extract<Args>(reg))...>(extract<Args>(reg)...);
}
template<typename... Type>
static std::size_t fill_dependencies(type_list<Type...>, [[maybe_unused]] const type_info **buffer, [[maybe_unused]] const std::size_t count) {
if constexpr(sizeof...(Type) == 0u) {
return {};
} else {
const type_info *info[sizeof...(Type)]{&type_id<Type>()...};
const auto length = count < sizeof...(Type) ? count : sizeof...(Type);
for(std::size_t pos{}; pos < length; ++pos) {
buffer[pos] = info[pos];
}
return length;
}
}
template<typename... RO, typename... RW>
void track_dependencies(std::size_t index, const bool requires_registry, type_list<RO...>, type_list<RW...>) {
builder.bind(static_cast<id_type>(index));
builder.set(type_hash<Registry>::value(), requires_registry || (sizeof...(RO) + sizeof...(RW) == 0u));
(builder.ro(type_hash<RO>::value()), ...);
(builder.rw(type_hash<RW>::value()), ...);
}
public:
/*! Basic registry type. */
using registry_type = Registry;
/*! @brief Underlying entity identifier. */
using entity_type = typename registry_type::entity_type;
/*! @brief Unsigned integer type. */
using size_type = std::size_t;
/*! @brief Raw task function type. */
using function_type = callback_type;
/*! @brief Vertex type of a task graph defined as an adjacency list. */
struct vertex {
/**
* @brief Constructs a vertex of the task graph.
* @param vtype True if the vertex is a top-level one, false otherwise.
* @param data The data associated with the vertex.
* @param edges The indices of the children in the adjacency list.
*/
vertex(const bool vtype, vertex_data data, std::vector<std::size_t> edges)
: is_top_level{vtype},
node{std::move(data)},
reachable{std::move(edges)} {}
/**
* @brief Fills a buffer with the type info objects for the writable
* resources of a vertex.
* @param buffer A buffer pre-allocated by the user.
* @param length The length of the user-supplied buffer.
* @return The number of type info objects written to the buffer.
*/
size_type ro_dependency(const type_info **buffer, const std::size_t length) const noexcept {
return node.dependency(false, buffer, length);
}
/**
* @brief Fills a buffer with the type info objects for the read-only
* resources of a vertex.
* @param buffer A buffer pre-allocated by the user.
* @param length The length of the user-supplied buffer.
* @return The number of type info objects written to the buffer.
*/
size_type rw_dependency(const type_info **buffer, const std::size_t length) const noexcept {
return node.dependency(true, buffer, length);
}
/**
* @brief Returns the number of read-only resources of a vertex.
* @return The number of read-only resources of the vertex.
*/
size_type ro_count() const noexcept {
return node.ro_count;
}
/**
* @brief Returns the number of writable resources of a vertex.
* @return The number of writable resources of the vertex.
*/
size_type rw_count() const noexcept {
return node.rw_count;
}
/**
* @brief Checks if a vertex is also a top-level one.
* @return True if the vertex is a top-level one, false otherwise.
*/
bool top_level() const noexcept {
return is_top_level;
}
/**
* @brief Returns a type info object associated with a vertex.
* @return A properly initialized type info object.
*/
const type_info &info() const noexcept {
return *node.info;
}
/**
* @brief Returns a user defined name associated with a vertex, if any.
* @return The user defined name associated with the vertex, if any.
*/
const char *name() const noexcept {
return node.name;
}
/**
* @brief Returns the function associated with a vertex.
* @return The function associated with the vertex.
*/
function_type *callback() const noexcept {
return node.callback;
}
/**
* @brief Returns the payload associated with a vertex, if any.
* @return The payload associated with the vertex, if any.
*/
const void *data() const noexcept {
return node.payload;
}
/**
* @brief Returns the list of nodes reachable from a given vertex.
* @return The list of nodes reachable from the vertex.
*/
const std::vector<std::size_t> &children() const noexcept {
return reachable;
}
/**
* @brief Prepares a registry and assures that all required resources
* are properly instantiated before using them.
* @param reg A valid registry.
*/
void prepare(registry_type &reg) const {
node.prepare ? node.prepare(reg) : void();
}
private:
bool is_top_level;
vertex_data node;
std::vector<std::size_t> reachable;
};
/**
* @brief Adds a free function to the task list.
* @tparam Candidate Function to add to the task list.
* @tparam Req Additional requirements and/or override resource access mode.
* @param name Optional name to associate with the task.
*/
template<auto Candidate, typename... Req>
void emplace(const char *name = nullptr) {
using resource_type = decltype(internal::free_function_to_resource_traits<Req...>(Candidate));
constexpr auto requires_registry = type_list_contains_v<typename resource_type::args, registry_type>;
callback_type *callback = +[](const void *, registry_type &reg) {
std::apply(Candidate, to_args(reg, typename resource_type::args{}));
};
vertex_data vdata{
resource_type::ro::size,
resource_type::rw::size,
name,
nullptr,
callback,
+[](const bool rw, const type_info **buffer, const std::size_t length) { return rw ? fill_dependencies(typename resource_type::rw{}, buffer, length) : fill_dependencies(typename resource_type::ro{}, buffer, length); },
+[](registry_type &reg) { void(to_args(reg, typename resource_type::args{})); },
&type_id<std::integral_constant<decltype(Candidate), Candidate>>()};
track_dependencies(vertices.size(), requires_registry, typename resource_type::ro{}, typename resource_type::rw{});
vertices.push_back(std::move(vdata));
}
/**
* @brief Adds a free function with payload or a member function with an
* instance to the task list.
* @tparam Candidate Function or member to add to the task list.
* @tparam Req Additional requirements and/or override resource access mode.
* @tparam Type Type of class or type of payload.
* @param value_or_instance A valid object that fits the purpose.
* @param name Optional name to associate with the task.
*/
template<auto Candidate, typename... Req, typename Type>
void emplace(Type &value_or_instance, const char *name = nullptr) {
using resource_type = decltype(internal::constrained_function_to_resource_traits<Req...>(Candidate));
constexpr auto requires_registry = type_list_contains_v<typename resource_type::args, registry_type>;
callback_type *callback = +[](const void *payload, registry_type &reg) {
Type *curr = static_cast<Type *>(const_cast<constness_as_t<void, Type> *>(payload));
std::apply(Candidate, std::tuple_cat(std::forward_as_tuple(*curr), to_args(reg, typename resource_type::args{})));
};
vertex_data vdata{
resource_type::ro::size,
resource_type::rw::size,
name,
&value_or_instance,
callback,
+[](const bool rw, const type_info **buffer, const std::size_t length) { return rw ? fill_dependencies(typename resource_type::rw{}, buffer, length) : fill_dependencies(typename resource_type::ro{}, buffer, length); },
+[](registry_type &reg) { void(to_args(reg, typename resource_type::args{})); },
&type_id<std::integral_constant<decltype(Candidate), Candidate>>()};
track_dependencies(vertices.size(), requires_registry, typename resource_type::ro{}, typename resource_type::rw{});
vertices.push_back(std::move(vdata));
}
/**
* @brief Adds an user defined function with optional payload to the task
* list.
* @tparam Req Additional requirements and/or override resource access mode.
* @param func Function to add to the task list.
* @param payload User defined arbitrary data.
* @param name Optional name to associate with the task.
*/
template<typename... Req>
void emplace(function_type *func, const void *payload = nullptr, const char *name = nullptr) {
using resource_type = internal::resource_traits<type_list<>, type_list<Req...>>;
track_dependencies(vertices.size(), true, typename resource_type::ro{}, typename resource_type::rw{});
vertex_data vdata{
resource_type::ro::size,
resource_type::rw::size,
name,
payload,
func,
+[](const bool rw, const type_info **buffer, const std::size_t length) { return rw ? fill_dependencies(typename resource_type::rw{}, buffer, length) : fill_dependencies(typename resource_type::ro{}, buffer, length); },
nullptr,
&type_id<void>()};
vertices.push_back(std::move(vdata));
}
/**
* @brief Generates a task graph for the current content.
* @return The adjacency list of the task graph.
*/
std::vector<vertex> graph() {
std::vector<vertex> adjacency_list{};
adjacency_list.reserve(vertices.size());
auto adjacency_matrix = builder.graph();
for(auto curr: adjacency_matrix.vertices()) {
const auto iterable = adjacency_matrix.in_edges(curr);
std::vector<std::size_t> reachable{};
for(auto &&edge: adjacency_matrix.out_edges(curr)) {
reachable.push_back(edge.second);
}
adjacency_list.emplace_back(iterable.cbegin() == iterable.cend(), vertices[curr], std::move(reachable));
}
return adjacency_list;
}
/*! @brief Erases all elements from a container. */
void clear() {
builder.clear();
vertices.clear();
}
private:
std::vector<vertex_data> vertices;
flow builder;
};
} // namespace entt
#endif
// #include "entity/registry.hpp"
#ifndef ENTT_ENTITY_REGISTRY_HPP
#define ENTT_ENTITY_REGISTRY_HPP
#include <algorithm>
#include <cstddef>
#include <functional>
#include <iterator>
#include <memory>
#include <tuple>
#include <type_traits>
#include <utility>
#include <vector>
// #include "../config/config.h"
// #include "../container/dense_map.hpp"
#ifndef ENTT_CONTAINER_DENSE_MAP_HPP
#define ENTT_CONTAINER_DENSE_MAP_HPP
#include <cmath>
#include <cstddef>
#include <functional>
#include <iterator>
#include <limits>
#include <memory>
#include <tuple>
#include <type_traits>
#include <utility>
#include <vector>
// #include "../config/config.h"
#ifndef ENTT_CONFIG_CONFIG_H
#define ENTT_CONFIG_CONFIG_H
// #include "version.h"
#ifndef ENTT_CONFIG_VERSION_H
#define ENTT_CONFIG_VERSION_H
// #include "macro.h"
#ifndef ENTT_CONFIG_MACRO_H
#define ENTT_CONFIG_MACRO_H
#define ENTT_STR(arg) #arg
#define ENTT_XSTR(arg) ENTT_STR(arg)
#endif
#define ENTT_VERSION_MAJOR 3
#define ENTT_VERSION_MINOR 11
#define ENTT_VERSION_PATCH 1
#define ENTT_VERSION \
ENTT_XSTR(ENTT_VERSION_MAJOR) \
"." ENTT_XSTR(ENTT_VERSION_MINOR) "." ENTT_XSTR(ENTT_VERSION_PATCH)
#endif
#if defined(__cpp_exceptions) && !defined(ENTT_NOEXCEPTION)
# define ENTT_CONSTEXPR
# define ENTT_THROW throw
# define ENTT_TRY try
# define ENTT_CATCH catch(...)
#else
# define ENTT_CONSTEXPR constexpr // use only with throwing functions (waiting for C++20)
# define ENTT_THROW
# define ENTT_TRY if(true)
# define ENTT_CATCH if(false)
#endif
#ifdef ENTT_USE_ATOMIC
# include <atomic>
# define ENTT_MAYBE_ATOMIC(Type) std::atomic<Type>
#else
# define ENTT_MAYBE_ATOMIC(Type) Type
#endif
#ifndef ENTT_ID_TYPE
# include <cstdint>
# define ENTT_ID_TYPE std::uint32_t
#endif
#ifndef ENTT_SPARSE_PAGE
# define ENTT_SPARSE_PAGE 4096
#endif
#ifndef ENTT_PACKED_PAGE
# define ENTT_PACKED_PAGE 1024
#endif
#ifdef ENTT_DISABLE_ASSERT
# undef ENTT_ASSERT
# define ENTT_ASSERT(condition, msg) (void(0))
#elif !defined ENTT_ASSERT
# include <cassert>
# define ENTT_ASSERT(condition, msg) assert(condition)
#endif
#ifdef ENTT_DISABLE_ASSERT
# undef ENTT_ASSERT_CONSTEXPR
# define ENTT_ASSERT_CONSTEXPR(condition, msg) (void(0))
#elif !defined ENTT_ASSERT_CONSTEXPR
# define ENTT_ASSERT_CONSTEXPR(condition, msg) ENTT_ASSERT(condition, msg)
#endif
#ifdef ENTT_NO_ETO
# define ENTT_ETO_TYPE(Type) void
#else
# define ENTT_ETO_TYPE(Type) Type
#endif
#ifdef ENTT_STANDARD_CPP
# define ENTT_NONSTD false
#else
# define ENTT_NONSTD true
# if defined __clang__ || defined __GNUC__
# define ENTT_PRETTY_FUNCTION __PRETTY_FUNCTION__
# define ENTT_PRETTY_FUNCTION_PREFIX '='
# define ENTT_PRETTY_FUNCTION_SUFFIX ']'
# elif defined _MSC_VER
# define ENTT_PRETTY_FUNCTION __FUNCSIG__
# define ENTT_PRETTY_FUNCTION_PREFIX '<'
# define ENTT_PRETTY_FUNCTION_SUFFIX '>'
# endif
#endif
#if defined _MSC_VER
# pragma detect_mismatch("entt.version", ENTT_VERSION)
# pragma detect_mismatch("entt.noexcept", ENTT_XSTR(ENTT_TRY))
# pragma detect_mismatch("entt.id", ENTT_XSTR(ENTT_ID_TYPE))
# pragma detect_mismatch("entt.nonstd", ENTT_XSTR(ENTT_NONSTD))
#endif
#endif
// #include "../core/compressed_pair.hpp"
#ifndef ENTT_CORE_COMPRESSED_PAIR_HPP
#define ENTT_CORE_COMPRESSED_PAIR_HPP
#include <cstddef>
#include <tuple>
#include <type_traits>
#include <utility>
// #include "type_traits.hpp"
#ifndef ENTT_CORE_TYPE_TRAITS_HPP
#define ENTT_CORE_TYPE_TRAITS_HPP
#include <cstddef>
#include <iterator>
#include <type_traits>
#include <utility>
// #include "../config/config.h"
#ifndef ENTT_CONFIG_CONFIG_H
#define ENTT_CONFIG_CONFIG_H
// #include "version.h"
#ifndef ENTT_CONFIG_VERSION_H
#define ENTT_CONFIG_VERSION_H
// #include "macro.h"
#ifndef ENTT_CONFIG_MACRO_H
#define ENTT_CONFIG_MACRO_H
#define ENTT_STR(arg) #arg
#define ENTT_XSTR(arg) ENTT_STR(arg)
#endif
#define ENTT_VERSION_MAJOR 3
#define ENTT_VERSION_MINOR 11
#define ENTT_VERSION_PATCH 1
#define ENTT_VERSION \
ENTT_XSTR(ENTT_VERSION_MAJOR) \
"." ENTT_XSTR(ENTT_VERSION_MINOR) "." ENTT_XSTR(ENTT_VERSION_PATCH)
#endif
#if defined(__cpp_exceptions) && !defined(ENTT_NOEXCEPTION)
# define ENTT_CONSTEXPR
# define ENTT_THROW throw
# define ENTT_TRY try
# define ENTT_CATCH catch(...)
#else
# define ENTT_CONSTEXPR constexpr // use only with throwing functions (waiting for C++20)
# define ENTT_THROW
# define ENTT_TRY if(true)
# define ENTT_CATCH if(false)
#endif
#ifdef ENTT_USE_ATOMIC
# include <atomic>
# define ENTT_MAYBE_ATOMIC(Type) std::atomic<Type>
#else
# define ENTT_MAYBE_ATOMIC(Type) Type
#endif
#ifndef ENTT_ID_TYPE
# include <cstdint>
# define ENTT_ID_TYPE std::uint32_t
#endif
#ifndef ENTT_SPARSE_PAGE
# define ENTT_SPARSE_PAGE 4096
#endif
#ifndef ENTT_PACKED_PAGE
# define ENTT_PACKED_PAGE 1024
#endif
#ifdef ENTT_DISABLE_ASSERT
# undef ENTT_ASSERT
# define ENTT_ASSERT(condition, msg) (void(0))
#elif !defined ENTT_ASSERT
# include <cassert>
# define ENTT_ASSERT(condition, msg) assert(condition)
#endif
#ifdef ENTT_DISABLE_ASSERT
# undef ENTT_ASSERT_CONSTEXPR
# define ENTT_ASSERT_CONSTEXPR(condition, msg) (void(0))
#elif !defined ENTT_ASSERT_CONSTEXPR
# define ENTT_ASSERT_CONSTEXPR(condition, msg) ENTT_ASSERT(condition, msg)
#endif
#ifdef ENTT_NO_ETO
# define ENTT_ETO_TYPE(Type) void
#else
# define ENTT_ETO_TYPE(Type) Type
#endif
#ifdef ENTT_STANDARD_CPP
# define ENTT_NONSTD false
#else
# define ENTT_NONSTD true
# if defined __clang__ || defined __GNUC__
# define ENTT_PRETTY_FUNCTION __PRETTY_FUNCTION__
# define ENTT_PRETTY_FUNCTION_PREFIX '='
# define ENTT_PRETTY_FUNCTION_SUFFIX ']'
# elif defined _MSC_VER
# define ENTT_PRETTY_FUNCTION __FUNCSIG__
# define ENTT_PRETTY_FUNCTION_PREFIX '<'
# define ENTT_PRETTY_FUNCTION_SUFFIX '>'
# endif
#endif
#if defined _MSC_VER
# pragma detect_mismatch("entt.version", ENTT_VERSION)
# pragma detect_mismatch("entt.noexcept", ENTT_XSTR(ENTT_TRY))
# pragma detect_mismatch("entt.id", ENTT_XSTR(ENTT_ID_TYPE))
# pragma detect_mismatch("entt.nonstd", ENTT_XSTR(ENTT_NONSTD))
#endif
#endif
// #include "fwd.hpp"
#ifndef ENTT_CORE_FWD_HPP
#define ENTT_CORE_FWD_HPP
#include <cstddef>
// #include "../config/config.h"
namespace entt {
template<std::size_t Len = sizeof(double[2]), std::size_t = alignof(double[2])>
class basic_any;
/*! @brief Alias declaration for type identifiers. */
using id_type = ENTT_ID_TYPE;
/*! @brief Alias declaration for the most common use case. */
using any = basic_any<>;
} // namespace entt
#endif
namespace entt {
/**
* @brief Utility class to disambiguate overloaded functions.
* @tparam N Number of choices available.
*/
template<std::size_t N>
struct choice_t
// Unfortunately, doxygen cannot parse such a construct.
: /*! @cond TURN_OFF_DOXYGEN */ choice_t<N - 1> /*! @endcond */
{};
/*! @copybrief choice_t */
template<>
struct choice_t<0> {};
/**
* @brief Variable template for the choice trick.
* @tparam N Number of choices available.
*/
template<std::size_t N>
inline constexpr choice_t<N> choice{};
/**
* @brief Identity type trait.
*
* Useful to establish non-deduced contexts in template argument deduction
* (waiting for C++20) or to provide types through function arguments.
*
* @tparam Type A type.
*/
template<typename Type>
struct type_identity {
/*! @brief Identity type. */
using type = Type;
};
/**
* @brief Helper type.
* @tparam Type A type.
*/
template<typename Type>
using type_identity_t = typename type_identity<Type>::type;
/**
* @brief A type-only `sizeof` wrapper that returns 0 where `sizeof` complains.
* @tparam Type The type of which to return the size.
* @tparam The size of the type if `sizeof` accepts it, 0 otherwise.
*/
template<typename Type, typename = void>
struct size_of: std::integral_constant<std::size_t, 0u> {};
/*! @copydoc size_of */
template<typename Type>
struct size_of<Type, std::void_t<decltype(sizeof(Type))>>
: std::integral_constant<std::size_t, sizeof(Type)> {};
/**
* @brief Helper variable template.
* @tparam Type The type of which to return the size.
*/
template<typename Type>
inline constexpr std::size_t size_of_v = size_of<Type>::value;
/**
* @brief Using declaration to be used to _repeat_ the same type a number of
* times equal to the size of a given parameter pack.
* @tparam Type A type to repeat.
*/
template<typename Type, typename>
using unpack_as_type = Type;
/**
* @brief Helper variable template to be used to _repeat_ the same value a
* number of times equal to the size of a given parameter pack.
* @tparam Value A value to repeat.
*/
template<auto Value, typename>
inline constexpr auto unpack_as_value = Value;
/**
* @brief Wraps a static constant.
* @tparam Value A static constant.
*/
template<auto Value>
using integral_constant = std::integral_constant<decltype(Value), Value>;
/**
* @brief Alias template to facilitate the creation of named values.
* @tparam Value A constant value at least convertible to `id_type`.
*/
template<id_type Value>
using tag = integral_constant<Value>;
/**
* @brief A class to use to push around lists of types, nothing more.
* @tparam Type Types provided by the type list.
*/
template<typename... Type>
struct type_list {
/*! @brief Type list type. */
using type = type_list;
/*! @brief Compile-time number of elements in the type list. */
static constexpr auto size = sizeof...(Type);
};
/*! @brief Primary template isn't defined on purpose. */
template<std::size_t, typename>
struct type_list_element;
/**
* @brief Provides compile-time indexed access to the types of a type list.
* @tparam Index Index of the type to return.
* @tparam First First type provided by the type list.
* @tparam Other Other types provided by the type list.
*/
template<std::size_t Index, typename First, typename... Other>
struct type_list_element<Index, type_list<First, Other...>>
: type_list_element<Index - 1u, type_list<Other...>> {};
/**
* @brief Provides compile-time indexed access to the types of a type list.
* @tparam First First type provided by the type list.
* @tparam Other Other types provided by the type list.
*/
template<typename First, typename... Other>
struct type_list_element<0u, type_list<First, Other...>> {
/*! @brief Searched type. */
using type = First;
};
/**
* @brief Helper type.
* @tparam Index Index of the type to return.
* @tparam List Type list to search into.
*/
template<std::size_t Index, typename List>
using type_list_element_t = typename type_list_element<Index, List>::type;
/*! @brief Primary template isn't defined on purpose. */
template<typename, typename>
struct type_list_index;
/**
* @brief Provides compile-time type access to the types of a type list.
* @tparam Type Type to look for and for which to return the index.
* @tparam First First type provided by the type list.
* @tparam Other Other types provided by the type list.
*/
template<typename Type, typename First, typename... Other>
struct type_list_index<Type, type_list<First, Other...>> {
/*! @brief Unsigned integer type. */
using value_type = std::size_t;
/*! @brief Compile-time position of the given type in the sublist. */
static constexpr value_type value = 1u + type_list_index<Type, type_list<Other...>>::value;
};
/**
* @brief Provides compile-time type access to the types of a type list.
* @tparam Type Type to look for and for which to return the index.
* @tparam Other Other types provided by the type list.
*/
template<typename Type, typename... Other>
struct type_list_index<Type, type_list<Type, Other...>> {
static_assert(type_list_index<Type, type_list<Other...>>::value == sizeof...(Other), "Non-unique type");
/*! @brief Unsigned integer type. */
using value_type = std::size_t;
/*! @brief Compile-time position of the given type in the sublist. */
static constexpr value_type value = 0u;
};
/**
* @brief Provides compile-time type access to the types of a type list.
* @tparam Type Type to look for and for which to return the index.
*/
template<typename Type>
struct type_list_index<Type, type_list<>> {
/*! @brief Unsigned integer type. */
using value_type = std::size_t;
/*! @brief Compile-time position of the given type in the sublist. */
static constexpr value_type value = 0u;
};
/**
* @brief Helper variable template.
* @tparam List Type list.
* @tparam Type Type to look for and for which to return the index.
*/
template<typename Type, typename List>
inline constexpr std::size_t type_list_index_v = type_list_index<Type, List>::value;
/**
* @brief Concatenates multiple type lists.
* @tparam Type Types provided by the first type list.
* @tparam Other Types provided by the second type list.
* @return A type list composed by the types of both the type lists.
*/
template<typename... Type, typename... Other>
constexpr type_list<Type..., Other...> operator+(type_list<Type...>, type_list<Other...>) {
return {};
}
/*! @brief Primary template isn't defined on purpose. */
template<typename...>
struct type_list_cat;
/*! @brief Concatenates multiple type lists. */
template<>
struct type_list_cat<> {
/*! @brief A type list composed by the types of all the type lists. */
using type = type_list<>;
};
/**
* @brief Concatenates multiple type lists.
* @tparam Type Types provided by the first type list.
* @tparam Other Types provided by the second type list.
* @tparam List Other type lists, if any.
*/
template<typename... Type, typename... Other, typename... List>
struct type_list_cat<type_list<Type...>, type_list<Other...>, List...> {
/*! @brief A type list composed by the types of all the type lists. */
using type = typename type_list_cat<type_list<Type..., Other...>, List...>::type;
};
/**
* @brief Concatenates multiple type lists.
* @tparam Type Types provided by the type list.
*/
template<typename... Type>
struct type_list_cat<type_list<Type...>> {
/*! @brief A type list composed by the types of all the type lists. */
using type = type_list<Type...>;
};
/**
* @brief Helper type.
* @tparam List Type lists to concatenate.
*/
template<typename... List>
using type_list_cat_t = typename type_list_cat<List...>::type;
/*! @brief Primary template isn't defined on purpose. */
template<typename>
struct type_list_unique;
/**
* @brief Removes duplicates types from a type list.
* @tparam Type One of the types provided by the given type list.
* @tparam Other The other types provided by the given type list.
*/
template<typename Type, typename... Other>
struct type_list_unique<type_list<Type, Other...>> {
/*! @brief A type list without duplicate types. */
using type = std::conditional_t<
(std::is_same_v<Type, Other> || ...),
typename type_list_unique<type_list<Other...>>::type,
type_list_cat_t<type_list<Type>, typename type_list_unique<type_list<Other...>>::type>>;
};
/*! @brief Removes duplicates types from a type list. */
template<>
struct type_list_unique<type_list<>> {
/*! @brief A type list without duplicate types. */
using type = type_list<>;
};
/**
* @brief Helper type.
* @tparam Type A type list.
*/
template<typename Type>
using type_list_unique_t = typename type_list_unique<Type>::type;
/**
* @brief Provides the member constant `value` to true if a type list contains a
* given type, false otherwise.
* @tparam List Type list.
* @tparam Type Type to look for.
*/
template<typename List, typename Type>
struct type_list_contains;
/**
* @copybrief type_list_contains
* @tparam Type Types provided by the type list.
* @tparam Other Type to look for.
*/
template<typename... Type, typename Other>
struct type_list_contains<type_list<Type...>, Other>: std::disjunction<std::is_same<Type, Other>...> {};
/**
* @brief Helper variable template.
* @tparam List Type list.
* @tparam Type Type to look for.
*/
template<typename List, typename Type>
inline constexpr bool type_list_contains_v = type_list_contains<List, Type>::value;
/*! @brief Primary template isn't defined on purpose. */
template<typename...>
struct type_list_diff;
/**
* @brief Computes the difference between two type lists.
* @tparam Type Types provided by the first type list.
* @tparam Other Types provided by the second type list.
*/
template<typename... Type, typename... Other>
struct type_list_diff<type_list<Type...>, type_list<Other...>> {
/*! @brief A type list that is the difference between the two type lists. */
using type = type_list_cat_t<std::conditional_t<type_list_contains_v<type_list<Other...>, Type>, type_list<>, type_list<Type>>...>;
};
/**
* @brief Helper type.
* @tparam List Type lists between which to compute the difference.
*/
template<typename... List>
using type_list_diff_t = typename type_list_diff<List...>::type;
/*! @brief Primary template isn't defined on purpose. */
template<typename, template<typename...> class>
struct type_list_transform;
/**
* @brief Applies a given _function_ to a type list and generate a new list.
* @tparam Type Types provided by the type list.
* @tparam Op Unary operation as template class with a type member named `type`.
*/
template<typename... Type, template<typename...> class Op>
struct type_list_transform<type_list<Type...>, Op> {
/*! @brief Resulting type list after applying the transform function. */
using type = type_list<typename Op<Type>::type...>;
};
/**
* @brief Helper type.
* @tparam List Type list.
* @tparam Op Unary operation as template class with a type member named `type`.
*/
template<typename List, template<typename...> class Op>
using type_list_transform_t = typename type_list_transform<List, Op>::type;
/**
* @brief A class to use to push around lists of constant values, nothing more.
* @tparam Value Values provided by the value list.
*/
template<auto... Value>
struct value_list {
/*! @brief Value list type. */
using type = value_list;
/*! @brief Compile-time number of elements in the value list. */
static constexpr auto size = sizeof...(Value);
};
/*! @brief Primary template isn't defined on purpose. */
template<std::size_t, typename>
struct value_list_element;
/**
* @brief Provides compile-time indexed access to the values of a value list.
* @tparam Index Index of the value to return.
* @tparam Value First value provided by the value list.
* @tparam Other Other values provided by the value list.
*/
template<std::size_t Index, auto Value, auto... Other>
struct value_list_element<Index, value_list<Value, Other...>>
: value_list_element<Index - 1u, value_list<Other...>> {};
/**
* @brief Provides compile-time indexed access to the types of a type list.
* @tparam Value First value provided by the value list.
* @tparam Other Other values provided by the value list.
*/
template<auto Value, auto... Other>
struct value_list_element<0u, value_list<Value, Other...>> {
/*! @brief Searched value. */
static constexpr auto value = Value;
};
/**
* @brief Helper type.
* @tparam Index Index of the value to return.
* @tparam List Value list to search into.
*/
template<std::size_t Index, typename List>
inline constexpr auto value_list_element_v = value_list_element<Index, List>::value;
/**
* @brief Concatenates multiple value lists.
* @tparam Value Values provided by the first value list.
* @tparam Other Values provided by the second value list.
* @return A value list composed by the values of both the value lists.
*/
template<auto... Value, auto... Other>
constexpr value_list<Value..., Other...> operator+(value_list<Value...>, value_list<Other...>) {
return {};
}
/*! @brief Primary template isn't defined on purpose. */
template<typename...>
struct value_list_cat;
/*! @brief Concatenates multiple value lists. */
template<>
struct value_list_cat<> {
/*! @brief A value list composed by the values of all the value lists. */
using type = value_list<>;
};
/**
* @brief Concatenates multiple value lists.
* @tparam Value Values provided by the first value list.
* @tparam Other Values provided by the second value list.
* @tparam List Other value lists, if any.
*/
template<auto... Value, auto... Other, typename... List>
struct value_list_cat<value_list<Value...>, value_list<Other...>, List...> {
/*! @brief A value list composed by the values of all the value lists. */
using type = typename value_list_cat<value_list<Value..., Other...>, List...>::type;
};
/**
* @brief Concatenates multiple value lists.
* @tparam Value Values provided by the value list.
*/
template<auto... Value>
struct value_list_cat<value_list<Value...>> {
/*! @brief A value list composed by the values of all the value lists. */
using type = value_list<Value...>;
};
/**
* @brief Helper type.
* @tparam List Value lists to concatenate.
*/
template<typename... List>
using value_list_cat_t = typename value_list_cat<List...>::type;
/*! @brief Same as std::is_invocable, but with tuples. */
template<typename, typename>
struct is_applicable: std::false_type {};
/**
* @copybrief is_applicable
* @tparam Func A valid function type.
* @tparam Tuple Tuple-like type.
* @tparam Args The list of arguments to use to probe the function type.
*/
template<typename Func, template<typename...> class Tuple, typename... Args>
struct is_applicable<Func, Tuple<Args...>>: std::is_invocable<Func, Args...> {};
/**
* @copybrief is_applicable
* @tparam Func A valid function type.
* @tparam Tuple Tuple-like type.
* @tparam Args The list of arguments to use to probe the function type.
*/
template<typename Func, template<typename...> class Tuple, typename... Args>
struct is_applicable<Func, const Tuple<Args...>>: std::is_invocable<Func, Args...> {};
/**
* @brief Helper variable template.
* @tparam Func A valid function type.
* @tparam Args The list of arguments to use to probe the function type.
*/
template<typename Func, typename Args>
inline constexpr bool is_applicable_v = is_applicable<Func, Args>::value;
/*! @brief Same as std::is_invocable_r, but with tuples for arguments. */
template<typename, typename, typename>
struct is_applicable_r: std::false_type {};
/**
* @copybrief is_applicable_r
* @tparam Ret The type to which the return type of the function should be
* convertible.
* @tparam Func A valid function type.
* @tparam Args The list of arguments to use to probe the function type.
*/
template<typename Ret, typename Func, typename... Args>
struct is_applicable_r<Ret, Func, std::tuple<Args...>>: std::is_invocable_r<Ret, Func, Args...> {};
/**
* @brief Helper variable template.
* @tparam Ret The type to which the return type of the function should be
* convertible.
* @tparam Func A valid function type.
* @tparam Args The list of arguments to use to probe the function type.
*/
template<typename Ret, typename Func, typename Args>
inline constexpr bool is_applicable_r_v = is_applicable_r<Ret, Func, Args>::value;
/**
* @brief Provides the member constant `value` to true if a given type is
* complete, false otherwise.
* @tparam Type The type to test.
*/
template<typename Type, typename = void>
struct is_complete: std::false_type {};
/*! @copydoc is_complete */
template<typename Type>
struct is_complete<Type, std::void_t<decltype(sizeof(Type))>>: std::true_type {};
/**
* @brief Helper variable template.
* @tparam Type The type to test.
*/
template<typename Type>
inline constexpr bool is_complete_v = is_complete<Type>::value;
/**
* @brief Provides the member constant `value` to true if a given type is an
* iterator, false otherwise.
* @tparam Type The type to test.
*/
template<typename Type, typename = void>
struct is_iterator: std::false_type {};
/**
* @cond TURN_OFF_DOXYGEN
* Internal details not to be documented.
*/
namespace internal {
template<typename, typename = void>
struct has_iterator_category: std::false_type {};
template<typename Type>
struct has_iterator_category<Type, std::void_t<typename std::iterator_traits<Type>::iterator_category>>: std::true_type {};
} // namespace internal
/**
* Internal details not to be documented.
* @endcond
*/
/*! @copydoc is_iterator */
template<typename Type>
struct is_iterator<Type, std::enable_if_t<!std::is_same_v<std::remove_cv_t<std::remove_pointer_t<Type>>, void>>>
: internal::has_iterator_category<Type> {};
/**
* @brief Helper variable template.
* @tparam Type The type to test.
*/
template<typename Type>
inline constexpr bool is_iterator_v = is_iterator<Type>::value;
/**
* @brief Provides the member constant `value` to true if a given type is both
* an empty and non-final class, false otherwise.
* @tparam Type The type to test
*/
template<typename Type>
struct is_ebco_eligible
: std::conjunction<std::is_empty<Type>, std::negation<std::is_final<Type>>> {};
/**
* @brief Helper variable template.
* @tparam Type The type to test.
*/
template<typename Type>
inline constexpr bool is_ebco_eligible_v = is_ebco_eligible<Type>::value;
/**
* @brief Provides the member constant `value` to true if `Type::is_transparent`
* is valid and denotes a type, false otherwise.
* @tparam Type The type to test.
*/
template<typename Type, typename = void>
struct is_transparent: std::false_type {};
/*! @copydoc is_transparent */
template<typename Type>
struct is_transparent<Type, std::void_t<typename Type::is_transparent>>: std::true_type {};
/**
* @brief Helper variable template.
* @tparam Type The type to test.
*/
template<typename Type>
inline constexpr bool is_transparent_v = is_transparent<Type>::value;
/**
* @brief Provides the member constant `value` to true if a given type is
* equality comparable, false otherwise.
* @tparam Type The type to test.
*/
template<typename Type, typename = void>
struct is_equality_comparable: std::false_type {};
/**
* @cond TURN_OFF_DOXYGEN
* Internal details not to be documented.
*/
namespace internal {
template<typename, typename = void>
struct has_tuple_size_value: std::false_type {};
template<typename Type>
struct has_tuple_size_value<Type, std::void_t<decltype(std::tuple_size<const Type>::value)>>: std::true_type {};
template<typename Type, std::size_t... Index>
[[nodiscard]] constexpr bool unpack_maybe_equality_comparable(std::index_sequence<Index...>) {
return (is_equality_comparable<std::tuple_element_t<Index, Type>>::value && ...);
}
template<typename>
[[nodiscard]] constexpr bool maybe_equality_comparable(choice_t<0>) {
return true;
}
template<typename Type>
[[nodiscard]] constexpr auto maybe_equality_comparable(choice_t<1>) -> decltype(std::declval<typename Type::value_type>(), bool{}) {
if constexpr(is_iterator_v<Type>) {
return true;
} else if constexpr(std::is_same_v<typename Type::value_type, Type>) {
return maybe_equality_comparable<Type>(choice<0>);
} else {
return is_equality_comparable<typename Type::value_type>::value;
}
}
template<typename Type>
[[nodiscard]] constexpr std::enable_if_t<is_complete_v<std::tuple_size<std::remove_cv_t<Type>>>, bool> maybe_equality_comparable(choice_t<2>) {
if constexpr(has_tuple_size_value<Type>::value) {
return unpack_maybe_equality_comparable<Type>(std::make_index_sequence<std::tuple_size<Type>::value>{});
} else {
return maybe_equality_comparable<Type>(choice<1>);
}
}
} // namespace internal
/**
* Internal details not to be documented.
* @endcond
*/
/*! @copydoc is_equality_comparable */
template<typename Type>
struct is_equality_comparable<Type, std::void_t<decltype(std::declval<Type>() == std::declval<Type>())>>
: std::bool_constant<internal::maybe_equality_comparable<Type>(choice<2>)> {};
/**
* @brief Helper variable template.
* @tparam Type The type to test.
*/
template<typename Type>
inline constexpr bool is_equality_comparable_v = is_equality_comparable<Type>::value;
/**
* @brief Transcribes the constness of a type to another type.
* @tparam To The type to which to transcribe the constness.
* @tparam From The type from which to transcribe the constness.
*/
template<typename To, typename From>
struct constness_as {
/*! @brief The type resulting from the transcription of the constness. */
using type = std::remove_const_t<To>;
};
/*! @copydoc constness_as */
template<typename To, typename From>
struct constness_as<To, const From> {
/*! @brief The type resulting from the transcription of the constness. */
using type = const To;
};
/**
* @brief Alias template to facilitate the transcription of the constness.
* @tparam To The type to which to transcribe the constness.
* @tparam From The type from which to transcribe the constness.
*/
template<typename To, typename From>
using constness_as_t = typename constness_as<To, From>::type;
/**
* @brief Extracts the class of a non-static member object or function.
* @tparam Member A pointer to a non-static member object or function.
*/
template<typename Member>
class member_class {
static_assert(std::is_member_pointer_v<Member>, "Invalid pointer type to non-static member object or function");
template<typename Class, typename Ret, typename... Args>
static Class *clazz(Ret (Class::*)(Args...));
template<typename Class, typename Ret, typename... Args>
static Class *clazz(Ret (Class::*)(Args...) const);
template<typename Class, typename Type>
static Class *clazz(Type Class::*);
public:
/*! @brief The class of the given non-static member object or function. */
using type = std::remove_pointer_t<decltype(clazz(std::declval<Member>()))>;
};
/**
* @brief Helper type.
* @tparam Member A pointer to a non-static member object or function.
*/
template<typename Member>
using member_class_t = typename member_class<Member>::type;
/**
* @brief Extracts the n-th argument of a given function or member function.
* @tparam Index The index of the argument to extract.
* @tparam Candidate A valid function, member function or data member.
*/
template<std::size_t Index, auto Candidate>
class nth_argument {
template<typename Ret, typename... Args>
static constexpr type_list<Args...> pick_up(Ret (*)(Args...));
template<typename Ret, typename Class, typename... Args>
static constexpr type_list<Args...> pick_up(Ret (Class ::*)(Args...));
template<typename Ret, typename Class, typename... Args>
static constexpr type_list<Args...> pick_up(Ret (Class ::*)(Args...) const);
template<typename Type, typename Class>
static constexpr type_list<Type> pick_up(Type Class ::*);
public:
/*! @brief N-th argument of the given function or member function. */
using type = type_list_element_t<Index, decltype(pick_up(Candidate))>;
};
/**
* @brief Helper type.
* @tparam Index The index of the argument to extract.
* @tparam Candidate A valid function, member function or data member.
*/
template<std::size_t Index, auto Candidate>
using nth_argument_t = typename nth_argument<Index, Candidate>::type;
} // namespace entt
#endif
namespace entt {
/**
* @cond TURN_OFF_DOXYGEN
* Internal details not to be documented.
*/
namespace internal {
template<typename Type, std::size_t, typename = void>
struct compressed_pair_element {
using reference = Type &;
using const_reference = const Type &;
template<bool Dummy = true, typename = std::enable_if_t<Dummy && std::is_default_constructible_v<Type>>>
constexpr compressed_pair_element() noexcept(std::is_nothrow_default_constructible_v<Type>)
: value{} {}
template<typename Arg, typename = std::enable_if_t<!std::is_same_v<std::remove_cv_t<std::remove_reference_t<Arg>>, compressed_pair_element>>>
constexpr compressed_pair_element(Arg &&arg) noexcept(std::is_nothrow_constructible_v<Type, Arg>)
: value{std::forward<Arg>(arg)} {}
template<typename... Args, std::size_t... Index>
constexpr compressed_pair_element(std::tuple<Args...> args, std::index_sequence<Index...>) noexcept(std::is_nothrow_constructible_v<Type, Args...>)
: value{std::forward<Args>(std::get<Index>(args))...} {}
[[nodiscard]] constexpr reference get() noexcept {
return value;
}
[[nodiscard]] constexpr const_reference get() const noexcept {
return value;
}
private:
Type value;
};
template<typename Type, std::size_t Tag>
struct compressed_pair_element<Type, Tag, std::enable_if_t<is_ebco_eligible_v<Type>>>: Type {
using reference = Type &;
using const_reference = const Type &;
using base_type = Type;
template<bool Dummy = true, typename = std::enable_if_t<Dummy && std::is_default_constructible_v<base_type>>>
constexpr compressed_pair_element() noexcept(std::is_nothrow_default_constructible_v<base_type>)
: base_type{} {}
template<typename Arg, typename = std::enable_if_t<!std::is_same_v<std::remove_cv_t<std::remove_reference_t<Arg>>, compressed_pair_element>>>
constexpr compressed_pair_element(Arg &&arg) noexcept(std::is_nothrow_constructible_v<base_type, Arg>)
: base_type{std::forward<Arg>(arg)} {}
template<typename... Args, std::size_t... Index>
constexpr compressed_pair_element(std::tuple<Args...> args, std::index_sequence<Index...>) noexcept(std::is_nothrow_constructible_v<base_type, Args...>)
: base_type{std::forward<Args>(std::get<Index>(args))...} {}
[[nodiscard]] constexpr reference get() noexcept {
return *this;
}
[[nodiscard]] constexpr const_reference get() const noexcept {
return *this;
}
};
} // namespace internal
/**
* Internal details not to be documented.
* @endcond
*/
/**
* @brief A compressed pair.
*
* A pair that exploits the _Empty Base Class Optimization_ (or _EBCO_) to
* reduce its final size to a minimum.
*
* @tparam First The type of the first element that the pair stores.
* @tparam Second The type of the second element that the pair stores.
*/
template<typename First, typename Second>
class compressed_pair final
: internal::compressed_pair_element<First, 0u>,
internal::compressed_pair_element<Second, 1u> {
using first_base = internal::compressed_pair_element<First, 0u>;
using second_base = internal::compressed_pair_element<Second, 1u>;
public:
/*! @brief The type of the first element that the pair stores. */
using first_type = First;
/*! @brief The type of the second element that the pair stores. */
using second_type = Second;
/**
* @brief Default constructor, conditionally enabled.
*
* This constructor is only available when the types that the pair stores
* are both at least default constructible.
*
* @tparam Dummy Dummy template parameter used for internal purposes.
*/
template<bool Dummy = true, typename = std::enable_if_t<Dummy && std::is_default_constructible_v<first_type> && std::is_default_constructible_v<second_type>>>
constexpr compressed_pair() noexcept(std::is_nothrow_default_constructible_v<first_base> &&std::is_nothrow_default_constructible_v<second_base>)
: first_base{},
second_base{} {}
/**
* @brief Copy constructor.
* @param other The instance to copy from.
*/
constexpr compressed_pair(const compressed_pair &other) noexcept(std::is_nothrow_copy_constructible_v<first_base> &&std::is_nothrow_copy_constructible_v<second_base>) = default;
/**
* @brief Move constructor.
* @param other The instance to move from.
*/
constexpr compressed_pair(compressed_pair &&other) noexcept(std::is_nothrow_move_constructible_v<first_base> &&std::is_nothrow_move_constructible_v<second_base>) = default;
/**
* @brief Constructs a pair from its values.
* @tparam Arg Type of value to use to initialize the first element.
* @tparam Other Type of value to use to initialize the second element.
* @param arg Value to use to initialize the first element.
* @param other Value to use to initialize the second element.
*/
template<typename Arg, typename Other>
constexpr compressed_pair(Arg &&arg, Other &&other) noexcept(std::is_nothrow_constructible_v<first_base, Arg> &&std::is_nothrow_constructible_v<second_base, Other>)
: first_base{std::forward<Arg>(arg)},
second_base{std::forward<Other>(other)} {}
/**
* @brief Constructs a pair by forwarding the arguments to its parts.
* @tparam Args Types of arguments to use to initialize the first element.
* @tparam Other Types of arguments to use to initialize the second element.
* @param args Arguments to use to initialize the first element.
* @param other Arguments to use to initialize the second element.
*/
template<typename... Args, typename... Other>
constexpr compressed_pair(std::piecewise_construct_t, std::tuple<Args...> args, std::tuple<Other...> other) noexcept(std::is_nothrow_constructible_v<first_base, Args...> &&std::is_nothrow_constructible_v<second_base, Other...>)
: first_base{std::move(args), std::index_sequence_for<Args...>{}},
second_base{std::move(other), std::index_sequence_for<Other...>{}} {}
/**
* @brief Copy assignment operator.
* @param other The instance to copy from.
* @return This compressed pair object.
*/
constexpr compressed_pair &operator=(const compressed_pair &other) noexcept(std::is_nothrow_copy_assignable_v<first_base> &&std::is_nothrow_copy_assignable_v<second_base>) = default;
/**
* @brief Move assignment operator.
* @param other The instance to move from.
* @return This compressed pair object.
*/
constexpr compressed_pair &operator=(compressed_pair &&other) noexcept(std::is_nothrow_move_assignable_v<first_base> &&std::is_nothrow_move_assignable_v<second_base>) = default;
/**
* @brief Returns the first element that a pair stores.
* @return The first element that a pair stores.
*/
[[nodiscard]] constexpr first_type &first() noexcept {
return static_cast<first_base &>(*this).get();
}
/*! @copydoc first */
[[nodiscard]] constexpr const first_type &first() const noexcept {
return static_cast<const first_base &>(*this).get();
}
/**
* @brief Returns the second element that a pair stores.
* @return The second element that a pair stores.
*/
[[nodiscard]] constexpr second_type &second() noexcept {
return static_cast<second_base &>(*this).get();
}
/*! @copydoc second */
[[nodiscard]] constexpr const second_type &second() const noexcept {
return static_cast<const second_base &>(*this).get();
}
/**
* @brief Swaps two compressed pair objects.
* @param other The compressed pair to swap with.
*/
constexpr void swap(compressed_pair &other) noexcept(std::is_nothrow_swappable_v<first_type> &&std::is_nothrow_swappable_v<second_type>) {
using std::swap;
swap(first(), other.first());
swap(second(), other.second());
}
/**
* @brief Extracts an element from the compressed pair.
* @tparam Index An integer value that is either 0 or 1.
* @return Returns a reference to the first element if `Index` is 0 and a
* reference to the second element if `Index` is 1.
*/
template<std::size_t Index>
constexpr decltype(auto) get() noexcept {
if constexpr(Index == 0u) {
return first();
} else {
static_assert(Index == 1u, "Index out of bounds");
return second();
}
}
/*! @copydoc get */
template<std::size_t Index>
constexpr decltype(auto) get() const noexcept {
if constexpr(Index == 0u) {
return first();
} else {
static_assert(Index == 1u, "Index out of bounds");
return second();
}
}
};
/**
* @brief Deduction guide.
* @tparam Type Type of value to use to initialize the first element.
* @tparam Other Type of value to use to initialize the second element.
*/
template<typename Type, typename Other>
compressed_pair(Type &&, Other &&) -> compressed_pair<std::decay_t<Type>, std::decay_t<Other>>;
/**
* @brief Swaps two compressed pair objects.
* @tparam First The type of the first element that the pairs store.
* @tparam Second The type of the second element that the pairs store.
* @param lhs A valid compressed pair object.
* @param rhs A valid compressed pair object.
*/
template<typename First, typename Second>
inline constexpr void swap(compressed_pair<First, Second> &lhs, compressed_pair<First, Second> &rhs) {
lhs.swap(rhs);
}
} // namespace entt
// disable structured binding support for clang 6, it messes when specializing tuple_size
#if !defined __clang_major__ || __clang_major__ > 6
namespace std {
/**
* @brief `std::tuple_size` specialization for `compressed_pair`s.
* @tparam First The type of the first element that the pair stores.
* @tparam Second The type of the second element that the pair stores.
*/
template<typename First, typename Second>
struct tuple_size<entt::compressed_pair<First, Second>>: integral_constant<size_t, 2u> {};
/**
* @brief `std::tuple_element` specialization for `compressed_pair`s.
* @tparam Index The index of the type to return.
* @tparam First The type of the first element that the pair stores.
* @tparam Second The type of the second element that the pair stores.
*/
template<size_t Index, typename First, typename Second>
struct tuple_element<Index, entt::compressed_pair<First, Second>>: conditional<Index == 0u, First, Second> {
static_assert(Index < 2u, "Index out of bounds");
};
} // namespace std
#endif
#endif
// #include "../core/iterator.hpp"
#ifndef ENTT_CORE_ITERATOR_HPP
#define ENTT_CORE_ITERATOR_HPP
#include <iterator>
#include <memory>
#include <type_traits>
#include <utility>
namespace entt {
/**
* @brief Helper type to use as pointer with input iterators.
* @tparam Type of wrapped value.
*/
template<typename Type>
struct input_iterator_pointer final {
/*! @brief Value type. */
using value_type = Type;
/*! @brief Pointer type. */
using pointer = Type *;
/*! @brief Reference type. */
using reference = Type &;
/**
* @brief Constructs a proxy object by move.
* @param val Value to use to initialize the proxy object.
*/
constexpr input_iterator_pointer(value_type &&val) noexcept(std::is_nothrow_move_constructible_v<value_type>)
: value{std::move(val)} {}
/**
* @brief Access operator for accessing wrapped values.
* @return A pointer to the wrapped value.
*/
[[nodiscard]] constexpr pointer operator->() noexcept {
return std::addressof(value);
}
/**
* @brief Dereference operator for accessing wrapped values.
* @return A reference to the wrapped value.
*/
[[nodiscard]] constexpr reference operator*() noexcept {
return value;
}
private:
Type value;
};
/**
* @brief Plain iota iterator (waiting for C++20).
* @tparam Type Value type.
*/
template<typename Type>
class iota_iterator final {
static_assert(std::is_integral_v<Type>, "Not an integral type");
public:
/*! @brief Value type, likely an integral one. */
using value_type = Type;
/*! @brief Invalid pointer type. */
using pointer = void;
/*! @brief Non-reference type, same as value type. */
using reference = value_type;
/*! @brief Difference type. */
using difference_type = std::ptrdiff_t;
/*! @brief Iterator category. */
using iterator_category = std::input_iterator_tag;
/*! @brief Default constructor. */
constexpr iota_iterator() noexcept
: current{} {}
/**
* @brief Constructs an iota iterator from a given value.
* @param init The initial value assigned to the iota iterator.
*/
constexpr iota_iterator(const value_type init) noexcept
: current{init} {}
/**
* @brief Pre-increment operator.
* @return This iota iterator.
*/
constexpr iota_iterator &operator++() noexcept {
return ++current, *this;
}
/**
* @brief Post-increment operator.
* @return This iota iterator.
*/
constexpr iota_iterator operator++(int) noexcept {
iota_iterator orig = *this;
return ++(*this), orig;
}
/**
* @brief Dereference operator.
* @return The underlying value.
*/
[[nodiscard]] constexpr reference operator*() const noexcept {
return current;
}
private:
value_type current;
};
/**
* @brief Comparison operator.
* @tparam Type Value type of the iota iterator.
* @param lhs A properly initialized iota iterator.
* @param rhs A properly initialized iota iterator.
* @return True if the two iterators are identical, false otherwise.
*/
template<typename Type>
[[nodiscard]] constexpr bool operator==(const iota_iterator<Type> &lhs, const iota_iterator<Type> &rhs) noexcept {
return *lhs == *rhs;
}
/**
* @brief Comparison operator.
* @tparam Type Value type of the iota iterator.
* @param lhs A properly initialized iota iterator.
* @param rhs A properly initialized iota iterator.
* @return True if the two iterators differ, false otherwise.
*/
template<typename Type>
[[nodiscard]] constexpr bool operator!=(const iota_iterator<Type> &lhs, const iota_iterator<Type> &rhs) noexcept {
return !(lhs == rhs);
}
/**
* @brief Utility class to create an iterable object from a pair of iterators.
* @tparam It Type of iterator.
* @tparam Sentinel Type of sentinel.
*/
template<typename It, typename Sentinel = It>
struct iterable_adaptor final {
/*! @brief Value type. */
using value_type = typename std::iterator_traits<It>::value_type;
/*! @brief Iterator type. */
using iterator = It;
/*! @brief Sentinel type. */
using sentinel = Sentinel;
/*! @brief Default constructor. */
constexpr iterable_adaptor() noexcept(std::is_nothrow_default_constructible_v<iterator> &&std::is_nothrow_default_constructible_v<sentinel>)
: first{},
last{} {}
/**
* @brief Creates an iterable object from a pair of iterators.
* @param from Begin iterator.
* @param to End iterator.
*/
constexpr iterable_adaptor(iterator from, sentinel to) noexcept(std::is_nothrow_move_constructible_v<iterator> &&std::is_nothrow_move_constructible_v<sentinel>)
: first{std::move(from)},
last{std::move(to)} {}
/**
* @brief Returns an iterator to the beginning.
* @return An iterator to the first element of the range.
*/
[[nodiscard]] constexpr iterator begin() const noexcept {
return first;
}
/**
* @brief Returns an iterator to the end.
* @return An iterator to the element following the last element of the
* range.
*/
[[nodiscard]] constexpr sentinel end() const noexcept {
return last;
}
/*! @copydoc begin */
[[nodiscard]] constexpr iterator cbegin() const noexcept {
return begin();
}
/*! @copydoc end */
[[nodiscard]] constexpr sentinel cend() const noexcept {
return end();
}
private:
It first;
Sentinel last;
};
} // namespace entt
#endif
// #include "../core/memory.hpp"
#ifndef ENTT_CORE_MEMORY_HPP
#define ENTT_CORE_MEMORY_HPP
#include <cstddef>
#include <limits>
#include <memory>
#include <tuple>
#include <type_traits>
#include <utility>
// #include "../config/config.h"
namespace entt {
/**
* @brief Checks whether a value is a power of two or not.
* @param value A value that may or may not be a power of two.
* @return True if the value is a power of two, false otherwise.
*/
[[nodiscard]] inline constexpr bool is_power_of_two(const std::size_t value) noexcept {
return value && ((value & (value - 1)) == 0);
}
/**
* @brief Computes the smallest power of two greater than or equal to a value.
* @param value The value to use.
* @return The smallest power of two greater than or equal to the given value.
*/
[[nodiscard]] inline constexpr std::size_t next_power_of_two(const std::size_t value) noexcept {
ENTT_ASSERT_CONSTEXPR(value < (std::size_t{1u} << (std::numeric_limits<std::size_t>::digits - 1)), "Numeric limits exceeded");
std::size_t curr = value - (value != 0u);
for(int next = 1; next < std::numeric_limits<std::size_t>::digits; next = next * 2) {
curr |= curr >> next;
}
return ++curr;
}
/**
* @brief Fast module utility function (powers of two only).
* @param value A value for which to calculate the modulus.
* @param mod _Modulus_, it must be a power of two.
* @return The common remainder.
*/
[[nodiscard]] inline constexpr std::size_t fast_mod(const std::size_t value, const std::size_t mod) noexcept {
ENTT_ASSERT_CONSTEXPR(is_power_of_two(mod), "Value must be a power of two");
return value & (mod - 1u);
}
/**
* @brief Unwraps fancy pointers, does nothing otherwise (waiting for C++20).
* @tparam Type Pointer type.
* @param ptr Fancy or raw pointer.
* @return A raw pointer that represents the address of the original pointer.
*/
template<typename Type>
[[nodiscard]] constexpr auto to_address(Type &&ptr) noexcept {
if constexpr(std::is_pointer_v<std::decay_t<Type>>) {
return ptr;
} else {
return to_address(std::forward<Type>(ptr).operator->());
}
}
/**
* @brief Utility function to design allocation-aware containers.
* @tparam Allocator Type of allocator.
* @param lhs A valid allocator.
* @param rhs Another valid allocator.
*/
template<typename Allocator>
constexpr void propagate_on_container_copy_assignment([[maybe_unused]] Allocator &lhs, [[maybe_unused]] Allocator &rhs) noexcept {
if constexpr(std::allocator_traits<Allocator>::propagate_on_container_copy_assignment::value) {
lhs = rhs;
}
}
/**
* @brief Utility function to design allocation-aware containers.
* @tparam Allocator Type of allocator.
* @param lhs A valid allocator.
* @param rhs Another valid allocator.
*/
template<typename Allocator>
constexpr void propagate_on_container_move_assignment([[maybe_unused]] Allocator &lhs, [[maybe_unused]] Allocator &rhs) noexcept {
if constexpr(std::allocator_traits<Allocator>::propagate_on_container_move_assignment::value) {
lhs = std::move(rhs);
}
}
/**
* @brief Utility function to design allocation-aware containers.
* @tparam Allocator Type of allocator.
* @param lhs A valid allocator.
* @param rhs Another valid allocator.
*/
template<typename Allocator>
constexpr void propagate_on_container_swap([[maybe_unused]] Allocator &lhs, [[maybe_unused]] Allocator &rhs) noexcept {
if constexpr(std::allocator_traits<Allocator>::propagate_on_container_swap::value) {
using std::swap;
swap(lhs, rhs);
} else {
ENTT_ASSERT_CONSTEXPR(lhs == rhs, "Cannot swap the containers");
}
}
/**
* @brief Deleter for allocator-aware unique pointers (waiting for C++20).
* @tparam Args Types of arguments to use to construct the object.
*/
template<typename Allocator>
struct allocation_deleter: private Allocator {
/*! @brief Allocator type. */
using allocator_type = Allocator;
/*! @brief Pointer type. */
using pointer = typename std::allocator_traits<Allocator>::pointer;
/**
* @brief Inherited constructors.
* @param alloc The allocator to use.
*/
constexpr allocation_deleter(const allocator_type &alloc) noexcept(std::is_nothrow_copy_constructible_v<allocator_type>)
: Allocator{alloc} {}
/**
* @brief Destroys the pointed object and deallocates its memory.
* @param ptr A valid pointer to an object of the given type.
*/
constexpr void operator()(pointer ptr) noexcept(std::is_nothrow_destructible_v<typename allocator_type::value_type>) {
using alloc_traits = typename std::allocator_traits<Allocator>;
alloc_traits::destroy(*this, to_address(ptr));
alloc_traits::deallocate(*this, ptr, 1u);
}
};
/**
* @brief Allows `std::unique_ptr` to use allocators (waiting for C++20).
* @tparam Type Type of object to allocate for and to construct.
* @tparam Allocator Type of allocator used to manage memory and elements.
* @tparam Args Types of arguments to use to construct the object.
* @param allocator The allocator to use.
* @param args Parameters to use to construct the object.
* @return A properly initialized unique pointer with a custom deleter.
*/
template<typename Type, typename Allocator, typename... Args>
ENTT_CONSTEXPR auto allocate_unique(Allocator &allocator, Args &&...args) {
static_assert(!std::is_array_v<Type>, "Array types are not supported");
using alloc_traits = typename std::allocator_traits<Allocator>::template rebind_traits<Type>;
using allocator_type = typename alloc_traits::allocator_type;
allocator_type alloc{allocator};
auto ptr = alloc_traits::allocate(alloc, 1u);
ENTT_TRY {
alloc_traits::construct(alloc, to_address(ptr), std::forward<Args>(args)...);
}
ENTT_CATCH {
alloc_traits::deallocate(alloc, ptr, 1u);
ENTT_THROW;
}
return std::unique_ptr<Type, allocation_deleter<allocator_type>>{ptr, alloc};
}
/**
* @cond TURN_OFF_DOXYGEN
* Internal details not to be documented.
*/
namespace internal {
template<typename Type>
struct uses_allocator_construction {
template<typename Allocator, typename... Params>
static constexpr auto args([[maybe_unused]] const Allocator &allocator, Params &&...params) noexcept {
if constexpr(!std::uses_allocator_v<Type, Allocator> && std::is_constructible_v<Type, Params...>) {
return std::forward_as_tuple(std::forward<Params>(params)...);
} else {
static_assert(std::uses_allocator_v<Type, Allocator>, "Ill-formed request");
if constexpr(std::is_constructible_v<Type, std::allocator_arg_t, const Allocator &, Params...>) {
return std::tuple<std::allocator_arg_t, const Allocator &, Params &&...>{std::allocator_arg, allocator, std::forward<Params>(params)...};
} else {
static_assert(std::is_constructible_v<Type, Params..., const Allocator &>, "Ill-formed request");
return std::forward_as_tuple(std::forward<Params>(params)..., allocator);
}
}
}
};
template<typename Type, typename Other>
struct uses_allocator_construction<std::pair<Type, Other>> {
using type = std::pair<Type, Other>;
template<typename Allocator, typename First, typename Second>
static constexpr auto args(const Allocator &allocator, std::piecewise_construct_t, First &&first, Second &&second) noexcept {
return std::make_tuple(
std::piecewise_construct,
std::apply([&allocator](auto &&...curr) { return uses_allocator_construction<Type>::args(allocator, std::forward<decltype(curr)>(curr)...); }, std::forward<First>(first)),
std::apply([&allocator](auto &&...curr) { return uses_allocator_construction<Other>::args(allocator, std::forward<decltype(curr)>(curr)...); }, std::forward<Second>(second)));
}
template<typename Allocator>
static constexpr auto args(const Allocator &allocator) noexcept {
return uses_allocator_construction<type>::args(allocator, std::piecewise_construct, std::tuple<>{}, std::tuple<>{});
}
template<typename Allocator, typename First, typename Second>
static constexpr auto args(const Allocator &allocator, First &&first, Second &&second) noexcept {
return uses_allocator_construction<type>::args(allocator, std::piecewise_construct, std::forward_as_tuple(std::forward<First>(first)), std::forward_as_tuple(std::forward<Second>(second)));
}
template<typename Allocator, typename First, typename Second>
static constexpr auto args(const Allocator &allocator, const std::pair<First, Second> &value) noexcept {
return uses_allocator_construction<type>::args(allocator, std::piecewise_construct, std::forward_as_tuple(value.first), std::forward_as_tuple(value.second));
}
template<typename Allocator, typename First, typename Second>
static constexpr auto args(const Allocator &allocator, std::pair<First, Second> &&value) noexcept {
return uses_allocator_construction<type>::args(allocator, std::piecewise_construct, std::forward_as_tuple(std::move(value.first)), std::forward_as_tuple(std::move(value.second)));
}
};
} // namespace internal
/**
* Internal details not to be documented.
* @endcond
*/
/**
* @brief Uses-allocator construction utility (waiting for C++20).
*
* Primarily intended for internal use. Prepares the argument list needed to
* create an object of a given type by means of uses-allocator construction.
*
* @tparam Type Type to return arguments for.
* @tparam Allocator Type of allocator used to manage memory and elements.
* @tparam Args Types of arguments to use to construct the object.
* @param allocator The allocator to use.
* @param args Parameters to use to construct the object.
* @return The arguments needed to create an object of the given type.
*/
template<typename Type, typename Allocator, typename... Args>
constexpr auto uses_allocator_construction_args(const Allocator &allocator, Args &&...args) noexcept {
return internal::uses_allocator_construction<Type>::args(allocator, std::forward<Args>(args)...);
}
/**
* @brief Uses-allocator construction utility (waiting for C++20).
*
* Primarily intended for internal use. Creates an object of a given type by
* means of uses-allocator construction.
*
* @tparam Type Type of object to create.
* @tparam Allocator Type of allocator used to manage memory and elements.
* @tparam Args Types of arguments to use to construct the object.
* @param allocator The allocator to use.
* @param args Parameters to use to construct the object.
* @return A newly created object of the given type.
*/
template<typename Type, typename Allocator, typename... Args>
constexpr Type make_obj_using_allocator(const Allocator &allocator, Args &&...args) {
return std::make_from_tuple<Type>(internal::uses_allocator_construction<Type>::args(allocator, std::forward<Args>(args)...));
}
/**
* @brief Uses-allocator construction utility (waiting for C++20).
*
* Primarily intended for internal use. Creates an object of a given type by
* means of uses-allocator construction at an uninitialized memory location.
*
* @tparam Type Type of object to create.
* @tparam Allocator Type of allocator used to manage memory and elements.
* @tparam Args Types of arguments to use to construct the object.
* @param value Memory location in which to place the object.
* @param allocator The allocator to use.
* @param args Parameters to use to construct the object.
* @return A pointer to the newly created object of the given type.
*/
template<typename Type, typename Allocator, typename... Args>
constexpr Type *uninitialized_construct_using_allocator(Type *value, const Allocator &allocator, Args &&...args) {
return std::apply([value](auto &&...curr) { return new(value) Type(std::forward<decltype(curr)>(curr)...); }, internal::uses_allocator_construction<Type>::args(allocator, std::forward<Args>(args)...));
}
} // namespace entt
#endif
// #include "../core/type_traits.hpp"
#ifndef ENTT_CORE_TYPE_TRAITS_HPP
#define ENTT_CORE_TYPE_TRAITS_HPP
#include <cstddef>
#include <iterator>
#include <type_traits>
#include <utility>
// #include "../config/config.h"
// #include "fwd.hpp"
namespace entt {
/**
* @brief Utility class to disambiguate overloaded functions.
* @tparam N Number of choices available.
*/
template<std::size_t N>
struct choice_t
// Unfortunately, doxygen cannot parse such a construct.
: /*! @cond TURN_OFF_DOXYGEN */ choice_t<N - 1> /*! @endcond */
{};
/*! @copybrief choice_t */
template<>
struct choice_t<0> {};
/**
* @brief Variable template for the choice trick.
* @tparam N Number of choices available.
*/
template<std::size_t N>
inline constexpr choice_t<N> choice{};
/**
* @brief Identity type trait.
*
* Useful to establish non-deduced contexts in template argument deduction
* (waiting for C++20) or to provide types through function arguments.
*
* @tparam Type A type.
*/
template<typename Type>
struct type_identity {
/*! @brief Identity type. */
using type = Type;
};
/**
* @brief Helper type.
* @tparam Type A type.
*/
template<typename Type>
using type_identity_t = typename type_identity<Type>::type;
/**
* @brief A type-only `sizeof` wrapper that returns 0 where `sizeof` complains.
* @tparam Type The type of which to return the size.
* @tparam The size of the type if `sizeof` accepts it, 0 otherwise.
*/
template<typename Type, typename = void>
struct size_of: std::integral_constant<std::size_t, 0u> {};
/*! @copydoc size_of */
template<typename Type>
struct size_of<Type, std::void_t<decltype(sizeof(Type))>>
: std::integral_constant<std::size_t, sizeof(Type)> {};
/**
* @brief Helper variable template.
* @tparam Type The type of which to return the size.
*/
template<typename Type>
inline constexpr std::size_t size_of_v = size_of<Type>::value;
/**
* @brief Using declaration to be used to _repeat_ the same type a number of
* times equal to the size of a given parameter pack.
* @tparam Type A type to repeat.
*/
template<typename Type, typename>
using unpack_as_type = Type;
/**
* @brief Helper variable template to be used to _repeat_ the same value a
* number of times equal to the size of a given parameter pack.
* @tparam Value A value to repeat.
*/
template<auto Value, typename>
inline constexpr auto unpack_as_value = Value;
/**
* @brief Wraps a static constant.
* @tparam Value A static constant.
*/
template<auto Value>
using integral_constant = std::integral_constant<decltype(Value), Value>;
/**
* @brief Alias template to facilitate the creation of named values.
* @tparam Value A constant value at least convertible to `id_type`.
*/
template<id_type Value>
using tag = integral_constant<Value>;
/**
* @brief A class to use to push around lists of types, nothing more.
* @tparam Type Types provided by the type list.
*/
template<typename... Type>
struct type_list {
/*! @brief Type list type. */
using type = type_list;
/*! @brief Compile-time number of elements in the type list. */
static constexpr auto size = sizeof...(Type);
};
/*! @brief Primary template isn't defined on purpose. */
template<std::size_t, typename>
struct type_list_element;
/**
* @brief Provides compile-time indexed access to the types of a type list.
* @tparam Index Index of the type to return.
* @tparam First First type provided by the type list.
* @tparam Other Other types provided by the type list.
*/
template<std::size_t Index, typename First, typename... Other>
struct type_list_element<Index, type_list<First, Other...>>
: type_list_element<Index - 1u, type_list<Other...>> {};
/**
* @brief Provides compile-time indexed access to the types of a type list.
* @tparam First First type provided by the type list.
* @tparam Other Other types provided by the type list.
*/
template<typename First, typename... Other>
struct type_list_element<0u, type_list<First, Other...>> {
/*! @brief Searched type. */
using type = First;
};
/**
* @brief Helper type.
* @tparam Index Index of the type to return.
* @tparam List Type list to search into.
*/
template<std::size_t Index, typename List>
using type_list_element_t = typename type_list_element<Index, List>::type;
/*! @brief Primary template isn't defined on purpose. */
template<typename, typename>
struct type_list_index;
/**
* @brief Provides compile-time type access to the types of a type list.
* @tparam Type Type to look for and for which to return the index.
* @tparam First First type provided by the type list.
* @tparam Other Other types provided by the type list.
*/
template<typename Type, typename First, typename... Other>
struct type_list_index<Type, type_list<First, Other...>> {
/*! @brief Unsigned integer type. */
using value_type = std::size_t;
/*! @brief Compile-time position of the given type in the sublist. */
static constexpr value_type value = 1u + type_list_index<Type, type_list<Other...>>::value;
};
/**
* @brief Provides compile-time type access to the types of a type list.
* @tparam Type Type to look for and for which to return the index.
* @tparam Other Other types provided by the type list.
*/
template<typename Type, typename... Other>
struct type_list_index<Type, type_list<Type, Other...>> {
static_assert(type_list_index<Type, type_list<Other...>>::value == sizeof...(Other), "Non-unique type");
/*! @brief Unsigned integer type. */
using value_type = std::size_t;
/*! @brief Compile-time position of the given type in the sublist. */
static constexpr value_type value = 0u;
};
/**
* @brief Provides compile-time type access to the types of a type list.
* @tparam Type Type to look for and for which to return the index.
*/
template<typename Type>
struct type_list_index<Type, type_list<>> {
/*! @brief Unsigned integer type. */
using value_type = std::size_t;
/*! @brief Compile-time position of the given type in the sublist. */
static constexpr value_type value = 0u;
};
/**
* @brief Helper variable template.
* @tparam List Type list.
* @tparam Type Type to look for and for which to return the index.
*/
template<typename Type, typename List>
inline constexpr std::size_t type_list_index_v = type_list_index<Type, List>::value;
/**
* @brief Concatenates multiple type lists.
* @tparam Type Types provided by the first type list.
* @tparam Other Types provided by the second type list.
* @return A type list composed by the types of both the type lists.
*/
template<typename... Type, typename... Other>
constexpr type_list<Type..., Other...> operator+(type_list<Type...>, type_list<Other...>) {
return {};
}
/*! @brief Primary template isn't defined on purpose. */
template<typename...>
struct type_list_cat;
/*! @brief Concatenates multiple type lists. */
template<>
struct type_list_cat<> {
/*! @brief A type list composed by the types of all the type lists. */
using type = type_list<>;
};
/**
* @brief Concatenates multiple type lists.
* @tparam Type Types provided by the first type list.
* @tparam Other Types provided by the second type list.
* @tparam List Other type lists, if any.
*/
template<typename... Type, typename... Other, typename... List>
struct type_list_cat<type_list<Type...>, type_list<Other...>, List...> {
/*! @brief A type list composed by the types of all the type lists. */
using type = typename type_list_cat<type_list<Type..., Other...>, List...>::type;
};
/**
* @brief Concatenates multiple type lists.
* @tparam Type Types provided by the type list.
*/
template<typename... Type>
struct type_list_cat<type_list<Type...>> {
/*! @brief A type list composed by the types of all the type lists. */
using type = type_list<Type...>;
};
/**
* @brief Helper type.
* @tparam List Type lists to concatenate.
*/
template<typename... List>
using type_list_cat_t = typename type_list_cat<List...>::type;
/*! @brief Primary template isn't defined on purpose. */
template<typename>
struct type_list_unique;
/**
* @brief Removes duplicates types from a type list.
* @tparam Type One of the types provided by the given type list.
* @tparam Other The other types provided by the given type list.
*/
template<typename Type, typename... Other>
struct type_list_unique<type_list<Type, Other...>> {
/*! @brief A type list without duplicate types. */
using type = std::conditional_t<
(std::is_same_v<Type, Other> || ...),
typename type_list_unique<type_list<Other...>>::type,
type_list_cat_t<type_list<Type>, typename type_list_unique<type_list<Other...>>::type>>;
};
/*! @brief Removes duplicates types from a type list. */
template<>
struct type_list_unique<type_list<>> {
/*! @brief A type list without duplicate types. */
using type = type_list<>;
};
/**
* @brief Helper type.
* @tparam Type A type list.
*/
template<typename Type>
using type_list_unique_t = typename type_list_unique<Type>::type;
/**
* @brief Provides the member constant `value` to true if a type list contains a
* given type, false otherwise.
* @tparam List Type list.
* @tparam Type Type to look for.
*/
template<typename List, typename Type>
struct type_list_contains;
/**
* @copybrief type_list_contains
* @tparam Type Types provided by the type list.
* @tparam Other Type to look for.
*/
template<typename... Type, typename Other>
struct type_list_contains<type_list<Type...>, Other>: std::disjunction<std::is_same<Type, Other>...> {};
/**
* @brief Helper variable template.
* @tparam List Type list.
* @tparam Type Type to look for.
*/
template<typename List, typename Type>
inline constexpr bool type_list_contains_v = type_list_contains<List, Type>::value;
/*! @brief Primary template isn't defined on purpose. */
template<typename...>
struct type_list_diff;
/**
* @brief Computes the difference between two type lists.
* @tparam Type Types provided by the first type list.
* @tparam Other Types provided by the second type list.
*/
template<typename... Type, typename... Other>
struct type_list_diff<type_list<Type...>, type_list<Other...>> {
/*! @brief A type list that is the difference between the two type lists. */
using type = type_list_cat_t<std::conditional_t<type_list_contains_v<type_list<Other...>, Type>, type_list<>, type_list<Type>>...>;
};
/**
* @brief Helper type.
* @tparam List Type lists between which to compute the difference.
*/
template<typename... List>
using type_list_diff_t = typename type_list_diff<List...>::type;
/*! @brief Primary template isn't defined on purpose. */
template<typename, template<typename...> class>
struct type_list_transform;
/**
* @brief Applies a given _function_ to a type list and generate a new list.
* @tparam Type Types provided by the type list.
* @tparam Op Unary operation as template class with a type member named `type`.
*/
template<typename... Type, template<typename...> class Op>
struct type_list_transform<type_list<Type...>, Op> {
/*! @brief Resulting type list after applying the transform function. */
using type = type_list<typename Op<Type>::type...>;
};
/**
* @brief Helper type.
* @tparam List Type list.
* @tparam Op Unary operation as template class with a type member named `type`.
*/
template<typename List, template<typename...> class Op>
using type_list_transform_t = typename type_list_transform<List, Op>::type;
/**
* @brief A class to use to push around lists of constant values, nothing more.
* @tparam Value Values provided by the value list.
*/
template<auto... Value>
struct value_list {
/*! @brief Value list type. */
using type = value_list;
/*! @brief Compile-time number of elements in the value list. */
static constexpr auto size = sizeof...(Value);
};
/*! @brief Primary template isn't defined on purpose. */
template<std::size_t, typename>
struct value_list_element;
/**
* @brief Provides compile-time indexed access to the values of a value list.
* @tparam Index Index of the value to return.
* @tparam Value First value provided by the value list.
* @tparam Other Other values provided by the value list.
*/
template<std::size_t Index, auto Value, auto... Other>
struct value_list_element<Index, value_list<Value, Other...>>
: value_list_element<Index - 1u, value_list<Other...>> {};
/**
* @brief Provides compile-time indexed access to the types of a type list.
* @tparam Value First value provided by the value list.
* @tparam Other Other values provided by the value list.
*/
template<auto Value, auto... Other>
struct value_list_element<0u, value_list<Value, Other...>> {
/*! @brief Searched value. */
static constexpr auto value = Value;
};
/**
* @brief Helper type.
* @tparam Index Index of the value to return.
* @tparam List Value list to search into.
*/
template<std::size_t Index, typename List>
inline constexpr auto value_list_element_v = value_list_element<Index, List>::value;
/**
* @brief Concatenates multiple value lists.
* @tparam Value Values provided by the first value list.
* @tparam Other Values provided by the second value list.
* @return A value list composed by the values of both the value lists.
*/
template<auto... Value, auto... Other>
constexpr value_list<Value..., Other...> operator+(value_list<Value...>, value_list<Other...>) {
return {};
}
/*! @brief Primary template isn't defined on purpose. */
template<typename...>
struct value_list_cat;
/*! @brief Concatenates multiple value lists. */
template<>
struct value_list_cat<> {
/*! @brief A value list composed by the values of all the value lists. */
using type = value_list<>;
};
/**
* @brief Concatenates multiple value lists.
* @tparam Value Values provided by the first value list.
* @tparam Other Values provided by the second value list.
* @tparam List Other value lists, if any.
*/
template<auto... Value, auto... Other, typename... List>
struct value_list_cat<value_list<Value...>, value_list<Other...>, List...> {
/*! @brief A value list composed by the values of all the value lists. */
using type = typename value_list_cat<value_list<Value..., Other...>, List...>::type;
};
/**
* @brief Concatenates multiple value lists.
* @tparam Value Values provided by the value list.
*/
template<auto... Value>
struct value_list_cat<value_list<Value...>> {
/*! @brief A value list composed by the values of all the value lists. */
using type = value_list<Value...>;
};
/**
* @brief Helper type.
* @tparam List Value lists to concatenate.
*/
template<typename... List>
using value_list_cat_t = typename value_list_cat<List...>::type;
/*! @brief Same as std::is_invocable, but with tuples. */
template<typename, typename>
struct is_applicable: std::false_type {};
/**
* @copybrief is_applicable
* @tparam Func A valid function type.
* @tparam Tuple Tuple-like type.
* @tparam Args The list of arguments to use to probe the function type.
*/
template<typename Func, template<typename...> class Tuple, typename... Args>
struct is_applicable<Func, Tuple<Args...>>: std::is_invocable<Func, Args...> {};
/**
* @copybrief is_applicable
* @tparam Func A valid function type.
* @tparam Tuple Tuple-like type.
* @tparam Args The list of arguments to use to probe the function type.
*/
template<typename Func, template<typename...> class Tuple, typename... Args>
struct is_applicable<Func, const Tuple<Args...>>: std::is_invocable<Func, Args...> {};
/**
* @brief Helper variable template.
* @tparam Func A valid function type.
* @tparam Args The list of arguments to use to probe the function type.
*/
template<typename Func, typename Args>
inline constexpr bool is_applicable_v = is_applicable<Func, Args>::value;
/*! @brief Same as std::is_invocable_r, but with tuples for arguments. */
template<typename, typename, typename>
struct is_applicable_r: std::false_type {};
/**
* @copybrief is_applicable_r
* @tparam Ret The type to which the return type of the function should be
* convertible.
* @tparam Func A valid function type.
* @tparam Args The list of arguments to use to probe the function type.
*/
template<typename Ret, typename Func, typename... Args>
struct is_applicable_r<Ret, Func, std::tuple<Args...>>: std::is_invocable_r<Ret, Func, Args...> {};
/**
* @brief Helper variable template.
* @tparam Ret The type to which the return type of the function should be
* convertible.
* @tparam Func A valid function type.
* @tparam Args The list of arguments to use to probe the function type.
*/
template<typename Ret, typename Func, typename Args>
inline constexpr bool is_applicable_r_v = is_applicable_r<Ret, Func, Args>::value;
/**
* @brief Provides the member constant `value` to true if a given type is
* complete, false otherwise.
* @tparam Type The type to test.
*/
template<typename Type, typename = void>
struct is_complete: std::false_type {};
/*! @copydoc is_complete */
template<typename Type>
struct is_complete<Type, std::void_t<decltype(sizeof(Type))>>: std::true_type {};
/**
* @brief Helper variable template.
* @tparam Type The type to test.
*/
template<typename Type>
inline constexpr bool is_complete_v = is_complete<Type>::value;
/**
* @brief Provides the member constant `value` to true if a given type is an
* iterator, false otherwise.
* @tparam Type The type to test.
*/
template<typename Type, typename = void>
struct is_iterator: std::false_type {};
/**
* @cond TURN_OFF_DOXYGEN
* Internal details not to be documented.
*/
namespace internal {
template<typename, typename = void>
struct has_iterator_category: std::false_type {};
template<typename Type>
struct has_iterator_category<Type, std::void_t<typename std::iterator_traits<Type>::iterator_category>>: std::true_type {};
} // namespace internal
/**
* Internal details not to be documented.
* @endcond
*/
/*! @copydoc is_iterator */
template<typename Type>
struct is_iterator<Type, std::enable_if_t<!std::is_same_v<std::remove_cv_t<std::remove_pointer_t<Type>>, void>>>
: internal::has_iterator_category<Type> {};
/**
* @brief Helper variable template.
* @tparam Type The type to test.
*/
template<typename Type>
inline constexpr bool is_iterator_v = is_iterator<Type>::value;
/**
* @brief Provides the member constant `value` to true if a given type is both
* an empty and non-final class, false otherwise.
* @tparam Type The type to test
*/
template<typename Type>
struct is_ebco_eligible
: std::conjunction<std::is_empty<Type>, std::negation<std::is_final<Type>>> {};
/**
* @brief Helper variable template.
* @tparam Type The type to test.
*/
template<typename Type>
inline constexpr bool is_ebco_eligible_v = is_ebco_eligible<Type>::value;
/**
* @brief Provides the member constant `value` to true if `Type::is_transparent`
* is valid and denotes a type, false otherwise.
* @tparam Type The type to test.
*/
template<typename Type, typename = void>
struct is_transparent: std::false_type {};
/*! @copydoc is_transparent */
template<typename Type>
struct is_transparent<Type, std::void_t<typename Type::is_transparent>>: std::true_type {};
/**
* @brief Helper variable template.
* @tparam Type The type to test.
*/
template<typename Type>
inline constexpr bool is_transparent_v = is_transparent<Type>::value;
/**
* @brief Provides the member constant `value` to true if a given type is
* equality comparable, false otherwise.
* @tparam Type The type to test.
*/
template<typename Type, typename = void>
struct is_equality_comparable: std::false_type {};
/**
* @cond TURN_OFF_DOXYGEN
* Internal details not to be documented.
*/
namespace internal {
template<typename, typename = void>
struct has_tuple_size_value: std::false_type {};
template<typename Type>
struct has_tuple_size_value<Type, std::void_t<decltype(std::tuple_size<const Type>::value)>>: std::true_type {};
template<typename Type, std::size_t... Index>
[[nodiscard]] constexpr bool unpack_maybe_equality_comparable(std::index_sequence<Index...>) {
return (is_equality_comparable<std::tuple_element_t<Index, Type>>::value && ...);
}
template<typename>
[[nodiscard]] constexpr bool maybe_equality_comparable(choice_t<0>) {
return true;
}
template<typename Type>
[[nodiscard]] constexpr auto maybe_equality_comparable(choice_t<1>) -> decltype(std::declval<typename Type::value_type>(), bool{}) {
if constexpr(is_iterator_v<Type>) {
return true;
} else if constexpr(std::is_same_v<typename Type::value_type, Type>) {
return maybe_equality_comparable<Type>(choice<0>);
} else {
return is_equality_comparable<typename Type::value_type>::value;
}
}
template<typename Type>
[[nodiscard]] constexpr std::enable_if_t<is_complete_v<std::tuple_size<std::remove_cv_t<Type>>>, bool> maybe_equality_comparable(choice_t<2>) {
if constexpr(has_tuple_size_value<Type>::value) {
return unpack_maybe_equality_comparable<Type>(std::make_index_sequence<std::tuple_size<Type>::value>{});
} else {
return maybe_equality_comparable<Type>(choice<1>);
}
}
} // namespace internal
/**
* Internal details not to be documented.
* @endcond
*/
/*! @copydoc is_equality_comparable */
template<typename Type>
struct is_equality_comparable<Type, std::void_t<decltype(std::declval<Type>() == std::declval<Type>())>>
: std::bool_constant<internal::maybe_equality_comparable<Type>(choice<2>)> {};
/**
* @brief Helper variable template.
* @tparam Type The type to test.
*/
template<typename Type>
inline constexpr bool is_equality_comparable_v = is_equality_comparable<Type>::value;
/**
* @brief Transcribes the constness of a type to another type.
* @tparam To The type to which to transcribe the constness.
* @tparam From The type from which to transcribe the constness.
*/
template<typename To, typename From>
struct constness_as {
/*! @brief The type resulting from the transcription of the constness. */
using type = std::remove_const_t<To>;
};
/*! @copydoc constness_as */
template<typename To, typename From>
struct constness_as<To, const From> {
/*! @brief The type resulting from the transcription of the constness. */
using type = const To;
};
/**
* @brief Alias template to facilitate the transcription of the constness.
* @tparam To The type to which to transcribe the constness.
* @tparam From The type from which to transcribe the constness.
*/
template<typename To, typename From>
using constness_as_t = typename constness_as<To, From>::type;
/**
* @brief Extracts the class of a non-static member object or function.
* @tparam Member A pointer to a non-static member object or function.
*/
template<typename Member>
class member_class {
static_assert(std::is_member_pointer_v<Member>, "Invalid pointer type to non-static member object or function");
template<typename Class, typename Ret, typename... Args>
static Class *clazz(Ret (Class::*)(Args...));
template<typename Class, typename Ret, typename... Args>
static Class *clazz(Ret (Class::*)(Args...) const);
template<typename Class, typename Type>
static Class *clazz(Type Class::*);
public:
/*! @brief The class of the given non-static member object or function. */
using type = std::remove_pointer_t<decltype(clazz(std::declval<Member>()))>;
};
/**
* @brief Helper type.
* @tparam Member A pointer to a non-static member object or function.
*/
template<typename Member>
using member_class_t = typename member_class<Member>::type;
/**
* @brief Extracts the n-th argument of a given function or member function.
* @tparam Index The index of the argument to extract.
* @tparam Candidate A valid function, member function or data member.
*/
template<std::size_t Index, auto Candidate>
class nth_argument {
template<typename Ret, typename... Args>
static constexpr type_list<Args...> pick_up(Ret (*)(Args...));
template<typename Ret, typename Class, typename... Args>
static constexpr type_list<Args...> pick_up(Ret (Class ::*)(Args...));
template<typename Ret, typename Class, typename... Args>
static constexpr type_list<Args...> pick_up(Ret (Class ::*)(Args...) const);
template<typename Type, typename Class>
static constexpr type_list<Type> pick_up(Type Class ::*);
public:
/*! @brief N-th argument of the given function or member function. */
using type = type_list_element_t<Index, decltype(pick_up(Candidate))>;
};
/**
* @brief Helper type.
* @tparam Index The index of the argument to extract.
* @tparam Candidate A valid function, member function or data member.
*/
template<std::size_t Index, auto Candidate>
using nth_argument_t = typename nth_argument<Index, Candidate>::type;
} // namespace entt
#endif
// #include "fwd.hpp"
#ifndef ENTT_CONTAINER_FWD_HPP
#define ENTT_CONTAINER_FWD_HPP
#include <functional>
#include <memory>
namespace entt {
template<
typename Key,
typename Type,
typename = std::hash<Key>,
typename = std::equal_to<Key>,
typename = std::allocator<std::pair<const Key, Type>>>
class dense_map;
template<
typename Type,
typename = std::hash<Type>,
typename = std::equal_to<Type>,
typename = std::allocator<Type>>
class dense_set;
} // namespace entt
#endif
namespace entt {
/**
* @cond TURN_OFF_DOXYGEN
* Internal details not to be documented.
*/
namespace internal {
template<typename Key, typename Type>
struct dense_map_node final {
using value_type = std::pair<Key, Type>;
template<typename... Args>
dense_map_node(const std::size_t pos, Args &&...args)
: next{pos},
element{std::forward<Args>(args)...} {}
template<typename Allocator, typename... Args>
dense_map_node(std::allocator_arg_t, const Allocator &allocator, const std::size_t pos, Args &&...args)
: next{pos},
element{entt::make_obj_using_allocator<value_type>(allocator, std::forward<Args>(args)...)} {}
template<typename Allocator>
dense_map_node(std::allocator_arg_t, const Allocator &allocator, const dense_map_node &other)
: next{other.next},
element{entt::make_obj_using_allocator<value_type>(allocator, other.element)} {}
template<typename Allocator>
dense_map_node(std::allocator_arg_t, const Allocator &allocator, dense_map_node &&other)
: next{other.next},
element{entt::make_obj_using_allocator<value_type>(allocator, std::move(other.element))} {}
std::size_t next;
value_type element;
};
template<typename It>
class dense_map_iterator final {
template<typename>
friend class dense_map_iterator;
using first_type = decltype(std::as_const(std::declval<It>()->element.first));
using second_type = decltype((std::declval<It>()->element.second));
public:
using value_type = std::pair<first_type, second_type>;
using pointer = input_iterator_pointer<value_type>;
using reference = value_type;
using difference_type = std::ptrdiff_t;
using iterator_category = std::input_iterator_tag;
constexpr dense_map_iterator() noexcept
: it{} {}
constexpr dense_map_iterator(const It iter) noexcept
: it{iter} {}
template<typename Other, typename = std::enable_if_t<!std::is_same_v<It, Other> && std::is_constructible_v<It, Other>>>
constexpr dense_map_iterator(const dense_map_iterator<Other> &other) noexcept
: it{other.it} {}
constexpr dense_map_iterator &operator++() noexcept {
return ++it, *this;
}
constexpr dense_map_iterator operator++(int) noexcept {
dense_map_iterator orig = *this;
return ++(*this), orig;
}
constexpr dense_map_iterator &operator--() noexcept {
return --it, *this;
}
constexpr dense_map_iterator operator--(int) noexcept {
dense_map_iterator orig = *this;
return operator--(), orig;
}
constexpr dense_map_iterator &operator+=(const difference_type value) noexcept {
it += value;
return *this;
}
constexpr dense_map_iterator operator+(const difference_type value) const noexcept {
dense_map_iterator copy = *this;
return (copy += value);
}
constexpr dense_map_iterator &operator-=(const difference_type value) noexcept {
return (*this += -value);
}
constexpr dense_map_iterator operator-(const difference_type value) const noexcept {
return (*this + -value);
}
[[nodiscard]] constexpr reference operator[](const difference_type value) const noexcept {
return {it[value].element.first, it[value].element.second};
}
[[nodiscard]] constexpr pointer operator->() const noexcept {
return operator*();
}
[[nodiscard]] constexpr reference operator*() const noexcept {
return {it->element.first, it->element.second};
}
template<typename ILhs, typename IRhs>
friend constexpr std::ptrdiff_t operator-(const dense_map_iterator<ILhs> &, const dense_map_iterator<IRhs> &) noexcept;
template<typename ILhs, typename IRhs>
friend constexpr bool operator==(const dense_map_iterator<ILhs> &, const dense_map_iterator<IRhs> &) noexcept;
template<typename ILhs, typename IRhs>
friend constexpr bool operator<(const dense_map_iterator<ILhs> &, const dense_map_iterator<IRhs> &) noexcept;
private:
It it;
};
template<typename ILhs, typename IRhs>
[[nodiscard]] constexpr std::ptrdiff_t operator-(const dense_map_iterator<ILhs> &lhs, const dense_map_iterator<IRhs> &rhs) noexcept {
return lhs.it - rhs.it;
}
template<typename ILhs, typename IRhs>
[[nodiscard]] constexpr bool operator==(const dense_map_iterator<ILhs> &lhs, const dense_map_iterator<IRhs> &rhs) noexcept {
return lhs.it == rhs.it;
}
template<typename ILhs, typename IRhs>
[[nodiscard]] constexpr bool operator!=(const dense_map_iterator<ILhs> &lhs, const dense_map_iterator<IRhs> &rhs) noexcept {
return !(lhs == rhs);
}
template<typename ILhs, typename IRhs>
[[nodiscard]] constexpr bool operator<(const dense_map_iterator<ILhs> &lhs, const dense_map_iterator<IRhs> &rhs) noexcept {
return lhs.it < rhs.it;
}
template<typename ILhs, typename IRhs>
[[nodiscard]] constexpr bool operator>(const dense_map_iterator<ILhs> &lhs, const dense_map_iterator<IRhs> &rhs) noexcept {
return rhs < lhs;
}
template<typename ILhs, typename IRhs>
[[nodiscard]] constexpr bool operator<=(const dense_map_iterator<ILhs> &lhs, const dense_map_iterator<IRhs> &rhs) noexcept {
return !(lhs > rhs);
}
template<typename ILhs, typename IRhs>
[[nodiscard]] constexpr bool operator>=(const dense_map_iterator<ILhs> &lhs, const dense_map_iterator<IRhs> &rhs) noexcept {
return !(lhs < rhs);
}
template<typename It>
class dense_map_local_iterator final {
template<typename>
friend class dense_map_local_iterator;
using first_type = decltype(std::as_const(std::declval<It>()->element.first));
using second_type = decltype((std::declval<It>()->element.second));
public:
using value_type = std::pair<first_type, second_type>;
using pointer = input_iterator_pointer<value_type>;
using reference = value_type;
using difference_type = std::ptrdiff_t;
using iterator_category = std::input_iterator_tag;
constexpr dense_map_local_iterator() noexcept
: it{},
offset{} {}
constexpr dense_map_local_iterator(It iter, const std::size_t pos) noexcept
: it{iter},
offset{pos} {}
template<typename Other, typename = std::enable_if_t<!std::is_same_v<It, Other> && std::is_constructible_v<It, Other>>>
constexpr dense_map_local_iterator(const dense_map_local_iterator<Other> &other) noexcept
: it{other.it},
offset{other.offset} {}
constexpr dense_map_local_iterator &operator++() noexcept {
return offset = it[offset].next, *this;
}
constexpr dense_map_local_iterator operator++(int) noexcept {
dense_map_local_iterator orig = *this;
return ++(*this), orig;
}
[[nodiscard]] constexpr pointer operator->() const noexcept {
return operator*();
}
[[nodiscard]] constexpr reference operator*() const noexcept {
return {it[offset].element.first, it[offset].element.second};
}
[[nodiscard]] constexpr std::size_t index() const noexcept {
return offset;
}
private:
It it;
std::size_t offset;
};
template<typename ILhs, typename IRhs>
[[nodiscard]] constexpr bool operator==(const dense_map_local_iterator<ILhs> &lhs, const dense_map_local_iterator<IRhs> &rhs) noexcept {
return lhs.index() == rhs.index();
}
template<typename ILhs, typename IRhs>
[[nodiscard]] constexpr bool operator!=(const dense_map_local_iterator<ILhs> &lhs, const dense_map_local_iterator<IRhs> &rhs) noexcept {
return !(lhs == rhs);
}
} // namespace internal
/**
* Internal details not to be documented.
* @endcond
*/
/**
* @brief Associative container for key-value pairs with unique keys.
*
* Internally, elements are organized into buckets. Which bucket an element is
* placed into depends entirely on the hash of its key. Keys with the same hash
* code appear in the same bucket.
*
* @tparam Key Key type of the associative container.
* @tparam Type Mapped type of the associative container.
* @tparam Hash Type of function to use to hash the keys.
* @tparam KeyEqual Type of function to use to compare the keys for equality.
* @tparam Allocator Type of allocator used to manage memory and elements.
*/
template<typename Key, typename Type, typename Hash, typename KeyEqual, typename Allocator>
class dense_map {
static constexpr float default_threshold = 0.875f;
static constexpr std::size_t minimum_capacity = 8u;
using node_type = internal::dense_map_node<Key, Type>;
using alloc_traits = typename std::allocator_traits<Allocator>;
static_assert(std::is_same_v<typename alloc_traits::value_type, std::pair<const Key, Type>>, "Invalid value type");
using sparse_container_type = std::vector<std::size_t, typename alloc_traits::template rebind_alloc<std::size_t>>;
using packed_container_type = std::vector<node_type, typename alloc_traits::template rebind_alloc<node_type>>;
template<typename Other>
[[nodiscard]] std::size_t key_to_bucket(const Other &key) const noexcept {
return fast_mod(static_cast<size_type>(sparse.second()(key)), bucket_count());
}
template<typename Other>
[[nodiscard]] auto constrained_find(const Other &key, std::size_t bucket) {
for(auto it = begin(bucket), last = end(bucket); it != last; ++it) {
if(packed.second()(it->first, key)) {
return begin() + static_cast<typename iterator::difference_type>(it.index());
}
}
return end();
}
template<typename Other>
[[nodiscard]] auto constrained_find(const Other &key, std::size_t bucket) const {
for(auto it = cbegin(bucket), last = cend(bucket); it != last; ++it) {
if(packed.second()(it->first, key)) {
return cbegin() + static_cast<typename iterator::difference_type>(it.index());
}
}
return cend();
}
template<typename Other, typename... Args>
[[nodiscard]] auto insert_or_do_nothing(Other &&key, Args &&...args) {
const auto index = key_to_bucket(key);
if(auto it = constrained_find(key, index); it != end()) {
return std::make_pair(it, false);
}
packed.first().emplace_back(sparse.first()[index], std::piecewise_construct, std::forward_as_tuple(std::forward<Other>(key)), std::forward_as_tuple(std::forward<Args>(args)...));
sparse.first()[index] = packed.first().size() - 1u;
rehash_if_required();
return std::make_pair(--end(), true);
}
template<typename Other, typename Arg>
[[nodiscard]] auto insert_or_overwrite(Other &&key, Arg &&value) {
const auto index = key_to_bucket(key);
if(auto it = constrained_find(key, index); it != end()) {
it->second = std::forward<Arg>(value);
return std::make_pair(it, false);
}
packed.first().emplace_back(sparse.first()[index], std::forward<Other>(key), std::forward<Arg>(value));
sparse.first()[index] = packed.first().size() - 1u;
rehash_if_required();
return std::make_pair(--end(), true);
}
void move_and_pop(const std::size_t pos) {
if(const auto last = size() - 1u; pos != last) {
size_type *curr = sparse.first().data() + key_to_bucket(packed.first().back().element.first);
packed.first()[pos] = std::move(packed.first().back());
for(; *curr != last; curr = &packed.first()[*curr].next) {}
*curr = pos;
}
packed.first().pop_back();
}
void rehash_if_required() {
if(size() > (bucket_count() * max_load_factor())) {
rehash(bucket_count() * 2u);
}
}
public:
/*! @brief Key type of the container. */
using key_type = Key;
/*! @brief Mapped type of the container. */
using mapped_type = Type;
/*! @brief Key-value type of the container. */
using value_type = std::pair<const Key, Type>;
/*! @brief Unsigned integer type. */
using size_type = std::size_t;
/*! @brief Type of function to use to hash the keys. */
using hasher = Hash;
/*! @brief Type of function to use to compare the keys for equality. */
using key_equal = KeyEqual;
/*! @brief Allocator type. */
using allocator_type = Allocator;
/*! @brief Input iterator type. */
using iterator = internal::dense_map_iterator<typename packed_container_type::iterator>;
/*! @brief Constant input iterator type. */
using const_iterator = internal::dense_map_iterator<typename packed_container_type::const_iterator>;
/*! @brief Input iterator type. */
using local_iterator = internal::dense_map_local_iterator<typename packed_container_type::iterator>;
/*! @brief Constant input iterator type. */
using const_local_iterator = internal::dense_map_local_iterator<typename packed_container_type::const_iterator>;
/*! @brief Default constructor. */
dense_map()
: dense_map{minimum_capacity} {}
/**
* @brief Constructs an empty container with a given allocator.
* @param allocator The allocator to use.
*/
explicit dense_map(const allocator_type &allocator)
: dense_map{minimum_capacity, hasher{}, key_equal{}, allocator} {}
/**
* @brief Constructs an empty container with a given allocator and user
* supplied minimal number of buckets.
* @param cnt Minimal number of buckets.
* @param allocator The allocator to use.
*/
dense_map(const size_type cnt, const allocator_type &allocator)
: dense_map{cnt, hasher{}, key_equal{}, allocator} {}
/**
* @brief Constructs an empty container with a given allocator, hash
* function and user supplied minimal number of buckets.
* @param cnt Minimal number of buckets.
* @param hash Hash function to use.
* @param allocator The allocator to use.
*/
dense_map(const size_type cnt, const hasher &hash, const allocator_type &allocator)
: dense_map{cnt, hash, key_equal{}, allocator} {}
/**
* @brief Constructs an empty container with a given allocator, hash
* function, compare function and user supplied minimal number of buckets.
* @param cnt Minimal number of buckets.
* @param hash Hash function to use.
* @param equal Compare function to use.
* @param allocator The allocator to use.
*/
explicit dense_map(const size_type cnt, const hasher &hash = hasher{}, const key_equal &equal = key_equal{}, const allocator_type &allocator = allocator_type{})
: sparse{allocator, hash},
packed{allocator, equal},
threshold{default_threshold} {
rehash(cnt);
}
/*! @brief Default copy constructor. */
dense_map(const dense_map &) = default;
/**
* @brief Allocator-extended copy constructor.
* @param other The instance to copy from.
* @param allocator The allocator to use.
*/
dense_map(const dense_map &other, const allocator_type &allocator)
: sparse{std::piecewise_construct, std::forward_as_tuple(other.sparse.first(), allocator), std::forward_as_tuple(other.sparse.second())},
packed{std::piecewise_construct, std::forward_as_tuple(other.packed.first(), allocator), std::forward_as_tuple(other.packed.second())},
threshold{other.threshold} {}
/*! @brief Default move constructor. */
dense_map(dense_map &&) noexcept(std::is_nothrow_move_constructible_v<compressed_pair<sparse_container_type, hasher>> &&std::is_nothrow_move_constructible_v<compressed_pair<packed_container_type, key_equal>>) = default;
/**
* @brief Allocator-extended move constructor.
* @param other The instance to move from.
* @param allocator The allocator to use.
*/
dense_map(dense_map &&other, const allocator_type &allocator)
: sparse{std::piecewise_construct, std::forward_as_tuple(std::move(other.sparse.first()), allocator), std::forward_as_tuple(std::move(other.sparse.second()))},
packed{std::piecewise_construct, std::forward_as_tuple(std::move(other.packed.first()), allocator), std::forward_as_tuple(std::move(other.packed.second()))},
threshold{other.threshold} {}
/**
* @brief Default copy assignment operator.
* @return This container.
*/
dense_map &operator=(const dense_map &) = default;
/**
* @brief Default move assignment operator.
* @return This container.
*/
dense_map &operator=(dense_map &&) noexcept(std::is_nothrow_move_assignable_v<compressed_pair<sparse_container_type, hasher>> &&std::is_nothrow_move_assignable_v<compressed_pair<packed_container_type, key_equal>>) = default;
/**
* @brief Returns the associated allocator.
* @return The associated allocator.
*/
[[nodiscard]] constexpr allocator_type get_allocator() const noexcept {
return sparse.first().get_allocator();
}
/**
* @brief Returns an iterator to the beginning.
*
* The returned iterator points to the first instance of the internal array.
* If the array is empty, the returned iterator will be equal to `end()`.
*
* @return An iterator to the first instance of the internal array.
*/
[[nodiscard]] const_iterator cbegin() const noexcept {
return packed.first().begin();
}
/*! @copydoc cbegin */
[[nodiscard]] const_iterator begin() const noexcept {
return cbegin();
}
/*! @copydoc begin */
[[nodiscard]] iterator begin() noexcept {
return packed.first().begin();
}
/**
* @brief Returns an iterator to the end.
*
* The returned iterator points to the element following the last instance
* of the internal array. Attempting to dereference the returned iterator
* results in undefined behavior.
*
* @return An iterator to the element following the last instance of the
* internal array.
*/
[[nodiscard]] const_iterator cend() const noexcept {
return packed.first().end();
}
/*! @copydoc cend */
[[nodiscard]] const_iterator end() const noexcept {
return cend();
}
/*! @copydoc end */
[[nodiscard]] iterator end() noexcept {
return packed.first().end();
}
/**
* @brief Checks whether a container is empty.
* @return True if the container is empty, false otherwise.
*/
[[nodiscard]] bool empty() const noexcept {
return packed.first().empty();
}
/**
* @brief Returns the number of elements in a container.
* @return Number of elements in a container.
*/
[[nodiscard]] size_type size() const noexcept {
return packed.first().size();
}
/**
* @brief Returns the maximum possible number of elements.
* @return Maximum possible number of elements.
*/
[[nodiscard]] size_type max_size() const noexcept {
return packed.first().max_size();
}
/*! @brief Clears the container. */
void clear() noexcept {
sparse.first().clear();
packed.first().clear();
rehash(0u);
}
/**
* @brief Inserts an element into the container, if the key does not exist.
* @param value A key-value pair eventually convertible to the value type.
* @return A pair consisting of an iterator to the inserted element (or to
* the element that prevented the insertion) and a bool denoting whether the
* insertion took place.
*/
std::pair<iterator, bool> insert(const value_type &value) {
return insert_or_do_nothing(value.first, value.second);
}
/*! @copydoc insert */
std::pair<iterator, bool> insert(value_type &&value) {
return insert_or_do_nothing(std::move(value.first), std::move(value.second));
}
/**
* @copydoc insert
* @tparam Arg Type of the key-value pair to insert into the container.
*/
template<typename Arg>
std::enable_if_t<std::is_constructible_v<value_type, Arg &&>, std::pair<iterator, bool>>
insert(Arg &&value) {
return insert_or_do_nothing(std::forward<Arg>(value).first, std::forward<Arg>(value).second);
}
/**
* @brief Inserts elements into the container, if their keys do not exist.
* @tparam It Type of input iterator.
* @param first An iterator to the first element of the range of elements.
* @param last An iterator past the last element of the range of elements.
*/
template<typename It>
void insert(It first, It last) {
for(; first != last; ++first) {
insert(*first);
}
}
/**
* @brief Inserts an element into the container or assigns to the current
* element if the key already exists.
* @tparam Arg Type of the value to insert or assign.
* @param key A key used both to look up and to insert if not found.
* @param value A value to insert or assign.
* @return A pair consisting of an iterator to the element and a bool
* denoting whether the insertion took place.
*/
template<typename Arg>
std::pair<iterator, bool> insert_or_assign(const key_type &key, Arg &&value) {
return insert_or_overwrite(key, std::forward<Arg>(value));
}
/*! @copydoc insert_or_assign */
template<typename Arg>
std::pair<iterator, bool> insert_or_assign(key_type &&key, Arg &&value) {
return insert_or_overwrite(std::move(key), std::forward<Arg>(value));
}
/**
* @brief Constructs an element in-place, if the key does not exist.
*
* The element is also constructed when the container already has the key,
* in which case the newly constructed object is destroyed immediately.
*
* @tparam Args Types of arguments to forward to the constructor of the
* element.
* @param args Arguments to forward to the constructor of the element.
* @return A pair consisting of an iterator to the inserted element (or to
* the element that prevented the insertion) and a bool denoting whether the
* insertion took place.
*/
template<typename... Args>
std::pair<iterator, bool> emplace([[maybe_unused]] Args &&...args) {
if constexpr(sizeof...(Args) == 0u) {
return insert_or_do_nothing(key_type{});
} else if constexpr(sizeof...(Args) == 1u) {
return insert_or_do_nothing(std::forward<Args>(args).first..., std::forward<Args>(args).second...);
} else if constexpr(sizeof...(Args) == 2u) {
return insert_or_do_nothing(std::forward<Args>(args)...);
} else {
auto &node = packed.first().emplace_back(packed.first().size(), std::forward<Args>(args)...);
const auto index = key_to_bucket(node.element.first);
if(auto it = constrained_find(node.element.first, index); it != end()) {
packed.first().pop_back();
return std::make_pair(it, false);
}
std::swap(node.next, sparse.first()[index]);
rehash_if_required();
return std::make_pair(--end(), true);
}
}
/**
* @brief Inserts in-place if the key does not exist, does nothing if the
* key exists.
* @tparam Args Types of arguments to forward to the constructor of the
* element.
* @param key A key used both to look up and to insert if not found.
* @param args Arguments to forward to the constructor of the element.
* @return A pair consisting of an iterator to the inserted element (or to
* the element that prevented the insertion) and a bool denoting whether the
* insertion took place.
*/
template<typename... Args>
std::pair<iterator, bool> try_emplace(const key_type &key, Args &&...args) {
return insert_or_do_nothing(key, std::forward<Args>(args)...);
}
/*! @copydoc try_emplace */
template<typename... Args>
std::pair<iterator, bool> try_emplace(key_type &&key, Args &&...args) {
return insert_or_do_nothing(std::move(key), std::forward<Args>(args)...);
}
/**
* @brief Removes an element from a given position.
* @param pos An iterator to the element to remove.
* @return An iterator following the removed element.
*/
iterator erase(const_iterator pos) {
const auto diff = pos - cbegin();
erase(pos->first);
return begin() + diff;
}
/**
* @brief Removes the given elements from a container.
* @param first An iterator to the first element of the range of elements.
* @param last An iterator past the last element of the range of elements.
* @return An iterator following the last removed element.
*/
iterator erase(const_iterator first, const_iterator last) {
const auto dist = first - cbegin();
for(auto from = last - cbegin(); from != dist; --from) {
erase(packed.first()[from - 1u].element.first);
}
return (begin() + dist);
}
/**
* @brief Removes the element associated with a given key.
* @param key A key value of an element to remove.
* @return Number of elements removed (either 0 or 1).
*/
size_type erase(const key_type &key) {
for(size_type *curr = sparse.first().data() + key_to_bucket(key); *curr != (std::numeric_limits<size_type>::max)(); curr = &packed.first()[*curr].next) {
if(packed.second()(packed.first()[*curr].element.first, key)) {
const auto index = *curr;
*curr = packed.first()[*curr].next;
move_and_pop(index);
return 1u;
}
}
return 0u;
}
/**
* @brief Exchanges the contents with those of a given container.
* @param other Container to exchange the content with.
*/
void swap(dense_map &other) {
using std::swap;
swap(sparse, other.sparse);
swap(packed, other.packed);
swap(threshold, other.threshold);
}
/**
* @brief Accesses a given element with bounds checking.
* @param key A key of an element to find.
* @return A reference to the mapped value of the requested element.
*/
[[nodiscard]] mapped_type &at(const key_type &key) {
auto it = find(key);
ENTT_ASSERT(it != end(), "Invalid key");
return it->second;
}
/*! @copydoc at */
[[nodiscard]] const mapped_type &at(const key_type &key) const {
auto it = find(key);
ENTT_ASSERT(it != cend(), "Invalid key");
return it->second;
}
/**
* @brief Accesses or inserts a given element.
* @param key A key of an element to find or insert.
* @return A reference to the mapped value of the requested element.
*/
[[nodiscard]] mapped_type &operator[](const key_type &key) {
return insert_or_do_nothing(key).first->second;
}
/**
* @brief Accesses or inserts a given element.
* @param key A key of an element to find or insert.
* @return A reference to the mapped value of the requested element.
*/
[[nodiscard]] mapped_type &operator[](key_type &&key) {
return insert_or_do_nothing(std::move(key)).first->second;
}
/**
* @brief Returns the number of elements matching a key (either 1 or 0).
* @param key Key value of an element to search for.
* @return Number of elements matching the key (either 1 or 0).
*/
[[nodiscard]] size_type count(const key_type &key) const {
return find(key) != end();
}
/**
* @brief Returns the number of elements matching a key (either 1 or 0).
* @tparam Other Type of the key value of an element to search for.
* @param key Key value of an element to search for.
* @return Number of elements matching the key (either 1 or 0).
*/
template<typename Other>
[[nodiscard]] std::enable_if_t<is_transparent_v<hasher> && is_transparent_v<key_equal>, std::conditional_t<false, Other, size_type>>
count(const Other &key) const {
return find(key) != end();
}
/**
* @brief Finds an element with a given key.
* @param key Key value of an element to search for.
* @return An iterator to an element with the given key. If no such element
* is found, a past-the-end iterator is returned.
*/
[[nodiscard]] iterator find(const key_type &key) {
return constrained_find(key, key_to_bucket(key));
}
/*! @copydoc find */
[[nodiscard]] const_iterator find(const key_type &key) const {
return constrained_find(key, key_to_bucket(key));
}
/**
* @brief Finds an element with a key that compares _equivalent_ to a given
* key.
* @tparam Other Type of the key value of an element to search for.
* @param key Key value of an element to search for.
* @return An iterator to an element with the given key. If no such element
* is found, a past-the-end iterator is returned.
*/
template<typename Other>
[[nodiscard]] std::enable_if_t<is_transparent_v<hasher> && is_transparent_v<key_equal>, std::conditional_t<false, Other, iterator>>
find(const Other &key) {
return constrained_find(key, key_to_bucket(key));
}
/*! @copydoc find */
template<typename Other>
[[nodiscard]] std::enable_if_t<is_transparent_v<hasher> && is_transparent_v<key_equal>, std::conditional_t<false, Other, const_iterator>>
find(const Other &key) const {
return constrained_find(key, key_to_bucket(key));
}
/**
* @brief Returns a range containing all elements with a given key.
* @param key Key value of an element to search for.
* @return A pair of iterators pointing to the first element and past the
* last element of the range.
*/
[[nodiscard]] std::pair<iterator, iterator> equal_range(const key_type &key) {
const auto it = find(key);
return {it, it + !(it == end())};
}
/*! @copydoc equal_range */
[[nodiscard]] std::pair<const_iterator, const_iterator> equal_range(const key_type &key) const {
const auto it = find(key);
return {it, it + !(it == cend())};
}
/**
* @brief Returns a range containing all elements that compare _equivalent_
* to a given key.
* @tparam Other Type of an element to search for.
* @param key Key value of an element to search for.
* @return A pair of iterators pointing to the first element and past the
* last element of the range.
*/
template<typename Other>
[[nodiscard]] std::enable_if_t<is_transparent_v<hasher> && is_transparent_v<key_equal>, std::conditional_t<false, Other, std::pair<iterator, iterator>>>
equal_range(const Other &key) {
const auto it = find(key);
return {it, it + !(it == end())};
}
/*! @copydoc equal_range */
template<class Other>
[[nodiscard]] std::enable_if_t<is_transparent_v<hasher> && is_transparent_v<key_equal>, std::conditional_t<false, Other, std::pair<const_iterator, const_iterator>>>
equal_range(const Other &key) const {
const auto it = find(key);
return {it, it + !(it == cend())};
}
/**
* @brief Checks if the container contains an element with a given key.
* @param key Key value of an element to search for.
* @return True if there is such an element, false otherwise.
*/
[[nodiscard]] bool contains(const key_type &key) const {
return (find(key) != cend());
}
/**
* @brief Checks if the container contains an element with a key that
* compares _equivalent_ to a given value.
* @tparam Other Type of the key value of an element to search for.
* @param key Key value of an element to search for.
* @return True if there is such an element, false otherwise.
*/
template<typename Other>
[[nodiscard]] std::enable_if_t<is_transparent_v<hasher> && is_transparent_v<key_equal>, std::conditional_t<false, Other, bool>>
contains(const Other &key) const {
return (find(key) != cend());
}
/**
* @brief Returns an iterator to the beginning of a given bucket.
* @param index An index of a bucket to access.
* @return An iterator to the beginning of the given bucket.
*/
[[nodiscard]] const_local_iterator cbegin(const size_type index) const {
return {packed.first().begin(), sparse.first()[index]};
}
/**
* @brief Returns an iterator to the beginning of a given bucket.
* @param index An index of a bucket to access.
* @return An iterator to the beginning of the given bucket.
*/
[[nodiscard]] const_local_iterator begin(const size_type index) const {
return cbegin(index);
}
/**
* @brief Returns an iterator to the beginning of a given bucket.
* @param index An index of a bucket to access.
* @return An iterator to the beginning of the given bucket.
*/
[[nodiscard]] local_iterator begin(const size_type index) {
return {packed.first().begin(), sparse.first()[index]};
}
/**
* @brief Returns an iterator to the end of a given bucket.
* @param index An index of a bucket to access.
* @return An iterator to the end of the given bucket.
*/
[[nodiscard]] const_local_iterator cend([[maybe_unused]] const size_type index) const {
return {packed.first().begin(), (std::numeric_limits<size_type>::max)()};
}
/**
* @brief Returns an iterator to the end of a given bucket.
* @param index An index of a bucket to access.
* @return An iterator to the end of the given bucket.
*/
[[nodiscard]] const_local_iterator end(const size_type index) const {
return cend(index);
}
/**
* @brief Returns an iterator to the end of a given bucket.
* @param index An index of a bucket to access.
* @return An iterator to the end of the given bucket.
*/
[[nodiscard]] local_iterator end([[maybe_unused]] const size_type index) {
return {packed.first().begin(), (std::numeric_limits<size_type>::max)()};
}
/**
* @brief Returns the number of buckets.
* @return The number of buckets.
*/
[[nodiscard]] size_type bucket_count() const {
return sparse.first().size();
}
/**
* @brief Returns the maximum number of buckets.
* @return The maximum number of buckets.
*/
[[nodiscard]] size_type max_bucket_count() const {
return sparse.first().max_size();
}
/**
* @brief Returns the number of elements in a given bucket.
* @param index The index of the bucket to examine.
* @return The number of elements in the given bucket.
*/
[[nodiscard]] size_type bucket_size(const size_type index) const {
return static_cast<size_type>(std::distance(begin(index), end(index)));
}
/**
* @brief Returns the bucket for a given key.
* @param key The value of the key to examine.
* @return The bucket for the given key.
*/
[[nodiscard]] size_type bucket(const key_type &key) const {
return key_to_bucket(key);
}
/**
* @brief Returns the average number of elements per bucket.
* @return The average number of elements per bucket.
*/
[[nodiscard]] float load_factor() const {
return size() / static_cast<float>(bucket_count());
}
/**
* @brief Returns the maximum average number of elements per bucket.
* @return The maximum average number of elements per bucket.
*/
[[nodiscard]] float max_load_factor() const {
return threshold;
}
/**
* @brief Sets the desired maximum average number of elements per bucket.
* @param value A desired maximum average number of elements per bucket.
*/
void max_load_factor(const float value) {
ENTT_ASSERT(value > 0.f, "Invalid load factor");
threshold = value;
rehash(0u);
}
/**
* @brief Reserves at least the specified number of buckets and regenerates
* the hash table.
* @param cnt New number of buckets.
*/
void rehash(const size_type cnt) {
auto value = cnt > minimum_capacity ? cnt : minimum_capacity;
const auto cap = static_cast<size_type>(size() / max_load_factor());
value = value > cap ? value : cap;
if(const auto sz = next_power_of_two(value); sz != bucket_count()) {
sparse.first().resize(sz);
for(auto &&elem: sparse.first()) {
elem = std::numeric_limits<size_type>::max();
}
for(size_type pos{}, last = size(); pos < last; ++pos) {
const auto index = key_to_bucket(packed.first()[pos].element.first);
packed.first()[pos].next = std::exchange(sparse.first()[index], pos);
}
}
}
/**
* @brief Reserves space for at least the specified number of elements and
* regenerates the hash table.
* @param cnt New number of elements.
*/
void reserve(const size_type cnt) {
packed.first().reserve(cnt);
rehash(static_cast<size_type>(std::ceil(cnt / max_load_factor())));
}
/**
* @brief Returns the function used to hash the keys.
* @return The function used to hash the keys.
*/
[[nodiscard]] hasher hash_function() const {
return sparse.second();
}
/**
* @brief Returns the function used to compare keys for equality.
* @return The function used to compare keys for equality.
*/
[[nodiscard]] key_equal key_eq() const {
return packed.second();
}
private:
compressed_pair<sparse_container_type, hasher> sparse;
compressed_pair<packed_container_type, key_equal> packed;
float threshold;
};
} // namespace entt
/**
* @cond TURN_OFF_DOXYGEN
* Internal details not to be documented.
*/
namespace std {
template<typename Key, typename Value, typename Allocator>
struct uses_allocator<entt::internal::dense_map_node<Key, Value>, Allocator>
: std::true_type {};
} // namespace std
/**
* Internal details not to be documented.
* @endcond
*/
#endif
// #include "../core/algorithm.hpp"
// #include "../core/any.hpp"
// #include "../core/compressed_pair.hpp"
// #include "../core/fwd.hpp"
// #include "../core/iterator.hpp"
// #include "../core/memory.hpp"
// #include "../core/type_info.hpp"
// #include "../core/type_traits.hpp"
// #include "../core/utility.hpp"
// #include "component.hpp"
// #include "entity.hpp"
// #include "fwd.hpp"
// #include "group.hpp"
// #include "sparse_set.hpp"
// #include "storage.hpp"
// #include "view.hpp"
namespace entt {
/**
* @cond TURN_OFF_DOXYGEN
* Internal details not to be documented.
*/
namespace internal {
template<typename It>
class registry_storage_iterator final {
template<typename Other>
friend class registry_storage_iterator;
using mapped_type = std::remove_reference_t<decltype(std::declval<It>()->second)>;
public:
using value_type = std::pair<id_type, constness_as_t<typename mapped_type::element_type, mapped_type> &>;
using pointer = input_iterator_pointer<value_type>;
using reference = value_type;
using difference_type = std::ptrdiff_t;
using iterator_category = std::input_iterator_tag;
constexpr registry_storage_iterator() noexcept
: it{} {}
constexpr registry_storage_iterator(It iter) noexcept
: it{iter} {}
template<typename Other, typename = std::enable_if_t<!std::is_same_v<It, Other> && std::is_constructible_v<It, Other>>>
constexpr registry_storage_iterator(const registry_storage_iterator<Other> &other) noexcept
: registry_storage_iterator{other.it} {}
constexpr registry_storage_iterator &operator++() noexcept {
return ++it, *this;
}
constexpr registry_storage_iterator operator++(int) noexcept {
registry_storage_iterator orig = *this;
return ++(*this), orig;
}
constexpr registry_storage_iterator &operator--() noexcept {
return --it, *this;
}
constexpr registry_storage_iterator operator--(int) noexcept {
registry_storage_iterator orig = *this;
return operator--(), orig;
}
constexpr registry_storage_iterator &operator+=(const difference_type value) noexcept {
it += value;
return *this;
}
constexpr registry_storage_iterator operator+(const difference_type value) const noexcept {
registry_storage_iterator copy = *this;
return (copy += value);
}
constexpr registry_storage_iterator &operator-=(const difference_type value) noexcept {
return (*this += -value);
}
constexpr registry_storage_iterator operator-(const difference_type value) const noexcept {
return (*this + -value);
}
[[nodiscard]] constexpr reference operator[](const difference_type value) const noexcept {
return {it[value].first, *it[value].second};
}
[[nodiscard]] constexpr reference operator*() const noexcept {
return {it->first, *it->second};
}
[[nodiscard]] constexpr pointer operator->() const noexcept {
return operator*();
}
template<typename ILhs, typename IRhs>
friend constexpr std::ptrdiff_t operator-(const registry_storage_iterator<ILhs> &, const registry_storage_iterator<IRhs> &) noexcept;
template<typename ILhs, typename IRhs>
friend constexpr bool operator==(const registry_storage_iterator<ILhs> &, const registry_storage_iterator<IRhs> &) noexcept;
template<typename ILhs, typename IRhs>
friend constexpr bool operator<(const registry_storage_iterator<ILhs> &, const registry_storage_iterator<IRhs> &) noexcept;
private:
It it;
};
template<typename ILhs, typename IRhs>
[[nodiscard]] constexpr std::ptrdiff_t operator-(const registry_storage_iterator<ILhs> &lhs, const registry_storage_iterator<IRhs> &rhs) noexcept {
return lhs.it - rhs.it;
}
template<typename ILhs, typename IRhs>
[[nodiscard]] constexpr bool operator==(const registry_storage_iterator<ILhs> &lhs, const registry_storage_iterator<IRhs> &rhs) noexcept {
return lhs.it == rhs.it;
}
template<typename ILhs, typename IRhs>
[[nodiscard]] constexpr bool operator!=(const registry_storage_iterator<ILhs> &lhs, const registry_storage_iterator<IRhs> &rhs) noexcept {
return !(lhs == rhs);
}
template<typename ILhs, typename IRhs>
[[nodiscard]] constexpr bool operator<(const registry_storage_iterator<ILhs> &lhs, const registry_storage_iterator<IRhs> &rhs) noexcept {
return lhs.it < rhs.it;
}
template<typename ILhs, typename IRhs>
[[nodiscard]] constexpr bool operator>(const registry_storage_iterator<ILhs> &lhs, const registry_storage_iterator<IRhs> &rhs) noexcept {
return rhs < lhs;
}
template<typename ILhs, typename IRhs>
[[nodiscard]] constexpr bool operator<=(const registry_storage_iterator<ILhs> &lhs, const registry_storage_iterator<IRhs> &rhs) noexcept {
return !(lhs > rhs);
}
template<typename ILhs, typename IRhs>
[[nodiscard]] constexpr bool operator>=(const registry_storage_iterator<ILhs> &lhs, const registry_storage_iterator<IRhs> &rhs) noexcept {
return !(lhs < rhs);
}
class registry_context {
using key_type = id_type;
using mapped_type = basic_any<0u>;
using container_type = dense_map<key_type, mapped_type, identity>;
public:
template<typename Type, typename... Args>
[[deprecated("Use ::emplace_as instead")]] Type &emplace_hint(const id_type id, Args &&...args) {
return emplace_as<Type>(id, std::forward<Args>(args)...);
}
template<typename Type, typename... Args>
Type &emplace_as(const id_type id, Args &&...args) {
return any_cast<Type &>(ctx.try_emplace(id, std::in_place_type<Type>, std::forward<Args>(args)...).first->second);
}
template<typename Type, typename... Args>
Type &emplace(Args &&...args) {
return emplace_as<Type>(type_id<Type>().hash(), std::forward<Args>(args)...);
}
template<typename Type>
Type &insert_or_assign(const id_type id, Type &&value) {
return any_cast<std::remove_cv_t<std::remove_reference_t<Type>> &>(ctx.insert_or_assign(id, std::forward<Type>(value)).first->second);
}
template<typename Type>
Type &insert_or_assign(Type &&value) {
return insert_or_assign(type_id<Type>().hash(), std::forward<Type>(value));
}
template<typename Type>
bool erase(const id_type id = type_id<Type>().hash()) {
const auto it = ctx.find(id);
return it != ctx.end() && it->second.type() == type_id<Type>() ? (ctx.erase(it), true) : false;
}
template<typename Type>
[[deprecated("Use ::get instead")]] [[nodiscard]] const Type &at(const id_type id = type_id<Type>().hash()) const {
return get<Type>(id);
}
template<typename Type>
[[deprecated("Use ::get instead")]] [[nodiscard]] Type &at(const id_type id = type_id<Type>().hash()) {
return get<Type>(id);
}
template<typename Type>
[[nodiscard]] const Type &get(const id_type id = type_id<Type>().hash()) const {
return any_cast<const Type &>(ctx.at(id));
}
template<typename Type>
[[nodiscard]] Type &get(const id_type id = type_id<Type>().hash()) {
return any_cast<Type &>(ctx.at(id));
}
template<typename Type>
[[nodiscard]] const Type *find(const id_type id = type_id<Type>().hash()) const {
const auto it = ctx.find(id);
return it != ctx.cend() ? any_cast<const Type>(&it->second) : nullptr;
}
template<typename Type>
[[nodiscard]] Type *find(const id_type id = type_id<Type>().hash()) {
const auto it = ctx.find(id);
return it != ctx.end() ? any_cast<Type>(&it->second) : nullptr;
}
template<typename Type>
[[nodiscard]] bool contains(const id_type id = type_id<Type>().hash()) const {
const auto it = ctx.find(id);
return it != ctx.cend() && it->second.type() == type_id<Type>();
}
private:
container_type ctx;
};
} // namespace internal
/**
* Internal details not to be documented.
* @endcond
*/
/**
* @brief Fast and reliable entity-component system.
* @tparam Entity A valid entity type (see entt_traits for more details).
* @tparam Allocator Type of allocator used to manage memory and elements.
*/
template<typename Entity, typename Allocator>
class basic_registry {
using alloc_traits = typename std::allocator_traits<Allocator>;
static_assert(std::is_same_v<typename alloc_traits::value_type, Entity>, "Invalid value type");
using basic_common_type = basic_sparse_set<Entity, Allocator>;
using entity_traits = entt_traits<Entity>;
template<typename Type>
using storage_for_type = typename storage_for<Type, Entity, typename alloc_traits::template rebind_alloc<std::remove_const_t<Type>>>::type;
template<typename...>
struct group_handler;
template<typename... Exclude, typename... Get, typename... Owned>
struct group_handler<exclude_t<Exclude...>, get_t<Get...>, Owned...> {
// nasty workaround for an issue with the toolset v141 that doesn't accept a fold expression here
static_assert(!std::disjunction_v<std::bool_constant<component_traits<Owned>::in_place_delete>...>, "Groups do not support in-place delete");
using value_type = std::conditional_t<sizeof...(Owned) == 0, basic_common_type, std::size_t>;
value_type current{};
template<typename... Args>
group_handler(Args &&...args)
: current{std::forward<Args>(args)...} {}
template<typename Type>
void maybe_valid_if(basic_registry &owner, const Entity entt) {
[[maybe_unused]] const auto cpools = std::forward_as_tuple(owner.assure<Owned>()...);
const auto is_valid = ((std::is_same_v<Type, Owned> || std::get<storage_for_type<Owned> &>(cpools).contains(entt)) && ...)
&& ((std::is_same_v<Type, Get> || owner.assure<Get>().contains(entt)) && ...)
&& ((std::is_same_v<Type, Exclude> || !owner.assure<Exclude>().contains(entt)) && ...);
if constexpr(sizeof...(Owned) == 0) {
if(is_valid && !current.contains(entt)) {
current.emplace(entt);
}
} else {
if(is_valid && !(std::get<0>(cpools).index(entt) < current)) {
const auto pos = current++;
(std::get<storage_for_type<Owned> &>(cpools).swap_elements(std::get<storage_for_type<Owned> &>(cpools).data()[pos], entt), ...);
}
}
}
void discard_if([[maybe_unused]] basic_registry &owner, const Entity entt) {
if constexpr(sizeof...(Owned) == 0) {
current.remove(entt);
} else {
if(const auto cpools = std::forward_as_tuple(owner.assure<Owned>()...); std::get<0>(cpools).contains(entt) && (std::get<0>(cpools).index(entt) < current)) {
const auto pos = --current;
(std::get<storage_for_type<Owned> &>(cpools).swap_elements(std::get<storage_for_type<Owned> &>(cpools).data()[pos], entt), ...);
}
}
}
};
struct group_data {
std::size_t size;
std::shared_ptr<void> group;
bool (*owned)(const id_type) noexcept;
bool (*get)(const id_type) noexcept;
bool (*exclude)(const id_type) noexcept;
};
template<typename Type>
[[nodiscard]] auto &assure(const id_type id = type_hash<Type>::value()) {
static_assert(std::is_same_v<Type, std::decay_t<Type>>, "Non-decayed types not allowed");
auto &cpool = pools[id];
if(!cpool) {
cpool = std::allocate_shared<storage_for_type<std::remove_const_t<Type>>>(get_allocator(), get_allocator());
cpool->bind(forward_as_any(*this));
}
ENTT_ASSERT(cpool->type() == type_id<Type>(), "Unexpected type");
return static_cast<storage_for_type<Type> &>(*cpool);
}
template<typename Type>
[[nodiscard]] const auto &assure(const id_type id = type_hash<Type>::value()) const {
static_assert(std::is_same_v<Type, std::decay_t<Type>>, "Non-decayed types not allowed");
if(const auto it = pools.find(id); it != pools.cend()) {
ENTT_ASSERT(it->second->type() == type_id<Type>(), "Unexpected type");
return static_cast<const storage_for_type<Type> &>(*it->second);
}
static storage_for_type<Type> placeholder{};
return placeholder;
}
auto generate_identifier(const std::size_t pos) noexcept {
ENTT_ASSERT(pos < entity_traits::to_entity(null), "No entities available");
return entity_traits::combine(static_cast<typename entity_traits::entity_type>(pos), {});
}
auto recycle_identifier() noexcept {
ENTT_ASSERT(free_list != null, "No entities available");
const auto curr = entity_traits::to_entity(free_list);
free_list = entity_traits::combine(entity_traits::to_integral(epool[curr]), tombstone);
return (epool[curr] = entity_traits::combine(curr, entity_traits::to_integral(epool[curr])));
}
auto release_entity(const Entity entt, const typename entity_traits::version_type version) {
const typename entity_traits::version_type vers = version + (version == entity_traits::to_version(tombstone));
epool[entity_traits::to_entity(entt)] = entity_traits::construct(entity_traits::to_integral(free_list), vers);
free_list = entity_traits::combine(entity_traits::to_integral(entt), tombstone);
return vers;
}
void rebind() {
for(auto &&curr: pools) {
curr.second->bind(forward_as_any(*this));
}
}
public:
/*! @brief Allocator type. */
using allocator_type = Allocator;
/*! @brief Underlying entity identifier. */
using entity_type = Entity;
/*! @brief Underlying version type. */
using version_type = typename entity_traits::version_type;
/*! @brief Unsigned integer type. */
using size_type = std::size_t;
/*! @brief Common type among all storage types. */
using base_type = basic_common_type;
/*! @brief Context type. */
using context = internal::registry_context;
/*! @brief Default constructor. */
basic_registry()
: basic_registry{allocator_type{}} {}
/**
* @brief Constructs an empty registry with a given allocator.
* @param allocator The allocator to use.
*/
explicit basic_registry(const allocator_type &allocator)
: basic_registry{0u, allocator} {}
/**
* @brief Allocates enough memory upon construction to store `count` pools.
* @param count The number of pools to allocate memory for.
* @param allocator The allocator to use.
*/
basic_registry(const size_type count, const allocator_type &allocator = allocator_type{})
: vars{},
free_list{tombstone},
epool{allocator},
pools{allocator},
groups{allocator} {
pools.reserve(count);
}
/**
* @brief Move constructor.
* @param other The instance to move from.
*/
basic_registry(basic_registry &&other) noexcept
: vars{std::move(other.vars)},
free_list{std::move(other.free_list)},
epool{std::move(other.epool)},
pools{std::move(other.pools)},
groups{std::move(other.groups)} {
rebind();
}
/**
* @brief Move assignment operator.
* @param other The instance to move from.
* @return This registry.
*/
basic_registry &operator=(basic_registry &&other) noexcept {
vars = std::move(other.vars);
free_list = std::move(other.free_list);
epool = std::move(other.epool);
pools = std::move(other.pools);
groups = std::move(other.groups);
rebind();
return *this;
}
/**
* @brief Exchanges the contents with those of a given registry.
* @param other Registry to exchange the content with.
*/
void swap(basic_registry &other) {
using std::swap;
swap(vars, other.vars);
swap(free_list, other.free_list);
swap(epool, other.epool);
swap(pools, other.pools);
swap(groups, other.groups);
rebind();
other.rebind();
}
/**
* @brief Returns the associated allocator.
* @return The associated allocator.
*/
[[nodiscard]] constexpr allocator_type get_allocator() const noexcept {
return epool.get_allocator();
}
/**
* @brief Returns an iterable object to use to _visit_ a registry.
*
* The iterable object returns a pair that contains the name and a reference
* to the current storage.
*
* @return An iterable object to use to _visit_ the registry.
*/
[[nodiscard]] auto storage() noexcept {
return iterable_adaptor{internal::registry_storage_iterator{pools.begin()}, internal::registry_storage_iterator{pools.end()}};
}
/*! @copydoc storage */
[[nodiscard]] auto storage() const noexcept {
return iterable_adaptor{internal::registry_storage_iterator{pools.cbegin()}, internal::registry_storage_iterator{pools.cend()}};
}
/**
* @brief Finds the storage associated with a given name, if any.
* @param id Name used to map the storage within the registry.
* @return A pointer to the storage if it exists, a null pointer otherwise.
*/
[[nodiscard]] base_type *storage(const id_type id) {
return const_cast<base_type *>(std::as_const(*this).storage(id));
}
/**
* @brief Finds the storage associated with a given name, if any.
* @param id Name used to map the storage within the registry.
* @return A pointer to the storage if it exists, a null pointer otherwise.
*/
[[nodiscard]] const base_type *storage(const id_type id) const {
const auto it = pools.find(id);
return it == pools.cend() ? nullptr : it->second.get();
}
/**
* @brief Returns the storage for a given component type.
* @tparam Type Type of component of which to return the storage.
* @param id Optional name used to map the storage within the registry.
* @return The storage for the given component type.
*/
template<typename Type>
decltype(auto) storage(const id_type id = type_hash<Type>::value()) {
return assure<Type>(id);
}
/**
* @brief Returns the storage for a given component type.
*
* @warning
* If a storage for the given component doesn't exist yet, a temporary
* placeholder is returned instead.
*
* @tparam Type Type of component of which to return the storage.
* @param id Optional name used to map the storage within the registry.
* @return The storage for the given component type.
*/
template<typename Type>
decltype(auto) storage(const id_type id = type_hash<Type>::value()) const {
return assure<Type>(id);
}
/**
* @brief Returns the number of entities created so far.
* @return Number of entities created so far.
*/
[[nodiscard]] size_type size() const noexcept {
return epool.size();
}
/**
* @brief Returns the number of entities still in use.
* @return Number of entities still in use.
*/
[[nodiscard]] size_type alive() const {
auto sz = epool.size();
for(auto curr = free_list; curr != null; --sz) {
curr = epool[entity_traits::to_entity(curr)];
}
return sz;
}
/**
* @brief Increases the capacity (number of entities) of the registry.
* @param cap Desired capacity.
*/
void reserve(const size_type cap) {
epool.reserve(cap);
}
/**
* @brief Returns the number of entities that a registry has currently
* allocated space for.
* @return Capacity of the registry.
*/
[[nodiscard]] size_type capacity() const noexcept {
return epool.capacity();
}
/**
* @brief Checks whether the registry is empty (no entities still in use).
* @return True if the registry is empty, false otherwise.
*/
[[nodiscard]] bool empty() const {
return !alive();
}
/**
* @brief Direct access to the list of entities of a registry.
*
* The returned pointer is such that range `[data(), data() + size())` is
* always a valid range, even if the registry is empty.
*
* @warning
* This list contains both valid and destroyed entities and isn't suitable
* for direct use.
*
* @return A pointer to the array of entities.
*/
[[nodiscard]] const entity_type *data() const noexcept {
return epool.data();
}
/**
* @brief Returns the head of the list of released entities.
*
* This function is intended for use in conjunction with `assign`.<br/>
* The returned entity has an invalid identifier in all cases.
*
* @return The head of the list of released entities.
*/
[[nodiscard]] entity_type released() const noexcept {
return free_list;
}
/**
* @brief Checks if an identifier refers to a valid entity.
* @param entt An identifier, either valid or not.
* @return True if the identifier is valid, false otherwise.
*/
[[nodiscard]] bool valid(const entity_type entt) const {
const auto pos = size_type(entity_traits::to_entity(entt));
return (pos < epool.size() && epool[pos] == entt);
}
/**
* @brief Returns the actual version for an identifier.
* @param entt A valid identifier.
* @return The version for the given identifier if valid, the tombstone
* version otherwise.
*/
[[nodiscard]] version_type current(const entity_type entt) const {
const auto pos = size_type(entity_traits::to_entity(entt));
return entity_traits::to_version(pos < epool.size() ? epool[pos] : tombstone);
}
/**
* @brief Creates a new entity or recycles a destroyed one.
* @return A valid identifier.
*/
[[nodiscard]] entity_type create() {
return (free_list == null) ? epool.emplace_back(generate_identifier(epool.size())) : recycle_identifier();
}
/**
* @copybrief create
*
* If the requested entity isn't in use, the suggested identifier is used.
* Otherwise, a new identifier is generated.
*
* @param hint Required identifier.
* @return A valid identifier.
*/
[[nodiscard]] entity_type create(const entity_type hint) {
const auto length = epool.size();
if(hint == null || hint == tombstone) {
return create();
} else if(const auto req = entity_traits::to_entity(hint); !(req < length)) {
epool.resize(size_type(req) + 1u, null);
for(auto pos = length; pos < req; ++pos) {
release_entity(generate_identifier(pos), {});
}
return (epool[req] = hint);
} else if(const auto curr = entity_traits::to_entity(epool[req]); req == curr) {
return create();
} else {
auto *it = &free_list;
for(; entity_traits::to_entity(*it) != req; it = &epool[entity_traits::to_entity(*it)]) {}
*it = entity_traits::combine(curr, entity_traits::to_integral(*it));
return (epool[req] = hint);
}
}
/**
* @brief Assigns each element in a range an identifier.
*
* @sa create
*
* @tparam It Type of forward iterator.
* @param first An iterator to the first element of the range to generate.
* @param last An iterator past the last element of the range to generate.
*/
template<typename It>
void create(It first, It last) {
for(; free_list != null && first != last; ++first) {
*first = recycle_identifier();
}
const auto length = epool.size();
epool.resize(length + std::distance(first, last), null);
for(auto pos = length; first != last; ++first, ++pos) {
*first = epool[pos] = generate_identifier(pos);
}
}
/**
* @brief Assigns identifiers to an empty registry.
*
* This function is intended for use in conjunction with `data`, `size` and
* `released`.<br/>
* Don't try to inject ranges of randomly generated entities nor the _wrong_
* head for the list of destroyed entities. There is no guarantee that a
* registry will continue to work properly in this case.
*
* @warning
* There must be no entities still alive for this to work properly.
*
* @tparam It Type of input iterator.
* @param first An iterator to the first element of the range of entities.
* @param last An iterator past the last element of the range of entities.
* @param destroyed The head of the list of destroyed entities.
*/
template<typename It>
void assign(It first, It last, const entity_type destroyed) {
ENTT_ASSERT(!alive(), "Entities still alive");
epool.assign(first, last);
free_list = destroyed;
}
/**
* @brief Releases an identifier.
*
* The version is updated and the identifier can be recycled at any time.
*
* @warning
* Attempting to use an invalid entity results in undefined behavior.
*
* @param entt A valid identifier.
* @return The version of the recycled entity.
*/
version_type release(const entity_type entt) {
return release(entt, static_cast<version_type>(entity_traits::to_version(entt) + 1u));
}
/**
* @brief Releases an identifier.
*
* The suggested version or the valid version closest to the suggested one
* is used instead of the implicitly generated version.
*
* @sa release
*
* @param entt A valid identifier.
* @param version A desired version upon destruction.
* @return The version actually assigned to the entity.
*/
version_type release(const entity_type entt, const version_type version) {
ENTT_ASSERT(valid(entt), "Invalid identifier");
ENTT_ASSERT(std::all_of(pools.cbegin(), pools.cend(), [entt](auto &&curr) { return (curr.second->current(entt) == entity_traits::to_version(tombstone)); }), "Non-orphan entity");
return release_entity(entt, version);
}
/**
* @brief Releases all identifiers in a range.
*
* @sa release
*
* @tparam It Type of input iterator.
* @param first An iterator to the first element of the range of entities.
* @param last An iterator past the last element of the range of entities.
*/
template<typename It>
void release(It first, It last) {
for(; first != last; ++first) {
release(*first);
}
}
/**
* @brief Destroys an entity and releases its identifier.
*
* @sa release
*
* @warning
* Adding or removing components to an entity that is being destroyed can
* result in undefined behavior. Attempting to use an invalid entity results
* in undefined behavior.
*
* @param entt A valid identifier.
* @return The version of the recycled entity.
*/
version_type destroy(const entity_type entt) {
return destroy(entt, static_cast<version_type>(entity_traits::to_version(entt) + 1u));
}
/**
* @brief Destroys an entity and releases its identifier.
*
* The suggested version or the valid version closest to the suggested one
* is used instead of the implicitly generated version.
*
* @sa destroy
*
* @param entt A valid identifier.
* @param version A desired version upon destruction.
* @return The version actually assigned to the entity.
*/
version_type destroy(const entity_type entt, const version_type version) {
for(size_type pos = pools.size(); pos; --pos) {
pools.begin()[pos - 1u].second->remove(entt);
}
return release(entt, version);
}
/**
* @brief Destroys all entities in a range and releases their identifiers.
*
* @sa destroy
*
* @tparam It Type of input iterator.
* @param first An iterator to the first element of the range of entities.
* @param last An iterator past the last element of the range of entities.
*/
template<typename It>
void destroy(It first, It last) {
for(; first != last; ++first) {
destroy(*first);
}
}
/**
* @brief Assigns the given component to an entity.
*
* The component must have a proper constructor or be of aggregate type.
*
* @warning
* Attempting to assign a component to an entity that already owns it
* results in undefined behavior.
*
* @tparam Type Type of component to create.
* @tparam Args Types of arguments to use to construct the component.
* @param entt A valid identifier.
* @param args Parameters to use to initialize the component.
* @return A reference to the newly created component.
*/
template<typename Type, typename... Args>
decltype(auto) emplace(const entity_type entt, Args &&...args) {
return assure<Type>().emplace(entt, std::forward<Args>(args)...);
}
/**
* @brief Assigns each entity in a range the given component.
*
* @sa emplace
*
* @tparam Type Type of component to create.
* @tparam It Type of input iterator.
* @param first An iterator to the first element of the range of entities.
* @param last An iterator past the last element of the range of entities.
* @param value An instance of the component to assign.
*/
template<typename Type, typename It>
void insert(It first, It last, const Type &value = {}) {
assure<Type>().insert(first, last, value);
}
/**
* @brief Assigns each entity in a range the given components.
*
* @sa emplace
*
* @tparam Type Type of component to create.
* @tparam EIt Type of input iterator.
* @tparam CIt Type of input iterator.
* @param first An iterator to the first element of the range of entities.
* @param last An iterator past the last element of the range of entities.
* @param from An iterator to the first element of the range of components.
*/
template<typename Type, typename EIt, typename CIt, typename = std::enable_if_t<std::is_same_v<typename std::iterator_traits<CIt>::value_type, Type>>>
void insert(EIt first, EIt last, CIt from) {
assure<Type>().insert(first, last, from);
}
/**
* @brief Assigns or replaces the given component for an entity.
*
* @sa emplace
* @sa replace
*
* @tparam Type Type of component to assign or replace.
* @tparam Args Types of arguments to use to construct the component.
* @param entt A valid identifier.
* @param args Parameters to use to initialize the component.
* @return A reference to the newly created component.
*/
template<typename Type, typename... Args>
decltype(auto) emplace_or_replace(const entity_type entt, Args &&...args) {
if(auto &cpool = assure<Type>(); cpool.contains(entt)) {
return cpool.patch(entt, [&args...](auto &...curr) { ((curr = Type{std::forward<Args>(args)...}), ...); });
} else {
return cpool.emplace(entt, std::forward<Args>(args)...);
}
}
/**
* @brief Patches the given component for an entity.
*
* The signature of the function should be equivalent to the following:
*
* @code{.cpp}
* void(Type &);
* @endcode
*
* @note
* Empty types aren't explicitly instantiated and therefore they are never
* returned. However, this function can be used to trigger an update signal
* for them.
*
* @warning
* Attempting to to patch a component of an entity that doesn't own it
* results in undefined behavior.
*
* @tparam Type Type of component to patch.
* @tparam Func Types of the function objects to invoke.
* @param entt A valid identifier.
* @param func Valid function objects.
* @return A reference to the patched component.
*/
template<typename Type, typename... Func>
decltype(auto) patch(const entity_type entt, Func &&...func) {
return assure<Type>().patch(entt, std::forward<Func>(func)...);
}
/**
* @brief Replaces the given component for an entity.
*
* The component must have a proper constructor or be of aggregate type.
*
* @warning
* Attempting to replace a component of an entity that doesn't own it
* results in undefined behavior.
*
* @tparam Type Type of component to replace.
* @tparam Args Types of arguments to use to construct the component.
* @param entt A valid identifier.
* @param args Parameters to use to initialize the component.
* @return A reference to the component being replaced.
*/
template<typename Type, typename... Args>
decltype(auto) replace(const entity_type entt, Args &&...args) {
return patch<Type>(entt, [&args...](auto &...curr) { ((curr = Type{std::forward<Args>(args)...}), ...); });
}
/**
* @brief Removes the given components from an entity.
*
* @tparam Type Type of component to remove.
* @tparam Other Other types of components to remove.
* @param entt A valid identifier.
* @return The number of components actually removed.
*/
template<typename Type, typename... Other>
size_type remove(const entity_type entt) {
return (assure<Type>().remove(entt) + ... + assure<Other>().remove(entt));
}
/**
* @brief Removes the given components from all the entities in a range.
*
* @sa remove
*
* @tparam Type Type of component to remove.
* @tparam Other Other types of components to remove.
* @tparam It Type of input iterator.
* @param first An iterator to the first element of the range of entities.
* @param last An iterator past the last element of the range of entities.
* @return The number of components actually removed.
*/
template<typename Type, typename... Other, typename It>
size_type remove(It first, It last) {
if constexpr(sizeof...(Other) == 0u) {
return assure<Type>().remove(std::move(first), std::move(last));
} else {
size_type count{};
for(auto cpools = std::forward_as_tuple(assure<Type>(), assure<Other>()...); first != last; ++first) {
count += std::apply([entt = *first](auto &...curr) { return (curr.remove(entt) + ... + 0u); }, cpools);
}
return count;
}
}
/**
* @brief Erases the given components from an entity.
*
* @warning
* Attempting to erase a component from an entity that doesn't own it
* results in undefined behavior.
*
* @tparam Type Types of components to erase.
* @tparam Other Other types of components to erase.
* @param entt A valid identifier.
*/
template<typename Type, typename... Other>
void erase(const entity_type entt) {
(assure<Type>().erase(entt), (assure<Other>().erase(entt), ...));
}
/**
* @brief Erases the given components from all the entities in a range.
*
* @sa erase
*
* @tparam Type Types of components to erase.
* @tparam Other Other types of components to erase.
* @tparam It Type of input iterator.
* @param first An iterator to the first element of the range of entities.
* @param last An iterator past the last element of the range of entities.
*/
template<typename Type, typename... Other, typename It>
void erase(It first, It last) {
if constexpr(sizeof...(Other) == 0u) {
assure<Type>().erase(std::move(first), std::move(last));
} else {
for(auto cpools = std::forward_as_tuple(assure<Type>(), assure<Other>()...); first != last; ++first) {
std::apply([entt = *first](auto &...curr) { (curr.erase(entt), ...); }, cpools);
}
}
}
/**
* @brief Removes all tombstones from a registry or only the pools for the
* given components.
* @tparam Type Types of components for which to clear all tombstones.
*/
template<typename... Type>
void compact() {
if constexpr(sizeof...(Type) == 0) {
for(auto &&curr: pools) {
curr.second->compact();
}
} else {
(assure<Type>().compact(), ...);
}
}
/**
* @brief Check if an entity is part of all the given storage.
* @tparam Type Type of storage to check for.
* @param entt A valid identifier.
* @return True if the entity is part of all the storage, false otherwise.
*/
template<typename... Type>
[[nodiscard]] bool all_of(const entity_type entt) const {
return (assure<std::remove_const_t<Type>>().contains(entt) && ...);
}
/**
* @brief Check if an entity is part of at least one given storage.
* @tparam Type Type of storage to check for.
* @param entt A valid identifier.
* @return True if the entity is part of at least one storage, false
* otherwise.
*/
template<typename... Type>
[[nodiscard]] bool any_of(const entity_type entt) const {
return (assure<std::remove_const_t<Type>>().contains(entt) || ...);
}
/**
* @brief Returns references to the given components for an entity.
*
* @warning
* Attempting to get a component from an entity that doesn't own it results
* in undefined behavior.
*
* @tparam Type Types of components to get.
* @param entt A valid identifier.
* @return References to the components owned by the entity.
*/
template<typename... Type>
[[nodiscard]] decltype(auto) get([[maybe_unused]] const entity_type entt) const {
if constexpr(sizeof...(Type) == 1u) {
return (assure<std::remove_const_t<Type>>().get(entt), ...);
} else {
return std::forward_as_tuple(get<Type>(entt)...);
}
}
/*! @copydoc get */
template<typename... Type>
[[nodiscard]] decltype(auto) get([[maybe_unused]] const entity_type entt) {
if constexpr(sizeof...(Type) == 1u) {
return (const_cast<Type &>(std::as_const(*this).template get<Type>(entt)), ...);
} else {
return std::forward_as_tuple(get<Type>(entt)...);
}
}
/**
* @brief Returns a reference to the given component for an entity.
*
* In case the entity doesn't own the component, the parameters provided are
* used to construct it.
*
* @sa get
* @sa emplace
*
* @tparam Type Type of component to get.
* @tparam Args Types of arguments to use to construct the component.
* @param entt A valid identifier.
* @param args Parameters to use to initialize the component.
* @return Reference to the component owned by the entity.
*/
template<typename Type, typename... Args>
[[nodiscard]] decltype(auto) get_or_emplace(const entity_type entt, Args &&...args) {
if(auto &cpool = assure<Type>(); cpool.contains(entt)) {
return cpool.get(entt);
} else {
return cpool.emplace(entt, std::forward<Args>(args)...);
}
}
/**
* @brief Returns pointers to the given components for an entity.
*
* @note
* The registry retains ownership of the pointed-to components.
*
* @tparam Type Types of components to get.
* @param entt A valid identifier.
* @return Pointers to the components owned by the entity.
*/
template<typename... Type>
[[nodiscard]] auto try_get([[maybe_unused]] const entity_type entt) const {
if constexpr(sizeof...(Type) == 1) {
const auto &cpool = assure<std::remove_const_t<Type>...>();
return cpool.contains(entt) ? std::addressof(cpool.get(entt)) : nullptr;
} else {
return std::make_tuple(try_get<Type>(entt)...);
}
}
/*! @copydoc try_get */
template<typename... Type>
[[nodiscard]] auto try_get([[maybe_unused]] const entity_type entt) {
if constexpr(sizeof...(Type) == 1) {
return (const_cast<Type *>(std::as_const(*this).template try_get<Type>(entt)), ...);
} else {
return std::make_tuple(try_get<Type>(entt)...);
}
}
/**
* @brief Clears a whole registry or the pools for the given components.
* @tparam Type Types of components to remove from their entities.
*/
template<typename... Type>
void clear() {
if constexpr(sizeof...(Type) == 0) {
for(auto &&curr: pools) {
curr.second->clear();
}
each([this](const auto entity) { this->release(entity); });
} else {
(assure<Type>().clear(), ...);
}
}
/**
* @brief Iterates all the entities that are still in use.
*
* The signature of the function should be equivalent to the following:
*
* @code{.cpp}
* void(const Entity);
* @endcode
*
* It's not defined whether entities created during iteration are returned.
*
* @tparam Func Type of the function object to invoke.
* @param func A valid function object.
*/
template<typename Func>
void each(Func func) const {
if(free_list == null) {
for(auto pos = epool.size(); pos; --pos) {
func(epool[pos - 1]);
}
} else {
for(auto pos = epool.size(); pos; --pos) {
if(const auto entity = epool[pos - 1]; entity_traits::to_entity(entity) == (pos - 1)) {
func(entity);
}
}
}
}
/**
* @brief Checks if an entity has components assigned.
* @param entt A valid identifier.
* @return True if the entity has no components assigned, false otherwise.
*/
[[nodiscard]] bool orphan(const entity_type entt) const {
return std::none_of(pools.cbegin(), pools.cend(), [entt](auto &&curr) { return curr.second->contains(entt); });
}
/**
* @brief Returns a sink object for the given component.
*
* Use this function to receive notifications whenever a new instance of the
* given component is created and assigned to an entity.<br/>
* The function type for a listener is equivalent to:
*
* @code{.cpp}
* void(basic_registry<Entity> &, Entity);
* @endcode
*
* Listeners are invoked **after** assigning the component to the entity.
*
* @sa sink
*
* @tparam Type Type of component of which to get the sink.
* @return A temporary sink object.
*/
template<typename Type>
[[nodiscard]] auto on_construct() {
return assure<Type>().on_construct();
}
/**
* @brief Returns a sink object for the given component.
*
* Use this function to receive notifications whenever an instance of the
* given component is explicitly updated.<br/>
* The function type for a listener is equivalent to:
*
* @code{.cpp}
* void(basic_registry<Entity> &, Entity);
* @endcode
*
* Listeners are invoked **after** updating the component.
*
* @sa sink
*
* @tparam Type Type of component of which to get the sink.
* @return A temporary sink object.
*/
template<typename Type>
[[nodiscard]] auto on_update() {
return assure<Type>().on_update();
}
/**
* @brief Returns a sink object for the given component.
*
* Use this function to receive notifications whenever an instance of the
* given component is removed from an entity and thus destroyed.<br/>
* The function type for a listener is equivalent to:
*
* @code{.cpp}
* void(basic_registry<Entity> &, Entity);
* @endcode
*
* Listeners are invoked **before** removing the component from the entity.
*
* @sa sink
*
* @tparam Type Type of component of which to get the sink.
* @return A temporary sink object.
*/
template<typename Type>
[[nodiscard]] auto on_destroy() {
return assure<Type>().on_destroy();
}
/**
* @brief Returns a view for the given components.
*
* Views are created on the fly and share with the registry its internal
* data structures. Feel free to discard them after the use.<br/>
* Creating and destroying a view is an incredibly cheap operation. As a
* rule of thumb, storing a view should never be an option.
*
* @tparam Type Type of component used to construct the view.
* @tparam Other Other types of components used to construct the view.
* @tparam Exclude Types of components used to filter the view.
* @return A newly created view.
*/
template<typename Type, typename... Other, typename... Exclude>
[[nodiscard]] basic_view<get_t<storage_for_type<const Type>, storage_for_type<const Other>...>, exclude_t<storage_for_type<const Exclude>...>>
view(exclude_t<Exclude...> = {}) const {
return {assure<std::remove_const_t<Type>>(), assure<std::remove_const_t<Other>>()..., assure<std::remove_const_t<Exclude>>()...};
}
/*! @copydoc view */
template<typename Type, typename... Other, typename... Exclude>
[[nodiscard]] basic_view<get_t<storage_for_type<Type>, storage_for_type<Other>...>, exclude_t<storage_for_type<Exclude>...>>
view(exclude_t<Exclude...> = {}) {
return {assure<std::remove_const_t<Type>>(), assure<std::remove_const_t<Other>>()..., assure<std::remove_const_t<Exclude>>()...};
}
/**
* @brief Returns a group for the given components.
*
* Groups are created on the fly and share with the registry its internal
* data structures. Feel free to discard them after the use.<br/>
* Creating and destroying a group is an incredibly cheap operation. As a
* rule of thumb, storing a group should never be an option.
*
* Groups support exclusion lists and can own types of components. The more
* types are owned by a group, the faster it is to iterate entities and
* components.<br/>
* However, groups also affect some features of the registry such as the
* creation and destruction of components.
*
* @note
* Pools of components that are owned by a group cannot be sorted anymore.
* The group takes the ownership of the pools and arrange components so as
* to iterate them as fast as possible.
*
* @tparam Owned Type of storage _owned_ by the group.
* @tparam Get Type of storage _observed_ by the group.
* @tparam Exclude Type of storage used to filter the group.
* @return A newly created group.
*/
template<typename... Owned, typename... Get, typename... Exclude>
[[nodiscard]] basic_group<owned_t<storage_for_type<Owned>...>, get_t<storage_for_type<Get>...>, exclude_t<storage_for_type<Exclude>...>>
group(get_t<Get...> = {}, exclude_t<Exclude...> = {}) {
static_assert(sizeof...(Owned) + sizeof...(Get) > 0, "Exclusion-only groups are not supported");
static_assert(sizeof...(Owned) + sizeof...(Get) + sizeof...(Exclude) > 1, "Single component groups are not allowed");
using handler_type = group_handler<exclude_t<std::remove_const_t<Exclude>...>, get_t<std::remove_const_t<Get>...>, std::remove_const_t<Owned>...>;
const auto cpools = std::forward_as_tuple(assure<std::remove_const_t<Owned>>()..., assure<std::remove_const_t<Get>>()...);
constexpr auto size = sizeof...(Owned) + sizeof...(Get) + sizeof...(Exclude);
handler_type *handler = nullptr;
auto it = std::find_if(groups.cbegin(), groups.cend(), [size](const auto &gdata) {
return gdata.size == size
&& (gdata.owned(type_hash<std::remove_const_t<Owned>>::value()) && ...)
&& (gdata.get(type_hash<std::remove_const_t<Get>>::value()) && ...)
&& (gdata.exclude(type_hash<std::remove_const_t<Exclude>>::value()) && ...);
});
if(it != groups.cend()) {
handler = static_cast<handler_type *>(it->group.get());
} else {
group_data candidate = {
size,
std::apply([this](auto &&...args) { return std::allocate_shared<handler_type>(get_allocator(), std::forward<decltype(args)>(args)...); }, entt::uses_allocator_construction_args<typename handler_type::value_type>(get_allocator())),
[]([[maybe_unused]] const id_type ctype) noexcept { return ((ctype == type_hash<std::remove_const_t<Owned>>::value()) || ...); },
[]([[maybe_unused]] const id_type ctype) noexcept { return ((ctype == type_hash<std::remove_const_t<Get>>::value()) || ...); },
[]([[maybe_unused]] const id_type ctype) noexcept { return ((ctype == type_hash<std::remove_const_t<Exclude>>::value()) || ...); },
};
handler = static_cast<handler_type *>(candidate.group.get());
const void *maybe_valid_if = nullptr;
const void *discard_if = nullptr;
if constexpr(sizeof...(Owned) == 0) {
groups.push_back(std::move(candidate));
} else {
[[maybe_unused]] auto has_conflict = [size](const auto &gdata) {
const auto overlapping = (0u + ... + gdata.owned(type_hash<std::remove_const_t<Owned>>::value()));
const auto sz = overlapping + (0u + ... + gdata.get(type_hash<std::remove_const_t<Get>>::value())) + (0u + ... + gdata.exclude(type_hash<std::remove_const_t<Exclude>>::value()));
return !overlapping || ((sz == size) || (sz == gdata.size));
};
ENTT_ASSERT(std::all_of(groups.cbegin(), groups.cend(), std::move(has_conflict)), "Conflicting groups");
const auto next = std::find_if_not(groups.cbegin(), groups.cend(), [size](const auto &gdata) {
return !(0u + ... + gdata.owned(type_hash<std::remove_const_t<Owned>>::value())) || (size > gdata.size);
});
const auto prev = std::find_if(std::make_reverse_iterator(next), groups.crend(), [](const auto &gdata) {
return (0u + ... + gdata.owned(type_hash<std::remove_const_t<Owned>>::value()));
});
maybe_valid_if = (next == groups.cend() ? maybe_valid_if : next->group.get());
discard_if = (prev == groups.crend() ? discard_if : prev->group.get());
groups.insert(next, std::move(candidate));
}
(on_construct<std::remove_const_t<Owned>>().before(maybe_valid_if).template connect<&handler_type::template maybe_valid_if<std::remove_const_t<Owned>>>(*handler), ...);
(on_construct<std::remove_const_t<Get>>().before(maybe_valid_if).template connect<&handler_type::template maybe_valid_if<std::remove_const_t<Get>>>(*handler), ...);
(on_destroy<std::remove_const_t<Exclude>>().before(maybe_valid_if).template connect<&handler_type::template maybe_valid_if<std::remove_const_t<Exclude>>>(*handler), ...);
(on_destroy<std::remove_const_t<Owned>>().before(discard_if).template connect<&handler_type::discard_if>(*handler), ...);
(on_destroy<std::remove_const_t<Get>>().before(discard_if).template connect<&handler_type::discard_if>(*handler), ...);
(on_construct<std::remove_const_t<Exclude>>().before(discard_if).template connect<&handler_type::discard_if>(*handler), ...);
if constexpr(sizeof...(Owned) == 0) {
for(const auto entity: view<Owned..., Get...>(exclude<Exclude...>)) {
handler->current.emplace(entity);
}
} else {
// we cannot iterate backwards because we want to leave behind valid entities in case of owned types
for(auto *first = std::get<0>(cpools).data(), *last = first + std::get<0>(cpools).size(); first != last; ++first) {
handler->template maybe_valid_if<type_list_element_t<0, type_list<std::remove_const_t<Owned>...>>>(*this, *first);
}
}
}
return {handler->current, std::get<storage_for_type<std::remove_const_t<Owned>> &>(cpools)..., std::get<storage_for_type<std::remove_const_t<Get>> &>(cpools)...};
}
/*! @copydoc group */
template<typename... Owned, typename... Get, typename... Exclude>
[[nodiscard]] basic_group<owned_t<storage_for_type<const Owned>...>, get_t<storage_for_type<const Get>...>, exclude_t<storage_for_type<const Exclude>...>>
group_if_exists(get_t<Get...> = {}, exclude_t<Exclude...> = {}) const {
auto it = std::find_if(groups.cbegin(), groups.cend(), [](const auto &gdata) {
return gdata.size == (sizeof...(Owned) + sizeof...(Get) + sizeof...(Exclude))
&& (gdata.owned(type_hash<std::remove_const_t<Owned>>::value()) && ...)
&& (gdata.get(type_hash<std::remove_const_t<Get>>::value()) && ...)
&& (gdata.exclude(type_hash<std::remove_const_t<Exclude>>::value()) && ...);
});
if(it == groups.cend()) {
return {};
} else {
using handler_type = group_handler<exclude_t<std::remove_const_t<Exclude>...>, get_t<std::remove_const_t<Get>...>, std::remove_const_t<Owned>...>;
return {static_cast<handler_type *>(it->group.get())->current, assure<std::remove_const_t<Owned>>()..., assure<std::remove_const_t<Get>>()...};
}
}
/**
* @brief Checks whether the given components belong to any group.
* @tparam Component Types of components in which one is interested.
* @return True if the pools of the given components are _free_, false
* otherwise.
*/
template<typename... Type>
[[nodiscard]] bool owned() const {
return std::any_of(groups.cbegin(), groups.cend(), [](auto &&gdata) { return (gdata.owned(type_hash<std::remove_const_t<Type>>::value()) || ...); });
}
/**
* @brief Checks whether a group can be sorted.
* @tparam Owned Type of storage _owned_ by the group.
* @tparam Get Type of storage _observed_ by the group.
* @tparam Exclude Type of storage used to filter the group.
* @return True if the group can be sorted, false otherwise.
*/
template<typename... Owned, typename... Get, typename... Exclude>
[[nodiscard]] bool sortable(const basic_group<owned_t<Owned...>, get_t<Get...>, exclude_t<Exclude...>> &) noexcept {
constexpr auto size = sizeof...(Owned) + sizeof...(Get) + sizeof...(Exclude);
auto pred = [size](const auto &gdata) { return (0u + ... + gdata.owned(type_hash<typename Owned::value_type>::value())) && (size < gdata.size); };
return std::find_if(groups.cbegin(), groups.cend(), std::move(pred)) == groups.cend();
}
/**
* @brief Sorts the elements of a given component.
*
* The order remains valid until a component of the given type is assigned
* to or removed from an entity.<br/>
* The comparison function object returns `true` if the first element is
* _less_ than the second one, `false` otherwise. Its signature is also
* equivalent to one of the following:
*
* @code{.cpp}
* bool(const Entity, const Entity);
* bool(const Type &, const Type &);
* @endcode
*
* Moreover, it shall induce a _strict weak ordering_ on the values.<br/>
* The sort function object offers an `operator()` that accepts:
*
* * An iterator to the first element of the range to sort.
* * An iterator past the last element of the range to sort.
* * A comparison function object to use to compare the elements.
*
* The comparison function object hasn't necessarily the type of the one
* passed along with the other parameters to this member function.
*
* @warning
* Pools of components owned by a group cannot be sorted.
*
* @tparam Type Type of components to sort.
* @tparam Compare Type of comparison function object.
* @tparam Sort Type of sort function object.
* @tparam Args Types of arguments to forward to the sort function object.
* @param compare A valid comparison function object.
* @param algo A valid sort function object.
* @param args Arguments to forward to the sort function object, if any.
*/
template<typename Type, typename Compare, typename Sort = std_sort, typename... Args>
void sort(Compare compare, Sort algo = Sort{}, Args &&...args) {
ENTT_ASSERT(!owned<Type>(), "Cannot sort owned storage");
auto &cpool = assure<Type>();
if constexpr(std::is_invocable_v<Compare, decltype(cpool.get({})), decltype(cpool.get({}))>) {
auto comp = [&cpool, compare = std::move(compare)](const auto lhs, const auto rhs) { return compare(std::as_const(cpool.get(lhs)), std::as_const(cpool.get(rhs))); };
cpool.sort(std::move(comp), std::move(algo), std::forward<Args>(args)...);
} else {
cpool.sort(std::move(compare), std::move(algo), std::forward<Args>(args)...);
}
}
/**
* @brief Sorts two pools of components in the same way.
*
* Being `To` and `From` the two sets, after invoking this function an
* iterator for `To` returns elements according to the following rules:
*
* * All entities in `To` that are also in `From` are returned first
* according to the order they have in `From`.
* * All entities in `To` that are not in `From` are returned in no
* particular order after all the other entities.
*
* Any subsequent change to `From` won't affect the order in `To`.
*
* @warning
* Pools of components owned by a group cannot be sorted.
*
* @tparam To Type of components to sort.
* @tparam From Type of components to use to sort.
*/
template<typename To, typename From>
void sort() {
ENTT_ASSERT(!owned<To>(), "Cannot sort owned storage");
assure<To>().respect(assure<From>());
}
/**
* @brief Returns the context object, that is, a general purpose container.
* @return The context object, that is, a general purpose container.
*/
context &ctx() noexcept {
return vars;
}
/*! @copydoc ctx */
const context &ctx() const noexcept {
return vars;
}
private:
context vars;
entity_type free_list;
std::vector<entity_type, allocator_type> epool;
// std::shared_ptr because of its type erased allocator which is useful here
dense_map<id_type, std::shared_ptr<base_type>, identity, std::equal_to<id_type>, typename alloc_traits::template rebind_alloc<std::pair<const id_type, std::shared_ptr<base_type>>>> pools;
std::vector<group_data, typename alloc_traits::template rebind_alloc<group_data>> groups;
};
} // namespace entt
#endif
// #include "entity/runtime_view.hpp"
#ifndef ENTT_ENTITY_RUNTIME_VIEW_HPP
#define ENTT_ENTITY_RUNTIME_VIEW_HPP
#include <algorithm>
#include <cstddef>
#include <iterator>
#include <utility>
#include <vector>
// #include "entity.hpp"
// #include "fwd.hpp"
namespace entt {
/**
* @cond TURN_OFF_DOXYGEN
* Internal details not to be documented.
*/
namespace internal {
template<typename Set>
class runtime_view_iterator final {
using iterator_type = typename Set::iterator;
[[nodiscard]] bool valid() const {
return (!tombstone_check || *it != tombstone)
&& std::all_of(++pools->begin(), pools->end(), [entt = *it](const auto *curr) { return curr->contains(entt); })
&& std::none_of(filter->cbegin(), filter->cend(), [entt = *it](const auto *curr) { return curr && curr->contains(entt); });
}
public:
using difference_type = typename iterator_type::difference_type;
using value_type = typename iterator_type::value_type;
using pointer = typename iterator_type::pointer;
using reference = typename iterator_type::reference;
using iterator_category = std::bidirectional_iterator_tag;
constexpr runtime_view_iterator() noexcept
: pools{},
filter{},
it{},
tombstone_check{} {}
runtime_view_iterator(const std::vector<Set *> &cpools, const std::vector<Set *> &ignore, iterator_type curr) noexcept
: pools{&cpools},
filter{&ignore},
it{curr},
tombstone_check{pools->size() == 1u && (*pools)[0u]->policy() == deletion_policy::in_place} {
if(it != (*pools)[0]->end() && !valid()) {
++(*this);
}
}
runtime_view_iterator &operator++() {
while(++it != (*pools)[0]->end() && !valid()) {}
return *this;
}
runtime_view_iterator operator++(int) {
runtime_view_iterator orig = *this;
return ++(*this), orig;
}
runtime_view_iterator &operator--() {
while(--it != (*pools)[0]->begin() && !valid()) {}
return *this;
}
runtime_view_iterator operator--(int) {
runtime_view_iterator orig = *this;
return operator--(), orig;
}
[[nodiscard]] pointer operator->() const noexcept {
return it.operator->();
}
[[nodiscard]] reference operator*() const noexcept {
return *operator->();
}
[[nodiscard]] constexpr bool operator==(const runtime_view_iterator &other) const noexcept {
return it == other.it;
}
[[nodiscard]] constexpr bool operator!=(const runtime_view_iterator &other) const noexcept {
return !(*this == other);
}
private:
const std::vector<Set *> *pools;
const std::vector<Set *> *filter;
iterator_type it;
bool tombstone_check;
};
} // namespace internal
/**
* Internal details not to be documented.
* @endcond
*/
/**
* @brief Generic runtime view.
*
* Runtime views iterate over those entities that have at least all the given
* components in their bags. During initialization, a runtime view looks at the
* number of entities available for each component and picks up a reference to
* the smallest set of candidate entities in order to get a performance boost
* when iterate.<br/>
* Order of elements during iterations are highly dependent on the order of the
* underlying data structures. See sparse_set and its specializations for more
* details.
*
* @b Important
*
* Iterators aren't invalidated if:
*
* * New instances of the given components are created and assigned to entities.
* * The entity currently pointed is modified (as an example, if one of the
* given components is removed from the entity to which the iterator points).
* * The entity currently pointed is destroyed.
*
* In all the other cases, modifying the pools of the given components in any
* way invalidates all the iterators and using them results in undefined
* behavior.
*
* @note
* Views share references to the underlying data structures of the registry that
* generated them. Therefore any change to the entities and to the components
* made by means of the registry are immediately reflected by the views, unless
* a pool was missing when the view was built (in this case, the view won't
* have a valid reference and won't be updated accordingly).
*
* @warning
* Lifetime of a view must not overcome that of the registry that generated it.
* In any other case, attempting to use a view results in undefined behavior.
*
* @tparam Type Common base type.
* @tparam Allocator Type of allocator used to manage memory and elements.
*/
template<typename Type, typename Allocator>
class basic_runtime_view {
using alloc_traits = std::allocator_traits<Allocator>;
static_assert(std::is_same_v<typename alloc_traits::value_type, Type *>, "Invalid value type");
using container_type = std::vector<Type *, Allocator>;
public:
/*! @brief Allocator type. */
using allocator_type = Allocator;
/*! @brief Underlying entity identifier. */
using entity_type = typename Type::entity_type;
/*! @brief Unsigned integer type. */
using size_type = std::size_t;
/*! @brief Common type among all storage types. */
using base_type = Type;
/*! @brief Bidirectional iterator type. */
using iterator = internal::runtime_view_iterator<base_type>;
/*! @brief Default constructor to use to create empty, invalid views. */
basic_runtime_view() noexcept
: basic_runtime_view{allocator_type{}} {}
/**
* @brief Constructs an empty, invalid view with a given allocator.
* @param allocator The allocator to use.
*/
explicit basic_runtime_view(const allocator_type &allocator)
: pools{allocator},
filter{allocator} {}
/*! @brief Default copy constructor. */
basic_runtime_view(const basic_runtime_view &) = default;
/**
* @brief Allocator-extended copy constructor.
* @param other The instance to copy from.
* @param allocator The allocator to use.
*/
basic_runtime_view(const basic_runtime_view &other, const allocator_type &allocator)
: pools{other.pools, allocator},
filter{other.filter, allocator} {}
/*! @brief Default move constructor. */
basic_runtime_view(basic_runtime_view &&) noexcept(std::is_nothrow_move_constructible_v<container_type>) = default;
/**
* @brief Allocator-extended move constructor.
* @param other The instance to move from.
* @param allocator The allocator to use.
*/
basic_runtime_view(basic_runtime_view &&other, const allocator_type &allocator)
: pools{std::move(other.pools), allocator},
filter{std::move(other.filter), allocator} {}
/**
* @brief Default copy assignment operator.
* @return This container.
*/
basic_runtime_view &operator=(const basic_runtime_view &) = default;
/**
* @brief Default move assignment operator.
* @return This container.
*/
basic_runtime_view &operator=(basic_runtime_view &&) noexcept(std::is_nothrow_move_assignable_v<container_type>) = default;
/**
* @brief Exchanges the contents with those of a given view.
* @param other View to exchange the content with.
*/
void swap(basic_runtime_view &other) {
using std::swap;
swap(pools, other.pools);
swap(filter, other.filter);
}
/**
* @brief Returns the associated allocator.
* @return The associated allocator.
*/
[[nodiscard]] constexpr allocator_type get_allocator() const noexcept {
return pools.get_allocator();
}
/*! @brief Clears the view. */
void clear() {
pools.clear();
filter.clear();
}
/**
* @brief Appends an opaque storage object to a runtime view.
* @param base An opaque reference to a storage object.
* @return This runtime view.
*/
basic_runtime_view &iterate(base_type &base) {
if(pools.empty() || !(base.size() < pools[0u]->size())) {
pools.push_back(&base);
} else {
pools.push_back(std::exchange(pools[0u], &base));
}
return *this;
}
/**
* @brief Adds an opaque storage object as a filter of a runtime view.
* @param base An opaque reference to a storage object.
* @return This runtime view.
*/
basic_runtime_view &exclude(base_type &base) {
filter.push_back(&base);
return *this;
}
/**
* @brief Estimates the number of entities iterated by the view.
* @return Estimated number of entities iterated by the view.
*/
[[nodiscard]] size_type size_hint() const {
return pools.empty() ? size_type{} : pools.front()->size();
}
/**
* @brief Returns an iterator to the first entity that has the given
* components.
*
* The returned iterator points to the first entity that has the given
* components. If the view is empty, the returned iterator will be equal to
* `end()`.
*
* @return An iterator to the first entity that has the given components.
*/
[[nodiscard]] iterator begin() const {
return pools.empty() ? iterator{} : iterator{pools, filter, pools[0]->begin()};
}
/**
* @brief Returns an iterator that is past the last entity that has the
* given components.
*
* The returned iterator points to the entity following the last entity that
* has the given components. Attempting to dereference the returned iterator
* results in undefined behavior.
*
* @return An iterator to the entity following the last entity that has the
* given components.
*/
[[nodiscard]] iterator end() const {
return pools.empty() ? iterator{} : iterator{pools, filter, pools[0]->end()};
}
/**
* @brief Checks if a view contains an entity.
* @param entt A valid identifier.
* @return True if the view contains the given entity, false otherwise.
*/
[[nodiscard]] bool contains(const entity_type entt) const {
return !pools.empty()
&& std::all_of(pools.cbegin(), pools.cend(), [entt](const auto *curr) { return curr->contains(entt); })
&& std::none_of(filter.cbegin(), filter.cend(), [entt](const auto *curr) { return curr && curr->contains(entt); });
}
/**
* @brief Iterates entities and applies the given function object to them.
*
* The function object is invoked for each entity. It is provided only with
* the entity itself. To get the components, users can use the registry with
* which the view was built.<br/>
* The signature of the function should be equivalent to the following:
*
* @code{.cpp}
* void(const entity_type);
* @endcode
*
* @tparam Func Type of the function object to invoke.
* @param func A valid function object.
*/
template<typename Func>
void each(Func func) const {
for(const auto entity: *this) {
func(entity);
}
}
private:
container_type pools;
container_type filter;
};
} // namespace entt
#endif
// #include "entity/snapshot.hpp"
#ifndef ENTT_ENTITY_SNAPSHOT_HPP
#define ENTT_ENTITY_SNAPSHOT_HPP
#include <array>
#include <cstddef>
#include <iterator>
#include <tuple>
#include <type_traits>
#include <utility>
#include <vector>
// #include "../config/config.h"
// #include "../container/dense_map.hpp"
// #include "../core/type_traits.hpp"
// #include "component.hpp"
// #include "entity.hpp"
// #include "fwd.hpp"
// #include "view.hpp"
namespace entt {
/**
* @brief Utility class to create snapshots from a registry.
*
* A _snapshot_ can be either a dump of the entire registry or a narrower
* selection of components of interest.<br/>
* This type can be used in both cases if provided with a correctly configured
* output archive.
*
* @tparam Registry Basic registry type.
*/
template<typename Registry>
class basic_snapshot {
using entity_traits = entt_traits<typename Registry::entity_type>;
template<typename Component, typename Archive, typename It>
void get(Archive &archive, std::size_t sz, It first, It last) const {
const auto view = reg->template view<const Component>();
archive(typename entity_traits::entity_type(sz));
while(first != last) {
const auto entt = *(first++);
if(reg->template all_of<Component>(entt)) {
std::apply(archive, std::tuple_cat(std::make_tuple(entt), view.get(entt)));
}
}
}
template<typename... Component, typename Archive, typename It, std::size_t... Index>
void component(Archive &archive, It first, It last, std::index_sequence<Index...>) const {
std::array<std::size_t, sizeof...(Index)> size{};
auto begin = first;
while(begin != last) {
const auto entt = *(begin++);
((reg->template all_of<Component>(entt) ? ++size[Index] : 0u), ...);
}
(get<Component>(archive, size[Index], first, last), ...);
}
public:
/*! Basic registry type. */
using registry_type = Registry;
/*! @brief Underlying entity identifier. */
using entity_type = typename registry_type::entity_type;
/**
* @brief Constructs an instance that is bound to a given registry.
* @param source A valid reference to a registry.
*/
basic_snapshot(const registry_type &source) noexcept
: reg{&source} {}
/*! @brief Default move constructor. */
basic_snapshot(basic_snapshot &&) noexcept = default;
/*! @brief Default move assignment operator. @return This snapshot. */
basic_snapshot &operator=(basic_snapshot &&) noexcept = default;
/**
* @brief Puts aside all the entities from the underlying registry.
*
* Entities are serialized along with their versions. Destroyed entities are
* taken in consideration as well by this function.
*
* @tparam Archive Type of output archive.
* @param archive A valid reference to an output archive.
* @return An object of this type to continue creating the snapshot.
*/
template<typename Archive>
const basic_snapshot &entities(Archive &archive) const {
const auto sz = reg->size();
archive(typename entity_traits::entity_type(sz + 1u));
archive(reg->released());
for(auto first = reg->data(), last = first + sz; first != last; ++first) {
archive(*first);
}
return *this;
}
/**
* @brief Puts aside the given components.
*
* Each instance is serialized together with the entity to which it belongs.
* Entities are serialized along with their versions.
*
* @tparam Component Types of components to serialize.
* @tparam Archive Type of output archive.
* @param archive A valid reference to an output archive.
* @return An object of this type to continue creating the snapshot.
*/
template<typename... Component, typename Archive>
const basic_snapshot &component(Archive &archive) const {
if constexpr(sizeof...(Component) == 1u) {
const auto view = reg->template view<const Component...>();
(component<Component>(archive, view.rbegin(), view.rend()), ...);
return *this;
} else {
(component<Component>(archive), ...);
return *this;
}
}
/**
* @brief Puts aside the given components for the entities in a range.
*
* Each instance is serialized together with the entity to which it belongs.
* Entities are serialized along with their versions.
*
* @tparam Component Types of components to serialize.
* @tparam Archive Type of output archive.
* @tparam It Type of input iterator.
* @param archive A valid reference to an output archive.
* @param first An iterator to the first element of the range to serialize.
* @param last An iterator past the last element of the range to serialize.
* @return An object of this type to continue creating the snapshot.
*/
template<typename... Component, typename Archive, typename It>
const basic_snapshot &component(Archive &archive, It first, It last) const {
component<Component...>(archive, first, last, std::index_sequence_for<Component...>{});
return *this;
}
private:
const registry_type *reg;
};
/**
* @brief Utility class to restore a snapshot as a whole.
*
* A snapshot loader requires that the destination registry be empty and loads
* all the data at once while keeping intact the identifiers that the entities
* originally had.<br/>
* An example of use is the implementation of a save/restore utility.
*
* @tparam Registry Basic registry type.
*/
template<typename Registry>
class basic_snapshot_loader {
using entity_traits = entt_traits<typename Registry::entity_type>;
template<typename Component, typename Archive>
void assign(Archive &archive) const {
typename entity_traits::entity_type length{};
entity_type entt;
archive(length);
if constexpr(ignore_as_empty_v<Component>) {
while(length--) {
archive(entt);
const auto entity = reg->valid(entt) ? entt : reg->create(entt);
ENTT_ASSERT(entity == entt, "Entity not available for use");
reg->template emplace<Component>(entt);
}
} else {
Component instance;
while(length--) {
archive(entt, instance);
const auto entity = reg->valid(entt) ? entt : reg->create(entt);
ENTT_ASSERT(entity == entt, "Entity not available for use");
reg->template emplace<Component>(entt, std::move(instance));
}
}
}
public:
/*! Basic registry type. */
using registry_type = Registry;
/*! @brief Underlying entity identifier. */
using entity_type = typename registry_type::entity_type;
/**
* @brief Constructs an instance that is bound to a given registry.
* @param source A valid reference to a registry.
*/
basic_snapshot_loader(registry_type &source) noexcept
: reg{&source} {
// restoring a snapshot as a whole requires a clean registry
ENTT_ASSERT(reg->empty(), "Registry must be empty");
}
/*! @brief Default move constructor. */
basic_snapshot_loader(basic_snapshot_loader &&) noexcept = default;
/*! @brief Default move assignment operator. @return This loader. */
basic_snapshot_loader &operator=(basic_snapshot_loader &&) noexcept = default;
/**
* @brief Restores entities that were in use during serialization.
*
* This function restores the entities that were in use during serialization
* and gives them the versions they originally had.
*
* @tparam Archive Type of input archive.
* @param archive A valid reference to an input archive.
* @return A valid loader to continue restoring data.
*/
template<typename Archive>
const basic_snapshot_loader &entities(Archive &archive) const {
typename entity_traits::entity_type length{};
archive(length);
std::vector<entity_type> all(length);
for(std::size_t pos{}; pos < length; ++pos) {
archive(all[pos]);
}
reg->assign(++all.cbegin(), all.cend(), all[0u]);
return *this;
}
/**
* @brief Restores components and assigns them to the right entities.
*
* The template parameter list must be exactly the same used during
* serialization. In the event that the entity to which the component is
* assigned doesn't exist yet, the loader will take care to create it with
* the version it originally had.
*
* @tparam Component Types of components to restore.
* @tparam Archive Type of input archive.
* @param archive A valid reference to an input archive.
* @return A valid loader to continue restoring data.
*/
template<typename... Component, typename Archive>
const basic_snapshot_loader &component(Archive &archive) const {
(assign<Component>(archive), ...);
return *this;
}
/**
* @brief Destroys those entities that have no components.
*
* In case all the entities were serialized but only part of the components
* was saved, it could happen that some of the entities have no components
* once restored.<br/>
* This functions helps to identify and destroy those entities.
*
* @return A valid loader to continue restoring data.
*/
const basic_snapshot_loader &orphans() const {
reg->each([this](const auto entt) {
if(reg->orphan(entt)) {
reg->release(entt);
}
});
return *this;
}
private:
registry_type *reg;
};
/**
* @brief Utility class for _continuous loading_.
*
* A _continuous loader_ is designed to load data from a source registry to a
* (possibly) non-empty destination. The loader can accommodate in a registry
* more than one snapshot in a sort of _continuous loading_ that updates the
* destination one step at a time.<br/>
* Identifiers that entities originally had are not transferred to the target.
* Instead, the loader maps remote identifiers to local ones while restoring a
* snapshot.<br/>
* An example of use is the implementation of a client-server applications with
* the requirement of transferring somehow parts of the representation side to
* side.
*
* @tparam Registry Basic registry type.
*/
template<typename Registry>
class basic_continuous_loader {
using entity_traits = entt_traits<typename Registry::entity_type>;
void destroy(typename Registry::entity_type entt) {
if(const auto it = remloc.find(entt); it == remloc.cend()) {
const auto local = reg->create();
remloc.emplace(entt, std::make_pair(local, true));
reg->destroy(local);
}
}
void restore(typename Registry::entity_type entt) {
const auto it = remloc.find(entt);
if(it == remloc.cend()) {
const auto local = reg->create();
remloc.emplace(entt, std::make_pair(local, true));
} else {
if(!reg->valid(remloc[entt].first)) {
remloc[entt].first = reg->create();
}
// set the dirty flag
remloc[entt].second = true;
}
}
template<typename Container>
auto update(int, Container &container) -> decltype(typename Container::mapped_type{}, void()) {
// map like container
Container other;
for(auto &&pair: container) {
using first_type = std::remove_const_t<typename std::decay_t<decltype(pair)>::first_type>;
using second_type = typename std::decay_t<decltype(pair)>::second_type;
if constexpr(std::is_same_v<first_type, entity_type> && std::is_same_v<second_type, entity_type>) {
other.emplace(map(pair.first), map(pair.second));
} else if constexpr(std::is_same_v<first_type, entity_type>) {
other.emplace(map(pair.first), std::move(pair.second));
} else {
static_assert(std::is_same_v<second_type, entity_type>, "Neither the key nor the value are of entity type");
other.emplace(std::move(pair.first), map(pair.second));
}
}
using std::swap;
swap(container, other);
}
template<typename Container>
auto update(char, Container &container) -> decltype(typename Container::value_type{}, void()) {
// vector like container
static_assert(std::is_same_v<typename Container::value_type, entity_type>, "Invalid value type");
for(auto &&entt: container) {
entt = map(entt);
}
}
template<typename Component, typename Other, typename Member>
void update([[maybe_unused]] Component &instance, [[maybe_unused]] Member Other::*member) {
if constexpr(!std::is_same_v<Component, Other>) {
return;
} else if constexpr(std::is_same_v<Member, entity_type>) {
instance.*member = map(instance.*member);
} else {
// maybe a container? let's try...
update(0, instance.*member);
}
}
template<typename Component>
void remove_if_exists() {
for(auto &&ref: remloc) {
const auto local = ref.second.first;
if(reg->valid(local)) {
reg->template remove<Component>(local);
}
}
}
template<typename Component, typename Archive, typename... Other, typename... Member>
void assign(Archive &archive, [[maybe_unused]] Member Other::*...member) {
typename entity_traits::entity_type length{};
entity_type entt;
archive(length);
if constexpr(ignore_as_empty_v<Component>) {
while(length--) {
archive(entt);
restore(entt);
reg->template emplace_or_replace<Component>(map(entt));
}
} else {
Component instance;
while(length--) {
archive(entt, instance);
(update(instance, member), ...);
restore(entt);
reg->template emplace_or_replace<Component>(map(entt), std::move(instance));
}
}
}
public:
/*! Basic registry type. */
using registry_type = Registry;
/*! @brief Underlying entity identifier. */
using entity_type = typename registry_type::entity_type;
/**
* @brief Constructs an instance that is bound to a given registry.
* @param source A valid reference to a registry.
*/
basic_continuous_loader(registry_type &source) noexcept
: reg{&source} {}
/*! @brief Default move constructor. */
basic_continuous_loader(basic_continuous_loader &&) = default;
/*! @brief Default move assignment operator. @return This loader. */
basic_continuous_loader &operator=(basic_continuous_loader &&) = default;
/**
* @brief Restores entities that were in use during serialization.
*
* This function restores the entities that were in use during serialization
* and creates local counterparts for them if required.
*
* @tparam Archive Type of input archive.
* @param archive A valid reference to an input archive.
* @return A non-const reference to this loader.
*/
template<typename Archive>
basic_continuous_loader &entities(Archive &archive) {
typename entity_traits::entity_type length{};
entity_type entt{};
archive(length);
// discards the head of the list of destroyed entities
archive(entt);
for(std::size_t pos{}, last = length - 1u; pos < last; ++pos) {
archive(entt);
if(const auto entity = entity_traits::to_entity(entt); entity == pos) {
restore(entt);
} else {
destroy(entt);
}
}
return *this;
}
/**
* @brief Restores components and assigns them to the right entities.
*
* The template parameter list must be exactly the same used during
* serialization. In the event that the entity to which the component is
* assigned doesn't exist yet, the loader will take care to create a local
* counterpart for it.<br/>
* Members can be either data members of type entity_type or containers of
* entities. In both cases, the loader will visit them and update the
* entities by replacing each one with its local counterpart.
*
* @tparam Component Type of component to restore.
* @tparam Archive Type of input archive.
* @tparam Other Types of components to update with local counterparts.
* @tparam Member Types of members to update with their local counterparts.
* @param archive A valid reference to an input archive.
* @param member Members to update with their local counterparts.
* @return A non-const reference to this loader.
*/
template<typename... Component, typename Archive, typename... Other, typename... Member>
basic_continuous_loader &component(Archive &archive, Member Other::*...member) {
(remove_if_exists<Component>(), ...);
(assign<Component>(archive, member...), ...);
return *this;
}
/**
* @brief Helps to purge entities that no longer have a conterpart.
*
* Users should invoke this member function after restoring each snapshot,
* unless they know exactly what they are doing.
*
* @return A non-const reference to this loader.
*/
basic_continuous_loader &shrink() {
auto it = remloc.begin();
while(it != remloc.cend()) {
const auto local = it->second.first;
bool &dirty = it->second.second;
if(dirty) {
dirty = false;
++it;
} else {
if(reg->valid(local)) {
reg->destroy(local);
}
it = remloc.erase(it);
}
}
return *this;
}
/**
* @brief Destroys those entities that have no components.
*
* In case all the entities were serialized but only part of the components
* was saved, it could happen that some of the entities have no components
* once restored.<br/>
* This functions helps to identify and destroy those entities.
*
* @return A non-const reference to this loader.
*/
basic_continuous_loader &orphans() {
reg->each([this](const auto entt) {
if(reg->orphan(entt)) {
reg->release(entt);
}
});
return *this;
}
/**
* @brief Tests if a loader knows about a given entity.
* @param entt A valid identifier.
* @return True if `entity` is managed by the loader, false otherwise.
*/
[[nodiscard]] bool contains(entity_type entt) const noexcept {
return (remloc.find(entt) != remloc.cend());
}
/**
* @brief Returns the identifier to which an entity refers.
* @param entt A valid identifier.
* @return The local identifier if any, the null entity otherwise.
*/
[[nodiscard]] entity_type map(entity_type entt) const noexcept {
const auto it = remloc.find(entt);
entity_type other = null;
if(it != remloc.cend()) {
other = it->second.first;
}
return other;
}
private:
dense_map<entity_type, std::pair<entity_type, bool>> remloc;
registry_type *reg;
};
} // namespace entt
#endif
// #include "entity/sparse_set.hpp"
#ifndef ENTT_ENTITY_SPARSE_SET_HPP
#define ENTT_ENTITY_SPARSE_SET_HPP
#include <cstddef>
#include <iterator>
#include <memory>
#include <type_traits>
#include <utility>
#include <vector>
// #include "../config/config.h"
// #include "../core/algorithm.hpp"
// #include "../core/any.hpp"
// #include "../core/memory.hpp"
// #include "../core/type_info.hpp"
// #include "entity.hpp"
// #include "fwd.hpp"
namespace entt {
/**
* @cond TURN_OFF_DOXYGEN
* Internal details not to be documented.
*/
namespace internal {
template<typename Container>
struct sparse_set_iterator final {
using value_type = typename Container::value_type;
using pointer = typename Container::const_pointer;
using reference = typename Container::const_reference;
using difference_type = typename Container::difference_type;
using iterator_category = std::random_access_iterator_tag;
constexpr sparse_set_iterator() noexcept
: packed{},
offset{} {}
constexpr sparse_set_iterator(const Container &ref, const difference_type idx) noexcept
: packed{std::addressof(ref)},
offset{idx} {}
constexpr sparse_set_iterator &operator++() noexcept {
return --offset, *this;
}
constexpr sparse_set_iterator operator++(int) noexcept {
sparse_set_iterator orig = *this;
return ++(*this), orig;
}
constexpr sparse_set_iterator &operator--() noexcept {
return ++offset, *this;
}
constexpr sparse_set_iterator operator--(int) noexcept {
sparse_set_iterator orig = *this;
return operator--(), orig;
}
constexpr sparse_set_iterator &operator+=(const difference_type value) noexcept {
offset -= value;
return *this;
}
constexpr sparse_set_iterator operator+(const difference_type value) const noexcept {
sparse_set_iterator copy = *this;
return (copy += value);
}
constexpr sparse_set_iterator &operator-=(const difference_type value) noexcept {
return (*this += -value);
}
constexpr sparse_set_iterator operator-(const difference_type value) const noexcept {
return (*this + -value);
}
[[nodiscard]] constexpr reference operator[](const difference_type value) const noexcept {
return packed->data()[index() - value];
}
[[nodiscard]] constexpr pointer operator->() const noexcept {
return packed->data() + index();
}
[[nodiscard]] constexpr reference operator*() const noexcept {
return *operator->();
}
[[nodiscard]] constexpr difference_type index() const noexcept {
return offset - 1;
}
private:
const Container *packed;
difference_type offset;
};
template<typename Type, typename Other>
[[nodiscard]] constexpr std::ptrdiff_t operator-(const sparse_set_iterator<Type> &lhs, const sparse_set_iterator<Other> &rhs) noexcept {
return rhs.index() - lhs.index();
}
template<typename Type, typename Other>
[[nodiscard]] constexpr bool operator==(const sparse_set_iterator<Type> &lhs, const sparse_set_iterator<Other> &rhs) noexcept {
return lhs.index() == rhs.index();
}
template<typename Type, typename Other>
[[nodiscard]] constexpr bool operator!=(const sparse_set_iterator<Type> &lhs, const sparse_set_iterator<Other> &rhs) noexcept {
return !(lhs == rhs);
}
template<typename Type, typename Other>
[[nodiscard]] constexpr bool operator<(const sparse_set_iterator<Type> &lhs, const sparse_set_iterator<Other> &rhs) noexcept {
return lhs.index() > rhs.index();
}
template<typename Type, typename Other>
[[nodiscard]] constexpr bool operator>(const sparse_set_iterator<Type> &lhs, const sparse_set_iterator<Other> &rhs) noexcept {
return lhs.index() < rhs.index();
}
template<typename Type, typename Other>
[[nodiscard]] constexpr bool operator<=(const sparse_set_iterator<Type> &lhs, const sparse_set_iterator<Other> &rhs) noexcept {
return !(lhs > rhs);
}
template<typename Type, typename Other>
[[nodiscard]] constexpr bool operator>=(const sparse_set_iterator<Type> &lhs, const sparse_set_iterator<Other> &rhs) noexcept {
return !(lhs < rhs);
}
} // namespace internal
/**
* Internal details not to be documented.
* @endcond
*/
/*! @brief Sparse set deletion policy. */
enum class deletion_policy : std::uint8_t {
/*! @brief Swap-and-pop deletion policy. */
swap_and_pop = 0u,
/*! @brief In-place deletion policy. */
in_place = 1u
};
/**
* @brief Basic sparse set implementation.
*
* Sparse set or packed array or whatever is the name users give it.<br/>
* Two arrays: an _external_ one and an _internal_ one; a _sparse_ one and a
* _packed_ one; one used for direct access through contiguous memory, the other
* one used to get the data through an extra level of indirection.<br/>
* This is largely used by the registry to offer users the fastest access ever
* to the components. Views and groups in general are almost entirely designed
* around sparse sets.
*
* This type of data structure is widely documented in the literature and on the
* web. This is nothing more than a customized implementation suitable for the
* purpose of the framework.
*
* @note
* Internal data structures arrange elements to maximize performance. There are
* no guarantees that entities are returned in the insertion order when iterate
* a sparse set. Do not make assumption on the order in any case.
*
* @tparam Entity A valid entity type (see entt_traits for more details).
* @tparam Allocator Type of allocator used to manage memory and elements.
*/
template<typename Entity, typename Allocator>
class basic_sparse_set {
using alloc_traits = std::allocator_traits<Allocator>;
static_assert(std::is_same_v<typename alloc_traits::value_type, Entity>, "Invalid value type");
using sparse_container_type = std::vector<typename alloc_traits::pointer, typename alloc_traits::template rebind_alloc<typename alloc_traits::pointer>>;
using packed_container_type = std::vector<Entity, Allocator>;
using entity_traits = entt_traits<Entity>;
[[nodiscard]] auto sparse_ptr(const Entity entt) const {
const auto pos = static_cast<size_type>(entity_traits::to_entity(entt));
const auto page = pos / entity_traits::page_size;
return (page < sparse.size() && sparse[page]) ? (sparse[page] + fast_mod(pos, entity_traits::page_size)) : nullptr;
}
[[nodiscard]] auto &sparse_ref(const Entity entt) const {
ENTT_ASSERT(sparse_ptr(entt), "Invalid element");
const auto pos = static_cast<size_type>(entity_traits::to_entity(entt));
return sparse[pos / entity_traits::page_size][fast_mod(pos, entity_traits::page_size)];
}
[[nodiscard]] auto &assure_at_least(const Entity entt) {
const auto pos = static_cast<size_type>(entity_traits::to_entity(entt));
const auto page = pos / entity_traits::page_size;
if(!(page < sparse.size())) {
sparse.resize(page + 1u, nullptr);
}
if(!sparse[page]) {
auto page_allocator{packed.get_allocator()};
sparse[page] = alloc_traits::allocate(page_allocator, entity_traits::page_size);
std::uninitialized_fill(sparse[page], sparse[page] + entity_traits::page_size, null);
}
auto &elem = sparse[page][fast_mod(pos, entity_traits::page_size)];
ENTT_ASSERT(elem == null, "Slot not available");
return elem;
}
void release_sparse_pages() {
auto page_allocator{packed.get_allocator()};
for(auto &&page: sparse) {
if(page != nullptr) {
std::destroy(page, page + entity_traits::page_size);
alloc_traits::deallocate(page_allocator, page, entity_traits::page_size);
page = nullptr;
}
}
}
private:
virtual const void *get_at(const std::size_t) const {
return nullptr;
}
virtual void swap_at(const std::size_t, const std::size_t) {}
virtual void move_element(const std::size_t, const std::size_t) {}
protected:
/*! @brief Random access iterator type. */
using basic_iterator = internal::sparse_set_iterator<packed_container_type>;
/**
* @brief Erases an entity from a sparse set.
* @param it An iterator to the element to pop.
*/
void swap_and_pop(const basic_iterator it) {
ENTT_ASSERT(mode == deletion_policy::swap_and_pop, "Deletion policy mismatched");
auto &self = sparse_ref(*it);
const auto entt = entity_traits::to_entity(self);
sparse_ref(packed.back()) = entity_traits::combine(entt, entity_traits::to_integral(packed.back()));
packed[static_cast<size_type>(entt)] = packed.back();
// unnecessary but it helps to detect nasty bugs
ENTT_ASSERT((packed.back() = null, true), "");
// lazy self-assignment guard
self = null;
packed.pop_back();
}
/**
* @brief Erases an entity from a sparse set.
* @param it An iterator to the element to pop.
*/
void in_place_pop(const basic_iterator it) {
ENTT_ASSERT(mode == deletion_policy::in_place, "Deletion policy mismatched");
const auto entt = entity_traits::to_entity(std::exchange(sparse_ref(*it), null));
packed[static_cast<size_type>(entt)] = std::exchange(free_list, entity_traits::combine(entt, entity_traits::reserved));
}
protected:
/**
* @brief Erases entities from a sparse set.
* @param first An iterator to the first element of the range of entities.
* @param last An iterator past the last element of the range of entities.
*/
virtual void pop(basic_iterator first, basic_iterator last) {
if(mode == deletion_policy::swap_and_pop) {
for(; first != last; ++first) {
swap_and_pop(first);
}
} else {
for(; first != last; ++first) {
in_place_pop(first);
}
}
}
/**
* @brief Assigns an entity to a sparse set.
* @param entt A valid identifier.
* @param force_back Force back insertion.
* @return Iterator pointing to the emplaced element.
*/
virtual basic_iterator try_emplace(const Entity entt, const bool force_back, const void * = nullptr) {
ENTT_ASSERT(!contains(entt), "Set already contains entity");
if(auto &elem = assure_at_least(entt); free_list == null || force_back) {
packed.push_back(entt);
elem = entity_traits::combine(static_cast<typename entity_traits::entity_type>(packed.size() - 1u), entity_traits::to_integral(entt));
return begin();
} else {
const auto pos = static_cast<size_type>(entity_traits::to_entity(free_list));
elem = entity_traits::combine(entity_traits::to_integral(free_list), entity_traits::to_integral(entt));
free_list = std::exchange(packed[pos], entt);
return --(end() - pos);
}
}
public:
/*! @brief Allocator type. */
using allocator_type = Allocator;
/*! @brief Underlying entity identifier. */
using entity_type = typename entity_traits::value_type;
/*! @brief Underlying version type. */
using version_type = typename entity_traits::version_type;
/*! @brief Unsigned integer type. */
using size_type = std::size_t;
/*! @brief Pointer type to contained entities. */
using pointer = typename packed_container_type::const_pointer;
/*! @brief Random access iterator type. */
using iterator = basic_iterator;
/*! @brief Constant random access iterator type. */
using const_iterator = iterator;
/*! @brief Reverse iterator type. */
using reverse_iterator = std::reverse_iterator<iterator>;
/*! @brief Constant reverse iterator type. */
using const_reverse_iterator = reverse_iterator;
/*! @brief Default constructor. */
basic_sparse_set()
: basic_sparse_set{type_id<void>()} {}
/**
* @brief Constructs an empty container with a given allocator.
* @param allocator The allocator to use.
*/
explicit basic_sparse_set(const allocator_type &allocator)
: basic_sparse_set{type_id<void>(), deletion_policy::swap_and_pop, allocator} {}
/**
* @brief Constructs an empty container with the given policy and allocator.
* @param pol Type of deletion policy.
* @param allocator The allocator to use (possibly default-constructed).
*/
explicit basic_sparse_set(deletion_policy pol, const allocator_type &allocator = {})
: basic_sparse_set{type_id<void>(), pol, allocator} {}
/**
* @brief Constructs an empty container with the given value type, policy
* and allocator.
* @param value Returned value type, if any.
* @param pol Type of deletion policy.
* @param allocator The allocator to use (possibly default-constructed).
*/
explicit basic_sparse_set(const type_info &value, deletion_policy pol = deletion_policy::swap_and_pop, const allocator_type &allocator = {})
: sparse{allocator},
packed{allocator},
info{&value},
free_list{tombstone},
mode{pol} {}
/**
* @brief Move constructor.
* @param other The instance to move from.
*/
basic_sparse_set(basic_sparse_set &&other) noexcept
: sparse{std::move(other.sparse)},
packed{std::move(other.packed)},
info{other.info},
free_list{std::exchange(other.free_list, tombstone)},
mode{other.mode} {}
/**
* @brief Allocator-extended move constructor.
* @param other The instance to move from.
* @param allocator The allocator to use.
*/
basic_sparse_set(basic_sparse_set &&other, const allocator_type &allocator) noexcept
: sparse{std::move(other.sparse), allocator},
packed{std::move(other.packed), allocator},
info{other.info},
free_list{std::exchange(other.free_list, tombstone)},
mode{other.mode} {
ENTT_ASSERT(alloc_traits::is_always_equal::value || packed.get_allocator() == other.packed.get_allocator(), "Copying a sparse set is not allowed");
}
/*! @brief Default destructor. */
virtual ~basic_sparse_set() {
release_sparse_pages();
}
/**
* @brief Move assignment operator.
* @param other The instance to move from.
* @return This sparse set.
*/
basic_sparse_set &operator=(basic_sparse_set &&other) noexcept {
ENTT_ASSERT(alloc_traits::is_always_equal::value || packed.get_allocator() == other.packed.get_allocator(), "Copying a sparse set is not allowed");
release_sparse_pages();
sparse = std::move(other.sparse);
packed = std::move(other.packed);
info = other.info;
free_list = std::exchange(other.free_list, tombstone);
mode = other.mode;
return *this;
}
/**
* @brief Exchanges the contents with those of a given sparse set.
* @param other Sparse set to exchange the content with.
*/
void swap(basic_sparse_set &other) {
using std::swap;
swap(sparse, other.sparse);
swap(packed, other.packed);
swap(info, other.info);
swap(free_list, other.free_list);
swap(mode, other.mode);
}
/**
* @brief Returns the associated allocator.
* @return The associated allocator.
*/
[[nodiscard]] constexpr allocator_type get_allocator() const noexcept {
return packed.get_allocator();
}
/**
* @brief Returns the deletion policy of a sparse set.
* @return The deletion policy of the sparse set.
*/
[[nodiscard]] deletion_policy policy() const noexcept {
return mode;
}
/**
* @brief Increases the capacity of a sparse set.
*
* If the new capacity is greater than the current capacity, new storage is
* allocated, otherwise the method does nothing.
*
* @param cap Desired capacity.
*/
virtual void reserve(const size_type cap) {
packed.reserve(cap);
}
/**
* @brief Returns the number of elements that a sparse set has currently
* allocated space for.
* @return Capacity of the sparse set.
*/
[[nodiscard]] virtual size_type capacity() const noexcept {
return packed.capacity();
}
/*! @brief Requests the removal of unused capacity. */
virtual void shrink_to_fit() {
packed.shrink_to_fit();
}
/**
* @brief Returns the extent of a sparse set.
*
* The extent of a sparse set is also the size of the internal sparse array.
* There is no guarantee that the internal packed array has the same size.
* Usually the size of the internal sparse array is equal or greater than
* the one of the internal packed array.
*
* @return Extent of the sparse set.
*/
[[nodiscard]] size_type extent() const noexcept {
return sparse.size() * entity_traits::page_size;
}
/**
* @brief Returns the number of elements in a sparse set.
*
* The number of elements is also the size of the internal packed array.
* There is no guarantee that the internal sparse array has the same size.
* Usually the size of the internal sparse array is equal or greater than
* the one of the internal packed array.
*
* @return Number of elements.
*/
[[nodiscard]] size_type size() const noexcept {
return packed.size();
}
/**
* @brief Checks whether a sparse set is empty.
* @return True if the sparse set is empty, false otherwise.
*/
[[nodiscard]] bool empty() const noexcept {
return packed.empty();
}
/**
* @brief Direct access to the internal packed array.
* @return A pointer to the internal packed array.
*/
[[nodiscard]] pointer data() const noexcept {
return packed.data();
}
/**
* @brief Returns an iterator to the beginning.
*
* The returned iterator points to the first entity of the internal packed
* array. If the sparse set is empty, the returned iterator will be equal to
* `end()`.
*
* @return An iterator to the first entity of the sparse set.
*/
[[nodiscard]] const_iterator begin() const noexcept {
const auto pos = static_cast<typename iterator::difference_type>(packed.size());
return iterator{packed, pos};
}
/*! @copydoc begin */
[[nodiscard]] const_iterator cbegin() const noexcept {
return begin();
}
/**
* @brief Returns an iterator to the end.
*
* The returned iterator points to the element following the last entity in
* a sparse set. Attempting to dereference the returned iterator results in
* undefined behavior.
*
* @return An iterator to the element following the last entity of a sparse
* set.
*/
[[nodiscard]] iterator end() const noexcept {
return iterator{packed, {}};
}
/*! @copydoc end */
[[nodiscard]] const_iterator cend() const noexcept {
return end();
}
/**
* @brief Returns a reverse iterator to the beginning.
*
* The returned iterator points to the first entity of the reversed internal
* packed array. If the sparse set is empty, the returned iterator will be
* equal to `rend()`.
*
* @return An iterator to the first entity of the reversed internal packed
* array.
*/
[[nodiscard]] const_reverse_iterator rbegin() const noexcept {
return std::make_reverse_iterator(end());
}
/*! @copydoc rbegin */
[[nodiscard]] const_reverse_iterator crbegin() const noexcept {
return rbegin();
}
/**
* @brief Returns a reverse iterator to the end.
*
* The returned iterator points to the element following the last entity in
* the reversed sparse set. Attempting to dereference the returned iterator
* results in undefined behavior.
*
* @return An iterator to the element following the last entity of the
* reversed sparse set.
*/
[[nodiscard]] reverse_iterator rend() const noexcept {
return std::make_reverse_iterator(begin());
}
/*! @copydoc rend */
[[nodiscard]] const_reverse_iterator crend() const noexcept {
return rend();
}
/**
* @brief Finds an entity.
* @param entt A valid identifier.
* @return An iterator to the given entity if it's found, past the end
* iterator otherwise.
*/
[[nodiscard]] iterator find(const entity_type entt) const noexcept {
return contains(entt) ? --(end() - index(entt)) : end();
}
/**
* @brief Checks if a sparse set contains an entity.
* @param entt A valid identifier.
* @return True if the sparse set contains the entity, false otherwise.
*/
[[nodiscard]] bool contains(const entity_type entt) const noexcept {
const auto elem = sparse_ptr(entt);
constexpr auto cap = entity_traits::to_entity(null);
// testing versions permits to avoid accessing the packed array
return elem && (((~cap & entity_traits::to_integral(entt)) ^ entity_traits::to_integral(*elem)) < cap);
}
/**
* @brief Returns the contained version for an identifier.
* @param entt A valid identifier.
* @return The version for the given identifier if present, the tombstone
* version otherwise.
*/
[[nodiscard]] version_type current(const entity_type entt) const noexcept {
const auto elem = sparse_ptr(entt);
constexpr auto fallback = entity_traits::to_version(tombstone);
return elem ? entity_traits::to_version(*elem) : fallback;
}
/**
* @brief Returns the position of an entity in a sparse set.
*
* @warning
* Attempting to get the position of an entity that doesn't belong to the
* sparse set results in undefined behavior.
*
* @param entt A valid identifier.
* @return The position of the entity in the sparse set.
*/
[[nodiscard]] size_type index(const entity_type entt) const noexcept {
ENTT_ASSERT(contains(entt), "Set does not contain entity");
return static_cast<size_type>(entity_traits::to_entity(sparse_ref(entt)));
}
/**
* @brief Returns the entity at specified location, with bounds checking.
* @param pos The position for which to return the entity.
* @return The entity at specified location if any, a null entity otherwise.
*/
[[nodiscard]] entity_type at(const size_type pos) const noexcept {
return pos < packed.size() ? packed[pos] : null;
}
/**
* @brief Returns the entity at specified location, without bounds checking.
* @param pos The position for which to return the entity.
* @return The entity at specified location.
*/
[[nodiscard]] entity_type operator[](const size_type pos) const noexcept {
ENTT_ASSERT(pos < packed.size(), "Position is out of bounds");
return packed[pos];
}
/**
* @brief Returns the element assigned to an entity, if any.
*
* @warning
* Attempting to use an entity that doesn't belong to the sparse set results
* in undefined behavior.
*
* @param entt A valid identifier.
* @return An opaque pointer to the element assigned to the entity, if any.
*/
[[nodiscard]] const void *get(const entity_type entt) const noexcept {
return get_at(index(entt));
}
/*! @copydoc get */
[[nodiscard]] void *get(const entity_type entt) noexcept {
return const_cast<void *>(std::as_const(*this).get(entt));
}
/**
* @brief Assigns an entity to a sparse set.
*
* @warning
* Attempting to assign an entity that already belongs to the sparse set
* results in undefined behavior.
*
* @param entt A valid identifier.
* @param value Optional opaque value to forward to mixins, if any.
* @return Iterator pointing to the emplaced element in case of success, the
* `end()` iterator otherwise.
*/
iterator emplace(const entity_type entt, const void *value = nullptr) {
return try_emplace(entt, false, value);
}
/**
* @brief Bump the version number of an entity.
*
* @warning
* Attempting to bump the version of an entity that doesn't belong to the
* sparse set results in undefined behavior.
*
* @param entt A valid identifier.
*/
void bump(const entity_type entt) {
auto &entity = sparse_ref(entt);
ENTT_ASSERT(entt != tombstone && entity != null, "Cannot set the required version");
entity = entity_traits::combine(entity_traits::to_integral(entity), entity_traits::to_integral(entt));
packed[static_cast<size_type>(entity_traits::to_entity(entity))] = entt;
}
/**
* @brief Assigns one or more entities to a sparse set.
*
* @warning
* Attempting to assign an entity that already belongs to the sparse set
* results in undefined behavior.
*
* @tparam It Type of input iterator.
* @param first An iterator to the first element of the range of entities.
* @param last An iterator past the last element of the range of entities.
* @return Iterator pointing to the first element inserted in case of
* success, the `end()` iterator otherwise.
*/
template<typename It>
iterator insert(It first, It last) {
for(auto it = first; it != last; ++it) {
try_emplace(*it, true);
}
return first == last ? end() : find(*first);
}
/**
* @brief Erases an entity from a sparse set.
*
* @warning
* Attempting to erase an entity that doesn't belong to the sparse set
* results in undefined behavior.
*
* @param entt A valid identifier.
*/
void erase(const entity_type entt) {
const auto it = --(end() - index(entt));
pop(it, it + 1u);
}
/**
* @brief Erases entities from a set.
*
* @sa erase
*
* @tparam It Type of input iterator.
* @param first An iterator to the first element of the range of entities.
* @param last An iterator past the last element of the range of entities.
*/
template<typename It>
void erase(It first, It last) {
if constexpr(std::is_same_v<It, basic_iterator>) {
pop(first, last);
} else {
for(; first != last; ++first) {
erase(*first);
}
}
}
/**
* @brief Removes an entity from a sparse set if it exists.
* @param entt A valid identifier.
* @return True if the entity is actually removed, false otherwise.
*/
bool remove(const entity_type entt) {
return contains(entt) && (erase(entt), true);
}
/**
* @brief Removes entities from a sparse set if they exist.
* @tparam It Type of input iterator.
* @param first An iterator to the first element of the range of entities.
* @param last An iterator past the last element of the range of entities.
* @return The number of entities actually removed.
*/
template<typename It>
size_type remove(It first, It last) {
size_type count{};
for(; first != last; ++first) {
count += remove(*first);
}
return count;
}
/*! @brief Removes all tombstones from the packed array of a sparse set. */
void compact() {
size_type from = packed.size();
for(; from && packed[from - 1u] == tombstone; --from) {}
for(auto *it = &free_list; *it != null && from; it = std::addressof(packed[entity_traits::to_entity(*it)])) {
if(const size_type to = entity_traits::to_entity(*it); to < from) {
--from;
move_element(from, to);
using std::swap;
swap(packed[from], packed[to]);
const auto entity = static_cast<typename entity_traits::entity_type>(to);
sparse_ref(packed[to]) = entity_traits::combine(entity, entity_traits::to_integral(packed[to]));
*it = entity_traits::combine(static_cast<typename entity_traits::entity_type>(from), entity_traits::reserved);
for(; from && packed[from - 1u] == tombstone; --from) {}
}
}
free_list = tombstone;
packed.resize(from);
}
/**
* @brief Swaps two entities in a sparse set.
*
* For what it's worth, this function affects both the internal sparse array
* and the internal packed array. Users should not care of that anyway.
*
* @warning
* Attempting to swap entities that don't belong to the sparse set results
* in undefined behavior.
*
* @param lhs A valid identifier.
* @param rhs A valid identifier.
*/
void swap_elements(const entity_type lhs, const entity_type rhs) {
ENTT_ASSERT(contains(lhs) && contains(rhs), "Set does not contain entities");
auto &entt = sparse_ref(lhs);
auto &other = sparse_ref(rhs);
const auto from = entity_traits::to_entity(entt);
const auto to = entity_traits::to_entity(other);
// basic no-leak guarantee (with invalid state) if swapping throws
swap_at(static_cast<size_type>(from), static_cast<size_type>(to));
entt = entity_traits::combine(to, entity_traits::to_integral(packed[from]));
other = entity_traits::combine(from, entity_traits::to_integral(packed[to]));
using std::swap;
swap(packed[from], packed[to]);
}
/**
* @brief Sort the first count elements according to the given comparison
* function.
*
* The comparison function object must return `true` if the first element
* is _less_ than the second one, `false` otherwise. The signature of the
* comparison function should be equivalent to the following:
*
* @code{.cpp}
* bool(const Entity, const Entity);
* @endcode
*
* Moreover, the comparison function object shall induce a
* _strict weak ordering_ on the values.
*
* The sort function object must offer a member function template
* `operator()` that accepts three arguments:
*
* * An iterator to the first element of the range to sort.
* * An iterator past the last element of the range to sort.
* * A comparison function to use to compare the elements.
*
* @tparam Compare Type of comparison function object.
* @tparam Sort Type of sort function object.
* @tparam Args Types of arguments to forward to the sort function object.
* @param length Number of elements to sort.
* @param compare A valid comparison function object.
* @param algo A valid sort function object.
* @param args Arguments to forward to the sort function object, if any.
*/
template<typename Compare, typename Sort = std_sort, typename... Args>
void sort_n(const size_type length, Compare compare, Sort algo = Sort{}, Args &&...args) {
ENTT_ASSERT(!(length > packed.size()), "Length exceeds the number of elements");
ENTT_ASSERT(free_list == null, "Partial sorting with tombstones is not supported");
algo(packed.rend() - length, packed.rend(), std::move(compare), std::forward<Args>(args)...);
for(size_type pos{}; pos < length; ++pos) {
auto curr = pos;
auto next = index(packed[curr]);
while(curr != next) {
const auto idx = index(packed[next]);
const auto entt = packed[curr];
swap_at(next, idx);
const auto entity = static_cast<typename entity_traits::entity_type>(curr);
sparse_ref(entt) = entity_traits::combine(entity, entity_traits::to_integral(packed[curr]));
curr = std::exchange(next, idx);
}
}
}
/**
* @brief Sort all elements according to the given comparison function.
*
* @sa sort_n
*
* @tparam Compare Type of comparison function object.
* @tparam Sort Type of sort function object.
* @tparam Args Types of arguments to forward to the sort function object.
* @param compare A valid comparison function object.
* @param algo A valid sort function object.
* @param args Arguments to forward to the sort function object, if any.
*/
template<typename Compare, typename Sort = std_sort, typename... Args>
void sort(Compare compare, Sort algo = Sort{}, Args &&...args) {
compact();
sort_n(packed.size(), std::move(compare), std::move(algo), std::forward<Args>(args)...);
}
/**
* @brief Sort entities according to their order in another sparse set.
*
* Entities that are part of both the sparse sets are ordered internally
* according to the order they have in `other`. All the other entities goes
* to the end of the list and there are no guarantees on their order.<br/>
* In other terms, this function can be used to impose the same order on two
* sets by using one of them as a master and the other one as a slave.
*
* Iterating the sparse set with a couple of iterators returns elements in
* the expected order after a call to `respect`. See `begin` and `end` for
* more details.
*
* @param other The sparse sets that imposes the order of the entities.
*/
void respect(const basic_sparse_set &other) {
compact();
const auto to = other.end();
auto from = other.begin();
for(size_type pos = packed.size() - 1; pos && from != to; ++from) {
if(contains(*from)) {
if(*from != packed[pos]) {
// basic no-leak guarantee (with invalid state) if swapping throws
swap_elements(packed[pos], *from);
}
--pos;
}
}
}
/*! @brief Clears a sparse set. */
void clear() {
if(const auto last = end(); free_list == null) {
pop(begin(), last);
} else {
for(auto &&entity: *this) {
// tombstone filter on itself
if(const auto it = find(entity); it != last) {
pop(it, it + 1u);
}
}
}
free_list = tombstone;
packed.clear();
}
/**
* @brief Returned value type, if any.
* @return Returned value type, if any.
*/
const type_info &type() const noexcept {
return *info;
}
/*! @brief Forwards variables to derived classes, if any. */
virtual void bind(any) noexcept {}
private:
sparse_container_type sparse;
packed_container_type packed;
const type_info *info;
entity_type free_list;
deletion_policy mode;
};
} // namespace entt
#endif
// #include "entity/storage.hpp"
#ifndef ENTT_ENTITY_STORAGE_HPP
#define ENTT_ENTITY_STORAGE_HPP
#include <cstddef>
#include <iterator>
#include <memory>
#include <tuple>
#include <type_traits>
#include <utility>
#include <vector>
// #include "../config/config.h"
// #include "../core/compressed_pair.hpp"
// #include "../core/iterator.hpp"
// #include "../core/memory.hpp"
// #include "../core/type_info.hpp"
// #include "component.hpp"
// #include "entity.hpp"
// #include "fwd.hpp"
// #include "sparse_set.hpp"
// #include "storage_mixin.hpp"
namespace entt {
/**
* @cond TURN_OFF_DOXYGEN
* Internal details not to be documented.
*/
namespace internal {
template<typename Container>
class storage_iterator final {
friend storage_iterator<const Container>;
using container_type = std::remove_const_t<Container>;
using alloc_traits = std::allocator_traits<typename container_type::allocator_type>;
using comp_traits = component_traits<std::remove_pointer_t<typename container_type::value_type>>;
using iterator_traits = std::iterator_traits<std::conditional_t<
std::is_const_v<Container>,
typename alloc_traits::template rebind_traits<typename std::pointer_traits<typename container_type::value_type>::element_type>::const_pointer,
typename alloc_traits::template rebind_traits<typename std::pointer_traits<typename container_type::value_type>::element_type>::pointer>>;
public:
using value_type = typename iterator_traits::value_type;
using pointer = typename iterator_traits::pointer;
using reference = typename iterator_traits::reference;
using difference_type = typename iterator_traits::difference_type;
using iterator_category = std::random_access_iterator_tag;
constexpr storage_iterator() noexcept = default;
constexpr storage_iterator(Container *ref, const difference_type idx) noexcept
: packed{ref},
offset{idx} {}
template<bool Const = std::is_const_v<Container>, typename = std::enable_if_t<Const>>
constexpr storage_iterator(const storage_iterator<std::remove_const_t<Container>> &other) noexcept
: storage_iterator{other.packed, other.offset} {}
constexpr storage_iterator &operator++() noexcept {
return --offset, *this;
}
constexpr storage_iterator operator++(int) noexcept {
storage_iterator orig = *this;
return ++(*this), orig;
}
constexpr storage_iterator &operator--() noexcept {
return ++offset, *this;
}
constexpr storage_iterator operator--(int) noexcept {
storage_iterator orig = *this;
return operator--(), orig;
}
constexpr storage_iterator &operator+=(const difference_type value) noexcept {
offset -= value;
return *this;
}
constexpr storage_iterator operator+(const difference_type value) const noexcept {
storage_iterator copy = *this;
return (copy += value);
}
constexpr storage_iterator &operator-=(const difference_type value) noexcept {
return (*this += -value);
}
constexpr storage_iterator operator-(const difference_type value) const noexcept {
return (*this + -value);
}
[[nodiscard]] constexpr reference operator[](const difference_type value) const noexcept {
const auto pos = index() - value;
return (*packed)[pos / comp_traits::page_size][fast_mod(pos, comp_traits::page_size)];
}
[[nodiscard]] constexpr pointer operator->() const noexcept {
const auto pos = index();
return (*packed)[pos / comp_traits::page_size] + fast_mod(pos, comp_traits::page_size);
}
[[nodiscard]] constexpr reference operator*() const noexcept {
return *operator->();
}
[[nodiscard]] constexpr difference_type index() const noexcept {
return offset - 1;
}
private:
Container *packed;
difference_type offset;
};
template<typename CLhs, typename CRhs>
[[nodiscard]] constexpr std::ptrdiff_t operator-(const storage_iterator<CLhs> &lhs, const storage_iterator<CRhs> &rhs) noexcept {
return rhs.index() - lhs.index();
}
template<typename CLhs, typename CRhs>
[[nodiscard]] constexpr bool operator==(const storage_iterator<CLhs> &lhs, const storage_iterator<CRhs> &rhs) noexcept {
return lhs.index() == rhs.index();
}
template<typename CLhs, typename CRhs>
[[nodiscard]] constexpr bool operator!=(const storage_iterator<CLhs> &lhs, const storage_iterator<CRhs> &rhs) noexcept {
return !(lhs == rhs);
}
template<typename CLhs, typename CRhs>
[[nodiscard]] constexpr bool operator<(const storage_iterator<CLhs> &lhs, const storage_iterator<CRhs> &rhs) noexcept {
return lhs.index() > rhs.index();
}
template<typename CLhs, typename CRhs>
[[nodiscard]] constexpr bool operator>(const storage_iterator<CLhs> &lhs, const storage_iterator<CRhs> &rhs) noexcept {
return lhs.index() < rhs.index();
}
template<typename CLhs, typename CRhs>
[[nodiscard]] constexpr bool operator<=(const storage_iterator<CLhs> &lhs, const storage_iterator<CRhs> &rhs) noexcept {
return !(lhs > rhs);
}
template<typename CLhs, typename CRhs>
[[nodiscard]] constexpr bool operator>=(const storage_iterator<CLhs> &lhs, const storage_iterator<CRhs> &rhs) noexcept {
return !(lhs < rhs);
}
template<typename It, typename... Other>
class extended_storage_iterator final {
template<typename Iter, typename... Args>
friend class extended_storage_iterator;
public:
using value_type = decltype(std::tuple_cat(std::make_tuple(*std::declval<It>()), std::forward_as_tuple(*std::declval<Other>()...)));
using pointer = input_iterator_pointer<value_type>;
using reference = value_type;
using difference_type = std::ptrdiff_t;
using iterator_category = std::input_iterator_tag;
constexpr extended_storage_iterator()
: it{} {}
constexpr extended_storage_iterator(It base, Other... other)
: it{base, other...} {}
template<typename... Args, typename = std::enable_if_t<(!std::is_same_v<Other, Args> && ...) && (std::is_constructible_v<Other, Args> && ...)>>
constexpr extended_storage_iterator(const extended_storage_iterator<It, Args...> &other)
: it{other.it} {}
constexpr extended_storage_iterator &operator++() noexcept {
return ++std::get<It>(it), (++std::get<Other>(it), ...), *this;
}
constexpr extended_storage_iterator operator++(int) noexcept {
extended_storage_iterator orig = *this;
return ++(*this), orig;
}
[[nodiscard]] constexpr pointer operator->() const noexcept {
return operator*();
}
[[nodiscard]] constexpr reference operator*() const noexcept {
return {*std::get<It>(it), *std::get<Other>(it)...};
}
template<typename... CLhs, typename... CRhs>
friend constexpr bool operator==(const extended_storage_iterator<CLhs...> &, const extended_storage_iterator<CRhs...> &) noexcept;
private:
std::tuple<It, Other...> it;
};
template<typename... CLhs, typename... CRhs>
[[nodiscard]] constexpr bool operator==(const extended_storage_iterator<CLhs...> &lhs, const extended_storage_iterator<CRhs...> &rhs) noexcept {
return std::get<0>(lhs.it) == std::get<0>(rhs.it);
}
template<typename... CLhs, typename... CRhs>
[[nodiscard]] constexpr bool operator!=(const extended_storage_iterator<CLhs...> &lhs, const extended_storage_iterator<CRhs...> &rhs) noexcept {
return !(lhs == rhs);
}
} // namespace internal
/**
* Internal details not to be documented.
* @endcond
*/
/**
* @brief Basic storage implementation.
*
* Internal data structures arrange elements to maximize performance. There are
* no guarantees that objects are returned in the insertion order when iterate
* a storage. Do not make assumption on the order in any case.
*
* @warning
* Empty types aren't explicitly instantiated. Therefore, many of the functions
* normally available for non-empty types will not be available for empty ones.
*
* @tparam Type Type of objects assigned to the entities.
* @tparam Entity A valid entity type (see entt_traits for more details).
* @tparam Allocator Type of allocator used to manage memory and elements.
*/
template<typename Type, typename Entity, typename Allocator, typename>
class basic_storage: public basic_sparse_set<Entity, typename std::allocator_traits<Allocator>::template rebind_alloc<Entity>> {
using alloc_traits = std::allocator_traits<Allocator>;
static_assert(std::is_same_v<typename alloc_traits::value_type, Type>, "Invalid value type");
using underlying_type = basic_sparse_set<Entity, typename alloc_traits::template rebind_alloc<Entity>>;
using container_type = std::vector<typename alloc_traits::pointer, typename alloc_traits::template rebind_alloc<typename alloc_traits::pointer>>;
using comp_traits = component_traits<Type>;
static constexpr bool is_pinned_type_v = !(std::is_move_constructible_v<Type> && std::is_move_assignable_v<Type>);
[[nodiscard]] auto &element_at(const std::size_t pos) const {
return packed.first()[pos / comp_traits::page_size][fast_mod(pos, comp_traits::page_size)];
}
auto assure_at_least(const std::size_t pos) {
auto &&container = packed.first();
const auto idx = pos / comp_traits::page_size;
if(!(idx < container.size())) {
auto curr = container.size();
container.resize(idx + 1u, nullptr);
ENTT_TRY {
for(const auto last = container.size(); curr < last; ++curr) {
container[curr] = alloc_traits::allocate(packed.second(), comp_traits::page_size);
}
}
ENTT_CATCH {
container.resize(curr);
ENTT_THROW;
}
}
return container[idx] + fast_mod(pos, comp_traits::page_size);
}
template<typename... Args>
auto emplace_element(const Entity entt, const bool force_back, Args &&...args) {
const auto it = base_type::try_emplace(entt, force_back);
ENTT_TRY {
auto elem = assure_at_least(static_cast<size_type>(it.index()));
entt::uninitialized_construct_using_allocator(to_address(elem), packed.second(), std::forward<Args>(args)...);
}
ENTT_CATCH {
base_type::pop(it, it + 1u);
ENTT_THROW;
}
return it;
}
void shrink_to_size(const std::size_t sz) {
for(auto pos = sz, length = base_type::size(); pos < length; ++pos) {
if constexpr(comp_traits::in_place_delete) {
if(base_type::at(pos) != tombstone) {
std::destroy_at(std::addressof(element_at(pos)));
}
} else {
std::destroy_at(std::addressof(element_at(pos)));
}
}
auto &&container = packed.first();
auto page_allocator{packed.second()};
const auto from = (sz + comp_traits::page_size - 1u) / comp_traits::page_size;
for(auto pos = from, last = container.size(); pos < last; ++pos) {
alloc_traits::deallocate(page_allocator, container[pos], comp_traits::page_size);
}
container.resize(from);
}
private:
const void *get_at(const std::size_t pos) const final {
return std::addressof(element_at(pos));
}
void swap_at([[maybe_unused]] const std::size_t lhs, [[maybe_unused]] const std::size_t rhs) final {
// use a runtime value to avoid compile-time suppression that drives the code coverage tool crazy
ENTT_ASSERT((lhs + 1u) && !is_pinned_type_v, "Pinned type");
if constexpr(!is_pinned_type_v) {
using std::swap;
swap(element_at(lhs), element_at(rhs));
}
}
void move_element([[maybe_unused]] const std::size_t from, [[maybe_unused]] const std::size_t to) final {
// use a runtime value to avoid compile-time suppression that drives the code coverage tool crazy
ENTT_ASSERT((from + 1u) && !is_pinned_type_v, "Pinned type");
if constexpr(!is_pinned_type_v) {
auto &elem = element_at(from);
entt::uninitialized_construct_using_allocator(to_address(assure_at_least(to)), packed.second(), std::move(elem));
std::destroy_at(std::addressof(elem));
}
}
protected:
/*! @brief Random access iterator type. */
using basic_iterator = typename underlying_type::basic_iterator;
/**
* @brief Erases entities from a sparse set.
* @param first An iterator to the first element of the range of entities.
* @param last An iterator past the last element of the range of entities.
*/
void pop(basic_iterator first, basic_iterator last) override {
for(; first != last; ++first) {
// cannot use first.index() because it would break with cross iterators
auto &elem = element_at(base_type::index(*first));
if constexpr(comp_traits::in_place_delete) {
base_type::in_place_pop(first);
std::destroy_at(std::addressof(elem));
} else {
auto &other = element_at(base_type::size() - 1u);
// destroying on exit allows reentrant destructors
[[maybe_unused]] auto unused = std::exchange(elem, std::move(other));
std::destroy_at(std::addressof(other));
base_type::swap_and_pop(first);
}
}
}
/**
* @brief Assigns an entity to a storage.
* @param entt A valid identifier.
* @param value Optional opaque value.
* @param force_back Force back insertion.
* @return Iterator pointing to the emplaced element.
*/
basic_iterator try_emplace([[maybe_unused]] const Entity entt, [[maybe_unused]] const bool force_back, const void *value) override {
if(value) {
if constexpr(std::is_copy_constructible_v<value_type>) {
return emplace_element(entt, force_back, *static_cast<const value_type *>(value));
} else {
return base_type::end();
}
} else {
if constexpr(std::is_default_constructible_v<value_type>) {
return emplace_element(entt, force_back);
} else {
return base_type::end();
}
}
}
public:
/*! @brief Base type. */
using base_type = underlying_type;
/*! @brief Allocator type. */
using allocator_type = Allocator;
/*! @brief Type of the objects assigned to entities. */
using value_type = Type;
/*! @brief Underlying entity identifier. */
using entity_type = Entity;
/*! @brief Unsigned integer type. */
using size_type = std::size_t;
/*! @brief Pointer type to contained elements. */
using pointer = typename container_type::pointer;
/*! @brief Constant pointer type to contained elements. */
using const_pointer = typename alloc_traits::template rebind_traits<typename alloc_traits::const_pointer>::const_pointer;
/*! @brief Random access iterator type. */
using iterator = internal::storage_iterator<container_type>;
/*! @brief Constant random access iterator type. */
using const_iterator = internal::storage_iterator<const container_type>;
/*! @brief Reverse iterator type. */
using reverse_iterator = std::reverse_iterator<iterator>;
/*! @brief Constant reverse iterator type. */
using const_reverse_iterator = std::reverse_iterator<const_iterator>;
/*! @brief Extended iterable storage proxy. */
using iterable = iterable_adaptor<internal::extended_storage_iterator<typename base_type::iterator, iterator>>;
/*! @brief Constant extended iterable storage proxy. */
using const_iterable = iterable_adaptor<internal::extended_storage_iterator<typename base_type::const_iterator, const_iterator>>;
/*! @brief Default constructor. */
basic_storage()
: basic_storage{allocator_type{}} {}
/**
* @brief Constructs an empty storage with a given allocator.
* @param allocator The allocator to use.
*/
explicit basic_storage(const allocator_type &allocator)
: base_type{type_id<value_type>(), deletion_policy{comp_traits::in_place_delete}, allocator},
packed{container_type{allocator}, allocator} {}
/**
* @brief Move constructor.
* @param other The instance to move from.
*/
basic_storage(basic_storage &&other) noexcept
: base_type{std::move(other)},
packed{std::move(other.packed)} {}
/**
* @brief Allocator-extended move constructor.
* @param other The instance to move from.
* @param allocator The allocator to use.
*/
basic_storage(basic_storage &&other, const allocator_type &allocator) noexcept
: base_type{std::move(other), allocator},
packed{container_type{std::move(other.packed.first()), allocator}, allocator} {
ENTT_ASSERT(alloc_traits::is_always_equal::value || packed.second() == other.packed.second(), "Copying a storage is not allowed");
}
/*! @brief Default destructor. */
~basic_storage() override {
shrink_to_size(0u);
}
/**
* @brief Move assignment operator.
* @param other The instance to move from.
* @return This storage.
*/
basic_storage &operator=(basic_storage &&other) noexcept {
ENTT_ASSERT(alloc_traits::is_always_equal::value || packed.second() == other.packed.second(), "Copying a storage is not allowed");
shrink_to_size(0u);
base_type::operator=(std::move(other));
packed.first() = std::move(other.packed.first());
propagate_on_container_move_assignment(packed.second(), other.packed.second());
return *this;
}
/**
* @brief Exchanges the contents with those of a given storage.
* @param other Storage to exchange the content with.
*/
void swap(basic_storage &other) {
using std::swap;
underlying_type::swap(other);
propagate_on_container_swap(packed.second(), other.packed.second());
swap(packed.first(), other.packed.first());
}
/**
* @brief Returns the associated allocator.
* @return The associated allocator.
*/
[[nodiscard]] constexpr allocator_type get_allocator() const noexcept {
return allocator_type{packed.second()};
}
/**
* @brief Increases the capacity of a storage.
*
* If the new capacity is greater than the current capacity, new storage is
* allocated, otherwise the method does nothing.
*
* @param cap Desired capacity.
*/
void reserve(const size_type cap) override {
if(cap != 0u) {
base_type::reserve(cap);
assure_at_least(cap - 1u);
}
}
/**
* @brief Returns the number of elements that a storage has currently
* allocated space for.
* @return Capacity of the storage.
*/
[[nodiscard]] size_type capacity() const noexcept override {
return packed.first().size() * comp_traits::page_size;
}
/*! @brief Requests the removal of unused capacity. */
void shrink_to_fit() override {
base_type::shrink_to_fit();
shrink_to_size(base_type::size());
}
/**
* @brief Direct access to the array of objects.
* @return A pointer to the array of objects.
*/
[[nodiscard]] const_pointer raw() const noexcept {
return packed.first().data();
}
/*! @copydoc raw */
[[nodiscard]] pointer raw() noexcept {
return packed.first().data();
}
/**
* @brief Returns an iterator to the beginning.
*
* The returned iterator points to the first instance of the internal array.
* If the storage is empty, the returned iterator will be equal to `end()`.
*
* @return An iterator to the first instance of the internal array.
*/
[[nodiscard]] const_iterator cbegin() const noexcept {
const auto pos = static_cast<typename iterator::difference_type>(base_type::size());
return const_iterator{&packed.first(), pos};
}
/*! @copydoc cbegin */
[[nodiscard]] const_iterator begin() const noexcept {
return cbegin();
}
/*! @copydoc begin */
[[nodiscard]] iterator begin() noexcept {
const auto pos = static_cast<typename iterator::difference_type>(base_type::size());
return iterator{&packed.first(), pos};
}
/**
* @brief Returns an iterator to the end.
*
* The returned iterator points to the element following the last instance
* of the internal array. Attempting to dereference the returned iterator
* results in undefined behavior.
*
* @return An iterator to the element following the last instance of the
* internal array.
*/
[[nodiscard]] const_iterator cend() const noexcept {
return const_iterator{&packed.first(), {}};
}
/*! @copydoc cend */
[[nodiscard]] const_iterator end() const noexcept {
return cend();
}
/*! @copydoc end */
[[nodiscard]] iterator end() noexcept {
return iterator{&packed.first(), {}};
}
/**
* @brief Returns a reverse iterator to the beginning.
*
* The returned iterator points to the first instance of the reversed
* internal array. If the storage is empty, the returned iterator will be
* equal to `rend()`.
*
* @return An iterator to the first instance of the reversed internal array.
*/
[[nodiscard]] const_reverse_iterator crbegin() const noexcept {
return std::make_reverse_iterator(cend());
}
/*! @copydoc crbegin */
[[nodiscard]] const_reverse_iterator rbegin() const noexcept {
return crbegin();
}
/*! @copydoc rbegin */
[[nodiscard]] reverse_iterator rbegin() noexcept {
return std::make_reverse_iterator(end());
}
/**
* @brief Returns a reverse iterator to the end.
*
* The returned iterator points to the element following the last instance
* of the reversed internal array. Attempting to dereference the returned
* iterator results in undefined behavior.
*
* @return An iterator to the element following the last instance of the
* reversed internal array.
*/
[[nodiscard]] const_reverse_iterator crend() const noexcept {
return std::make_reverse_iterator(cbegin());
}
/*! @copydoc crend */
[[nodiscard]] const_reverse_iterator rend() const noexcept {
return crend();
}
/*! @copydoc rend */
[[nodiscard]] reverse_iterator rend() noexcept {
return std::make_reverse_iterator(begin());
}
/**
* @brief Returns the object assigned to an entity.
*
* @warning
* Attempting to use an entity that doesn't belong to the storage results in
* undefined behavior.
*
* @param entt A valid identifier.
* @return The object assigned to the entity.
*/
[[nodiscard]] const value_type &get(const entity_type entt) const noexcept {
return element_at(base_type::index(entt));
}
/*! @copydoc get */
[[nodiscard]] value_type &get(const entity_type entt) noexcept {
return const_cast<value_type &>(std::as_const(*this).get(entt));
}
/**
* @brief Returns the object assigned to an entity as a tuple.
* @param entt A valid identifier.
* @return The object assigned to the entity as a tuple.
*/
[[nodiscard]] std::tuple<const value_type &> get_as_tuple(const entity_type entt) const noexcept {
return std::forward_as_tuple(get(entt));
}
/*! @copydoc get_as_tuple */
[[nodiscard]] std::tuple<value_type &> get_as_tuple(const entity_type entt) noexcept {
return std::forward_as_tuple(get(entt));
}
/**
* @brief Assigns an entity to a storage and constructs its object.
*
* @warning
* Attempting to use an entity that already belongs to the storage results
* in undefined behavior.
*
* @tparam Args Types of arguments to use to construct the object.
* @param entt A valid identifier.
* @param args Parameters to use to construct an object for the entity.
* @return A reference to the newly created object.
*/
template<typename... Args>
value_type &emplace(const entity_type entt, Args &&...args) {
if constexpr(std::is_aggregate_v<value_type>) {
const auto it = emplace_element(entt, false, Type{std::forward<Args>(args)...});
return element_at(static_cast<size_type>(it.index()));
} else {
const auto it = emplace_element(entt, false, std::forward<Args>(args)...);
return element_at(static_cast<size_type>(it.index()));
}
}
/**
* @brief Updates the instance assigned to a given entity in-place.
* @tparam Func Types of the function objects to invoke.
* @param entt A valid identifier.
* @param func Valid function objects.
* @return A reference to the updated instance.
*/
template<typename... Func>
value_type &patch(const entity_type entt, Func &&...func) {
const auto idx = base_type::index(entt);
auto &elem = element_at(idx);
(std::forward<Func>(func)(elem), ...);
return elem;
}
/**
* @brief Assigns one or more entities to a storage and constructs their
* objects from a given instance.
*
* @warning
* Attempting to assign an entity that already belongs to the storage
* results in undefined behavior.
*
* @tparam It Type of input iterator.
* @param first An iterator to the first element of the range of entities.
* @param last An iterator past the last element of the range of entities.
* @param value An instance of the object to construct.
*/
template<typename It>
void insert(It first, It last, const value_type &value = {}) {
for(; first != last; ++first) {
emplace_element(*first, true, value);
}
}
/**
* @brief Assigns one or more entities to a storage and constructs their
* objects from a given range.
*
* @sa construct
*
* @tparam EIt Type of input iterator.
* @tparam CIt Type of input iterator.
* @param first An iterator to the first element of the range of entities.
* @param last An iterator past the last element of the range of entities.
* @param from An iterator to the first element of the range of objects.
*/
template<typename EIt, typename CIt, typename = std::enable_if_t<std::is_same_v<typename std::iterator_traits<CIt>::value_type, value_type>>>
void insert(EIt first, EIt last, CIt from) {
for(; first != last; ++first, ++from) {
emplace_element(*first, true, *from);
}
}
/**
* @brief Returns an iterable object to use to _visit_ a storage.
*
* The iterable object returns a tuple that contains the current entity and
* a reference to its component.
*
* @return An iterable object to use to _visit_ the storage.
*/
[[nodiscard]] iterable each() noexcept {
return {internal::extended_storage_iterator{base_type::begin(), begin()}, internal::extended_storage_iterator{base_type::end(), end()}};
}
/*! @copydoc each */
[[nodiscard]] const_iterable each() const noexcept {
return {internal::extended_storage_iterator{base_type::cbegin(), cbegin()}, internal::extended_storage_iterator{base_type::cend(), cend()}};
}
private:
compressed_pair<container_type, allocator_type> packed;
};
/*! @copydoc basic_storage */
template<typename Type, typename Entity, typename Allocator>
class basic_storage<Type, Entity, Allocator, std::enable_if_t<ignore_as_empty_v<Type>>>
: public basic_sparse_set<Entity, typename std::allocator_traits<Allocator>::template rebind_alloc<Entity>> {
using alloc_traits = std::allocator_traits<Allocator>;
static_assert(std::is_same_v<typename alloc_traits::value_type, Type>, "Invalid value type");
using underlying_type = basic_sparse_set<Entity, typename alloc_traits::template rebind_alloc<Entity>>;
using comp_traits = component_traits<Type>;
public:
/*! @brief Base type. */
using base_type = underlying_type;
/*! @brief Allocator type. */
using allocator_type = Allocator;
/*! @brief Type of the objects assigned to entities. */
using value_type = Type;
/*! @brief Underlying entity identifier. */
using entity_type = Entity;
/*! @brief Unsigned integer type. */
using size_type = std::size_t;
/*! @brief Extended iterable storage proxy. */
using iterable = iterable_adaptor<internal::extended_storage_iterator<typename base_type::iterator>>;
/*! @brief Constant extended iterable storage proxy. */
using const_iterable = iterable_adaptor<internal::extended_storage_iterator<typename base_type::const_iterator>>;
/*! @brief Default constructor. */
basic_storage()
: basic_storage{allocator_type{}} {}
/**
* @brief Constructs an empty container with a given allocator.
* @param allocator The allocator to use.
*/
explicit basic_storage(const allocator_type &allocator)
: base_type{type_id<value_type>(), deletion_policy{comp_traits::in_place_delete}, allocator} {}
/**
* @brief Move constructor.
* @param other The instance to move from.
*/
basic_storage(basic_storage &&other) noexcept = default;
/**
* @brief Allocator-extended move constructor.
* @param other The instance to move from.
* @param allocator The allocator to use.
*/
basic_storage(basic_storage &&other, const allocator_type &allocator) noexcept
: base_type{std::move(other), allocator} {}
/**
* @brief Move assignment operator.
* @param other The instance to move from.
* @return This storage.
*/
basic_storage &operator=(basic_storage &&other) noexcept = default;
/**
* @brief Returns the associated allocator.
* @return The associated allocator.
*/
[[nodiscard]] constexpr allocator_type get_allocator() const noexcept {
return allocator_type{base_type::get_allocator()};
}
/**
* @brief Returns the object assigned to an entity, that is `void`.
*
* @warning
* Attempting to use an entity that doesn't belong to the storage results in
* undefined behavior.
*
* @param entt A valid identifier.
*/
void get([[maybe_unused]] const entity_type entt) const noexcept {
ENTT_ASSERT(base_type::contains(entt), "Storage does not contain entity");
}
/**
* @brief Returns an empty tuple.
*
* @warning
* Attempting to use an entity that doesn't belong to the storage results in
* undefined behavior.
*
* @param entt A valid identifier.
* @return Returns an empty tuple.
*/
[[nodiscard]] std::tuple<> get_as_tuple([[maybe_unused]] const entity_type entt) const noexcept {
ENTT_ASSERT(base_type::contains(entt), "Storage does not contain entity");
return std::tuple{};
}
/**
* @brief Assigns an entity to a storage and constructs its object.
*
* @warning
* Attempting to use an entity that already belongs to the storage results
* in undefined behavior.
*
* @tparam Args Types of arguments to use to construct the object.
* @param entt A valid identifier.
*/
template<typename... Args>
void emplace(const entity_type entt, Args &&...) {
base_type::try_emplace(entt, false);
}
/**
* @brief Updates the instance assigned to a given entity in-place.
* @tparam Func Types of the function objects to invoke.
* @param entt A valid identifier.
* @param func Valid function objects.
*/
template<typename... Func>
void patch([[maybe_unused]] const entity_type entt, Func &&...func) {
ENTT_ASSERT(base_type::contains(entt), "Storage does not contain entity");
(std::forward<Func>(func)(), ...);
}
/**
* @brief Assigns entities to a storage.
* @tparam It Type of input iterator.
* @tparam Args Types of optional arguments.
* @param first An iterator to the first element of the range of entities.
* @param last An iterator past the last element of the range of entities.
*/
template<typename It, typename... Args>
void insert(It first, It last, Args &&...) {
for(; first != last; ++first) {
base_type::try_emplace(*first, true);
}
}
/**
* @brief Returns an iterable object to use to _visit_ a storage.
*
* The iterable object returns a tuple that contains the current entity.
*
* @return An iterable object to use to _visit_ the storage.
*/
[[nodiscard]] iterable each() noexcept {
return {internal::extended_storage_iterator{base_type::begin()}, internal::extended_storage_iterator{base_type::end()}};
}
/*! @copydoc each */
[[nodiscard]] const_iterable each() const noexcept {
return {internal::extended_storage_iterator{base_type::cbegin()}, internal::extended_storage_iterator{base_type::cend()}};
}
};
} // namespace entt
#endif
// #include "entity/storage_mixin.hpp"
#ifndef ENTT_ENTITY_SIGH_STORAGE_MIXIN_HPP
#define ENTT_ENTITY_SIGH_STORAGE_MIXIN_HPP
#include <utility>
// #include "../config/config.h"
// #include "../core/any.hpp"
// #include "../signal/sigh.hpp"
// #include "fwd.hpp"
namespace entt {
/**
* @brief Mixin type used to add signal support to storage types.
*
* The function type of a listener is equivalent to:
*
* @code{.cpp}
* void(basic_registry<entity_type> &, entity_type);
* @endcode
*
* This applies to all signals made available.
*
* @tparam Type The type of the underlying storage.
*/
template<typename Type>
class sigh_storage_mixin final: public Type {
using basic_registry_type = basic_registry<typename Type::entity_type, typename Type::base_type::allocator_type>;
using sigh_type = sigh<void(basic_registry_type &, const typename Type::entity_type), typename Type::allocator_type>;
using basic_iterator = typename Type::basic_iterator;
void pop(basic_iterator first, basic_iterator last) override {
ENTT_ASSERT(owner != nullptr, "Invalid pointer to registry");
for(; first != last; ++first) {
const auto entt = *first;
destruction.publish(*owner, entt);
const auto it = Type::find(entt);
Type::pop(it, it + 1u);
}
}
basic_iterator try_emplace(const typename basic_registry_type::entity_type entt, const bool force_back, const void *value) final {
ENTT_ASSERT(owner != nullptr, "Invalid pointer to registry");
Type::try_emplace(entt, force_back, value);
construction.publish(*owner, entt);
return Type::find(entt);
}
public:
/*! @brief Allocator type. */
using allocator_type = typename Type::allocator_type;
/*! @brief Underlying entity identifier. */
using entity_type = typename Type::entity_type;
/*! @brief Expected registry type. */
using registry_type = basic_registry_type;
/*! @brief Default constructor. */
sigh_storage_mixin()
: sigh_storage_mixin{allocator_type{}} {}
/**
* @brief Constructs an empty storage with a given allocator.
* @param allocator The allocator to use.
*/
explicit sigh_storage_mixin(const allocator_type &allocator)
: Type{allocator},
owner{},
construction{allocator},
destruction{allocator},
update{allocator} {}
/**
* @brief Move constructor.
* @param other The instance to move from.
*/
sigh_storage_mixin(sigh_storage_mixin &&other) noexcept
: Type{std::move(other)},
owner{other.owner},
construction{std::move(other.construction)},
destruction{std::move(other.destruction)},
update{std::move(other.update)} {}
/**
* @brief Allocator-extended move constructor.
* @param other The instance to move from.
* @param allocator The allocator to use.
*/
sigh_storage_mixin(sigh_storage_mixin &&other, const allocator_type &allocator) noexcept
: Type{std::move(other), allocator},
owner{other.owner},
construction{std::move(other.construction), allocator},
destruction{std::move(other.destruction), allocator},
update{std::move(other.update), allocator} {}
/**
* @brief Move assignment operator.
* @param other The instance to move from.
* @return This storage.
*/
sigh_storage_mixin &operator=(sigh_storage_mixin &&other) noexcept {
Type::operator=(std::move(other));
owner = other.owner;
construction = std::move(other.construction);
destruction = std::move(other.destruction);
update = std::move(other.update);
return *this;
}
/**
* @brief Exchanges the contents with those of a given storage.
* @param other Storage to exchange the content with.
*/
void swap(sigh_storage_mixin &other) {
using std::swap;
Type::swap(other);
swap(owner, other.owner);
swap(construction, other.construction);
swap(destruction, other.destruction);
swap(update, other.update);
}
/**
* @brief Returns a sink object.
*
* The sink returned by this function can be used to receive notifications
* whenever a new instance is created and assigned to an entity.<br/>
* Listeners are invoked after the object has been assigned to the entity.
*
* @sa sink
*
* @return A temporary sink object.
*/
[[nodiscard]] auto on_construct() noexcept {
return sink{construction};
}
/**
* @brief Returns a sink object.
*
* The sink returned by this function can be used to receive notifications
* whenever an instance is explicitly updated.<br/>
* Listeners are invoked after the object has been updated.
*
* @sa sink
*
* @return A temporary sink object.
*/
[[nodiscard]] auto on_update() noexcept {
return sink{update};
}
/**
* @brief Returns a sink object.
*
* The sink returned by this function can be used to receive notifications
* whenever an instance is removed from an entity and thus destroyed.<br/>
* Listeners are invoked before the object has been removed from the entity.
*
* @sa sink
*
* @return A temporary sink object.
*/
[[nodiscard]] auto on_destroy() noexcept {
return sink{destruction};
}
/**
* @brief Assigns entities to a storage.
* @tparam Args Types of arguments to use to construct the object.
* @param entt A valid identifier.
* @param args Parameters to use to initialize the object.
* @return A reference to the newly created object.
*/
template<typename... Args>
decltype(auto) emplace(const entity_type entt, Args &&...args) {
ENTT_ASSERT(owner != nullptr, "Invalid pointer to registry");
Type::emplace(entt, std::forward<Args>(args)...);
construction.publish(*owner, entt);
return this->get(entt);
}
/**
* @brief Patches the given instance for an entity.
* @tparam Func Types of the function objects to invoke.
* @param entt A valid identifier.
* @param func Valid function objects.
* @return A reference to the patched instance.
*/
template<typename... Func>
decltype(auto) patch(const entity_type entt, Func &&...func) {
ENTT_ASSERT(owner != nullptr, "Invalid pointer to registry");
Type::patch(entt, std::forward<Func>(func)...);
update.publish(*owner, entt);
return this->get(entt);
}
/**
* @brief Assigns entities to a storage.
* @tparam It Type of input iterator.
* @tparam Args Types of arguments to use to construct the objects assigned
* to the entities.
* @param first An iterator to the first element of the range of entities.
* @param last An iterator past the last element of the range of entities.
* @param args Parameters to use to initialize the objects assigned to the
* entities.
*/
template<typename It, typename... Args>
void insert(It first, It last, Args &&...args) {
ENTT_ASSERT(owner != nullptr, "Invalid pointer to registry");
Type::insert(first, last, std::forward<Args>(args)...);
for(auto it = construction.empty() ? last : first; it != last; ++it) {
construction.publish(*owner, *it);
}
}
/**
* @brief Forwards variables to derived classes, if any.
* @param value A variable wrapped in an opaque container.
*/
void bind(any value) noexcept final {
auto *reg = any_cast<basic_registry_type>(&value);
owner = reg ? reg : owner;
Type::bind(std::move(value));
}
private:
basic_registry_type *owner;
sigh_type construction;
sigh_type destruction;
sigh_type update;
};
} // namespace entt
#endif
// #include "entity/view.hpp"
#ifndef ENTT_ENTITY_VIEW_HPP
#define ENTT_ENTITY_VIEW_HPP
#include <array>
#include <iterator>
#include <tuple>
#include <type_traits>
#include <utility>
// #include "../config/config.h"
// #include "../core/iterator.hpp"
// #include "../core/type_traits.hpp"
// #include "component.hpp"
// #include "entity.hpp"
// #include "fwd.hpp"
// #include "sparse_set.hpp"
// #include "storage.hpp"
namespace entt {
/**
* @cond TURN_OFF_DOXYGEN
* Internal details not to be documented.
*/
namespace internal {
template<typename Type, std::size_t Get, std::size_t Exclude>
class view_iterator final {
using iterator_type = typename Type::const_iterator;
[[nodiscard]] bool valid() const noexcept {
return ((Get != 0u) || (*it != tombstone))
&& std::apply([entt = *it](const auto *...curr) { return (curr->contains(entt) && ...); }, pools)
&& std::apply([entt = *it](const auto *...curr) { return (!curr->contains(entt) && ...); }, filter);
}
public:
using value_type = typename iterator_type::value_type;
using pointer = typename iterator_type::pointer;
using reference = typename iterator_type::reference;
using difference_type = typename iterator_type::difference_type;
using iterator_category = std::forward_iterator_tag;
constexpr view_iterator() noexcept
: it{},
last{},
pools{},
filter{} {}
view_iterator(iterator_type curr, iterator_type to, std::array<const Type *, Get> all_of, std::array<const Type *, Exclude> none_of) noexcept
: it{curr},
last{to},
pools{all_of},
filter{none_of} {
while(it != last && !valid()) {
++it;
}
}
view_iterator &operator++() noexcept {
while(++it != last && !valid()) {}
return *this;
}
view_iterator operator++(int) noexcept {
view_iterator orig = *this;
return ++(*this), orig;
}
[[nodiscard]] pointer operator->() const noexcept {
return &*it;
}
[[nodiscard]] reference operator*() const noexcept {
return *operator->();
}
template<typename LhsType, auto... LhsArgs, typename RhsType, auto... RhsArgs>
friend constexpr bool operator==(const view_iterator<LhsType, LhsArgs...> &, const view_iterator<RhsType, RhsArgs...> &) noexcept;
private:
iterator_type it;
iterator_type last;
std::array<const Type *, Get> pools;
std::array<const Type *, Exclude> filter;
};
template<typename LhsType, auto... LhsArgs, typename RhsType, auto... RhsArgs>
[[nodiscard]] constexpr bool operator==(const view_iterator<LhsType, LhsArgs...> &lhs, const view_iterator<RhsType, RhsArgs...> &rhs) noexcept {
return lhs.it == rhs.it;
}
template<typename LhsType, auto... LhsArgs, typename RhsType, auto... RhsArgs>
[[nodiscard]] constexpr bool operator!=(const view_iterator<LhsType, LhsArgs...> &lhs, const view_iterator<RhsType, RhsArgs...> &rhs) noexcept {
return !(lhs == rhs);
}
template<typename It, typename... Type>
struct extended_view_iterator final {
using difference_type = std::ptrdiff_t;
using value_type = decltype(std::tuple_cat(std::make_tuple(*std::declval<It>()), std::declval<Type>().get_as_tuple({})...));
using pointer = input_iterator_pointer<value_type>;
using reference = value_type;
using iterator_category = std::input_iterator_tag;
constexpr extended_view_iterator()
: it{},
pools{} {}
extended_view_iterator(It from, std::tuple<Type *...> storage)
: it{from},
pools{storage} {}
extended_view_iterator &operator++() noexcept {
return ++it, *this;
}
extended_view_iterator operator++(int) noexcept {
extended_view_iterator orig = *this;
return ++(*this), orig;
}
[[nodiscard]] reference operator*() const noexcept {
return std::apply([entt = *it](auto *...curr) { return std::tuple_cat(std::make_tuple(entt), curr->get_as_tuple(entt)...); }, pools);
}
[[nodiscard]] pointer operator->() const noexcept {
return operator*();
}
template<typename... Lhs, typename... Rhs>
friend bool constexpr operator==(const extended_view_iterator<Lhs...> &, const extended_view_iterator<Rhs...> &) noexcept;
private:
It it;
std::tuple<Type *...> pools;
};
template<typename... Lhs, typename... Rhs>
[[nodiscard]] constexpr bool operator==(const extended_view_iterator<Lhs...> &lhs, const extended_view_iterator<Rhs...> &rhs) noexcept {
return lhs.it == rhs.it;
}
template<typename... Lhs, typename... Rhs>
[[nodiscard]] constexpr bool operator!=(const extended_view_iterator<Lhs...> &lhs, const extended_view_iterator<Rhs...> &rhs) noexcept {
return !(lhs == rhs);
}
} // namespace internal
/**
* Internal details not to be documented.
* @endcond
*/
/**
* @brief View implementation.
*
* Primary template isn't defined on purpose. All the specializations give a
* compile-time error, but for a few reasonable cases.
*/
template<typename, typename, typename>
class basic_view;
/**
* @brief Multi component view.
*
* Multi component views iterate over those entities that are at least in the
* given storage. During initialization, a multi component view looks at the
* number of entities available for each component and uses the smallest set in
* order to get a performance boost when iterating.
*
* @b Important
*
* Iterators aren't invalidated if:
*
* * New elements are added to the storage.
* * The entity currently pointed is modified (for example, components are added
* or removed from it).
* * The entity currently pointed is destroyed.
*
* In all other cases, modifying the pools iterated by the view in any way
* invalidates all the iterators and using them results in undefined behavior.
*
* @tparam Get Types of storage iterated by the view.
* @tparam Exclude Types of storage used to filter the view.
*/
template<typename... Get, typename... Exclude>
class basic_view<get_t<Get...>, exclude_t<Exclude...>> {
using underlying_type = std::common_type_t<typename Get::entity_type..., typename Exclude::entity_type...>;
using basic_common_type = std::common_type_t<typename Get::base_type..., typename Exclude::base_type...>;
template<typename, typename, typename>
friend class basic_view;
template<typename Type>
static constexpr std::size_t index_of = type_list_index_v<std::remove_const_t<Type>, type_list<typename Get::value_type...>>;
[[nodiscard]] auto opaque_check_set() const noexcept {
std::array<const base_type *, sizeof...(Get) - 1u> other{};
std::apply([&other, pos = 0u, view = view](const auto *...curr) mutable { ((curr == view ? void() : void(other[pos++] = curr)), ...); }, pools);
return other;
}
[[nodiscard]] auto filter_as_array() const noexcept {
return std::apply([](const auto *...curr) { return std::array<const base_type *, sizeof...(Exclude)>{curr...}; }, filter);
}
template<std::size_t Curr, std::size_t Other, typename... Args>
[[nodiscard]] auto dispatch_get(const std::tuple<underlying_type, Args...> &curr) const {
if constexpr(Curr == Other) {
return std::forward_as_tuple(std::get<Args>(curr)...);
} else {
return storage<Other>().get_as_tuple(std::get<0>(curr));
}
}
[[nodiscard]] auto reject(const underlying_type entt) const noexcept {
return std::apply([entt](const auto *...curr) { return (curr->contains(entt) || ...); }, filter);
}
template<std::size_t Curr, typename Func, std::size_t... Index>
void each(Func &func, std::index_sequence<Index...>) const {
for(const auto curr: storage<Curr>().each()) {
if(const auto entt = std::get<0>(curr); ((sizeof...(Get) != 1u) || (entt != tombstone)) && ((Curr == Index || storage<Index>().contains(entt)) && ...) && !reject(entt)) {
if constexpr(is_applicable_v<Func, decltype(std::tuple_cat(std::tuple<entity_type>{}, std::declval<basic_view>().get({})))>) {
std::apply(func, std::tuple_cat(std::make_tuple(entt), dispatch_get<Curr, Index>(curr)...));
} else {
std::apply(func, std::tuple_cat(dispatch_get<Curr, Index>(curr)...));
}
}
}
}
template<typename Func, std::size_t... Index>
void pick_and_each(Func &func, std::index_sequence<Index...> seq) const {
((&storage<Index>() == view ? each<Index>(func, seq) : void()), ...);
}
public:
/*! @brief Underlying entity identifier. */
using entity_type = underlying_type;
/*! @brief Unsigned integer type. */
using size_type = std::size_t;
/*! @brief Common type among all storage types. */
using base_type = basic_common_type;
/*! @brief Bidirectional iterator type. */
using iterator = internal::view_iterator<base_type, sizeof...(Get) - 1u, sizeof...(Exclude)>;
/*! @brief Iterable view type. */
using iterable = iterable_adaptor<internal::extended_view_iterator<iterator, Get...>>;
/*! @brief Default constructor to use to create empty, invalid views. */
basic_view() noexcept
: pools{},
filter{},
view{} {}
/**
* @brief Constructs a multi-type view from a set of storage classes.
* @param value The storage for the types to iterate.
* @param exclude The storage for the types used to filter the view.
*/
basic_view(Get &...value, Exclude &...exclude) noexcept
: pools{&value...},
filter{&exclude...},
view{[](const base_type *first, const auto *...other) { ((first = other->size() < first->size() ? other : first), ...); return first; }(&value...)} {}
/**
* @brief Constructs a multi-type view from a set of storage classes.
* @param value The storage for the types to iterate.
* @param excl The storage for the types used to filter the view.
*/
basic_view(std::tuple<Get &...> value, std::tuple<Exclude &...> excl = {}) noexcept
: pools{std::apply([](auto &...curr) { return std::make_tuple(&curr...); }, value)},
filter{std::apply([](auto &...curr) { return std::make_tuple(&curr...); }, excl)},
view{std::apply([](const base_type *first, const auto *...other) { ((first = other->size() < first->size() ? other : first), ...); return first; }, pools)} {}
/**
* @brief Creates a new view driven by a given component in its iterations.
* @tparam Type Type of component used to drive the iteration.
* @return A new view driven by the given component in its iterations.
*/
template<typename Type>
[[nodiscard]] basic_view use() const noexcept {
return use<index_of<Type>>();
}
/**
* @brief Creates a new view driven by a given component in its iterations.
* @tparam Index Index of the component used to drive the iteration.
* @return A new view driven by the given component in its iterations.
*/
template<std::size_t Index>
[[nodiscard]] basic_view use() const noexcept {
basic_view other{*this};
other.view = &storage<Index>();
return other;
}
/**
* @brief Updates the internal leading view if required.
* @return A newly created and internally optimized view.
*/
[[nodiscard]] basic_view refresh() const noexcept {
return std::apply([](auto *...elem) { return basic_view{*elem...}; }, std::tuple_cat(pools, filter));
}
/**
* @brief Returns the leading storage of a view.
* @return The leading storage of the view.
*/
[[nodiscard]] const base_type &handle() const noexcept {
return *view;
}
/**
* @brief Returns the storage for a given component type.
* @tparam Comp Type of component of which to return the storage.
* @return The storage for the given component type.
*/
template<typename Type>
[[nodiscard]] decltype(auto) storage() const noexcept {
return storage<index_of<Type>>();
}
/**
* @brief Returns the storage for a given index.
* @tparam Index Index of the storage to return.
* @return The storage for the given index.
*/
template<std::size_t Index>
[[nodiscard]] decltype(auto) storage() const noexcept {
return *std::get<Index>(pools);
}
/**
* @brief Estimates the number of entities iterated by the view.
* @return Estimated number of entities iterated by the view.
*/
[[nodiscard]] size_type size_hint() const noexcept {
return view->size();
}
/**
* @brief Returns an iterator to the first entity of the view.
*
* The returned iterator points to the first entity of the view. If the view
* is empty, the returned iterator will be equal to `end()`.
*
* @return An iterator to the first entity of the view.
*/
[[nodiscard]] iterator begin() const noexcept {
return iterator{view->begin(), view->end(), opaque_check_set(), filter_as_array()};
}
/**
* @brief Returns an iterator that is past the last entity of the view.
*
* The returned iterator points to the entity following the last entity of
* the view. Attempting to dereference the returned iterator results in
* undefined behavior.
*
* @return An iterator to the entity following the last entity of the view.
*/
[[nodiscard]] iterator end() const noexcept {
return iterator{view->end(), view->end(), opaque_check_set(), filter_as_array()};
}
/**
* @brief Returns the first entity of the view, if any.
* @return The first entity of the view if one exists, the null entity
* otherwise.
*/
[[nodiscard]] entity_type front() const noexcept {
const auto it = begin();
return it != end() ? *it : null;
}
/**
* @brief Returns the last entity of the view, if any.
* @return The last entity of the view if one exists, the null entity
* otherwise.
*/
[[nodiscard]] entity_type back() const noexcept {
auto it = view->rbegin();
for(const auto last = view->rend(); it != last && !contains(*it); ++it) {}
return it == view->rend() ? null : *it;
}
/**
* @brief Finds an entity.
* @param entt A valid identifier.
* @return An iterator to the given entity if it's found, past the end
* iterator otherwise.
*/
[[nodiscard]] iterator find(const entity_type entt) const noexcept {
return contains(entt) ? iterator{view->find(entt), view->end(), opaque_check_set(), filter_as_array()} : end();
}
/**
* @brief Returns the components assigned to the given entity.
* @param entt A valid identifier.
* @return The components assigned to the given entity.
*/
[[nodiscard]] decltype(auto) operator[](const entity_type entt) const {
return get(entt);
}
/**
* @brief Checks if a view is properly initialized.
* @return True if the view is properly initialized, false otherwise.
*/
[[nodiscard]] explicit operator bool() const noexcept {
return view != nullptr;
}
/**
* @brief Checks if a view contains an entity.
* @param entt A valid identifier.
* @return True if the view contains the given entity, false otherwise.
*/
[[nodiscard]] bool contains(const entity_type entt) const noexcept {
return std::apply([entt](const auto *...curr) { return (curr->contains(entt) && ...); }, pools)
&& std::apply([entt](const auto *...curr) { return (!curr->contains(entt) && ...); }, filter);
}
/**
* @brief Returns the components assigned to the given entity.
*
* @warning
* Attempting to use an entity that doesn't belong to the view results in
* undefined behavior.
*
* @tparam Type Types of components to get.
* @param entt A valid identifier.
* @return The components assigned to the entity.
*/
template<typename... Type>
[[nodiscard]] decltype(auto) get(const entity_type entt) const {
if constexpr(sizeof...(Type) == 0) {
return std::apply([entt](auto *...curr) { return std::tuple_cat(curr->get_as_tuple(entt)...); }, pools);
} else if constexpr(sizeof...(Type) == 1) {
return (storage<index_of<Type>>().get(entt), ...);
} else {
return std::tuple_cat(storage<index_of<Type>>().get_as_tuple(entt)...);
}
}
/**
* @brief Returns the components assigned to the given entity.
*
* @warning
* Attempting to use an entity that doesn't belong to the view results in
* undefined behavior.
*
* @tparam First Index of a component to get.
* @tparam Other Indexes of other components to get.
* @param entt A valid identifier.
* @return The components assigned to the entity.
*/
template<std::size_t First, std::size_t... Other>
[[nodiscard]] decltype(auto) get(const entity_type entt) const {
if constexpr(sizeof...(Other) == 0) {
return storage<First>().get(entt);
} else {
return std::tuple_cat(storage<First>().get_as_tuple(entt), storage<Other>().get_as_tuple(entt)...);
}
}
/**
* @brief Iterates entities and components and applies the given function
* object to them.
*
* The function object is invoked for each entity. It is provided with the
* entity itself and a set of references to non-empty components. The
* _constness_ of the components is as requested.<br/>
* The signature of the function must be equivalent to one of the following
* forms:
*
* @code{.cpp}
* void(const entity_type, Type &...);
* void(Type &...);
* @endcode
*
* @tparam Func Type of the function object to invoke.
* @param func A valid function object.
*/
template<typename Func>
void each(Func func) const {
pick_and_each(func, std::index_sequence_for<Get...>{});
}
/**
* @brief Returns an iterable object to use to _visit_ a view.
*
* The iterable object returns a tuple that contains the current entity and
* a set of references to its non-empty components. The _constness_ of the
* components is as requested.
*
* @return An iterable object to use to _visit_ the view.
*/
[[nodiscard]] iterable each() const noexcept {
return {internal::extended_view_iterator{begin(), pools}, internal::extended_view_iterator{end(), pools}};
}
/**
* @brief Combines two views in a _more specific_ one (friend function).
* @tparam OGet Component list of the view to combine with.
* @tparam OExclude Filter list of the view to combine with.
* @param other The view to combine with.
* @return A more specific view.
*/
template<typename... OGet, typename... OExclude>
[[nodiscard]] auto operator|(const basic_view<get_t<OGet...>, exclude_t<OExclude...>> &other) const noexcept {
return std::make_from_tuple<basic_view<get_t<Get..., OGet...>, exclude_t<Exclude..., OExclude...>>>(
std::apply([](auto *...curr) { return std::forward_as_tuple(*curr...); }, std::tuple_cat(pools, other.pools, filter, other.filter)));
}
private:
std::tuple<Get *...> pools;
std::tuple<Exclude *...> filter;
const base_type *view;
};
/**
* @brief Single component view specialization.
*
* Single component views are specialized in order to get a boost in terms of
* performance. This kind of views can access the underlying data structure
* directly and avoid superfluous checks.
*
* @b Important
*
* Iterators aren't invalidated if:
*
* * New elements are added to the storage.
* * The entity currently pointed is modified (for example, components are added
* or removed from it).
* * The entity currently pointed is destroyed.
*
* In all other cases, modifying the pool iterated by the view in any way
* invalidates all the iterators and using them results in undefined behavior.
*
* @tparam Get Type of storage iterated by the view.
*/
template<typename Get>
class basic_view<get_t<Get>, exclude_t<>, std::void_t<std::enable_if_t<!component_traits<typename Get::value_type>::in_place_delete>>> {
template<typename, typename, typename>
friend class basic_view;
public:
/*! @brief Underlying entity identifier. */
using entity_type = typename Get::entity_type;
/*! @brief Unsigned integer type. */
using size_type = std::size_t;
/*! @brief Common type among all storage types. */
using base_type = typename Get::base_type;
/*! @brief Random access iterator type. */
using iterator = typename base_type::iterator;
/*! @brief Reversed iterator type. */
using reverse_iterator = typename base_type::reverse_iterator;
/*! @brief Iterable view type. */
using iterable = decltype(std::declval<Get>().each());
/*! @brief Default constructor to use to create empty, invalid views. */
basic_view() noexcept
: pools{},
filter{} {}
/**
* @brief Constructs a single-type view from a storage class.
* @param ref The storage for the type to iterate.
*/
basic_view(Get &ref) noexcept
: pools{&ref},
filter{} {}
/**
* @brief Constructs a single-type view from a storage class.
* @param ref The storage for the type to iterate.
*/
basic_view(std::tuple<Get &> ref, std::tuple<> = {}) noexcept
: pools{&std::get<0>(ref)},
filter{} {}
/**
* @brief Returns the leading storage of a view.
* @return The leading storage of the view.
*/
[[nodiscard]] const base_type &handle() const noexcept {
return storage();
}
/**
* @brief Returns the storage for a given component type.
* @tparam Type Type of component of which to return the storage.
* @return The storage for the given component type.
*/
template<typename Type = typename Get::value_type>
[[nodiscard]] decltype(auto) storage() const noexcept {
static_assert(std::is_same_v<std::remove_const_t<Type>, typename Get::value_type>, "Invalid component type");
return storage<0>();
}
/**
* @brief Returns the storage for a given index.
* @tparam Index Index of the storage to return.
* @return The storage for the given index.
*/
template<std::size_t Index>
[[nodiscard]] decltype(auto) storage() const noexcept {
return *std::get<Index>(pools);
}
/**
* @brief Returns the number of entities that have the given component.
* @return Number of entities that have the given component.
*/
[[nodiscard]] size_type size() const noexcept {
return handle().size();
}
/**
* @brief Checks whether a view is empty.
* @return True if the view is empty, false otherwise.
*/
[[nodiscard]] bool empty() const noexcept {
return handle().empty();
}
/**
* @brief Returns an iterator to the first entity of the view.
*
* The returned iterator points to the first entity of the view. If the view
* is empty, the returned iterator will be equal to `end()`.
*
* @return An iterator to the first entity of the view.
*/
[[nodiscard]] iterator begin() const noexcept {
return handle().begin();
}
/**
* @brief Returns an iterator that is past the last entity of the view.
*
* The returned iterator points to the entity following the last entity of
* the view. Attempting to dereference the returned iterator results in
* undefined behavior.
*
* @return An iterator to the entity following the last entity of the view.
*/
[[nodiscard]] iterator end() const noexcept {
return handle().end();
}
/**
* @brief Returns an iterator to the first entity of the reversed view.
*
* The returned iterator points to the first entity of the reversed view. If
* the view is empty, the returned iterator will be equal to `rend()`.
*
* @return An iterator to the first entity of the reversed view.
*/
[[nodiscard]] reverse_iterator rbegin() const noexcept {
return handle().rbegin();
}
/**
* @brief Returns an iterator that is past the last entity of the reversed
* view.
*
* The returned iterator points to the entity following the last entity of
* the reversed view. Attempting to dereference the returned iterator
* results in undefined behavior.
*
* @return An iterator to the entity following the last entity of the
* reversed view.
*/
[[nodiscard]] reverse_iterator rend() const noexcept {
return handle().rend();
}
/**
* @brief Returns the first entity of the view, if any.
* @return The first entity of the view if one exists, the null entity
* otherwise.
*/
[[nodiscard]] entity_type front() const noexcept {
return empty() ? null : *begin();
}
/**
* @brief Returns the last entity of the view, if any.
* @return The last entity of the view if one exists, the null entity
* otherwise.
*/
[[nodiscard]] entity_type back() const noexcept {
return empty() ? null : *rbegin();
}
/**
* @brief Finds an entity.
* @param entt A valid identifier.
* @return An iterator to the given entity if it's found, past the end
* iterator otherwise.
*/
[[nodiscard]] iterator find(const entity_type entt) const noexcept {
return contains(entt) ? handle().find(entt) : end();
}
/**
* @brief Returns the identifier that occupies the given position.
* @param pos Position of the element to return.
* @return The identifier that occupies the given position.
*/
[[nodiscard]] entity_type operator[](const size_type pos) const {
return begin()[pos];
}
/**
* @brief Returns the component assigned to the given entity.
* @param entt A valid identifier.
* @return The component assigned to the given entity.
*/
[[nodiscard]] decltype(auto) operator[](const entity_type entt) const {
return storage().get(entt);
}
/**
* @brief Checks if a view is properly initialized.
* @return True if the view is properly initialized, false otherwise.
*/
[[nodiscard]] explicit operator bool() const noexcept {
return std::get<0>(pools) != nullptr;
}
/**
* @brief Checks if a view contains an entity.
* @param entt A valid identifier.
* @return True if the view contains the given entity, false otherwise.
*/
[[nodiscard]] bool contains(const entity_type entt) const noexcept {
return handle().contains(entt);
}
/**
* @brief Returns the component assigned to the given entity.
*
* @warning
* Attempting to use an entity that doesn't belong to the view results in
* undefined behavior.
*
* @tparam Type Type or index of the component to get.
* @param entt A valid identifier.
* @return The component assigned to the entity.
*/
template<typename... Type>
[[nodiscard]] decltype(auto) get(const entity_type entt) const {
if constexpr(sizeof...(Type) == 0) {
return storage().get_as_tuple(entt);
} else {
static_assert((std::is_same_v<std::remove_const_t<Type>, typename Get::value_type> && ...), "Invalid component type");
return storage().get(entt);
}
}
/*! @copydoc get */
template<std::size_t Index>
[[nodiscard]] decltype(auto) get(const entity_type entt) const {
return storage().get(entt);
}
/**
* @brief Iterates entities and components and applies the given function
* object to them.
*
* The function object is invoked for each entity. It is provided with the
* entity itself and a reference to the component if it's a non-empty one.
* The _constness_ of the component is as requested.<br/>
* The signature of the function must be equivalent to one of the following
* forms:
*
* @code{.cpp}
* void(const entity_type, Type &);
* void(typename Type &);
* @endcode
*
* @note
* Empty types aren't explicitly instantiated and therefore they are never
* returned during iterations.
*
* @tparam Func Type of the function object to invoke.
* @param func A valid function object.
*/
template<typename Func>
void each(Func func) const {
if constexpr(is_applicable_v<Func, decltype(*each().begin())>) {
for(const auto pack: each()) {
std::apply(func, pack);
}
} else if constexpr(ignore_as_empty_v<typename Get::value_type>) {
for(size_type pos{}, last = size(); pos < last; ++pos) {
func();
}
} else {
for(auto &&component: storage()) {
func(component);
}
}
}
/**
* @brief Returns an iterable object to use to _visit_ a view.
*
* The iterable object returns a tuple that contains the current entity and
* a reference to its component if it's a non-empty one. The _constness_ of
* the component is as requested.
*
* @return An iterable object to use to _visit_ the view.
*/
[[nodiscard]] iterable each() const noexcept {
return storage().each();
}
/**
* @brief Combines two views in a _more specific_ one (friend function).
* @tparam OGet Component list of the view to combine with.
* @tparam OExclude Filter list of the view to combine with.
* @param other The view to combine with.
* @return A more specific view.
*/
template<typename... OGet, typename... OExclude>
[[nodiscard]] auto operator|(const basic_view<get_t<OGet...>, exclude_t<OExclude...>> &other) const noexcept {
return std::make_from_tuple<basic_view<get_t<Get, OGet...>, exclude_t<OExclude...>>>(
std::apply([](auto *...curr) { return std::forward_as_tuple(*curr...); }, std::tuple_cat(pools, other.pools, other.filter)));
}
private:
std::tuple<Get *> pools;
std::tuple<> filter;
};
/**
* @brief Deduction guide.
* @tparam Type Type of storage classes used to create the view.
* @param storage The storage for the types to iterate.
*/
template<typename... Type>
basic_view(Type &...storage) -> basic_view<get_t<Type...>, exclude_t<>>;
/**
* @brief Deduction guide.
* @tparam Get Types of components iterated by the view.
* @tparam Exclude Types of components used to filter the view.
*/
template<typename... Get, typename... Exclude>
basic_view(std::tuple<Get &...>, std::tuple<Exclude &...> = {}) -> basic_view<get_t<Get...>, exclude_t<Exclude...>>;
} // namespace entt
#endif
// #include "graph/adjacency_matrix.hpp"
#ifndef ENTT_GRAPH_ADJACENCY_MATRIX_HPP
#define ENTT_GRAPH_ADJACENCY_MATRIX_HPP
#include <cstddef>
#include <iterator>
#include <memory>
#include <type_traits>
#include <utility>
#include <vector>
// #include "../config/config.h"
#ifndef ENTT_CONFIG_CONFIG_H
#define ENTT_CONFIG_CONFIG_H
// #include "version.h"
#ifndef ENTT_CONFIG_VERSION_H
#define ENTT_CONFIG_VERSION_H
// #include "macro.h"
#ifndef ENTT_CONFIG_MACRO_H
#define ENTT_CONFIG_MACRO_H
#define ENTT_STR(arg) #arg
#define ENTT_XSTR(arg) ENTT_STR(arg)
#endif
#define ENTT_VERSION_MAJOR 3
#define ENTT_VERSION_MINOR 11
#define ENTT_VERSION_PATCH 1
#define ENTT_VERSION \
ENTT_XSTR(ENTT_VERSION_MAJOR) \
"." ENTT_XSTR(ENTT_VERSION_MINOR) "." ENTT_XSTR(ENTT_VERSION_PATCH)
#endif
#if defined(__cpp_exceptions) && !defined(ENTT_NOEXCEPTION)
# define ENTT_CONSTEXPR
# define ENTT_THROW throw
# define ENTT_TRY try
# define ENTT_CATCH catch(...)
#else
# define ENTT_CONSTEXPR constexpr // use only with throwing functions (waiting for C++20)
# define ENTT_THROW
# define ENTT_TRY if(true)
# define ENTT_CATCH if(false)
#endif
#ifdef ENTT_USE_ATOMIC
# include <atomic>
# define ENTT_MAYBE_ATOMIC(Type) std::atomic<Type>
#else
# define ENTT_MAYBE_ATOMIC(Type) Type
#endif
#ifndef ENTT_ID_TYPE
# include <cstdint>
# define ENTT_ID_TYPE std::uint32_t
#endif
#ifndef ENTT_SPARSE_PAGE
# define ENTT_SPARSE_PAGE 4096
#endif
#ifndef ENTT_PACKED_PAGE
# define ENTT_PACKED_PAGE 1024
#endif
#ifdef ENTT_DISABLE_ASSERT
# undef ENTT_ASSERT
# define ENTT_ASSERT(condition, msg) (void(0))
#elif !defined ENTT_ASSERT
# include <cassert>
# define ENTT_ASSERT(condition, msg) assert(condition)
#endif
#ifdef ENTT_DISABLE_ASSERT
# undef ENTT_ASSERT_CONSTEXPR
# define ENTT_ASSERT_CONSTEXPR(condition, msg) (void(0))
#elif !defined ENTT_ASSERT_CONSTEXPR
# define ENTT_ASSERT_CONSTEXPR(condition, msg) ENTT_ASSERT(condition, msg)
#endif
#ifdef ENTT_NO_ETO
# define ENTT_ETO_TYPE(Type) void
#else
# define ENTT_ETO_TYPE(Type) Type
#endif
#ifdef ENTT_STANDARD_CPP
# define ENTT_NONSTD false
#else
# define ENTT_NONSTD true
# if defined __clang__ || defined __GNUC__
# define ENTT_PRETTY_FUNCTION __PRETTY_FUNCTION__
# define ENTT_PRETTY_FUNCTION_PREFIX '='
# define ENTT_PRETTY_FUNCTION_SUFFIX ']'
# elif defined _MSC_VER
# define ENTT_PRETTY_FUNCTION __FUNCSIG__
# define ENTT_PRETTY_FUNCTION_PREFIX '<'
# define ENTT_PRETTY_FUNCTION_SUFFIX '>'
# endif
#endif
#if defined _MSC_VER
# pragma detect_mismatch("entt.version", ENTT_VERSION)
# pragma detect_mismatch("entt.noexcept", ENTT_XSTR(ENTT_TRY))
# pragma detect_mismatch("entt.id", ENTT_XSTR(ENTT_ID_TYPE))
# pragma detect_mismatch("entt.nonstd", ENTT_XSTR(ENTT_NONSTD))
#endif
#endif
// #include "../core/iterator.hpp"
#ifndef ENTT_CORE_ITERATOR_HPP
#define ENTT_CORE_ITERATOR_HPP
#include <iterator>
#include <memory>
#include <type_traits>
#include <utility>
namespace entt {
/**
* @brief Helper type to use as pointer with input iterators.
* @tparam Type of wrapped value.
*/
template<typename Type>
struct input_iterator_pointer final {
/*! @brief Value type. */
using value_type = Type;
/*! @brief Pointer type. */
using pointer = Type *;
/*! @brief Reference type. */
using reference = Type &;
/**
* @brief Constructs a proxy object by move.
* @param val Value to use to initialize the proxy object.
*/
constexpr input_iterator_pointer(value_type &&val) noexcept(std::is_nothrow_move_constructible_v<value_type>)
: value{std::move(val)} {}
/**
* @brief Access operator for accessing wrapped values.
* @return A pointer to the wrapped value.
*/
[[nodiscard]] constexpr pointer operator->() noexcept {
return std::addressof(value);
}
/**
* @brief Dereference operator for accessing wrapped values.
* @return A reference to the wrapped value.
*/
[[nodiscard]] constexpr reference operator*() noexcept {
return value;
}
private:
Type value;
};
/**
* @brief Plain iota iterator (waiting for C++20).
* @tparam Type Value type.
*/
template<typename Type>
class iota_iterator final {
static_assert(std::is_integral_v<Type>, "Not an integral type");
public:
/*! @brief Value type, likely an integral one. */
using value_type = Type;
/*! @brief Invalid pointer type. */
using pointer = void;
/*! @brief Non-reference type, same as value type. */
using reference = value_type;
/*! @brief Difference type. */
using difference_type = std::ptrdiff_t;
/*! @brief Iterator category. */
using iterator_category = std::input_iterator_tag;
/*! @brief Default constructor. */
constexpr iota_iterator() noexcept
: current{} {}
/**
* @brief Constructs an iota iterator from a given value.
* @param init The initial value assigned to the iota iterator.
*/
constexpr iota_iterator(const value_type init) noexcept
: current{init} {}
/**
* @brief Pre-increment operator.
* @return This iota iterator.
*/
constexpr iota_iterator &operator++() noexcept {
return ++current, *this;
}
/**
* @brief Post-increment operator.
* @return This iota iterator.
*/
constexpr iota_iterator operator++(int) noexcept {
iota_iterator orig = *this;
return ++(*this), orig;
}
/**
* @brief Dereference operator.
* @return The underlying value.
*/
[[nodiscard]] constexpr reference operator*() const noexcept {
return current;
}
private:
value_type current;
};
/**
* @brief Comparison operator.
* @tparam Type Value type of the iota iterator.
* @param lhs A properly initialized iota iterator.
* @param rhs A properly initialized iota iterator.
* @return True if the two iterators are identical, false otherwise.
*/
template<typename Type>
[[nodiscard]] constexpr bool operator==(const iota_iterator<Type> &lhs, const iota_iterator<Type> &rhs) noexcept {
return *lhs == *rhs;
}
/**
* @brief Comparison operator.
* @tparam Type Value type of the iota iterator.
* @param lhs A properly initialized iota iterator.
* @param rhs A properly initialized iota iterator.
* @return True if the two iterators differ, false otherwise.
*/
template<typename Type>
[[nodiscard]] constexpr bool operator!=(const iota_iterator<Type> &lhs, const iota_iterator<Type> &rhs) noexcept {
return !(lhs == rhs);
}
/**
* @brief Utility class to create an iterable object from a pair of iterators.
* @tparam It Type of iterator.
* @tparam Sentinel Type of sentinel.
*/
template<typename It, typename Sentinel = It>
struct iterable_adaptor final {
/*! @brief Value type. */
using value_type = typename std::iterator_traits<It>::value_type;
/*! @brief Iterator type. */
using iterator = It;
/*! @brief Sentinel type. */
using sentinel = Sentinel;
/*! @brief Default constructor. */
constexpr iterable_adaptor() noexcept(std::is_nothrow_default_constructible_v<iterator> &&std::is_nothrow_default_constructible_v<sentinel>)
: first{},
last{} {}
/**
* @brief Creates an iterable object from a pair of iterators.
* @param from Begin iterator.
* @param to End iterator.
*/
constexpr iterable_adaptor(iterator from, sentinel to) noexcept(std::is_nothrow_move_constructible_v<iterator> &&std::is_nothrow_move_constructible_v<sentinel>)
: first{std::move(from)},
last{std::move(to)} {}
/**
* @brief Returns an iterator to the beginning.
* @return An iterator to the first element of the range.
*/
[[nodiscard]] constexpr iterator begin() const noexcept {
return first;
}
/**
* @brief Returns an iterator to the end.
* @return An iterator to the element following the last element of the
* range.
*/
[[nodiscard]] constexpr sentinel end() const noexcept {
return last;
}
/*! @copydoc begin */
[[nodiscard]] constexpr iterator cbegin() const noexcept {
return begin();
}
/*! @copydoc end */
[[nodiscard]] constexpr sentinel cend() const noexcept {
return end();
}
private:
It first;
Sentinel last;
};
} // namespace entt
#endif
// #include "fwd.hpp"
#ifndef ENTT_GRAPH_FWD_HPP
#define ENTT_GRAPH_FWD_HPP
#include <cstddef>
#include <memory>
// #include "../core/fwd.hpp"
#ifndef ENTT_CORE_FWD_HPP
#define ENTT_CORE_FWD_HPP
#include <cstddef>
// #include "../config/config.h"
#ifndef ENTT_CONFIG_CONFIG_H
#define ENTT_CONFIG_CONFIG_H
// #include "version.h"
#ifndef ENTT_CONFIG_VERSION_H
#define ENTT_CONFIG_VERSION_H
// #include "macro.h"
#ifndef ENTT_CONFIG_MACRO_H
#define ENTT_CONFIG_MACRO_H
#define ENTT_STR(arg) #arg
#define ENTT_XSTR(arg) ENTT_STR(arg)
#endif
#define ENTT_VERSION_MAJOR 3
#define ENTT_VERSION_MINOR 11
#define ENTT_VERSION_PATCH 1
#define ENTT_VERSION \
ENTT_XSTR(ENTT_VERSION_MAJOR) \
"." ENTT_XSTR(ENTT_VERSION_MINOR) "." ENTT_XSTR(ENTT_VERSION_PATCH)
#endif
#if defined(__cpp_exceptions) && !defined(ENTT_NOEXCEPTION)
# define ENTT_CONSTEXPR
# define ENTT_THROW throw
# define ENTT_TRY try
# define ENTT_CATCH catch(...)
#else
# define ENTT_CONSTEXPR constexpr // use only with throwing functions (waiting for C++20)
# define ENTT_THROW
# define ENTT_TRY if(true)
# define ENTT_CATCH if(false)
#endif
#ifdef ENTT_USE_ATOMIC
# include <atomic>
# define ENTT_MAYBE_ATOMIC(Type) std::atomic<Type>
#else
# define ENTT_MAYBE_ATOMIC(Type) Type
#endif
#ifndef ENTT_ID_TYPE
# include <cstdint>
# define ENTT_ID_TYPE std::uint32_t
#endif
#ifndef ENTT_SPARSE_PAGE
# define ENTT_SPARSE_PAGE 4096
#endif
#ifndef ENTT_PACKED_PAGE
# define ENTT_PACKED_PAGE 1024
#endif
#ifdef ENTT_DISABLE_ASSERT
# undef ENTT_ASSERT
# define ENTT_ASSERT(condition, msg) (void(0))
#elif !defined ENTT_ASSERT
# include <cassert>
# define ENTT_ASSERT(condition, msg) assert(condition)
#endif
#ifdef ENTT_DISABLE_ASSERT
# undef ENTT_ASSERT_CONSTEXPR
# define ENTT_ASSERT_CONSTEXPR(condition, msg) (void(0))
#elif !defined ENTT_ASSERT_CONSTEXPR
# define ENTT_ASSERT_CONSTEXPR(condition, msg) ENTT_ASSERT(condition, msg)
#endif
#ifdef ENTT_NO_ETO
# define ENTT_ETO_TYPE(Type) void
#else
# define ENTT_ETO_TYPE(Type) Type
#endif
#ifdef ENTT_STANDARD_CPP
# define ENTT_NONSTD false
#else
# define ENTT_NONSTD true
# if defined __clang__ || defined __GNUC__
# define ENTT_PRETTY_FUNCTION __PRETTY_FUNCTION__
# define ENTT_PRETTY_FUNCTION_PREFIX '='
# define ENTT_PRETTY_FUNCTION_SUFFIX ']'
# elif defined _MSC_VER
# define ENTT_PRETTY_FUNCTION __FUNCSIG__
# define ENTT_PRETTY_FUNCTION_PREFIX '<'
# define ENTT_PRETTY_FUNCTION_SUFFIX '>'
# endif
#endif
#if defined _MSC_VER
# pragma detect_mismatch("entt.version", ENTT_VERSION)
# pragma detect_mismatch("entt.noexcept", ENTT_XSTR(ENTT_TRY))
# pragma detect_mismatch("entt.id", ENTT_XSTR(ENTT_ID_TYPE))
# pragma detect_mismatch("entt.nonstd", ENTT_XSTR(ENTT_NONSTD))
#endif
#endif
namespace entt {
template<std::size_t Len = sizeof(double[2]), std::size_t = alignof(double[2])>
class basic_any;
/*! @brief Alias declaration for type identifiers. */
using id_type = ENTT_ID_TYPE;
/*! @brief Alias declaration for the most common use case. */
using any = basic_any<>;
} // namespace entt
#endif
namespace entt {
/*! @brief Undirected graph category tag. */
struct directed_tag {};
/*! @brief Directed graph category tag. */
struct undirected_tag: directed_tag {};
template<typename, typename = std::allocator<std::size_t>>
class adjacency_matrix;
template<typename = std::allocator<id_type>>
class basic_flow;
/*! @brief Alias declaration for the most common use case. */
using flow = basic_flow<>;
} // namespace entt
#endif
namespace entt {
/**
* @cond TURN_OFF_DOXYGEN
* Internal details not to be documented.
*/
namespace internal {
template<typename It>
class edge_iterator {
using size_type = std::size_t;
public:
using value_type = std::pair<size_type, size_type>;
using pointer = input_iterator_pointer<value_type>;
using reference = value_type;
using difference_type = std::ptrdiff_t;
using iterator_category = std::input_iterator_tag;
constexpr edge_iterator() noexcept
: it{},
vert{},
pos{},
last{},
offset{} {}
constexpr edge_iterator(It base, const size_type vertices, const size_type from, const size_type to, const size_type step) noexcept
: it{std::move(base)},
vert{vertices},
pos{from},
last{to},
offset{step} {
for(; pos != last && !it[pos]; pos += offset) {}
}
constexpr edge_iterator &operator++() noexcept {
for(pos += offset; pos != last && !it[pos]; pos += offset) {}
return *this;
}
constexpr edge_iterator operator++(int) noexcept {
edge_iterator orig = *this;
return ++(*this), orig;
}
[[nodiscard]] constexpr reference operator*() const noexcept {
return *operator->();
}
[[nodiscard]] constexpr pointer operator->() const noexcept {
return std::make_pair<size_type>(pos / vert, pos % vert);
}
template<typename Type>
friend constexpr bool operator==(const edge_iterator<Type> &, const edge_iterator<Type> &) noexcept;
private:
It it;
size_type vert;
size_type pos;
size_type last;
size_type offset{};
};
template<typename Container>
[[nodiscard]] inline constexpr bool operator==(const edge_iterator<Container> &lhs, const edge_iterator<Container> &rhs) noexcept {
return lhs.pos == rhs.pos;
}
template<typename Container>
[[nodiscard]] inline constexpr bool operator!=(const edge_iterator<Container> &lhs, const edge_iterator<Container> &rhs) noexcept {
return !(lhs == rhs);
}
} // namespace internal
/**
* Internal details not to be documented.
* @endcond
*/
/**
* @brief Basic implementation of a directed adjacency matrix.
* @tparam Category Either a directed or undirected category tag.
* @tparam Allocator Type of allocator used to manage memory and elements.
*/
template<typename Category, typename Allocator>
class adjacency_matrix {
using alloc_traits = std::allocator_traits<Allocator>;
static_assert(std::is_base_of_v<directed_tag, Category>, "Invalid graph category");
static_assert(std::is_same_v<typename alloc_traits::value_type, std::size_t>, "Invalid value type");
using container_type = std::vector<std::size_t, typename alloc_traits::template rebind_alloc<std::size_t>>;
public:
/*! @brief Allocator type. */
using allocator_type = Allocator;
/*! @brief Unsigned integer type. */
using size_type = std::size_t;
/*! @brief Vertex type. */
using vertex_type = size_type;
/*! @brief Edge type. */
using edge_type = std::pair<vertex_type, vertex_type>;
/*! @brief Vertex iterator type. */
using vertex_iterator = iota_iterator<vertex_type>;
/*! @brief Edge iterator type. */
using edge_iterator = internal::edge_iterator<typename container_type::const_iterator>;
/*! @brief Out edge iterator type. */
using out_edge_iterator = edge_iterator;
/*! @brief In edge iterator type. */
using in_edge_iterator = edge_iterator;
/*! @brief Graph category tag. */
using graph_category = Category;
/*! @brief Default constructor. */
adjacency_matrix() noexcept(noexcept(allocator_type{}))
: adjacency_matrix{0u} {}
/**
* @brief Constructs an empty container with a given allocator.
* @param allocator The allocator to use.
*/
explicit adjacency_matrix(const allocator_type &allocator) noexcept
: adjacency_matrix{0u, allocator} {}
/**
* @brief Constructs an empty container with a given allocator and user
* supplied number of vertices.
* @param vertices Number of vertices.
* @param allocator The allocator to use.
*/
adjacency_matrix(const size_type vertices, const allocator_type &allocator = allocator_type{})
: matrix{vertices * vertices, allocator},
vert{vertices} {}
/**
* @brief Copy constructor.
* @param other The instance to copy from.
*/
adjacency_matrix(const adjacency_matrix &other)
: adjacency_matrix{other, other.get_allocator()} {}
/**
* @brief Allocator-extended copy constructor.
* @param other The instance to copy from.
* @param allocator The allocator to use.
*/
adjacency_matrix(const adjacency_matrix &other, const allocator_type &allocator)
: matrix{other.matrix, allocator},
vert{other.vert} {}
/**
* @brief Move constructor.
* @param other The instance to move from.
*/
adjacency_matrix(adjacency_matrix &&other) noexcept
: adjacency_matrix{std::move(other), other.get_allocator()} {}
/**
* @brief Allocator-extended move constructor.
* @param other The instance to move from.
* @param allocator The allocator to use.
*/
adjacency_matrix(adjacency_matrix &&other, const allocator_type &allocator)
: matrix{std::move(other.matrix), allocator},
vert{std::exchange(other.vert, 0u)} {}
/**
* @brief Default copy assignment operator.
* @param other The instance to copy from.
* @return This container.
*/
adjacency_matrix &operator=(const adjacency_matrix &other) {
matrix = other.matrix;
vert = other.vert;
return *this;
}
/**
* @brief Default move assignment operator.
* @param other The instance to move from.
* @return This container.
*/
adjacency_matrix &operator=(adjacency_matrix &&other) noexcept {
matrix = std::move(other.matrix);
vert = std::exchange(other.vert, 0u);
return *this;
}
/**
* @brief Returns the associated allocator.
* @return The associated allocator.
*/
[[nodiscard]] constexpr allocator_type get_allocator() const noexcept {
return matrix.get_allocator();
}
/*! @brief Clears the adjacency matrix. */
void clear() noexcept {
matrix.clear();
vert = {};
}
/**
* @brief Exchanges the contents with those of a given adjacency matrix.
* @param other Adjacency matrix to exchange the content with.
*/
void swap(adjacency_matrix &other) {
using std::swap;
swap(matrix, other.matrix);
swap(vert, other.vert);
}
/**
* @brief Returns the number of vertices.
* @return The number of vertices.
*/
[[nodiscard]] size_type size() const noexcept {
return vert;
}
/**
* @brief Returns an iterable object to visit all vertices of a matrix.
* @return An iterable object to visit all vertices of a matrix.
*/
[[nodiscard]] iterable_adaptor<vertex_iterator> vertices() const noexcept {
return {0u, vert};
}
/**
* @brief Returns an iterable object to visit all edges of a matrix.
* @return An iterable object to visit all edges of a matrix.
*/
[[nodiscard]] iterable_adaptor<edge_iterator> edges() const noexcept {
const auto it = matrix.cbegin();
const auto sz = matrix.size();
return {{it, vert, 0u, sz, 1u}, {it, vert, sz, sz, 1u}};
}
/**
* @brief Returns an iterable object to visit all out edges of a vertex.
* @param vertex The vertex of which to return all out edges.
* @return An iterable object to visit all out edges of a vertex.
*/
[[nodiscard]] iterable_adaptor<out_edge_iterator> out_edges(const vertex_type vertex) const noexcept {
const auto it = matrix.cbegin();
const auto from = vertex * vert;
const auto to = vertex * vert + vert;
return {{it, vert, from, to, 1u}, {it, vert, to, to, 1u}};
}
/**
* @brief Returns an iterable object to visit all in edges of a vertex.
* @param vertex The vertex of which to return all in edges.
* @return An iterable object to visit all in edges of a vertex.
*/
[[nodiscard]] iterable_adaptor<in_edge_iterator> in_edges(const vertex_type vertex) const noexcept {
const auto it = matrix.cbegin();
const auto from = vertex;
const auto to = vert * (vert - 1u) + vertex;
return {{it, vert, from, to, vert}, {it, vert, to, to, vert}};
}
/**
* @brief Resizes an adjacency matrix.
* @param vertices The new number of vertices.
*/
void resize(const size_type vertices) {
adjacency_matrix other{vertices, get_allocator()};
for(auto [lhs, rhs]: edges()) {
other.insert(lhs, rhs);
}
other.swap(*this);
}
/**
* @brief Inserts an edge into the adjacency matrix, if it does not exist.
* @param lhs The left hand vertex of the edge.
* @param rhs The right hand vertex of the edge.
* @return A pair consisting of an iterator to the inserted element (or to
* the element that prevented the insertion) and a bool denoting whether the
* insertion took place.
*/
std::pair<edge_iterator, bool> insert(const vertex_type lhs, const vertex_type rhs) {
const auto pos = lhs * vert + rhs;
if constexpr(std::is_same_v<graph_category, undirected_tag>) {
const auto rev = rhs * vert + lhs;
ENTT_ASSERT(matrix[pos] == matrix[rev], "Something went really wrong");
matrix[rev] = 1u;
}
const auto inserted = !std::exchange(matrix[pos], 1u);
return {edge_iterator{matrix.cbegin(), vert, pos, matrix.size(), 1u}, inserted};
}
/**
* @brief Removes the edge associated with a pair of given vertices.
* @param lhs The left hand vertex of the edge.
* @param rhs The right hand vertex of the edge.
* @return Number of elements removed (either 0 or 1).
*/
size_type erase(const vertex_type lhs, const vertex_type rhs) {
const auto pos = lhs * vert + rhs;
if constexpr(std::is_same_v<graph_category, undirected_tag>) {
const auto rev = rhs * vert + lhs;
ENTT_ASSERT(matrix[pos] == matrix[rev], "Something went really wrong");
matrix[rev] = 0u;
}
return std::exchange(matrix[pos], 0u);
}
/**
* @brief Checks if an adjacency matrix contains a given edge.
* @param lhs The left hand vertex of the edge.
* @param rhs The right hand vertex of the edge.
* @return True if there is such an edge, false otherwise.
*/
[[nodiscard]] bool contains(const vertex_type lhs, const vertex_type rhs) const {
const auto pos = lhs * vert + rhs;
return pos < matrix.size() && matrix[pos];
}
private:
container_type matrix;
size_type vert;
};
} // namespace entt
#endif
// #include "graph/dot.hpp"
#ifndef ENTT_GRAPH_DOT_HPP
#define ENTT_GRAPH_DOT_HPP
#include <ostream>
#include <type_traits>
// #include "fwd.hpp"
namespace entt {
/**
* @brief Outputs a graph in dot format.
* @tparam Graph Graph type, valid as long as it exposes edges and vertices.
* @tparam Writer Vertex decorator type.
* @param out A standard output stream.
* @param graph The graph to output.
* @param writer Vertex decorator object.
*/
template<typename Graph, typename Writer>
void dot(std::ostream &out, const Graph &graph, Writer writer) {
static_assert(std::is_base_of_v<directed_tag, typename Graph::graph_category>, "Invalid graph category");
if constexpr(std::is_same_v<typename Graph::graph_category, undirected_tag>) {
out << "graph{";
} else {
out << "digraph{";
}
for(auto &&vertex: graph.vertices()) {
out << vertex << "[";
writer(out, vertex);
out << "];";
}
for(auto [lhs, rhs]: graph.edges()) {
if constexpr(std::is_same_v<typename Graph::graph_category, undirected_tag>) {
out << lhs << "--" << rhs << ";";
} else {
out << lhs << "->" << rhs << ";";
}
}
out << "}";
}
/**
* @brief Outputs a graph in dot format.
* @tparam Graph Graph type, valid as long as it exposes edges and vertices.
* @param out A standard output stream.
* @param graph The graph to output.
*/
template<typename Graph>
void dot(std::ostream &out, const Graph &graph) {
return dot(out, graph, [](auto &&...) {});
}
} // namespace entt
#endif
// #include "graph/flow.hpp"
#ifndef ENTT_GRAPH_FLOW_HPP
#define ENTT_GRAPH_FLOW_HPP
#include <algorithm>
#include <cstddef>
#include <functional>
#include <iterator>
#include <memory>
#include <type_traits>
#include <utility>
#include <vector>
// #include "../config/config.h"
// #include "../container/dense_map.hpp"
#ifndef ENTT_CONTAINER_DENSE_MAP_HPP
#define ENTT_CONTAINER_DENSE_MAP_HPP
#include <cmath>
#include <cstddef>
#include <functional>
#include <iterator>
#include <limits>
#include <memory>
#include <tuple>
#include <type_traits>
#include <utility>
#include <vector>
// #include "../config/config.h"
#ifndef ENTT_CONFIG_CONFIG_H
#define ENTT_CONFIG_CONFIG_H
// #include "version.h"
#ifndef ENTT_CONFIG_VERSION_H
#define ENTT_CONFIG_VERSION_H
// #include "macro.h"
#ifndef ENTT_CONFIG_MACRO_H
#define ENTT_CONFIG_MACRO_H
#define ENTT_STR(arg) #arg
#define ENTT_XSTR(arg) ENTT_STR(arg)
#endif
#define ENTT_VERSION_MAJOR 3
#define ENTT_VERSION_MINOR 11
#define ENTT_VERSION_PATCH 1
#define ENTT_VERSION \
ENTT_XSTR(ENTT_VERSION_MAJOR) \
"." ENTT_XSTR(ENTT_VERSION_MINOR) "." ENTT_XSTR(ENTT_VERSION_PATCH)
#endif
#if defined(__cpp_exceptions) && !defined(ENTT_NOEXCEPTION)
# define ENTT_CONSTEXPR
# define ENTT_THROW throw
# define ENTT_TRY try
# define ENTT_CATCH catch(...)
#else
# define ENTT_CONSTEXPR constexpr // use only with throwing functions (waiting for C++20)
# define ENTT_THROW
# define ENTT_TRY if(true)
# define ENTT_CATCH if(false)
#endif
#ifdef ENTT_USE_ATOMIC
# include <atomic>
# define ENTT_MAYBE_ATOMIC(Type) std::atomic<Type>
#else
# define ENTT_MAYBE_ATOMIC(Type) Type
#endif
#ifndef ENTT_ID_TYPE
# include <cstdint>
# define ENTT_ID_TYPE std::uint32_t
#endif
#ifndef ENTT_SPARSE_PAGE
# define ENTT_SPARSE_PAGE 4096
#endif
#ifndef ENTT_PACKED_PAGE
# define ENTT_PACKED_PAGE 1024
#endif
#ifdef ENTT_DISABLE_ASSERT
# undef ENTT_ASSERT
# define ENTT_ASSERT(condition, msg) (void(0))
#elif !defined ENTT_ASSERT
# include <cassert>
# define ENTT_ASSERT(condition, msg) assert(condition)
#endif
#ifdef ENTT_DISABLE_ASSERT
# undef ENTT_ASSERT_CONSTEXPR
# define ENTT_ASSERT_CONSTEXPR(condition, msg) (void(0))
#elif !defined ENTT_ASSERT_CONSTEXPR
# define ENTT_ASSERT_CONSTEXPR(condition, msg) ENTT_ASSERT(condition, msg)
#endif
#ifdef ENTT_NO_ETO
# define ENTT_ETO_TYPE(Type) void
#else
# define ENTT_ETO_TYPE(Type) Type
#endif
#ifdef ENTT_STANDARD_CPP
# define ENTT_NONSTD false
#else
# define ENTT_NONSTD true
# if defined __clang__ || defined __GNUC__
# define ENTT_PRETTY_FUNCTION __PRETTY_FUNCTION__
# define ENTT_PRETTY_FUNCTION_PREFIX '='
# define ENTT_PRETTY_FUNCTION_SUFFIX ']'
# elif defined _MSC_VER
# define ENTT_PRETTY_FUNCTION __FUNCSIG__
# define ENTT_PRETTY_FUNCTION_PREFIX '<'
# define ENTT_PRETTY_FUNCTION_SUFFIX '>'
# endif
#endif
#if defined _MSC_VER
# pragma detect_mismatch("entt.version", ENTT_VERSION)
# pragma detect_mismatch("entt.noexcept", ENTT_XSTR(ENTT_TRY))
# pragma detect_mismatch("entt.id", ENTT_XSTR(ENTT_ID_TYPE))
# pragma detect_mismatch("entt.nonstd", ENTT_XSTR(ENTT_NONSTD))
#endif
#endif
// #include "../core/compressed_pair.hpp"
#ifndef ENTT_CORE_COMPRESSED_PAIR_HPP
#define ENTT_CORE_COMPRESSED_PAIR_HPP
#include <cstddef>
#include <tuple>
#include <type_traits>
#include <utility>
// #include "type_traits.hpp"
#ifndef ENTT_CORE_TYPE_TRAITS_HPP
#define ENTT_CORE_TYPE_TRAITS_HPP
#include <cstddef>
#include <iterator>
#include <type_traits>
#include <utility>
// #include "../config/config.h"
#ifndef ENTT_CONFIG_CONFIG_H
#define ENTT_CONFIG_CONFIG_H
// #include "version.h"
#ifndef ENTT_CONFIG_VERSION_H
#define ENTT_CONFIG_VERSION_H
// #include "macro.h"
#ifndef ENTT_CONFIG_MACRO_H
#define ENTT_CONFIG_MACRO_H
#define ENTT_STR(arg) #arg
#define ENTT_XSTR(arg) ENTT_STR(arg)
#endif
#define ENTT_VERSION_MAJOR 3
#define ENTT_VERSION_MINOR 11
#define ENTT_VERSION_PATCH 1
#define ENTT_VERSION \
ENTT_XSTR(ENTT_VERSION_MAJOR) \
"." ENTT_XSTR(ENTT_VERSION_MINOR) "." ENTT_XSTR(ENTT_VERSION_PATCH)
#endif
#if defined(__cpp_exceptions) && !defined(ENTT_NOEXCEPTION)
# define ENTT_CONSTEXPR
# define ENTT_THROW throw
# define ENTT_TRY try
# define ENTT_CATCH catch(...)
#else
# define ENTT_CONSTEXPR constexpr // use only with throwing functions (waiting for C++20)
# define ENTT_THROW
# define ENTT_TRY if(true)
# define ENTT_CATCH if(false)
#endif
#ifdef ENTT_USE_ATOMIC
# include <atomic>
# define ENTT_MAYBE_ATOMIC(Type) std::atomic<Type>
#else
# define ENTT_MAYBE_ATOMIC(Type) Type
#endif
#ifndef ENTT_ID_TYPE
# include <cstdint>
# define ENTT_ID_TYPE std::uint32_t
#endif
#ifndef ENTT_SPARSE_PAGE
# define ENTT_SPARSE_PAGE 4096
#endif
#ifndef ENTT_PACKED_PAGE
# define ENTT_PACKED_PAGE 1024
#endif
#ifdef ENTT_DISABLE_ASSERT
# undef ENTT_ASSERT
# define ENTT_ASSERT(condition, msg) (void(0))
#elif !defined ENTT_ASSERT
# include <cassert>
# define ENTT_ASSERT(condition, msg) assert(condition)
#endif
#ifdef ENTT_DISABLE_ASSERT
# undef ENTT_ASSERT_CONSTEXPR
# define ENTT_ASSERT_CONSTEXPR(condition, msg) (void(0))
#elif !defined ENTT_ASSERT_CONSTEXPR
# define ENTT_ASSERT_CONSTEXPR(condition, msg) ENTT_ASSERT(condition, msg)
#endif
#ifdef ENTT_NO_ETO
# define ENTT_ETO_TYPE(Type) void
#else
# define ENTT_ETO_TYPE(Type) Type
#endif
#ifdef ENTT_STANDARD_CPP
# define ENTT_NONSTD false
#else
# define ENTT_NONSTD true
# if defined __clang__ || defined __GNUC__
# define ENTT_PRETTY_FUNCTION __PRETTY_FUNCTION__
# define ENTT_PRETTY_FUNCTION_PREFIX '='
# define ENTT_PRETTY_FUNCTION_SUFFIX ']'
# elif defined _MSC_VER
# define ENTT_PRETTY_FUNCTION __FUNCSIG__
# define ENTT_PRETTY_FUNCTION_PREFIX '<'
# define ENTT_PRETTY_FUNCTION_SUFFIX '>'
# endif
#endif
#if defined _MSC_VER
# pragma detect_mismatch("entt.version", ENTT_VERSION)
# pragma detect_mismatch("entt.noexcept", ENTT_XSTR(ENTT_TRY))
# pragma detect_mismatch("entt.id", ENTT_XSTR(ENTT_ID_TYPE))
# pragma detect_mismatch("entt.nonstd", ENTT_XSTR(ENTT_NONSTD))
#endif
#endif
// #include "fwd.hpp"
#ifndef ENTT_CORE_FWD_HPP
#define ENTT_CORE_FWD_HPP
#include <cstddef>
// #include "../config/config.h"
namespace entt {
template<std::size_t Len = sizeof(double[2]), std::size_t = alignof(double[2])>
class basic_any;
/*! @brief Alias declaration for type identifiers. */
using id_type = ENTT_ID_TYPE;
/*! @brief Alias declaration for the most common use case. */
using any = basic_any<>;
} // namespace entt
#endif
namespace entt {
/**
* @brief Utility class to disambiguate overloaded functions.
* @tparam N Number of choices available.
*/
template<std::size_t N>
struct choice_t
// Unfortunately, doxygen cannot parse such a construct.
: /*! @cond TURN_OFF_DOXYGEN */ choice_t<N - 1> /*! @endcond */
{};
/*! @copybrief choice_t */
template<>
struct choice_t<0> {};
/**
* @brief Variable template for the choice trick.
* @tparam N Number of choices available.
*/
template<std::size_t N>
inline constexpr choice_t<N> choice{};
/**
* @brief Identity type trait.
*
* Useful to establish non-deduced contexts in template argument deduction
* (waiting for C++20) or to provide types through function arguments.
*
* @tparam Type A type.
*/
template<typename Type>
struct type_identity {
/*! @brief Identity type. */
using type = Type;
};
/**
* @brief Helper type.
* @tparam Type A type.
*/
template<typename Type>
using type_identity_t = typename type_identity<Type>::type;
/**
* @brief A type-only `sizeof` wrapper that returns 0 where `sizeof` complains.
* @tparam Type The type of which to return the size.
* @tparam The size of the type if `sizeof` accepts it, 0 otherwise.
*/
template<typename Type, typename = void>
struct size_of: std::integral_constant<std::size_t, 0u> {};
/*! @copydoc size_of */
template<typename Type>
struct size_of<Type, std::void_t<decltype(sizeof(Type))>>
: std::integral_constant<std::size_t, sizeof(Type)> {};
/**
* @brief Helper variable template.
* @tparam Type The type of which to return the size.
*/
template<typename Type>
inline constexpr std::size_t size_of_v = size_of<Type>::value;
/**
* @brief Using declaration to be used to _repeat_ the same type a number of
* times equal to the size of a given parameter pack.
* @tparam Type A type to repeat.
*/
template<typename Type, typename>
using unpack_as_type = Type;
/**
* @brief Helper variable template to be used to _repeat_ the same value a
* number of times equal to the size of a given parameter pack.
* @tparam Value A value to repeat.
*/
template<auto Value, typename>
inline constexpr auto unpack_as_value = Value;
/**
* @brief Wraps a static constant.
* @tparam Value A static constant.
*/
template<auto Value>
using integral_constant = std::integral_constant<decltype(Value), Value>;
/**
* @brief Alias template to facilitate the creation of named values.
* @tparam Value A constant value at least convertible to `id_type`.
*/
template<id_type Value>
using tag = integral_constant<Value>;
/**
* @brief A class to use to push around lists of types, nothing more.
* @tparam Type Types provided by the type list.
*/
template<typename... Type>
struct type_list {
/*! @brief Type list type. */
using type = type_list;
/*! @brief Compile-time number of elements in the type list. */
static constexpr auto size = sizeof...(Type);
};
/*! @brief Primary template isn't defined on purpose. */
template<std::size_t, typename>
struct type_list_element;
/**
* @brief Provides compile-time indexed access to the types of a type list.
* @tparam Index Index of the type to return.
* @tparam First First type provided by the type list.
* @tparam Other Other types provided by the type list.
*/
template<std::size_t Index, typename First, typename... Other>
struct type_list_element<Index, type_list<First, Other...>>
: type_list_element<Index - 1u, type_list<Other...>> {};
/**
* @brief Provides compile-time indexed access to the types of a type list.
* @tparam First First type provided by the type list.
* @tparam Other Other types provided by the type list.
*/
template<typename First, typename... Other>
struct type_list_element<0u, type_list<First, Other...>> {
/*! @brief Searched type. */
using type = First;
};
/**
* @brief Helper type.
* @tparam Index Index of the type to return.
* @tparam List Type list to search into.
*/
template<std::size_t Index, typename List>
using type_list_element_t = typename type_list_element<Index, List>::type;
/*! @brief Primary template isn't defined on purpose. */
template<typename, typename>
struct type_list_index;
/**
* @brief Provides compile-time type access to the types of a type list.
* @tparam Type Type to look for and for which to return the index.
* @tparam First First type provided by the type list.
* @tparam Other Other types provided by the type list.
*/
template<typename Type, typename First, typename... Other>
struct type_list_index<Type, type_list<First, Other...>> {
/*! @brief Unsigned integer type. */
using value_type = std::size_t;
/*! @brief Compile-time position of the given type in the sublist. */
static constexpr value_type value = 1u + type_list_index<Type, type_list<Other...>>::value;
};
/**
* @brief Provides compile-time type access to the types of a type list.
* @tparam Type Type to look for and for which to return the index.
* @tparam Other Other types provided by the type list.
*/
template<typename Type, typename... Other>
struct type_list_index<Type, type_list<Type, Other...>> {
static_assert(type_list_index<Type, type_list<Other...>>::value == sizeof...(Other), "Non-unique type");
/*! @brief Unsigned integer type. */
using value_type = std::size_t;
/*! @brief Compile-time position of the given type in the sublist. */
static constexpr value_type value = 0u;
};
/**
* @brief Provides compile-time type access to the types of a type list.
* @tparam Type Type to look for and for which to return the index.
*/
template<typename Type>
struct type_list_index<Type, type_list<>> {
/*! @brief Unsigned integer type. */
using value_type = std::size_t;
/*! @brief Compile-time position of the given type in the sublist. */
static constexpr value_type value = 0u;
};
/**
* @brief Helper variable template.
* @tparam List Type list.
* @tparam Type Type to look for and for which to return the index.
*/
template<typename Type, typename List>
inline constexpr std::size_t type_list_index_v = type_list_index<Type, List>::value;
/**
* @brief Concatenates multiple type lists.
* @tparam Type Types provided by the first type list.
* @tparam Other Types provided by the second type list.
* @return A type list composed by the types of both the type lists.
*/
template<typename... Type, typename... Other>
constexpr type_list<Type..., Other...> operator+(type_list<Type...>, type_list<Other...>) {
return {};
}
/*! @brief Primary template isn't defined on purpose. */
template<typename...>
struct type_list_cat;
/*! @brief Concatenates multiple type lists. */
template<>
struct type_list_cat<> {
/*! @brief A type list composed by the types of all the type lists. */
using type = type_list<>;
};
/**
* @brief Concatenates multiple type lists.
* @tparam Type Types provided by the first type list.
* @tparam Other Types provided by the second type list.
* @tparam List Other type lists, if any.
*/
template<typename... Type, typename... Other, typename... List>
struct type_list_cat<type_list<Type...>, type_list<Other...>, List...> {
/*! @brief A type list composed by the types of all the type lists. */
using type = typename type_list_cat<type_list<Type..., Other...>, List...>::type;
};
/**
* @brief Concatenates multiple type lists.
* @tparam Type Types provided by the type list.
*/
template<typename... Type>
struct type_list_cat<type_list<Type...>> {
/*! @brief A type list composed by the types of all the type lists. */
using type = type_list<Type...>;
};
/**
* @brief Helper type.
* @tparam List Type lists to concatenate.
*/
template<typename... List>
using type_list_cat_t = typename type_list_cat<List...>::type;
/*! @brief Primary template isn't defined on purpose. */
template<typename>
struct type_list_unique;
/**
* @brief Removes duplicates types from a type list.
* @tparam Type One of the types provided by the given type list.
* @tparam Other The other types provided by the given type list.
*/
template<typename Type, typename... Other>
struct type_list_unique<type_list<Type, Other...>> {
/*! @brief A type list without duplicate types. */
using type = std::conditional_t<
(std::is_same_v<Type, Other> || ...),
typename type_list_unique<type_list<Other...>>::type,
type_list_cat_t<type_list<Type>, typename type_list_unique<type_list<Other...>>::type>>;
};
/*! @brief Removes duplicates types from a type list. */
template<>
struct type_list_unique<type_list<>> {
/*! @brief A type list without duplicate types. */
using type = type_list<>;
};
/**
* @brief Helper type.
* @tparam Type A type list.
*/
template<typename Type>
using type_list_unique_t = typename type_list_unique<Type>::type;
/**
* @brief Provides the member constant `value` to true if a type list contains a
* given type, false otherwise.
* @tparam List Type list.
* @tparam Type Type to look for.
*/
template<typename List, typename Type>
struct type_list_contains;
/**
* @copybrief type_list_contains
* @tparam Type Types provided by the type list.
* @tparam Other Type to look for.
*/
template<typename... Type, typename Other>
struct type_list_contains<type_list<Type...>, Other>: std::disjunction<std::is_same<Type, Other>...> {};
/**
* @brief Helper variable template.
* @tparam List Type list.
* @tparam Type Type to look for.
*/
template<typename List, typename Type>
inline constexpr bool type_list_contains_v = type_list_contains<List, Type>::value;
/*! @brief Primary template isn't defined on purpose. */
template<typename...>
struct type_list_diff;
/**
* @brief Computes the difference between two type lists.
* @tparam Type Types provided by the first type list.
* @tparam Other Types provided by the second type list.
*/
template<typename... Type, typename... Other>
struct type_list_diff<type_list<Type...>, type_list<Other...>> {
/*! @brief A type list that is the difference between the two type lists. */
using type = type_list_cat_t<std::conditional_t<type_list_contains_v<type_list<Other...>, Type>, type_list<>, type_list<Type>>...>;
};
/**
* @brief Helper type.
* @tparam List Type lists between which to compute the difference.
*/
template<typename... List>
using type_list_diff_t = typename type_list_diff<List...>::type;
/*! @brief Primary template isn't defined on purpose. */
template<typename, template<typename...> class>
struct type_list_transform;
/**
* @brief Applies a given _function_ to a type list and generate a new list.
* @tparam Type Types provided by the type list.
* @tparam Op Unary operation as template class with a type member named `type`.
*/
template<typename... Type, template<typename...> class Op>
struct type_list_transform<type_list<Type...>, Op> {
/*! @brief Resulting type list after applying the transform function. */
using type = type_list<typename Op<Type>::type...>;
};
/**
* @brief Helper type.
* @tparam List Type list.
* @tparam Op Unary operation as template class with a type member named `type`.
*/
template<typename List, template<typename...> class Op>
using type_list_transform_t = typename type_list_transform<List, Op>::type;
/**
* @brief A class to use to push around lists of constant values, nothing more.
* @tparam Value Values provided by the value list.
*/
template<auto... Value>
struct value_list {
/*! @brief Value list type. */
using type = value_list;
/*! @brief Compile-time number of elements in the value list. */
static constexpr auto size = sizeof...(Value);
};
/*! @brief Primary template isn't defined on purpose. */
template<std::size_t, typename>
struct value_list_element;
/**
* @brief Provides compile-time indexed access to the values of a value list.
* @tparam Index Index of the value to return.
* @tparam Value First value provided by the value list.
* @tparam Other Other values provided by the value list.
*/
template<std::size_t Index, auto Value, auto... Other>
struct value_list_element<Index, value_list<Value, Other...>>
: value_list_element<Index - 1u, value_list<Other...>> {};
/**
* @brief Provides compile-time indexed access to the types of a type list.
* @tparam Value First value provided by the value list.
* @tparam Other Other values provided by the value list.
*/
template<auto Value, auto... Other>
struct value_list_element<0u, value_list<Value, Other...>> {
/*! @brief Searched value. */
static constexpr auto value = Value;
};
/**
* @brief Helper type.
* @tparam Index Index of the value to return.
* @tparam List Value list to search into.
*/
template<std::size_t Index, typename List>
inline constexpr auto value_list_element_v = value_list_element<Index, List>::value;
/**
* @brief Concatenates multiple value lists.
* @tparam Value Values provided by the first value list.
* @tparam Other Values provided by the second value list.
* @return A value list composed by the values of both the value lists.
*/
template<auto... Value, auto... Other>
constexpr value_list<Value..., Other...> operator+(value_list<Value...>, value_list<Other...>) {
return {};
}
/*! @brief Primary template isn't defined on purpose. */
template<typename...>
struct value_list_cat;
/*! @brief Concatenates multiple value lists. */
template<>
struct value_list_cat<> {
/*! @brief A value list composed by the values of all the value lists. */
using type = value_list<>;
};
/**
* @brief Concatenates multiple value lists.
* @tparam Value Values provided by the first value list.
* @tparam Other Values provided by the second value list.
* @tparam List Other value lists, if any.
*/
template<auto... Value, auto... Other, typename... List>
struct value_list_cat<value_list<Value...>, value_list<Other...>, List...> {
/*! @brief A value list composed by the values of all the value lists. */
using type = typename value_list_cat<value_list<Value..., Other...>, List...>::type;
};
/**
* @brief Concatenates multiple value lists.
* @tparam Value Values provided by the value list.
*/
template<auto... Value>
struct value_list_cat<value_list<Value...>> {
/*! @brief A value list composed by the values of all the value lists. */
using type = value_list<Value...>;
};
/**
* @brief Helper type.
* @tparam List Value lists to concatenate.
*/
template<typename... List>
using value_list_cat_t = typename value_list_cat<List...>::type;
/*! @brief Same as std::is_invocable, but with tuples. */
template<typename, typename>
struct is_applicable: std::false_type {};
/**
* @copybrief is_applicable
* @tparam Func A valid function type.
* @tparam Tuple Tuple-like type.
* @tparam Args The list of arguments to use to probe the function type.
*/
template<typename Func, template<typename...> class Tuple, typename... Args>
struct is_applicable<Func, Tuple<Args...>>: std::is_invocable<Func, Args...> {};
/**
* @copybrief is_applicable
* @tparam Func A valid function type.
* @tparam Tuple Tuple-like type.
* @tparam Args The list of arguments to use to probe the function type.
*/
template<typename Func, template<typename...> class Tuple, typename... Args>
struct is_applicable<Func, const Tuple<Args...>>: std::is_invocable<Func, Args...> {};
/**
* @brief Helper variable template.
* @tparam Func A valid function type.
* @tparam Args The list of arguments to use to probe the function type.
*/
template<typename Func, typename Args>
inline constexpr bool is_applicable_v = is_applicable<Func, Args>::value;
/*! @brief Same as std::is_invocable_r, but with tuples for arguments. */
template<typename, typename, typename>
struct is_applicable_r: std::false_type {};
/**
* @copybrief is_applicable_r
* @tparam Ret The type to which the return type of the function should be
* convertible.
* @tparam Func A valid function type.
* @tparam Args The list of arguments to use to probe the function type.
*/
template<typename Ret, typename Func, typename... Args>
struct is_applicable_r<Ret, Func, std::tuple<Args...>>: std::is_invocable_r<Ret, Func, Args...> {};
/**
* @brief Helper variable template.
* @tparam Ret The type to which the return type of the function should be
* convertible.
* @tparam Func A valid function type.
* @tparam Args The list of arguments to use to probe the function type.
*/
template<typename Ret, typename Func, typename Args>
inline constexpr bool is_applicable_r_v = is_applicable_r<Ret, Func, Args>::value;
/**
* @brief Provides the member constant `value` to true if a given type is
* complete, false otherwise.
* @tparam Type The type to test.
*/
template<typename Type, typename = void>
struct is_complete: std::false_type {};
/*! @copydoc is_complete */
template<typename Type>
struct is_complete<Type, std::void_t<decltype(sizeof(Type))>>: std::true_type {};
/**
* @brief Helper variable template.
* @tparam Type The type to test.
*/
template<typename Type>
inline constexpr bool is_complete_v = is_complete<Type>::value;
/**
* @brief Provides the member constant `value` to true if a given type is an
* iterator, false otherwise.
* @tparam Type The type to test.
*/
template<typename Type, typename = void>
struct is_iterator: std::false_type {};
/**
* @cond TURN_OFF_DOXYGEN
* Internal details not to be documented.
*/
namespace internal {
template<typename, typename = void>
struct has_iterator_category: std::false_type {};
template<typename Type>
struct has_iterator_category<Type, std::void_t<typename std::iterator_traits<Type>::iterator_category>>: std::true_type {};
} // namespace internal
/**
* Internal details not to be documented.
* @endcond
*/
/*! @copydoc is_iterator */
template<typename Type>
struct is_iterator<Type, std::enable_if_t<!std::is_same_v<std::remove_cv_t<std::remove_pointer_t<Type>>, void>>>
: internal::has_iterator_category<Type> {};
/**
* @brief Helper variable template.
* @tparam Type The type to test.
*/
template<typename Type>
inline constexpr bool is_iterator_v = is_iterator<Type>::value;
/**
* @brief Provides the member constant `value` to true if a given type is both
* an empty and non-final class, false otherwise.
* @tparam Type The type to test
*/
template<typename Type>
struct is_ebco_eligible
: std::conjunction<std::is_empty<Type>, std::negation<std::is_final<Type>>> {};
/**
* @brief Helper variable template.
* @tparam Type The type to test.
*/
template<typename Type>
inline constexpr bool is_ebco_eligible_v = is_ebco_eligible<Type>::value;
/**
* @brief Provides the member constant `value` to true if `Type::is_transparent`
* is valid and denotes a type, false otherwise.
* @tparam Type The type to test.
*/
template<typename Type, typename = void>
struct is_transparent: std::false_type {};
/*! @copydoc is_transparent */
template<typename Type>
struct is_transparent<Type, std::void_t<typename Type::is_transparent>>: std::true_type {};
/**
* @brief Helper variable template.
* @tparam Type The type to test.
*/
template<typename Type>
inline constexpr bool is_transparent_v = is_transparent<Type>::value;
/**
* @brief Provides the member constant `value` to true if a given type is
* equality comparable, false otherwise.
* @tparam Type The type to test.
*/
template<typename Type, typename = void>
struct is_equality_comparable: std::false_type {};
/**
* @cond TURN_OFF_DOXYGEN
* Internal details not to be documented.
*/
namespace internal {
template<typename, typename = void>
struct has_tuple_size_value: std::false_type {};
template<typename Type>
struct has_tuple_size_value<Type, std::void_t<decltype(std::tuple_size<const Type>::value)>>: std::true_type {};
template<typename Type, std::size_t... Index>
[[nodiscard]] constexpr bool unpack_maybe_equality_comparable(std::index_sequence<Index...>) {
return (is_equality_comparable<std::tuple_element_t<Index, Type>>::value && ...);
}
template<typename>
[[nodiscard]] constexpr bool maybe_equality_comparable(choice_t<0>) {
return true;
}
template<typename Type>
[[nodiscard]] constexpr auto maybe_equality_comparable(choice_t<1>) -> decltype(std::declval<typename Type::value_type>(), bool{}) {
if constexpr(is_iterator_v<Type>) {
return true;
} else if constexpr(std::is_same_v<typename Type::value_type, Type>) {
return maybe_equality_comparable<Type>(choice<0>);
} else {
return is_equality_comparable<typename Type::value_type>::value;
}
}
template<typename Type>
[[nodiscard]] constexpr std::enable_if_t<is_complete_v<std::tuple_size<std::remove_cv_t<Type>>>, bool> maybe_equality_comparable(choice_t<2>) {
if constexpr(has_tuple_size_value<Type>::value) {
return unpack_maybe_equality_comparable<Type>(std::make_index_sequence<std::tuple_size<Type>::value>{});
} else {
return maybe_equality_comparable<Type>(choice<1>);
}
}
} // namespace internal
/**
* Internal details not to be documented.
* @endcond
*/
/*! @copydoc is_equality_comparable */
template<typename Type>
struct is_equality_comparable<Type, std::void_t<decltype(std::declval<Type>() == std::declval<Type>())>>
: std::bool_constant<internal::maybe_equality_comparable<Type>(choice<2>)> {};
/**
* @brief Helper variable template.
* @tparam Type The type to test.
*/
template<typename Type>
inline constexpr bool is_equality_comparable_v = is_equality_comparable<Type>::value;
/**
* @brief Transcribes the constness of a type to another type.
* @tparam To The type to which to transcribe the constness.
* @tparam From The type from which to transcribe the constness.
*/
template<typename To, typename From>
struct constness_as {
/*! @brief The type resulting from the transcription of the constness. */
using type = std::remove_const_t<To>;
};
/*! @copydoc constness_as */
template<typename To, typename From>
struct constness_as<To, const From> {
/*! @brief The type resulting from the transcription of the constness. */
using type = const To;
};
/**
* @brief Alias template to facilitate the transcription of the constness.
* @tparam To The type to which to transcribe the constness.
* @tparam From The type from which to transcribe the constness.
*/
template<typename To, typename From>
using constness_as_t = typename constness_as<To, From>::type;
/**
* @brief Extracts the class of a non-static member object or function.
* @tparam Member A pointer to a non-static member object or function.
*/
template<typename Member>
class member_class {
static_assert(std::is_member_pointer_v<Member>, "Invalid pointer type to non-static member object or function");
template<typename Class, typename Ret, typename... Args>
static Class *clazz(Ret (Class::*)(Args...));
template<typename Class, typename Ret, typename... Args>
static Class *clazz(Ret (Class::*)(Args...) const);
template<typename Class, typename Type>
static Class *clazz(Type Class::*);
public:
/*! @brief The class of the given non-static member object or function. */
using type = std::remove_pointer_t<decltype(clazz(std::declval<Member>()))>;
};
/**
* @brief Helper type.
* @tparam Member A pointer to a non-static member object or function.
*/
template<typename Member>
using member_class_t = typename member_class<Member>::type;
/**
* @brief Extracts the n-th argument of a given function or member function.
* @tparam Index The index of the argument to extract.
* @tparam Candidate A valid function, member function or data member.
*/
template<std::size_t Index, auto Candidate>
class nth_argument {
template<typename Ret, typename... Args>
static constexpr type_list<Args...> pick_up(Ret (*)(Args...));
template<typename Ret, typename Class, typename... Args>
static constexpr type_list<Args...> pick_up(Ret (Class ::*)(Args...));
template<typename Ret, typename Class, typename... Args>
static constexpr type_list<Args...> pick_up(Ret (Class ::*)(Args...) const);
template<typename Type, typename Class>
static constexpr type_list<Type> pick_up(Type Class ::*);
public:
/*! @brief N-th argument of the given function or member function. */
using type = type_list_element_t<Index, decltype(pick_up(Candidate))>;
};
/**
* @brief Helper type.
* @tparam Index The index of the argument to extract.
* @tparam Candidate A valid function, member function or data member.
*/
template<std::size_t Index, auto Candidate>
using nth_argument_t = typename nth_argument<Index, Candidate>::type;
} // namespace entt
#endif
namespace entt {
/**
* @cond TURN_OFF_DOXYGEN
* Internal details not to be documented.
*/
namespace internal {
template<typename Type, std::size_t, typename = void>
struct compressed_pair_element {
using reference = Type &;
using const_reference = const Type &;
template<bool Dummy = true, typename = std::enable_if_t<Dummy && std::is_default_constructible_v<Type>>>
constexpr compressed_pair_element() noexcept(std::is_nothrow_default_constructible_v<Type>)
: value{} {}
template<typename Arg, typename = std::enable_if_t<!std::is_same_v<std::remove_cv_t<std::remove_reference_t<Arg>>, compressed_pair_element>>>
constexpr compressed_pair_element(Arg &&arg) noexcept(std::is_nothrow_constructible_v<Type, Arg>)
: value{std::forward<Arg>(arg)} {}
template<typename... Args, std::size_t... Index>
constexpr compressed_pair_element(std::tuple<Args...> args, std::index_sequence<Index...>) noexcept(std::is_nothrow_constructible_v<Type, Args...>)
: value{std::forward<Args>(std::get<Index>(args))...} {}
[[nodiscard]] constexpr reference get() noexcept {
return value;
}
[[nodiscard]] constexpr const_reference get() const noexcept {
return value;
}
private:
Type value;
};
template<typename Type, std::size_t Tag>
struct compressed_pair_element<Type, Tag, std::enable_if_t<is_ebco_eligible_v<Type>>>: Type {
using reference = Type &;
using const_reference = const Type &;
using base_type = Type;
template<bool Dummy = true, typename = std::enable_if_t<Dummy && std::is_default_constructible_v<base_type>>>
constexpr compressed_pair_element() noexcept(std::is_nothrow_default_constructible_v<base_type>)
: base_type{} {}
template<typename Arg, typename = std::enable_if_t<!std::is_same_v<std::remove_cv_t<std::remove_reference_t<Arg>>, compressed_pair_element>>>
constexpr compressed_pair_element(Arg &&arg) noexcept(std::is_nothrow_constructible_v<base_type, Arg>)
: base_type{std::forward<Arg>(arg)} {}
template<typename... Args, std::size_t... Index>
constexpr compressed_pair_element(std::tuple<Args...> args, std::index_sequence<Index...>) noexcept(std::is_nothrow_constructible_v<base_type, Args...>)
: base_type{std::forward<Args>(std::get<Index>(args))...} {}
[[nodiscard]] constexpr reference get() noexcept {
return *this;
}
[[nodiscard]] constexpr const_reference get() const noexcept {
return *this;
}
};
} // namespace internal
/**
* Internal details not to be documented.
* @endcond
*/
/**
* @brief A compressed pair.
*
* A pair that exploits the _Empty Base Class Optimization_ (or _EBCO_) to
* reduce its final size to a minimum.
*
* @tparam First The type of the first element that the pair stores.
* @tparam Second The type of the second element that the pair stores.
*/
template<typename First, typename Second>
class compressed_pair final
: internal::compressed_pair_element<First, 0u>,
internal::compressed_pair_element<Second, 1u> {
using first_base = internal::compressed_pair_element<First, 0u>;
using second_base = internal::compressed_pair_element<Second, 1u>;
public:
/*! @brief The type of the first element that the pair stores. */
using first_type = First;
/*! @brief The type of the second element that the pair stores. */
using second_type = Second;
/**
* @brief Default constructor, conditionally enabled.
*
* This constructor is only available when the types that the pair stores
* are both at least default constructible.
*
* @tparam Dummy Dummy template parameter used for internal purposes.
*/
template<bool Dummy = true, typename = std::enable_if_t<Dummy && std::is_default_constructible_v<first_type> && std::is_default_constructible_v<second_type>>>
constexpr compressed_pair() noexcept(std::is_nothrow_default_constructible_v<first_base> &&std::is_nothrow_default_constructible_v<second_base>)
: first_base{},
second_base{} {}
/**
* @brief Copy constructor.
* @param other The instance to copy from.
*/
constexpr compressed_pair(const compressed_pair &other) noexcept(std::is_nothrow_copy_constructible_v<first_base> &&std::is_nothrow_copy_constructible_v<second_base>) = default;
/**
* @brief Move constructor.
* @param other The instance to move from.
*/
constexpr compressed_pair(compressed_pair &&other) noexcept(std::is_nothrow_move_constructible_v<first_base> &&std::is_nothrow_move_constructible_v<second_base>) = default;
/**
* @brief Constructs a pair from its values.
* @tparam Arg Type of value to use to initialize the first element.
* @tparam Other Type of value to use to initialize the second element.
* @param arg Value to use to initialize the first element.
* @param other Value to use to initialize the second element.
*/
template<typename Arg, typename Other>
constexpr compressed_pair(Arg &&arg, Other &&other) noexcept(std::is_nothrow_constructible_v<first_base, Arg> &&std::is_nothrow_constructible_v<second_base, Other>)
: first_base{std::forward<Arg>(arg)},
second_base{std::forward<Other>(other)} {}
/**
* @brief Constructs a pair by forwarding the arguments to its parts.
* @tparam Args Types of arguments to use to initialize the first element.
* @tparam Other Types of arguments to use to initialize the second element.
* @param args Arguments to use to initialize the first element.
* @param other Arguments to use to initialize the second element.
*/
template<typename... Args, typename... Other>
constexpr compressed_pair(std::piecewise_construct_t, std::tuple<Args...> args, std::tuple<Other...> other) noexcept(std::is_nothrow_constructible_v<first_base, Args...> &&std::is_nothrow_constructible_v<second_base, Other...>)
: first_base{std::move(args), std::index_sequence_for<Args...>{}},
second_base{std::move(other), std::index_sequence_for<Other...>{}} {}
/**
* @brief Copy assignment operator.
* @param other The instance to copy from.
* @return This compressed pair object.
*/
constexpr compressed_pair &operator=(const compressed_pair &other) noexcept(std::is_nothrow_copy_assignable_v<first_base> &&std::is_nothrow_copy_assignable_v<second_base>) = default;
/**
* @brief Move assignment operator.
* @param other The instance to move from.
* @return This compressed pair object.
*/
constexpr compressed_pair &operator=(compressed_pair &&other) noexcept(std::is_nothrow_move_assignable_v<first_base> &&std::is_nothrow_move_assignable_v<second_base>) = default;
/**
* @brief Returns the first element that a pair stores.
* @return The first element that a pair stores.
*/
[[nodiscard]] constexpr first_type &first() noexcept {
return static_cast<first_base &>(*this).get();
}
/*! @copydoc first */
[[nodiscard]] constexpr const first_type &first() const noexcept {
return static_cast<const first_base &>(*this).get();
}
/**
* @brief Returns the second element that a pair stores.
* @return The second element that a pair stores.
*/
[[nodiscard]] constexpr second_type &second() noexcept {
return static_cast<second_base &>(*this).get();
}
/*! @copydoc second */
[[nodiscard]] constexpr const second_type &second() const noexcept {
return static_cast<const second_base &>(*this).get();
}
/**
* @brief Swaps two compressed pair objects.
* @param other The compressed pair to swap with.
*/
constexpr void swap(compressed_pair &other) noexcept(std::is_nothrow_swappable_v<first_type> &&std::is_nothrow_swappable_v<second_type>) {
using std::swap;
swap(first(), other.first());
swap(second(), other.second());
}
/**
* @brief Extracts an element from the compressed pair.
* @tparam Index An integer value that is either 0 or 1.
* @return Returns a reference to the first element if `Index` is 0 and a
* reference to the second element if `Index` is 1.
*/
template<std::size_t Index>
constexpr decltype(auto) get() noexcept {
if constexpr(Index == 0u) {
return first();
} else {
static_assert(Index == 1u, "Index out of bounds");
return second();
}
}
/*! @copydoc get */
template<std::size_t Index>
constexpr decltype(auto) get() const noexcept {
if constexpr(Index == 0u) {
return first();
} else {
static_assert(Index == 1u, "Index out of bounds");
return second();
}
}
};
/**
* @brief Deduction guide.
* @tparam Type Type of value to use to initialize the first element.
* @tparam Other Type of value to use to initialize the second element.
*/
template<typename Type, typename Other>
compressed_pair(Type &&, Other &&) -> compressed_pair<std::decay_t<Type>, std::decay_t<Other>>;
/**
* @brief Swaps two compressed pair objects.
* @tparam First The type of the first element that the pairs store.
* @tparam Second The type of the second element that the pairs store.
* @param lhs A valid compressed pair object.
* @param rhs A valid compressed pair object.
*/
template<typename First, typename Second>
inline constexpr void swap(compressed_pair<First, Second> &lhs, compressed_pair<First, Second> &rhs) {
lhs.swap(rhs);
}
} // namespace entt
// disable structured binding support for clang 6, it messes when specializing tuple_size
#if !defined __clang_major__ || __clang_major__ > 6
namespace std {
/**
* @brief `std::tuple_size` specialization for `compressed_pair`s.
* @tparam First The type of the first element that the pair stores.
* @tparam Second The type of the second element that the pair stores.
*/
template<typename First, typename Second>
struct tuple_size<entt::compressed_pair<First, Second>>: integral_constant<size_t, 2u> {};
/**
* @brief `std::tuple_element` specialization for `compressed_pair`s.
* @tparam Index The index of the type to return.
* @tparam First The type of the first element that the pair stores.
* @tparam Second The type of the second element that the pair stores.
*/
template<size_t Index, typename First, typename Second>
struct tuple_element<Index, entt::compressed_pair<First, Second>>: conditional<Index == 0u, First, Second> {
static_assert(Index < 2u, "Index out of bounds");
};
} // namespace std
#endif
#endif
// #include "../core/iterator.hpp"
#ifndef ENTT_CORE_ITERATOR_HPP
#define ENTT_CORE_ITERATOR_HPP
#include <iterator>
#include <memory>
#include <type_traits>
#include <utility>
namespace entt {
/**
* @brief Helper type to use as pointer with input iterators.
* @tparam Type of wrapped value.
*/
template<typename Type>
struct input_iterator_pointer final {
/*! @brief Value type. */
using value_type = Type;
/*! @brief Pointer type. */
using pointer = Type *;
/*! @brief Reference type. */
using reference = Type &;
/**
* @brief Constructs a proxy object by move.
* @param val Value to use to initialize the proxy object.
*/
constexpr input_iterator_pointer(value_type &&val) noexcept(std::is_nothrow_move_constructible_v<value_type>)
: value{std::move(val)} {}
/**
* @brief Access operator for accessing wrapped values.
* @return A pointer to the wrapped value.
*/
[[nodiscard]] constexpr pointer operator->() noexcept {
return std::addressof(value);
}
/**
* @brief Dereference operator for accessing wrapped values.
* @return A reference to the wrapped value.
*/
[[nodiscard]] constexpr reference operator*() noexcept {
return value;
}
private:
Type value;
};
/**
* @brief Plain iota iterator (waiting for C++20).
* @tparam Type Value type.
*/
template<typename Type>
class iota_iterator final {
static_assert(std::is_integral_v<Type>, "Not an integral type");
public:
/*! @brief Value type, likely an integral one. */
using value_type = Type;
/*! @brief Invalid pointer type. */
using pointer = void;
/*! @brief Non-reference type, same as value type. */
using reference = value_type;
/*! @brief Difference type. */
using difference_type = std::ptrdiff_t;
/*! @brief Iterator category. */
using iterator_category = std::input_iterator_tag;
/*! @brief Default constructor. */
constexpr iota_iterator() noexcept
: current{} {}
/**
* @brief Constructs an iota iterator from a given value.
* @param init The initial value assigned to the iota iterator.
*/
constexpr iota_iterator(const value_type init) noexcept
: current{init} {}
/**
* @brief Pre-increment operator.
* @return This iota iterator.
*/
constexpr iota_iterator &operator++() noexcept {
return ++current, *this;
}
/**
* @brief Post-increment operator.
* @return This iota iterator.
*/
constexpr iota_iterator operator++(int) noexcept {
iota_iterator orig = *this;
return ++(*this), orig;
}
/**
* @brief Dereference operator.
* @return The underlying value.
*/
[[nodiscard]] constexpr reference operator*() const noexcept {
return current;
}
private:
value_type current;
};
/**
* @brief Comparison operator.
* @tparam Type Value type of the iota iterator.
* @param lhs A properly initialized iota iterator.
* @param rhs A properly initialized iota iterator.
* @return True if the two iterators are identical, false otherwise.
*/
template<typename Type>
[[nodiscard]] constexpr bool operator==(const iota_iterator<Type> &lhs, const iota_iterator<Type> &rhs) noexcept {
return *lhs == *rhs;
}
/**
* @brief Comparison operator.
* @tparam Type Value type of the iota iterator.
* @param lhs A properly initialized iota iterator.
* @param rhs A properly initialized iota iterator.
* @return True if the two iterators differ, false otherwise.
*/
template<typename Type>
[[nodiscard]] constexpr bool operator!=(const iota_iterator<Type> &lhs, const iota_iterator<Type> &rhs) noexcept {
return !(lhs == rhs);
}
/**
* @brief Utility class to create an iterable object from a pair of iterators.
* @tparam It Type of iterator.
* @tparam Sentinel Type of sentinel.
*/
template<typename It, typename Sentinel = It>
struct iterable_adaptor final {
/*! @brief Value type. */
using value_type = typename std::iterator_traits<It>::value_type;
/*! @brief Iterator type. */
using iterator = It;
/*! @brief Sentinel type. */
using sentinel = Sentinel;
/*! @brief Default constructor. */
constexpr iterable_adaptor() noexcept(std::is_nothrow_default_constructible_v<iterator> &&std::is_nothrow_default_constructible_v<sentinel>)
: first{},
last{} {}
/**
* @brief Creates an iterable object from a pair of iterators.
* @param from Begin iterator.
* @param to End iterator.
*/
constexpr iterable_adaptor(iterator from, sentinel to) noexcept(std::is_nothrow_move_constructible_v<iterator> &&std::is_nothrow_move_constructible_v<sentinel>)
: first{std::move(from)},
last{std::move(to)} {}
/**
* @brief Returns an iterator to the beginning.
* @return An iterator to the first element of the range.
*/
[[nodiscard]] constexpr iterator begin() const noexcept {
return first;
}
/**
* @brief Returns an iterator to the end.
* @return An iterator to the element following the last element of the
* range.
*/
[[nodiscard]] constexpr sentinel end() const noexcept {
return last;
}
/*! @copydoc begin */
[[nodiscard]] constexpr iterator cbegin() const noexcept {
return begin();
}
/*! @copydoc end */
[[nodiscard]] constexpr sentinel cend() const noexcept {
return end();
}
private:
It first;
Sentinel last;
};
} // namespace entt
#endif
// #include "../core/memory.hpp"
#ifndef ENTT_CORE_MEMORY_HPP
#define ENTT_CORE_MEMORY_HPP
#include <cstddef>
#include <limits>
#include <memory>
#include <tuple>
#include <type_traits>
#include <utility>
// #include "../config/config.h"
namespace entt {
/**
* @brief Checks whether a value is a power of two or not.
* @param value A value that may or may not be a power of two.
* @return True if the value is a power of two, false otherwise.
*/
[[nodiscard]] inline constexpr bool is_power_of_two(const std::size_t value) noexcept {
return value && ((value & (value - 1)) == 0);
}
/**
* @brief Computes the smallest power of two greater than or equal to a value.
* @param value The value to use.
* @return The smallest power of two greater than or equal to the given value.
*/
[[nodiscard]] inline constexpr std::size_t next_power_of_two(const std::size_t value) noexcept {
ENTT_ASSERT_CONSTEXPR(value < (std::size_t{1u} << (std::numeric_limits<std::size_t>::digits - 1)), "Numeric limits exceeded");
std::size_t curr = value - (value != 0u);
for(int next = 1; next < std::numeric_limits<std::size_t>::digits; next = next * 2) {
curr |= curr >> next;
}
return ++curr;
}
/**
* @brief Fast module utility function (powers of two only).
* @param value A value for which to calculate the modulus.
* @param mod _Modulus_, it must be a power of two.
* @return The common remainder.
*/
[[nodiscard]] inline constexpr std::size_t fast_mod(const std::size_t value, const std::size_t mod) noexcept {
ENTT_ASSERT_CONSTEXPR(is_power_of_two(mod), "Value must be a power of two");
return value & (mod - 1u);
}
/**
* @brief Unwraps fancy pointers, does nothing otherwise (waiting for C++20).
* @tparam Type Pointer type.
* @param ptr Fancy or raw pointer.
* @return A raw pointer that represents the address of the original pointer.
*/
template<typename Type>
[[nodiscard]] constexpr auto to_address(Type &&ptr) noexcept {
if constexpr(std::is_pointer_v<std::decay_t<Type>>) {
return ptr;
} else {
return to_address(std::forward<Type>(ptr).operator->());
}
}
/**
* @brief Utility function to design allocation-aware containers.
* @tparam Allocator Type of allocator.
* @param lhs A valid allocator.
* @param rhs Another valid allocator.
*/
template<typename Allocator>
constexpr void propagate_on_container_copy_assignment([[maybe_unused]] Allocator &lhs, [[maybe_unused]] Allocator &rhs) noexcept {
if constexpr(std::allocator_traits<Allocator>::propagate_on_container_copy_assignment::value) {
lhs = rhs;
}
}
/**
* @brief Utility function to design allocation-aware containers.
* @tparam Allocator Type of allocator.
* @param lhs A valid allocator.
* @param rhs Another valid allocator.
*/
template<typename Allocator>
constexpr void propagate_on_container_move_assignment([[maybe_unused]] Allocator &lhs, [[maybe_unused]] Allocator &rhs) noexcept {
if constexpr(std::allocator_traits<Allocator>::propagate_on_container_move_assignment::value) {
lhs = std::move(rhs);
}
}
/**
* @brief Utility function to design allocation-aware containers.
* @tparam Allocator Type of allocator.
* @param lhs A valid allocator.
* @param rhs Another valid allocator.
*/
template<typename Allocator>
constexpr void propagate_on_container_swap([[maybe_unused]] Allocator &lhs, [[maybe_unused]] Allocator &rhs) noexcept {
if constexpr(std::allocator_traits<Allocator>::propagate_on_container_swap::value) {
using std::swap;
swap(lhs, rhs);
} else {
ENTT_ASSERT_CONSTEXPR(lhs == rhs, "Cannot swap the containers");
}
}
/**
* @brief Deleter for allocator-aware unique pointers (waiting for C++20).
* @tparam Args Types of arguments to use to construct the object.
*/
template<typename Allocator>
struct allocation_deleter: private Allocator {
/*! @brief Allocator type. */
using allocator_type = Allocator;
/*! @brief Pointer type. */
using pointer = typename std::allocator_traits<Allocator>::pointer;
/**
* @brief Inherited constructors.
* @param alloc The allocator to use.
*/
constexpr allocation_deleter(const allocator_type &alloc) noexcept(std::is_nothrow_copy_constructible_v<allocator_type>)
: Allocator{alloc} {}
/**
* @brief Destroys the pointed object and deallocates its memory.
* @param ptr A valid pointer to an object of the given type.
*/
constexpr void operator()(pointer ptr) noexcept(std::is_nothrow_destructible_v<typename allocator_type::value_type>) {
using alloc_traits = typename std::allocator_traits<Allocator>;
alloc_traits::destroy(*this, to_address(ptr));
alloc_traits::deallocate(*this, ptr, 1u);
}
};
/**
* @brief Allows `std::unique_ptr` to use allocators (waiting for C++20).
* @tparam Type Type of object to allocate for and to construct.
* @tparam Allocator Type of allocator used to manage memory and elements.
* @tparam Args Types of arguments to use to construct the object.
* @param allocator The allocator to use.
* @param args Parameters to use to construct the object.
* @return A properly initialized unique pointer with a custom deleter.
*/
template<typename Type, typename Allocator, typename... Args>
ENTT_CONSTEXPR auto allocate_unique(Allocator &allocator, Args &&...args) {
static_assert(!std::is_array_v<Type>, "Array types are not supported");
using alloc_traits = typename std::allocator_traits<Allocator>::template rebind_traits<Type>;
using allocator_type = typename alloc_traits::allocator_type;
allocator_type alloc{allocator};
auto ptr = alloc_traits::allocate(alloc, 1u);
ENTT_TRY {
alloc_traits::construct(alloc, to_address(ptr), std::forward<Args>(args)...);
}
ENTT_CATCH {
alloc_traits::deallocate(alloc, ptr, 1u);
ENTT_THROW;
}
return std::unique_ptr<Type, allocation_deleter<allocator_type>>{ptr, alloc};
}
/**
* @cond TURN_OFF_DOXYGEN
* Internal details not to be documented.
*/
namespace internal {
template<typename Type>
struct uses_allocator_construction {
template<typename Allocator, typename... Params>
static constexpr auto args([[maybe_unused]] const Allocator &allocator, Params &&...params) noexcept {
if constexpr(!std::uses_allocator_v<Type, Allocator> && std::is_constructible_v<Type, Params...>) {
return std::forward_as_tuple(std::forward<Params>(params)...);
} else {
static_assert(std::uses_allocator_v<Type, Allocator>, "Ill-formed request");
if constexpr(std::is_constructible_v<Type, std::allocator_arg_t, const Allocator &, Params...>) {
return std::tuple<std::allocator_arg_t, const Allocator &, Params &&...>{std::allocator_arg, allocator, std::forward<Params>(params)...};
} else {
static_assert(std::is_constructible_v<Type, Params..., const Allocator &>, "Ill-formed request");
return std::forward_as_tuple(std::forward<Params>(params)..., allocator);
}
}
}
};
template<typename Type, typename Other>
struct uses_allocator_construction<std::pair<Type, Other>> {
using type = std::pair<Type, Other>;
template<typename Allocator, typename First, typename Second>
static constexpr auto args(const Allocator &allocator, std::piecewise_construct_t, First &&first, Second &&second) noexcept {
return std::make_tuple(
std::piecewise_construct,
std::apply([&allocator](auto &&...curr) { return uses_allocator_construction<Type>::args(allocator, std::forward<decltype(curr)>(curr)...); }, std::forward<First>(first)),
std::apply([&allocator](auto &&...curr) { return uses_allocator_construction<Other>::args(allocator, std::forward<decltype(curr)>(curr)...); }, std::forward<Second>(second)));
}
template<typename Allocator>
static constexpr auto args(const Allocator &allocator) noexcept {
return uses_allocator_construction<type>::args(allocator, std::piecewise_construct, std::tuple<>{}, std::tuple<>{});
}
template<typename Allocator, typename First, typename Second>
static constexpr auto args(const Allocator &allocator, First &&first, Second &&second) noexcept {
return uses_allocator_construction<type>::args(allocator, std::piecewise_construct, std::forward_as_tuple(std::forward<First>(first)), std::forward_as_tuple(std::forward<Second>(second)));
}
template<typename Allocator, typename First, typename Second>
static constexpr auto args(const Allocator &allocator, const std::pair<First, Second> &value) noexcept {
return uses_allocator_construction<type>::args(allocator, std::piecewise_construct, std::forward_as_tuple(value.first), std::forward_as_tuple(value.second));
}
template<typename Allocator, typename First, typename Second>
static constexpr auto args(const Allocator &allocator, std::pair<First, Second> &&value) noexcept {
return uses_allocator_construction<type>::args(allocator, std::piecewise_construct, std::forward_as_tuple(std::move(value.first)), std::forward_as_tuple(std::move(value.second)));
}
};
} // namespace internal
/**
* Internal details not to be documented.
* @endcond
*/
/**
* @brief Uses-allocator construction utility (waiting for C++20).
*
* Primarily intended for internal use. Prepares the argument list needed to
* create an object of a given type by means of uses-allocator construction.
*
* @tparam Type Type to return arguments for.
* @tparam Allocator Type of allocator used to manage memory and elements.
* @tparam Args Types of arguments to use to construct the object.
* @param allocator The allocator to use.
* @param args Parameters to use to construct the object.
* @return The arguments needed to create an object of the given type.
*/
template<typename Type, typename Allocator, typename... Args>
constexpr auto uses_allocator_construction_args(const Allocator &allocator, Args &&...args) noexcept {
return internal::uses_allocator_construction<Type>::args(allocator, std::forward<Args>(args)...);
}
/**
* @brief Uses-allocator construction utility (waiting for C++20).
*
* Primarily intended for internal use. Creates an object of a given type by
* means of uses-allocator construction.
*
* @tparam Type Type of object to create.
* @tparam Allocator Type of allocator used to manage memory and elements.
* @tparam Args Types of arguments to use to construct the object.
* @param allocator The allocator to use.
* @param args Parameters to use to construct the object.
* @return A newly created object of the given type.
*/
template<typename Type, typename Allocator, typename... Args>
constexpr Type make_obj_using_allocator(const Allocator &allocator, Args &&...args) {
return std::make_from_tuple<Type>(internal::uses_allocator_construction<Type>::args(allocator, std::forward<Args>(args)...));
}
/**
* @brief Uses-allocator construction utility (waiting for C++20).
*
* Primarily intended for internal use. Creates an object of a given type by
* means of uses-allocator construction at an uninitialized memory location.
*
* @tparam Type Type of object to create.
* @tparam Allocator Type of allocator used to manage memory and elements.
* @tparam Args Types of arguments to use to construct the object.
* @param value Memory location in which to place the object.
* @param allocator The allocator to use.
* @param args Parameters to use to construct the object.
* @return A pointer to the newly created object of the given type.
*/
template<typename Type, typename Allocator, typename... Args>
constexpr Type *uninitialized_construct_using_allocator(Type *value, const Allocator &allocator, Args &&...args) {
return std::apply([value](auto &&...curr) { return new(value) Type(std::forward<decltype(curr)>(curr)...); }, internal::uses_allocator_construction<Type>::args(allocator, std::forward<Args>(args)...));
}
} // namespace entt
#endif
// #include "../core/type_traits.hpp"
#ifndef ENTT_CORE_TYPE_TRAITS_HPP
#define ENTT_CORE_TYPE_TRAITS_HPP
#include <cstddef>
#include <iterator>
#include <type_traits>
#include <utility>
// #include "../config/config.h"
// #include "fwd.hpp"
namespace entt {
/**
* @brief Utility class to disambiguate overloaded functions.
* @tparam N Number of choices available.
*/
template<std::size_t N>
struct choice_t
// Unfortunately, doxygen cannot parse such a construct.
: /*! @cond TURN_OFF_DOXYGEN */ choice_t<N - 1> /*! @endcond */
{};
/*! @copybrief choice_t */
template<>
struct choice_t<0> {};
/**
* @brief Variable template for the choice trick.
* @tparam N Number of choices available.
*/
template<std::size_t N>
inline constexpr choice_t<N> choice{};
/**
* @brief Identity type trait.
*
* Useful to establish non-deduced contexts in template argument deduction
* (waiting for C++20) or to provide types through function arguments.
*
* @tparam Type A type.
*/
template<typename Type>
struct type_identity {
/*! @brief Identity type. */
using type = Type;
};
/**
* @brief Helper type.
* @tparam Type A type.
*/
template<typename Type>
using type_identity_t = typename type_identity<Type>::type;
/**
* @brief A type-only `sizeof` wrapper that returns 0 where `sizeof` complains.
* @tparam Type The type of which to return the size.
* @tparam The size of the type if `sizeof` accepts it, 0 otherwise.
*/
template<typename Type, typename = void>
struct size_of: std::integral_constant<std::size_t, 0u> {};
/*! @copydoc size_of */
template<typename Type>
struct size_of<Type, std::void_t<decltype(sizeof(Type))>>
: std::integral_constant<std::size_t, sizeof(Type)> {};
/**
* @brief Helper variable template.
* @tparam Type The type of which to return the size.
*/
template<typename Type>
inline constexpr std::size_t size_of_v = size_of<Type>::value;
/**
* @brief Using declaration to be used to _repeat_ the same type a number of
* times equal to the size of a given parameter pack.
* @tparam Type A type to repeat.
*/
template<typename Type, typename>
using unpack_as_type = Type;
/**
* @brief Helper variable template to be used to _repeat_ the same value a
* number of times equal to the size of a given parameter pack.
* @tparam Value A value to repeat.
*/
template<auto Value, typename>
inline constexpr auto unpack_as_value = Value;
/**
* @brief Wraps a static constant.
* @tparam Value A static constant.
*/
template<auto Value>
using integral_constant = std::integral_constant<decltype(Value), Value>;
/**
* @brief Alias template to facilitate the creation of named values.
* @tparam Value A constant value at least convertible to `id_type`.
*/
template<id_type Value>
using tag = integral_constant<Value>;
/**
* @brief A class to use to push around lists of types, nothing more.
* @tparam Type Types provided by the type list.
*/
template<typename... Type>
struct type_list {
/*! @brief Type list type. */
using type = type_list;
/*! @brief Compile-time number of elements in the type list. */
static constexpr auto size = sizeof...(Type);
};
/*! @brief Primary template isn't defined on purpose. */
template<std::size_t, typename>
struct type_list_element;
/**
* @brief Provides compile-time indexed access to the types of a type list.
* @tparam Index Index of the type to return.
* @tparam First First type provided by the type list.
* @tparam Other Other types provided by the type list.
*/
template<std::size_t Index, typename First, typename... Other>
struct type_list_element<Index, type_list<First, Other...>>
: type_list_element<Index - 1u, type_list<Other...>> {};
/**
* @brief Provides compile-time indexed access to the types of a type list.
* @tparam First First type provided by the type list.
* @tparam Other Other types provided by the type list.
*/
template<typename First, typename... Other>
struct type_list_element<0u, type_list<First, Other...>> {
/*! @brief Searched type. */
using type = First;
};
/**
* @brief Helper type.
* @tparam Index Index of the type to return.
* @tparam List Type list to search into.
*/
template<std::size_t Index, typename List>
using type_list_element_t = typename type_list_element<Index, List>::type;
/*! @brief Primary template isn't defined on purpose. */
template<typename, typename>
struct type_list_index;
/**
* @brief Provides compile-time type access to the types of a type list.
* @tparam Type Type to look for and for which to return the index.
* @tparam First First type provided by the type list.
* @tparam Other Other types provided by the type list.
*/
template<typename Type, typename First, typename... Other>
struct type_list_index<Type, type_list<First, Other...>> {
/*! @brief Unsigned integer type. */
using value_type = std::size_t;
/*! @brief Compile-time position of the given type in the sublist. */
static constexpr value_type value = 1u + type_list_index<Type, type_list<Other...>>::value;
};
/**
* @brief Provides compile-time type access to the types of a type list.
* @tparam Type Type to look for and for which to return the index.
* @tparam Other Other types provided by the type list.
*/
template<typename Type, typename... Other>
struct type_list_index<Type, type_list<Type, Other...>> {
static_assert(type_list_index<Type, type_list<Other...>>::value == sizeof...(Other), "Non-unique type");
/*! @brief Unsigned integer type. */
using value_type = std::size_t;
/*! @brief Compile-time position of the given type in the sublist. */
static constexpr value_type value = 0u;
};
/**
* @brief Provides compile-time type access to the types of a type list.
* @tparam Type Type to look for and for which to return the index.
*/
template<typename Type>
struct type_list_index<Type, type_list<>> {
/*! @brief Unsigned integer type. */
using value_type = std::size_t;
/*! @brief Compile-time position of the given type in the sublist. */
static constexpr value_type value = 0u;
};
/**
* @brief Helper variable template.
* @tparam List Type list.
* @tparam Type Type to look for and for which to return the index.
*/
template<typename Type, typename List>
inline constexpr std::size_t type_list_index_v = type_list_index<Type, List>::value;
/**
* @brief Concatenates multiple type lists.
* @tparam Type Types provided by the first type list.
* @tparam Other Types provided by the second type list.
* @return A type list composed by the types of both the type lists.
*/
template<typename... Type, typename... Other>
constexpr type_list<Type..., Other...> operator+(type_list<Type...>, type_list<Other...>) {
return {};
}
/*! @brief Primary template isn't defined on purpose. */
template<typename...>
struct type_list_cat;
/*! @brief Concatenates multiple type lists. */
template<>
struct type_list_cat<> {
/*! @brief A type list composed by the types of all the type lists. */
using type = type_list<>;
};
/**
* @brief Concatenates multiple type lists.
* @tparam Type Types provided by the first type list.
* @tparam Other Types provided by the second type list.
* @tparam List Other type lists, if any.
*/
template<typename... Type, typename... Other, typename... List>
struct type_list_cat<type_list<Type...>, type_list<Other...>, List...> {
/*! @brief A type list composed by the types of all the type lists. */
using type = typename type_list_cat<type_list<Type..., Other...>, List...>::type;
};
/**
* @brief Concatenates multiple type lists.
* @tparam Type Types provided by the type list.
*/
template<typename... Type>
struct type_list_cat<type_list<Type...>> {
/*! @brief A type list composed by the types of all the type lists. */
using type = type_list<Type...>;
};
/**
* @brief Helper type.
* @tparam List Type lists to concatenate.
*/
template<typename... List>
using type_list_cat_t = typename type_list_cat<List...>::type;
/*! @brief Primary template isn't defined on purpose. */
template<typename>
struct type_list_unique;
/**
* @brief Removes duplicates types from a type list.
* @tparam Type One of the types provided by the given type list.
* @tparam Other The other types provided by the given type list.
*/
template<typename Type, typename... Other>
struct type_list_unique<type_list<Type, Other...>> {
/*! @brief A type list without duplicate types. */
using type = std::conditional_t<
(std::is_same_v<Type, Other> || ...),
typename type_list_unique<type_list<Other...>>::type,
type_list_cat_t<type_list<Type>, typename type_list_unique<type_list<Other...>>::type>>;
};
/*! @brief Removes duplicates types from a type list. */
template<>
struct type_list_unique<type_list<>> {
/*! @brief A type list without duplicate types. */
using type = type_list<>;
};
/**
* @brief Helper type.
* @tparam Type A type list.
*/
template<typename Type>
using type_list_unique_t = typename type_list_unique<Type>::type;
/**
* @brief Provides the member constant `value` to true if a type list contains a
* given type, false otherwise.
* @tparam List Type list.
* @tparam Type Type to look for.
*/
template<typename List, typename Type>
struct type_list_contains;
/**
* @copybrief type_list_contains
* @tparam Type Types provided by the type list.
* @tparam Other Type to look for.
*/
template<typename... Type, typename Other>
struct type_list_contains<type_list<Type...>, Other>: std::disjunction<std::is_same<Type, Other>...> {};
/**
* @brief Helper variable template.
* @tparam List Type list.
* @tparam Type Type to look for.
*/
template<typename List, typename Type>
inline constexpr bool type_list_contains_v = type_list_contains<List, Type>::value;
/*! @brief Primary template isn't defined on purpose. */
template<typename...>
struct type_list_diff;
/**
* @brief Computes the difference between two type lists.
* @tparam Type Types provided by the first type list.
* @tparam Other Types provided by the second type list.
*/
template<typename... Type, typename... Other>
struct type_list_diff<type_list<Type...>, type_list<Other...>> {
/*! @brief A type list that is the difference between the two type lists. */
using type = type_list_cat_t<std::conditional_t<type_list_contains_v<type_list<Other...>, Type>, type_list<>, type_list<Type>>...>;
};
/**
* @brief Helper type.
* @tparam List Type lists between which to compute the difference.
*/
template<typename... List>
using type_list_diff_t = typename type_list_diff<List...>::type;
/*! @brief Primary template isn't defined on purpose. */
template<typename, template<typename...> class>
struct type_list_transform;
/**
* @brief Applies a given _function_ to a type list and generate a new list.
* @tparam Type Types provided by the type list.
* @tparam Op Unary operation as template class with a type member named `type`.
*/
template<typename... Type, template<typename...> class Op>
struct type_list_transform<type_list<Type...>, Op> {
/*! @brief Resulting type list after applying the transform function. */
using type = type_list<typename Op<Type>::type...>;
};
/**
* @brief Helper type.
* @tparam List Type list.
* @tparam Op Unary operation as template class with a type member named `type`.
*/
template<typename List, template<typename...> class Op>
using type_list_transform_t = typename type_list_transform<List, Op>::type;
/**
* @brief A class to use to push around lists of constant values, nothing more.
* @tparam Value Values provided by the value list.
*/
template<auto... Value>
struct value_list {
/*! @brief Value list type. */
using type = value_list;
/*! @brief Compile-time number of elements in the value list. */
static constexpr auto size = sizeof...(Value);
};
/*! @brief Primary template isn't defined on purpose. */
template<std::size_t, typename>
struct value_list_element;
/**
* @brief Provides compile-time indexed access to the values of a value list.
* @tparam Index Index of the value to return.
* @tparam Value First value provided by the value list.
* @tparam Other Other values provided by the value list.
*/
template<std::size_t Index, auto Value, auto... Other>
struct value_list_element<Index, value_list<Value, Other...>>
: value_list_element<Index - 1u, value_list<Other...>> {};
/**
* @brief Provides compile-time indexed access to the types of a type list.
* @tparam Value First value provided by the value list.
* @tparam Other Other values provided by the value list.
*/
template<auto Value, auto... Other>
struct value_list_element<0u, value_list<Value, Other...>> {
/*! @brief Searched value. */
static constexpr auto value = Value;
};
/**
* @brief Helper type.
* @tparam Index Index of the value to return.
* @tparam List Value list to search into.
*/
template<std::size_t Index, typename List>
inline constexpr auto value_list_element_v = value_list_element<Index, List>::value;
/**
* @brief Concatenates multiple value lists.
* @tparam Value Values provided by the first value list.
* @tparam Other Values provided by the second value list.
* @return A value list composed by the values of both the value lists.
*/
template<auto... Value, auto... Other>
constexpr value_list<Value..., Other...> operator+(value_list<Value...>, value_list<Other...>) {
return {};
}
/*! @brief Primary template isn't defined on purpose. */
template<typename...>
struct value_list_cat;
/*! @brief Concatenates multiple value lists. */
template<>
struct value_list_cat<> {
/*! @brief A value list composed by the values of all the value lists. */
using type = value_list<>;
};
/**
* @brief Concatenates multiple value lists.
* @tparam Value Values provided by the first value list.
* @tparam Other Values provided by the second value list.
* @tparam List Other value lists, if any.
*/
template<auto... Value, auto... Other, typename... List>
struct value_list_cat<value_list<Value...>, value_list<Other...>, List...> {
/*! @brief A value list composed by the values of all the value lists. */
using type = typename value_list_cat<value_list<Value..., Other...>, List...>::type;
};
/**
* @brief Concatenates multiple value lists.
* @tparam Value Values provided by the value list.
*/
template<auto... Value>
struct value_list_cat<value_list<Value...>> {
/*! @brief A value list composed by the values of all the value lists. */
using type = value_list<Value...>;
};
/**
* @brief Helper type.
* @tparam List Value lists to concatenate.
*/
template<typename... List>
using value_list_cat_t = typename value_list_cat<List...>::type;
/*! @brief Same as std::is_invocable, but with tuples. */
template<typename, typename>
struct is_applicable: std::false_type {};
/**
* @copybrief is_applicable
* @tparam Func A valid function type.
* @tparam Tuple Tuple-like type.
* @tparam Args The list of arguments to use to probe the function type.
*/
template<typename Func, template<typename...> class Tuple, typename... Args>
struct is_applicable<Func, Tuple<Args...>>: std::is_invocable<Func, Args...> {};
/**
* @copybrief is_applicable
* @tparam Func A valid function type.
* @tparam Tuple Tuple-like type.
* @tparam Args The list of arguments to use to probe the function type.
*/
template<typename Func, template<typename...> class Tuple, typename... Args>
struct is_applicable<Func, const Tuple<Args...>>: std::is_invocable<Func, Args...> {};
/**
* @brief Helper variable template.
* @tparam Func A valid function type.
* @tparam Args The list of arguments to use to probe the function type.
*/
template<typename Func, typename Args>
inline constexpr bool is_applicable_v = is_applicable<Func, Args>::value;
/*! @brief Same as std::is_invocable_r, but with tuples for arguments. */
template<typename, typename, typename>
struct is_applicable_r: std::false_type {};
/**
* @copybrief is_applicable_r
* @tparam Ret The type to which the return type of the function should be
* convertible.
* @tparam Func A valid function type.
* @tparam Args The list of arguments to use to probe the function type.
*/
template<typename Ret, typename Func, typename... Args>
struct is_applicable_r<Ret, Func, std::tuple<Args...>>: std::is_invocable_r<Ret, Func, Args...> {};
/**
* @brief Helper variable template.
* @tparam Ret The type to which the return type of the function should be
* convertible.
* @tparam Func A valid function type.
* @tparam Args The list of arguments to use to probe the function type.
*/
template<typename Ret, typename Func, typename Args>
inline constexpr bool is_applicable_r_v = is_applicable_r<Ret, Func, Args>::value;
/**
* @brief Provides the member constant `value` to true if a given type is
* complete, false otherwise.
* @tparam Type The type to test.
*/
template<typename Type, typename = void>
struct is_complete: std::false_type {};
/*! @copydoc is_complete */
template<typename Type>
struct is_complete<Type, std::void_t<decltype(sizeof(Type))>>: std::true_type {};
/**
* @brief Helper variable template.
* @tparam Type The type to test.
*/
template<typename Type>
inline constexpr bool is_complete_v = is_complete<Type>::value;
/**
* @brief Provides the member constant `value` to true if a given type is an
* iterator, false otherwise.
* @tparam Type The type to test.
*/
template<typename Type, typename = void>
struct is_iterator: std::false_type {};
/**
* @cond TURN_OFF_DOXYGEN
* Internal details not to be documented.
*/
namespace internal {
template<typename, typename = void>
struct has_iterator_category: std::false_type {};
template<typename Type>
struct has_iterator_category<Type, std::void_t<typename std::iterator_traits<Type>::iterator_category>>: std::true_type {};
} // namespace internal
/**
* Internal details not to be documented.
* @endcond
*/
/*! @copydoc is_iterator */
template<typename Type>
struct is_iterator<Type, std::enable_if_t<!std::is_same_v<std::remove_cv_t<std::remove_pointer_t<Type>>, void>>>
: internal::has_iterator_category<Type> {};
/**
* @brief Helper variable template.
* @tparam Type The type to test.
*/
template<typename Type>
inline constexpr bool is_iterator_v = is_iterator<Type>::value;
/**
* @brief Provides the member constant `value` to true if a given type is both
* an empty and non-final class, false otherwise.
* @tparam Type The type to test
*/
template<typename Type>
struct is_ebco_eligible
: std::conjunction<std::is_empty<Type>, std::negation<std::is_final<Type>>> {};
/**
* @brief Helper variable template.
* @tparam Type The type to test.
*/
template<typename Type>
inline constexpr bool is_ebco_eligible_v = is_ebco_eligible<Type>::value;
/**
* @brief Provides the member constant `value` to true if `Type::is_transparent`
* is valid and denotes a type, false otherwise.
* @tparam Type The type to test.
*/
template<typename Type, typename = void>
struct is_transparent: std::false_type {};
/*! @copydoc is_transparent */
template<typename Type>
struct is_transparent<Type, std::void_t<typename Type::is_transparent>>: std::true_type {};
/**
* @brief Helper variable template.
* @tparam Type The type to test.
*/
template<typename Type>
inline constexpr bool is_transparent_v = is_transparent<Type>::value;
/**
* @brief Provides the member constant `value` to true if a given type is
* equality comparable, false otherwise.
* @tparam Type The type to test.
*/
template<typename Type, typename = void>
struct is_equality_comparable: std::false_type {};
/**
* @cond TURN_OFF_DOXYGEN
* Internal details not to be documented.
*/
namespace internal {
template<typename, typename = void>
struct has_tuple_size_value: std::false_type {};
template<typename Type>
struct has_tuple_size_value<Type, std::void_t<decltype(std::tuple_size<const Type>::value)>>: std::true_type {};
template<typename Type, std::size_t... Index>
[[nodiscard]] constexpr bool unpack_maybe_equality_comparable(std::index_sequence<Index...>) {
return (is_equality_comparable<std::tuple_element_t<Index, Type>>::value && ...);
}
template<typename>
[[nodiscard]] constexpr bool maybe_equality_comparable(choice_t<0>) {
return true;
}
template<typename Type>
[[nodiscard]] constexpr auto maybe_equality_comparable(choice_t<1>) -> decltype(std::declval<typename Type::value_type>(), bool{}) {
if constexpr(is_iterator_v<Type>) {
return true;
} else if constexpr(std::is_same_v<typename Type::value_type, Type>) {
return maybe_equality_comparable<Type>(choice<0>);
} else {
return is_equality_comparable<typename Type::value_type>::value;
}
}
template<typename Type>
[[nodiscard]] constexpr std::enable_if_t<is_complete_v<std::tuple_size<std::remove_cv_t<Type>>>, bool> maybe_equality_comparable(choice_t<2>) {
if constexpr(has_tuple_size_value<Type>::value) {
return unpack_maybe_equality_comparable<Type>(std::make_index_sequence<std::tuple_size<Type>::value>{});
} else {
return maybe_equality_comparable<Type>(choice<1>);
}
}
} // namespace internal
/**
* Internal details not to be documented.
* @endcond
*/
/*! @copydoc is_equality_comparable */
template<typename Type>
struct is_equality_comparable<Type, std::void_t<decltype(std::declval<Type>() == std::declval<Type>())>>
: std::bool_constant<internal::maybe_equality_comparable<Type>(choice<2>)> {};
/**
* @brief Helper variable template.
* @tparam Type The type to test.
*/
template<typename Type>
inline constexpr bool is_equality_comparable_v = is_equality_comparable<Type>::value;
/**
* @brief Transcribes the constness of a type to another type.
* @tparam To The type to which to transcribe the constness.
* @tparam From The type from which to transcribe the constness.
*/
template<typename To, typename From>
struct constness_as {
/*! @brief The type resulting from the transcription of the constness. */
using type = std::remove_const_t<To>;
};
/*! @copydoc constness_as */
template<typename To, typename From>
struct constness_as<To, const From> {
/*! @brief The type resulting from the transcription of the constness. */
using type = const To;
};
/**
* @brief Alias template to facilitate the transcription of the constness.
* @tparam To The type to which to transcribe the constness.
* @tparam From The type from which to transcribe the constness.
*/
template<typename To, typename From>
using constness_as_t = typename constness_as<To, From>::type;
/**
* @brief Extracts the class of a non-static member object or function.
* @tparam Member A pointer to a non-static member object or function.
*/
template<typename Member>
class member_class {
static_assert(std::is_member_pointer_v<Member>, "Invalid pointer type to non-static member object or function");
template<typename Class, typename Ret, typename... Args>
static Class *clazz(Ret (Class::*)(Args...));
template<typename Class, typename Ret, typename... Args>
static Class *clazz(Ret (Class::*)(Args...) const);
template<typename Class, typename Type>
static Class *clazz(Type Class::*);
public:
/*! @brief The class of the given non-static member object or function. */
using type = std::remove_pointer_t<decltype(clazz(std::declval<Member>()))>;
};
/**
* @brief Helper type.
* @tparam Member A pointer to a non-static member object or function.
*/
template<typename Member>
using member_class_t = typename member_class<Member>::type;
/**
* @brief Extracts the n-th argument of a given function or member function.
* @tparam Index The index of the argument to extract.
* @tparam Candidate A valid function, member function or data member.
*/
template<std::size_t Index, auto Candidate>
class nth_argument {
template<typename Ret, typename... Args>
static constexpr type_list<Args...> pick_up(Ret (*)(Args...));
template<typename Ret, typename Class, typename... Args>
static constexpr type_list<Args...> pick_up(Ret (Class ::*)(Args...));
template<typename Ret, typename Class, typename... Args>
static constexpr type_list<Args...> pick_up(Ret (Class ::*)(Args...) const);
template<typename Type, typename Class>
static constexpr type_list<Type> pick_up(Type Class ::*);
public:
/*! @brief N-th argument of the given function or member function. */
using type = type_list_element_t<Index, decltype(pick_up(Candidate))>;
};
/**
* @brief Helper type.
* @tparam Index The index of the argument to extract.
* @tparam Candidate A valid function, member function or data member.
*/
template<std::size_t Index, auto Candidate>
using nth_argument_t = typename nth_argument<Index, Candidate>::type;
} // namespace entt
#endif
// #include "fwd.hpp"
#ifndef ENTT_CONTAINER_FWD_HPP
#define ENTT_CONTAINER_FWD_HPP
#include <functional>
#include <memory>
namespace entt {
template<
typename Key,
typename Type,
typename = std::hash<Key>,
typename = std::equal_to<Key>,
typename = std::allocator<std::pair<const Key, Type>>>
class dense_map;
template<
typename Type,
typename = std::hash<Type>,
typename = std::equal_to<Type>,
typename = std::allocator<Type>>
class dense_set;
} // namespace entt
#endif
namespace entt {
/**
* @cond TURN_OFF_DOXYGEN
* Internal details not to be documented.
*/
namespace internal {
template<typename Key, typename Type>
struct dense_map_node final {
using value_type = std::pair<Key, Type>;
template<typename... Args>
dense_map_node(const std::size_t pos, Args &&...args)
: next{pos},
element{std::forward<Args>(args)...} {}
template<typename Allocator, typename... Args>
dense_map_node(std::allocator_arg_t, const Allocator &allocator, const std::size_t pos, Args &&...args)
: next{pos},
element{entt::make_obj_using_allocator<value_type>(allocator, std::forward<Args>(args)...)} {}
template<typename Allocator>
dense_map_node(std::allocator_arg_t, const Allocator &allocator, const dense_map_node &other)
: next{other.next},
element{entt::make_obj_using_allocator<value_type>(allocator, other.element)} {}
template<typename Allocator>
dense_map_node(std::allocator_arg_t, const Allocator &allocator, dense_map_node &&other)
: next{other.next},
element{entt::make_obj_using_allocator<value_type>(allocator, std::move(other.element))} {}
std::size_t next;
value_type element;
};
template<typename It>
class dense_map_iterator final {
template<typename>
friend class dense_map_iterator;
using first_type = decltype(std::as_const(std::declval<It>()->element.first));
using second_type = decltype((std::declval<It>()->element.second));
public:
using value_type = std::pair<first_type, second_type>;
using pointer = input_iterator_pointer<value_type>;
using reference = value_type;
using difference_type = std::ptrdiff_t;
using iterator_category = std::input_iterator_tag;
constexpr dense_map_iterator() noexcept
: it{} {}
constexpr dense_map_iterator(const It iter) noexcept
: it{iter} {}
template<typename Other, typename = std::enable_if_t<!std::is_same_v<It, Other> && std::is_constructible_v<It, Other>>>
constexpr dense_map_iterator(const dense_map_iterator<Other> &other) noexcept
: it{other.it} {}
constexpr dense_map_iterator &operator++() noexcept {
return ++it, *this;
}
constexpr dense_map_iterator operator++(int) noexcept {
dense_map_iterator orig = *this;
return ++(*this), orig;
}
constexpr dense_map_iterator &operator--() noexcept {
return --it, *this;
}
constexpr dense_map_iterator operator--(int) noexcept {
dense_map_iterator orig = *this;
return operator--(), orig;
}
constexpr dense_map_iterator &operator+=(const difference_type value) noexcept {
it += value;
return *this;
}
constexpr dense_map_iterator operator+(const difference_type value) const noexcept {
dense_map_iterator copy = *this;
return (copy += value);
}
constexpr dense_map_iterator &operator-=(const difference_type value) noexcept {
return (*this += -value);
}
constexpr dense_map_iterator operator-(const difference_type value) const noexcept {
return (*this + -value);
}
[[nodiscard]] constexpr reference operator[](const difference_type value) const noexcept {
return {it[value].element.first, it[value].element.second};
}
[[nodiscard]] constexpr pointer operator->() const noexcept {
return operator*();
}
[[nodiscard]] constexpr reference operator*() const noexcept {
return {it->element.first, it->element.second};
}
template<typename ILhs, typename IRhs>
friend constexpr std::ptrdiff_t operator-(const dense_map_iterator<ILhs> &, const dense_map_iterator<IRhs> &) noexcept;
template<typename ILhs, typename IRhs>
friend constexpr bool operator==(const dense_map_iterator<ILhs> &, const dense_map_iterator<IRhs> &) noexcept;
template<typename ILhs, typename IRhs>
friend constexpr bool operator<(const dense_map_iterator<ILhs> &, const dense_map_iterator<IRhs> &) noexcept;
private:
It it;
};
template<typename ILhs, typename IRhs>
[[nodiscard]] constexpr std::ptrdiff_t operator-(const dense_map_iterator<ILhs> &lhs, const dense_map_iterator<IRhs> &rhs) noexcept {
return lhs.it - rhs.it;
}
template<typename ILhs, typename IRhs>
[[nodiscard]] constexpr bool operator==(const dense_map_iterator<ILhs> &lhs, const dense_map_iterator<IRhs> &rhs) noexcept {
return lhs.it == rhs.it;
}
template<typename ILhs, typename IRhs>
[[nodiscard]] constexpr bool operator!=(const dense_map_iterator<ILhs> &lhs, const dense_map_iterator<IRhs> &rhs) noexcept {
return !(lhs == rhs);
}
template<typename ILhs, typename IRhs>
[[nodiscard]] constexpr bool operator<(const dense_map_iterator<ILhs> &lhs, const dense_map_iterator<IRhs> &rhs) noexcept {
return lhs.it < rhs.it;
}
template<typename ILhs, typename IRhs>
[[nodiscard]] constexpr bool operator>(const dense_map_iterator<ILhs> &lhs, const dense_map_iterator<IRhs> &rhs) noexcept {
return rhs < lhs;
}
template<typename ILhs, typename IRhs>
[[nodiscard]] constexpr bool operator<=(const dense_map_iterator<ILhs> &lhs, const dense_map_iterator<IRhs> &rhs) noexcept {
return !(lhs > rhs);
}
template<typename ILhs, typename IRhs>
[[nodiscard]] constexpr bool operator>=(const dense_map_iterator<ILhs> &lhs, const dense_map_iterator<IRhs> &rhs) noexcept {
return !(lhs < rhs);
}
template<typename It>
class dense_map_local_iterator final {
template<typename>
friend class dense_map_local_iterator;
using first_type = decltype(std::as_const(std::declval<It>()->element.first));
using second_type = decltype((std::declval<It>()->element.second));
public:
using value_type = std::pair<first_type, second_type>;
using pointer = input_iterator_pointer<value_type>;
using reference = value_type;
using difference_type = std::ptrdiff_t;
using iterator_category = std::input_iterator_tag;
constexpr dense_map_local_iterator() noexcept
: it{},
offset{} {}
constexpr dense_map_local_iterator(It iter, const std::size_t pos) noexcept
: it{iter},
offset{pos} {}
template<typename Other, typename = std::enable_if_t<!std::is_same_v<It, Other> && std::is_constructible_v<It, Other>>>
constexpr dense_map_local_iterator(const dense_map_local_iterator<Other> &other) noexcept
: it{other.it},
offset{other.offset} {}
constexpr dense_map_local_iterator &operator++() noexcept {
return offset = it[offset].next, *this;
}
constexpr dense_map_local_iterator operator++(int) noexcept {
dense_map_local_iterator orig = *this;
return ++(*this), orig;
}
[[nodiscard]] constexpr pointer operator->() const noexcept {
return operator*();
}
[[nodiscard]] constexpr reference operator*() const noexcept {
return {it[offset].element.first, it[offset].element.second};
}
[[nodiscard]] constexpr std::size_t index() const noexcept {
return offset;
}
private:
It it;
std::size_t offset;
};
template<typename ILhs, typename IRhs>
[[nodiscard]] constexpr bool operator==(const dense_map_local_iterator<ILhs> &lhs, const dense_map_local_iterator<IRhs> &rhs) noexcept {
return lhs.index() == rhs.index();
}
template<typename ILhs, typename IRhs>
[[nodiscard]] constexpr bool operator!=(const dense_map_local_iterator<ILhs> &lhs, const dense_map_local_iterator<IRhs> &rhs) noexcept {
return !(lhs == rhs);
}
} // namespace internal
/**
* Internal details not to be documented.
* @endcond
*/
/**
* @brief Associative container for key-value pairs with unique keys.
*
* Internally, elements are organized into buckets. Which bucket an element is
* placed into depends entirely on the hash of its key. Keys with the same hash
* code appear in the same bucket.
*
* @tparam Key Key type of the associative container.
* @tparam Type Mapped type of the associative container.
* @tparam Hash Type of function to use to hash the keys.
* @tparam KeyEqual Type of function to use to compare the keys for equality.
* @tparam Allocator Type of allocator used to manage memory and elements.
*/
template<typename Key, typename Type, typename Hash, typename KeyEqual, typename Allocator>
class dense_map {
static constexpr float default_threshold = 0.875f;
static constexpr std::size_t minimum_capacity = 8u;
using node_type = internal::dense_map_node<Key, Type>;
using alloc_traits = typename std::allocator_traits<Allocator>;
static_assert(std::is_same_v<typename alloc_traits::value_type, std::pair<const Key, Type>>, "Invalid value type");
using sparse_container_type = std::vector<std::size_t, typename alloc_traits::template rebind_alloc<std::size_t>>;
using packed_container_type = std::vector<node_type, typename alloc_traits::template rebind_alloc<node_type>>;
template<typename Other>
[[nodiscard]] std::size_t key_to_bucket(const Other &key) const noexcept {
return fast_mod(static_cast<size_type>(sparse.second()(key)), bucket_count());
}
template<typename Other>
[[nodiscard]] auto constrained_find(const Other &key, std::size_t bucket) {
for(auto it = begin(bucket), last = end(bucket); it != last; ++it) {
if(packed.second()(it->first, key)) {
return begin() + static_cast<typename iterator::difference_type>(it.index());
}
}
return end();
}
template<typename Other>
[[nodiscard]] auto constrained_find(const Other &key, std::size_t bucket) const {
for(auto it = cbegin(bucket), last = cend(bucket); it != last; ++it) {
if(packed.second()(it->first, key)) {
return cbegin() + static_cast<typename iterator::difference_type>(it.index());
}
}
return cend();
}
template<typename Other, typename... Args>
[[nodiscard]] auto insert_or_do_nothing(Other &&key, Args &&...args) {
const auto index = key_to_bucket(key);
if(auto it = constrained_find(key, index); it != end()) {
return std::make_pair(it, false);
}
packed.first().emplace_back(sparse.first()[index], std::piecewise_construct, std::forward_as_tuple(std::forward<Other>(key)), std::forward_as_tuple(std::forward<Args>(args)...));
sparse.first()[index] = packed.first().size() - 1u;
rehash_if_required();
return std::make_pair(--end(), true);
}
template<typename Other, typename Arg>
[[nodiscard]] auto insert_or_overwrite(Other &&key, Arg &&value) {
const auto index = key_to_bucket(key);
if(auto it = constrained_find(key, index); it != end()) {
it->second = std::forward<Arg>(value);
return std::make_pair(it, false);
}
packed.first().emplace_back(sparse.first()[index], std::forward<Other>(key), std::forward<Arg>(value));
sparse.first()[index] = packed.first().size() - 1u;
rehash_if_required();
return std::make_pair(--end(), true);
}
void move_and_pop(const std::size_t pos) {
if(const auto last = size() - 1u; pos != last) {
size_type *curr = sparse.first().data() + key_to_bucket(packed.first().back().element.first);
packed.first()[pos] = std::move(packed.first().back());
for(; *curr != last; curr = &packed.first()[*curr].next) {}
*curr = pos;
}
packed.first().pop_back();
}
void rehash_if_required() {
if(size() > (bucket_count() * max_load_factor())) {
rehash(bucket_count() * 2u);
}
}
public:
/*! @brief Key type of the container. */
using key_type = Key;
/*! @brief Mapped type of the container. */
using mapped_type = Type;
/*! @brief Key-value type of the container. */
using value_type = std::pair<const Key, Type>;
/*! @brief Unsigned integer type. */
using size_type = std::size_t;
/*! @brief Type of function to use to hash the keys. */
using hasher = Hash;
/*! @brief Type of function to use to compare the keys for equality. */
using key_equal = KeyEqual;
/*! @brief Allocator type. */
using allocator_type = Allocator;
/*! @brief Input iterator type. */
using iterator = internal::dense_map_iterator<typename packed_container_type::iterator>;
/*! @brief Constant input iterator type. */
using const_iterator = internal::dense_map_iterator<typename packed_container_type::const_iterator>;
/*! @brief Input iterator type. */
using local_iterator = internal::dense_map_local_iterator<typename packed_container_type::iterator>;
/*! @brief Constant input iterator type. */
using const_local_iterator = internal::dense_map_local_iterator<typename packed_container_type::const_iterator>;
/*! @brief Default constructor. */
dense_map()
: dense_map{minimum_capacity} {}
/**
* @brief Constructs an empty container with a given allocator.
* @param allocator The allocator to use.
*/
explicit dense_map(const allocator_type &allocator)
: dense_map{minimum_capacity, hasher{}, key_equal{}, allocator} {}
/**
* @brief Constructs an empty container with a given allocator and user
* supplied minimal number of buckets.
* @param cnt Minimal number of buckets.
* @param allocator The allocator to use.
*/
dense_map(const size_type cnt, const allocator_type &allocator)
: dense_map{cnt, hasher{}, key_equal{}, allocator} {}
/**
* @brief Constructs an empty container with a given allocator, hash
* function and user supplied minimal number of buckets.
* @param cnt Minimal number of buckets.
* @param hash Hash function to use.
* @param allocator The allocator to use.
*/
dense_map(const size_type cnt, const hasher &hash, const allocator_type &allocator)
: dense_map{cnt, hash, key_equal{}, allocator} {}
/**
* @brief Constructs an empty container with a given allocator, hash
* function, compare function and user supplied minimal number of buckets.
* @param cnt Minimal number of buckets.
* @param hash Hash function to use.
* @param equal Compare function to use.
* @param allocator The allocator to use.
*/
explicit dense_map(const size_type cnt, const hasher &hash = hasher{}, const key_equal &equal = key_equal{}, const allocator_type &allocator = allocator_type{})
: sparse{allocator, hash},
packed{allocator, equal},
threshold{default_threshold} {
rehash(cnt);
}
/*! @brief Default copy constructor. */
dense_map(const dense_map &) = default;
/**
* @brief Allocator-extended copy constructor.
* @param other The instance to copy from.
* @param allocator The allocator to use.
*/
dense_map(const dense_map &other, const allocator_type &allocator)
: sparse{std::piecewise_construct, std::forward_as_tuple(other.sparse.first(), allocator), std::forward_as_tuple(other.sparse.second())},
packed{std::piecewise_construct, std::forward_as_tuple(other.packed.first(), allocator), std::forward_as_tuple(other.packed.second())},
threshold{other.threshold} {}
/*! @brief Default move constructor. */
dense_map(dense_map &&) noexcept(std::is_nothrow_move_constructible_v<compressed_pair<sparse_container_type, hasher>> &&std::is_nothrow_move_constructible_v<compressed_pair<packed_container_type, key_equal>>) = default;
/**
* @brief Allocator-extended move constructor.
* @param other The instance to move from.
* @param allocator The allocator to use.
*/
dense_map(dense_map &&other, const allocator_type &allocator)
: sparse{std::piecewise_construct, std::forward_as_tuple(std::move(other.sparse.first()), allocator), std::forward_as_tuple(std::move(other.sparse.second()))},
packed{std::piecewise_construct, std::forward_as_tuple(std::move(other.packed.first()), allocator), std::forward_as_tuple(std::move(other.packed.second()))},
threshold{other.threshold} {}
/**
* @brief Default copy assignment operator.
* @return This container.
*/
dense_map &operator=(const dense_map &) = default;
/**
* @brief Default move assignment operator.
* @return This container.
*/
dense_map &operator=(dense_map &&) noexcept(std::is_nothrow_move_assignable_v<compressed_pair<sparse_container_type, hasher>> &&std::is_nothrow_move_assignable_v<compressed_pair<packed_container_type, key_equal>>) = default;
/**
* @brief Returns the associated allocator.
* @return The associated allocator.
*/
[[nodiscard]] constexpr allocator_type get_allocator() const noexcept {
return sparse.first().get_allocator();
}
/**
* @brief Returns an iterator to the beginning.
*
* The returned iterator points to the first instance of the internal array.
* If the array is empty, the returned iterator will be equal to `end()`.
*
* @return An iterator to the first instance of the internal array.
*/
[[nodiscard]] const_iterator cbegin() const noexcept {
return packed.first().begin();
}
/*! @copydoc cbegin */
[[nodiscard]] const_iterator begin() const noexcept {
return cbegin();
}
/*! @copydoc begin */
[[nodiscard]] iterator begin() noexcept {
return packed.first().begin();
}
/**
* @brief Returns an iterator to the end.
*
* The returned iterator points to the element following the last instance
* of the internal array. Attempting to dereference the returned iterator
* results in undefined behavior.
*
* @return An iterator to the element following the last instance of the
* internal array.
*/
[[nodiscard]] const_iterator cend() const noexcept {
return packed.first().end();
}
/*! @copydoc cend */
[[nodiscard]] const_iterator end() const noexcept {
return cend();
}
/*! @copydoc end */
[[nodiscard]] iterator end() noexcept {
return packed.first().end();
}
/**
* @brief Checks whether a container is empty.
* @return True if the container is empty, false otherwise.
*/
[[nodiscard]] bool empty() const noexcept {
return packed.first().empty();
}
/**
* @brief Returns the number of elements in a container.
* @return Number of elements in a container.
*/
[[nodiscard]] size_type size() const noexcept {
return packed.first().size();
}
/**
* @brief Returns the maximum possible number of elements.
* @return Maximum possible number of elements.
*/
[[nodiscard]] size_type max_size() const noexcept {
return packed.first().max_size();
}
/*! @brief Clears the container. */
void clear() noexcept {
sparse.first().clear();
packed.first().clear();
rehash(0u);
}
/**
* @brief Inserts an element into the container, if the key does not exist.
* @param value A key-value pair eventually convertible to the value type.
* @return A pair consisting of an iterator to the inserted element (or to
* the element that prevented the insertion) and a bool denoting whether the
* insertion took place.
*/
std::pair<iterator, bool> insert(const value_type &value) {
return insert_or_do_nothing(value.first, value.second);
}
/*! @copydoc insert */
std::pair<iterator, bool> insert(value_type &&value) {
return insert_or_do_nothing(std::move(value.first), std::move(value.second));
}
/**
* @copydoc insert
* @tparam Arg Type of the key-value pair to insert into the container.
*/
template<typename Arg>
std::enable_if_t<std::is_constructible_v<value_type, Arg &&>, std::pair<iterator, bool>>
insert(Arg &&value) {
return insert_or_do_nothing(std::forward<Arg>(value).first, std::forward<Arg>(value).second);
}
/**
* @brief Inserts elements into the container, if their keys do not exist.
* @tparam It Type of input iterator.
* @param first An iterator to the first element of the range of elements.
* @param last An iterator past the last element of the range of elements.
*/
template<typename It>
void insert(It first, It last) {
for(; first != last; ++first) {
insert(*first);
}
}
/**
* @brief Inserts an element into the container or assigns to the current
* element if the key already exists.
* @tparam Arg Type of the value to insert or assign.
* @param key A key used both to look up and to insert if not found.
* @param value A value to insert or assign.
* @return A pair consisting of an iterator to the element and a bool
* denoting whether the insertion took place.
*/
template<typename Arg>
std::pair<iterator, bool> insert_or_assign(const key_type &key, Arg &&value) {
return insert_or_overwrite(key, std::forward<Arg>(value));
}
/*! @copydoc insert_or_assign */
template<typename Arg>
std::pair<iterator, bool> insert_or_assign(key_type &&key, Arg &&value) {
return insert_or_overwrite(std::move(key), std::forward<Arg>(value));
}
/**
* @brief Constructs an element in-place, if the key does not exist.
*
* The element is also constructed when the container already has the key,
* in which case the newly constructed object is destroyed immediately.
*
* @tparam Args Types of arguments to forward to the constructor of the
* element.
* @param args Arguments to forward to the constructor of the element.
* @return A pair consisting of an iterator to the inserted element (or to
* the element that prevented the insertion) and a bool denoting whether the
* insertion took place.
*/
template<typename... Args>
std::pair<iterator, bool> emplace([[maybe_unused]] Args &&...args) {
if constexpr(sizeof...(Args) == 0u) {
return insert_or_do_nothing(key_type{});
} else if constexpr(sizeof...(Args) == 1u) {
return insert_or_do_nothing(std::forward<Args>(args).first..., std::forward<Args>(args).second...);
} else if constexpr(sizeof...(Args) == 2u) {
return insert_or_do_nothing(std::forward<Args>(args)...);
} else {
auto &node = packed.first().emplace_back(packed.first().size(), std::forward<Args>(args)...);
const auto index = key_to_bucket(node.element.first);
if(auto it = constrained_find(node.element.first, index); it != end()) {
packed.first().pop_back();
return std::make_pair(it, false);
}
std::swap(node.next, sparse.first()[index]);
rehash_if_required();
return std::make_pair(--end(), true);
}
}
/**
* @brief Inserts in-place if the key does not exist, does nothing if the
* key exists.
* @tparam Args Types of arguments to forward to the constructor of the
* element.
* @param key A key used both to look up and to insert if not found.
* @param args Arguments to forward to the constructor of the element.
* @return A pair consisting of an iterator to the inserted element (or to
* the element that prevented the insertion) and a bool denoting whether the
* insertion took place.
*/
template<typename... Args>
std::pair<iterator, bool> try_emplace(const key_type &key, Args &&...args) {
return insert_or_do_nothing(key, std::forward<Args>(args)...);
}
/*! @copydoc try_emplace */
template<typename... Args>
std::pair<iterator, bool> try_emplace(key_type &&key, Args &&...args) {
return insert_or_do_nothing(std::move(key), std::forward<Args>(args)...);
}
/**
* @brief Removes an element from a given position.
* @param pos An iterator to the element to remove.
* @return An iterator following the removed element.
*/
iterator erase(const_iterator pos) {
const auto diff = pos - cbegin();
erase(pos->first);
return begin() + diff;
}
/**
* @brief Removes the given elements from a container.
* @param first An iterator to the first element of the range of elements.
* @param last An iterator past the last element of the range of elements.
* @return An iterator following the last removed element.
*/
iterator erase(const_iterator first, const_iterator last) {
const auto dist = first - cbegin();
for(auto from = last - cbegin(); from != dist; --from) {
erase(packed.first()[from - 1u].element.first);
}
return (begin() + dist);
}
/**
* @brief Removes the element associated with a given key.
* @param key A key value of an element to remove.
* @return Number of elements removed (either 0 or 1).
*/
size_type erase(const key_type &key) {
for(size_type *curr = sparse.first().data() + key_to_bucket(key); *curr != (std::numeric_limits<size_type>::max)(); curr = &packed.first()[*curr].next) {
if(packed.second()(packed.first()[*curr].element.first, key)) {
const auto index = *curr;
*curr = packed.first()[*curr].next;
move_and_pop(index);
return 1u;
}
}
return 0u;
}
/**
* @brief Exchanges the contents with those of a given container.
* @param other Container to exchange the content with.
*/
void swap(dense_map &other) {
using std::swap;
swap(sparse, other.sparse);
swap(packed, other.packed);
swap(threshold, other.threshold);
}
/**
* @brief Accesses a given element with bounds checking.
* @param key A key of an element to find.
* @return A reference to the mapped value of the requested element.
*/
[[nodiscard]] mapped_type &at(const key_type &key) {
auto it = find(key);
ENTT_ASSERT(it != end(), "Invalid key");
return it->second;
}
/*! @copydoc at */
[[nodiscard]] const mapped_type &at(const key_type &key) const {
auto it = find(key);
ENTT_ASSERT(it != cend(), "Invalid key");
return it->second;
}
/**
* @brief Accesses or inserts a given element.
* @param key A key of an element to find or insert.
* @return A reference to the mapped value of the requested element.
*/
[[nodiscard]] mapped_type &operator[](const key_type &key) {
return insert_or_do_nothing(key).first->second;
}
/**
* @brief Accesses or inserts a given element.
* @param key A key of an element to find or insert.
* @return A reference to the mapped value of the requested element.
*/
[[nodiscard]] mapped_type &operator[](key_type &&key) {
return insert_or_do_nothing(std::move(key)).first->second;
}
/**
* @brief Returns the number of elements matching a key (either 1 or 0).
* @param key Key value of an element to search for.
* @return Number of elements matching the key (either 1 or 0).
*/
[[nodiscard]] size_type count(const key_type &key) const {
return find(key) != end();
}
/**
* @brief Returns the number of elements matching a key (either 1 or 0).
* @tparam Other Type of the key value of an element to search for.
* @param key Key value of an element to search for.
* @return Number of elements matching the key (either 1 or 0).
*/
template<typename Other>
[[nodiscard]] std::enable_if_t<is_transparent_v<hasher> && is_transparent_v<key_equal>, std::conditional_t<false, Other, size_type>>
count(const Other &key) const {
return find(key) != end();
}
/**
* @brief Finds an element with a given key.
* @param key Key value of an element to search for.
* @return An iterator to an element with the given key. If no such element
* is found, a past-the-end iterator is returned.
*/
[[nodiscard]] iterator find(const key_type &key) {
return constrained_find(key, key_to_bucket(key));
}
/*! @copydoc find */
[[nodiscard]] const_iterator find(const key_type &key) const {
return constrained_find(key, key_to_bucket(key));
}
/**
* @brief Finds an element with a key that compares _equivalent_ to a given
* key.
* @tparam Other Type of the key value of an element to search for.
* @param key Key value of an element to search for.
* @return An iterator to an element with the given key. If no such element
* is found, a past-the-end iterator is returned.
*/
template<typename Other>
[[nodiscard]] std::enable_if_t<is_transparent_v<hasher> && is_transparent_v<key_equal>, std::conditional_t<false, Other, iterator>>
find(const Other &key) {
return constrained_find(key, key_to_bucket(key));
}
/*! @copydoc find */
template<typename Other>
[[nodiscard]] std::enable_if_t<is_transparent_v<hasher> && is_transparent_v<key_equal>, std::conditional_t<false, Other, const_iterator>>
find(const Other &key) const {
return constrained_find(key, key_to_bucket(key));
}
/**
* @brief Returns a range containing all elements with a given key.
* @param key Key value of an element to search for.
* @return A pair of iterators pointing to the first element and past the
* last element of the range.
*/
[[nodiscard]] std::pair<iterator, iterator> equal_range(const key_type &key) {
const auto it = find(key);
return {it, it + !(it == end())};
}
/*! @copydoc equal_range */
[[nodiscard]] std::pair<const_iterator, const_iterator> equal_range(const key_type &key) const {
const auto it = find(key);
return {it, it + !(it == cend())};
}
/**
* @brief Returns a range containing all elements that compare _equivalent_
* to a given key.
* @tparam Other Type of an element to search for.
* @param key Key value of an element to search for.
* @return A pair of iterators pointing to the first element and past the
* last element of the range.
*/
template<typename Other>
[[nodiscard]] std::enable_if_t<is_transparent_v<hasher> && is_transparent_v<key_equal>, std::conditional_t<false, Other, std::pair<iterator, iterator>>>
equal_range(const Other &key) {
const auto it = find(key);
return {it, it + !(it == end())};
}
/*! @copydoc equal_range */
template<class Other>
[[nodiscard]] std::enable_if_t<is_transparent_v<hasher> && is_transparent_v<key_equal>, std::conditional_t<false, Other, std::pair<const_iterator, const_iterator>>>
equal_range(const Other &key) const {
const auto it = find(key);
return {it, it + !(it == cend())};
}
/**
* @brief Checks if the container contains an element with a given key.
* @param key Key value of an element to search for.
* @return True if there is such an element, false otherwise.
*/
[[nodiscard]] bool contains(const key_type &key) const {
return (find(key) != cend());
}
/**
* @brief Checks if the container contains an element with a key that
* compares _equivalent_ to a given value.
* @tparam Other Type of the key value of an element to search for.
* @param key Key value of an element to search for.
* @return True if there is such an element, false otherwise.
*/
template<typename Other>
[[nodiscard]] std::enable_if_t<is_transparent_v<hasher> && is_transparent_v<key_equal>, std::conditional_t<false, Other, bool>>
contains(const Other &key) const {
return (find(key) != cend());
}
/**
* @brief Returns an iterator to the beginning of a given bucket.
* @param index An index of a bucket to access.
* @return An iterator to the beginning of the given bucket.
*/
[[nodiscard]] const_local_iterator cbegin(const size_type index) const {
return {packed.first().begin(), sparse.first()[index]};
}
/**
* @brief Returns an iterator to the beginning of a given bucket.
* @param index An index of a bucket to access.
* @return An iterator to the beginning of the given bucket.
*/
[[nodiscard]] const_local_iterator begin(const size_type index) const {
return cbegin(index);
}
/**
* @brief Returns an iterator to the beginning of a given bucket.
* @param index An index of a bucket to access.
* @return An iterator to the beginning of the given bucket.
*/
[[nodiscard]] local_iterator begin(const size_type index) {
return {packed.first().begin(), sparse.first()[index]};
}
/**
* @brief Returns an iterator to the end of a given bucket.
* @param index An index of a bucket to access.
* @return An iterator to the end of the given bucket.
*/
[[nodiscard]] const_local_iterator cend([[maybe_unused]] const size_type index) const {
return {packed.first().begin(), (std::numeric_limits<size_type>::max)()};
}
/**
* @brief Returns an iterator to the end of a given bucket.
* @param index An index of a bucket to access.
* @return An iterator to the end of the given bucket.
*/
[[nodiscard]] const_local_iterator end(const size_type index) const {
return cend(index);
}
/**
* @brief Returns an iterator to the end of a given bucket.
* @param index An index of a bucket to access.
* @return An iterator to the end of the given bucket.
*/
[[nodiscard]] local_iterator end([[maybe_unused]] const size_type index) {
return {packed.first().begin(), (std::numeric_limits<size_type>::max)()};
}
/**
* @brief Returns the number of buckets.
* @return The number of buckets.
*/
[[nodiscard]] size_type bucket_count() const {
return sparse.first().size();
}
/**
* @brief Returns the maximum number of buckets.
* @return The maximum number of buckets.
*/
[[nodiscard]] size_type max_bucket_count() const {
return sparse.first().max_size();
}
/**
* @brief Returns the number of elements in a given bucket.
* @param index The index of the bucket to examine.
* @return The number of elements in the given bucket.
*/
[[nodiscard]] size_type bucket_size(const size_type index) const {
return static_cast<size_type>(std::distance(begin(index), end(index)));
}
/**
* @brief Returns the bucket for a given key.
* @param key The value of the key to examine.
* @return The bucket for the given key.
*/
[[nodiscard]] size_type bucket(const key_type &key) const {
return key_to_bucket(key);
}
/**
* @brief Returns the average number of elements per bucket.
* @return The average number of elements per bucket.
*/
[[nodiscard]] float load_factor() const {
return size() / static_cast<float>(bucket_count());
}
/**
* @brief Returns the maximum average number of elements per bucket.
* @return The maximum average number of elements per bucket.
*/
[[nodiscard]] float max_load_factor() const {
return threshold;
}
/**
* @brief Sets the desired maximum average number of elements per bucket.
* @param value A desired maximum average number of elements per bucket.
*/
void max_load_factor(const float value) {
ENTT_ASSERT(value > 0.f, "Invalid load factor");
threshold = value;
rehash(0u);
}
/**
* @brief Reserves at least the specified number of buckets and regenerates
* the hash table.
* @param cnt New number of buckets.
*/
void rehash(const size_type cnt) {
auto value = cnt > minimum_capacity ? cnt : minimum_capacity;
const auto cap = static_cast<size_type>(size() / max_load_factor());
value = value > cap ? value : cap;
if(const auto sz = next_power_of_two(value); sz != bucket_count()) {
sparse.first().resize(sz);
for(auto &&elem: sparse.first()) {
elem = std::numeric_limits<size_type>::max();
}
for(size_type pos{}, last = size(); pos < last; ++pos) {
const auto index = key_to_bucket(packed.first()[pos].element.first);
packed.first()[pos].next = std::exchange(sparse.first()[index], pos);
}
}
}
/**
* @brief Reserves space for at least the specified number of elements and
* regenerates the hash table.
* @param cnt New number of elements.
*/
void reserve(const size_type cnt) {
packed.first().reserve(cnt);
rehash(static_cast<size_type>(std::ceil(cnt / max_load_factor())));
}
/**
* @brief Returns the function used to hash the keys.
* @return The function used to hash the keys.
*/
[[nodiscard]] hasher hash_function() const {
return sparse.second();
}
/**
* @brief Returns the function used to compare keys for equality.
* @return The function used to compare keys for equality.
*/
[[nodiscard]] key_equal key_eq() const {
return packed.second();
}
private:
compressed_pair<sparse_container_type, hasher> sparse;
compressed_pair<packed_container_type, key_equal> packed;
float threshold;
};
} // namespace entt
/**
* @cond TURN_OFF_DOXYGEN
* Internal details not to be documented.
*/
namespace std {
template<typename Key, typename Value, typename Allocator>
struct uses_allocator<entt::internal::dense_map_node<Key, Value>, Allocator>
: std::true_type {};
} // namespace std
/**
* Internal details not to be documented.
* @endcond
*/
#endif
// #include "../container/dense_set.hpp"
#ifndef ENTT_CONTAINER_DENSE_SET_HPP
#define ENTT_CONTAINER_DENSE_SET_HPP
#include <cmath>
#include <cstddef>
#include <functional>
#include <iterator>
#include <limits>
#include <memory>
#include <tuple>
#include <type_traits>
#include <utility>
#include <vector>
// #include "../config/config.h"
// #include "../core/compressed_pair.hpp"
// #include "../core/memory.hpp"
// #include "../core/type_traits.hpp"
// #include "fwd.hpp"
namespace entt {
/**
* @cond TURN_OFF_DOXYGEN
* Internal details not to be documented.
*/
namespace internal {
template<typename It>
class dense_set_iterator final {
template<typename>
friend class dense_set_iterator;
public:
using value_type = typename It::value_type::second_type;
using pointer = const value_type *;
using reference = const value_type &;
using difference_type = std::ptrdiff_t;
using iterator_category = std::random_access_iterator_tag;
constexpr dense_set_iterator() noexcept
: it{} {}
constexpr dense_set_iterator(const It iter) noexcept
: it{iter} {}
template<typename Other, typename = std::enable_if_t<!std::is_same_v<It, Other> && std::is_constructible_v<It, Other>>>
constexpr dense_set_iterator(const dense_set_iterator<Other> &other) noexcept
: it{other.it} {}
constexpr dense_set_iterator &operator++() noexcept {
return ++it, *this;
}
constexpr dense_set_iterator operator++(int) noexcept {
dense_set_iterator orig = *this;
return ++(*this), orig;
}
constexpr dense_set_iterator &operator--() noexcept {
return --it, *this;
}
constexpr dense_set_iterator operator--(int) noexcept {
dense_set_iterator orig = *this;
return operator--(), orig;
}
constexpr dense_set_iterator &operator+=(const difference_type value) noexcept {
it += value;
return *this;
}
constexpr dense_set_iterator operator+(const difference_type value) const noexcept {
dense_set_iterator copy = *this;
return (copy += value);
}
constexpr dense_set_iterator &operator-=(const difference_type value) noexcept {
return (*this += -value);
}
constexpr dense_set_iterator operator-(const difference_type value) const noexcept {
return (*this + -value);
}
[[nodiscard]] constexpr reference operator[](const difference_type value) const noexcept {
return it[value].second;
}
[[nodiscard]] constexpr pointer operator->() const noexcept {
return std::addressof(it->second);
}
[[nodiscard]] constexpr reference operator*() const noexcept {
return *operator->();
}
template<typename ILhs, typename IRhs>
friend constexpr std::ptrdiff_t operator-(const dense_set_iterator<ILhs> &, const dense_set_iterator<IRhs> &) noexcept;
template<typename ILhs, typename IRhs>
friend constexpr bool operator==(const dense_set_iterator<ILhs> &, const dense_set_iterator<IRhs> &) noexcept;
template<typename ILhs, typename IRhs>
friend constexpr bool operator<(const dense_set_iterator<ILhs> &, const dense_set_iterator<IRhs> &) noexcept;
private:
It it;
};
template<typename ILhs, typename IRhs>
[[nodiscard]] constexpr std::ptrdiff_t operator-(const dense_set_iterator<ILhs> &lhs, const dense_set_iterator<IRhs> &rhs) noexcept {
return lhs.it - rhs.it;
}
template<typename ILhs, typename IRhs>
[[nodiscard]] constexpr bool operator==(const dense_set_iterator<ILhs> &lhs, const dense_set_iterator<IRhs> &rhs) noexcept {
return lhs.it == rhs.it;
}
template<typename ILhs, typename IRhs>
[[nodiscard]] constexpr bool operator!=(const dense_set_iterator<ILhs> &lhs, const dense_set_iterator<IRhs> &rhs) noexcept {
return !(lhs == rhs);
}
template<typename ILhs, typename IRhs>
[[nodiscard]] constexpr bool operator<(const dense_set_iterator<ILhs> &lhs, const dense_set_iterator<IRhs> &rhs) noexcept {
return lhs.it < rhs.it;
}
template<typename ILhs, typename IRhs>
[[nodiscard]] constexpr bool operator>(const dense_set_iterator<ILhs> &lhs, const dense_set_iterator<IRhs> &rhs) noexcept {
return rhs < lhs;
}
template<typename ILhs, typename IRhs>
[[nodiscard]] constexpr bool operator<=(const dense_set_iterator<ILhs> &lhs, const dense_set_iterator<IRhs> &rhs) noexcept {
return !(lhs > rhs);
}
template<typename ILhs, typename IRhs>
[[nodiscard]] constexpr bool operator>=(const dense_set_iterator<ILhs> &lhs, const dense_set_iterator<IRhs> &rhs) noexcept {
return !(lhs < rhs);
}
template<typename It>
class dense_set_local_iterator final {
template<typename>
friend class dense_set_local_iterator;
public:
using value_type = typename It::value_type::second_type;
using pointer = const value_type *;
using reference = const value_type &;
using difference_type = std::ptrdiff_t;
using iterator_category = std::forward_iterator_tag;
constexpr dense_set_local_iterator() noexcept
: it{},
offset{} {}
constexpr dense_set_local_iterator(It iter, const std::size_t pos) noexcept
: it{iter},
offset{pos} {}
template<typename Other, typename = std::enable_if_t<!std::is_same_v<It, Other> && std::is_constructible_v<It, Other>>>
constexpr dense_set_local_iterator(const dense_set_local_iterator<Other> &other) noexcept
: it{other.it},
offset{other.offset} {}
constexpr dense_set_local_iterator &operator++() noexcept {
return offset = it[offset].first, *this;
}
constexpr dense_set_local_iterator operator++(int) noexcept {
dense_set_local_iterator orig = *this;
return ++(*this), orig;
}
[[nodiscard]] constexpr pointer operator->() const noexcept {
return std::addressof(it[offset].second);
}
[[nodiscard]] constexpr reference operator*() const noexcept {
return *operator->();
}
[[nodiscard]] constexpr std::size_t index() const noexcept {
return offset;
}
private:
It it;
std::size_t offset;
};
template<typename ILhs, typename IRhs>
[[nodiscard]] constexpr bool operator==(const dense_set_local_iterator<ILhs> &lhs, const dense_set_local_iterator<IRhs> &rhs) noexcept {
return lhs.index() == rhs.index();
}
template<typename ILhs, typename IRhs>
[[nodiscard]] constexpr bool operator!=(const dense_set_local_iterator<ILhs> &lhs, const dense_set_local_iterator<IRhs> &rhs) noexcept {
return !(lhs == rhs);
}
} // namespace internal
/**
* Internal details not to be documented.
* @endcond
*/
/**
* @brief Associative container for unique objects of a given type.
*
* Internally, elements are organized into buckets. Which bucket an element is
* placed into depends entirely on its hash. Elements with the same hash code
* appear in the same bucket.
*
* @tparam Type Value type of the associative container.
* @tparam Hash Type of function to use to hash the values.
* @tparam KeyEqual Type of function to use to compare the values for equality.
* @tparam Allocator Type of allocator used to manage memory and elements.
*/
template<typename Type, typename Hash, typename KeyEqual, typename Allocator>
class dense_set {
static constexpr float default_threshold = 0.875f;
static constexpr std::size_t minimum_capacity = 8u;
using node_type = std::pair<std::size_t, Type>;
using alloc_traits = std::allocator_traits<Allocator>;
static_assert(std::is_same_v<typename alloc_traits::value_type, Type>, "Invalid value type");
using sparse_container_type = std::vector<std::size_t, typename alloc_traits::template rebind_alloc<std::size_t>>;
using packed_container_type = std::vector<node_type, typename alloc_traits::template rebind_alloc<node_type>>;
template<typename Other>
[[nodiscard]] std::size_t value_to_bucket(const Other &value) const noexcept {
return fast_mod(static_cast<size_type>(sparse.second()(value)), bucket_count());
}
template<typename Other>
[[nodiscard]] auto constrained_find(const Other &value, std::size_t bucket) {
for(auto it = begin(bucket), last = end(bucket); it != last; ++it) {
if(packed.second()(*it, value)) {
return begin() + static_cast<typename iterator::difference_type>(it.index());
}
}
return end();
}
template<typename Other>
[[nodiscard]] auto constrained_find(const Other &value, std::size_t bucket) const {
for(auto it = cbegin(bucket), last = cend(bucket); it != last; ++it) {
if(packed.second()(*it, value)) {
return cbegin() + static_cast<typename iterator::difference_type>(it.index());
}
}
return cend();
}
template<typename Other>
[[nodiscard]] auto insert_or_do_nothing(Other &&value) {
const auto index = value_to_bucket(value);
if(auto it = constrained_find(value, index); it != end()) {
return std::make_pair(it, false);
}
packed.first().emplace_back(sparse.first()[index], std::forward<Other>(value));
sparse.first()[index] = packed.first().size() - 1u;
rehash_if_required();
return std::make_pair(--end(), true);
}
void move_and_pop(const std::size_t pos) {
if(const auto last = size() - 1u; pos != last) {
size_type *curr = sparse.first().data() + value_to_bucket(packed.first().back().second);
packed.first()[pos] = std::move(packed.first().back());
for(; *curr != last; curr = &packed.first()[*curr].first) {}
*curr = pos;
}
packed.first().pop_back();
}
void rehash_if_required() {
if(size() > (bucket_count() * max_load_factor())) {
rehash(bucket_count() * 2u);
}
}
public:
/*! @brief Key type of the container. */
using key_type = Type;
/*! @brief Value type of the container. */
using value_type = Type;
/*! @brief Unsigned integer type. */
using size_type = std::size_t;
/*! @brief Type of function to use to hash the elements. */
using hasher = Hash;
/*! @brief Type of function to use to compare the elements for equality. */
using key_equal = KeyEqual;
/*! @brief Allocator type. */
using allocator_type = Allocator;
/*! @brief Random access iterator type. */
using iterator = internal::dense_set_iterator<typename packed_container_type::iterator>;
/*! @brief Constant random access iterator type. */
using const_iterator = internal::dense_set_iterator<typename packed_container_type::const_iterator>;
/*! @brief Forward iterator type. */
using local_iterator = internal::dense_set_local_iterator<typename packed_container_type::iterator>;
/*! @brief Constant forward iterator type. */
using const_local_iterator = internal::dense_set_local_iterator<typename packed_container_type::const_iterator>;
/*! @brief Default constructor. */
dense_set()
: dense_set{minimum_capacity} {}
/**
* @brief Constructs an empty container with a given allocator.
* @param allocator The allocator to use.
*/
explicit dense_set(const allocator_type &allocator)
: dense_set{minimum_capacity, hasher{}, key_equal{}, allocator} {}
/**
* @brief Constructs an empty container with a given allocator and user
* supplied minimal number of buckets.
* @param cnt Minimal number of buckets.
* @param allocator The allocator to use.
*/
dense_set(const size_type cnt, const allocator_type &allocator)
: dense_set{cnt, hasher{}, key_equal{}, allocator} {}
/**
* @brief Constructs an empty container with a given allocator, hash
* function and user supplied minimal number of buckets.
* @param cnt Minimal number of buckets.
* @param hash Hash function to use.
* @param allocator The allocator to use.
*/
dense_set(const size_type cnt, const hasher &hash, const allocator_type &allocator)
: dense_set{cnt, hash, key_equal{}, allocator} {}
/**
* @brief Constructs an empty container with a given allocator, hash
* function, compare function and user supplied minimal number of buckets.
* @param cnt Minimal number of buckets.
* @param hash Hash function to use.
* @param equal Compare function to use.
* @param allocator The allocator to use.
*/
explicit dense_set(const size_type cnt, const hasher &hash = hasher{}, const key_equal &equal = key_equal{}, const allocator_type &allocator = allocator_type{})
: sparse{allocator, hash},
packed{allocator, equal},
threshold{default_threshold} {
rehash(cnt);
}
/*! @brief Default copy constructor. */
dense_set(const dense_set &) = default;
/**
* @brief Allocator-extended copy constructor.
* @param other The instance to copy from.
* @param allocator The allocator to use.
*/
dense_set(const dense_set &other, const allocator_type &allocator)
: sparse{std::piecewise_construct, std::forward_as_tuple(other.sparse.first(), allocator), std::forward_as_tuple(other.sparse.second())},
packed{std::piecewise_construct, std::forward_as_tuple(other.packed.first(), allocator), std::forward_as_tuple(other.packed.second())},
threshold{other.threshold} {}
/*! @brief Default move constructor. */
dense_set(dense_set &&) noexcept(std::is_nothrow_move_constructible_v<compressed_pair<sparse_container_type, hasher>> &&std::is_nothrow_move_constructible_v<compressed_pair<packed_container_type, key_equal>>) = default;
/**
* @brief Allocator-extended move constructor.
* @param other The instance to move from.
* @param allocator The allocator to use.
*/
dense_set(dense_set &&other, const allocator_type &allocator)
: sparse{std::piecewise_construct, std::forward_as_tuple(std::move(other.sparse.first()), allocator), std::forward_as_tuple(std::move(other.sparse.second()))},
packed{std::piecewise_construct, std::forward_as_tuple(std::move(other.packed.first()), allocator), std::forward_as_tuple(std::move(other.packed.second()))},
threshold{other.threshold} {}
/**
* @brief Default copy assignment operator.
* @return This container.
*/
dense_set &operator=(const dense_set &) = default;
/**
* @brief Default move assignment operator.
* @return This container.
*/
dense_set &operator=(dense_set &&) noexcept(std::is_nothrow_move_assignable_v<compressed_pair<sparse_container_type, hasher>> &&std::is_nothrow_move_assignable_v<compressed_pair<packed_container_type, key_equal>>) = default;
/**
* @brief Returns the associated allocator.
* @return The associated allocator.
*/
[[nodiscard]] constexpr allocator_type get_allocator() const noexcept {
return sparse.first().get_allocator();
}
/**
* @brief Returns an iterator to the beginning.
*
* The returned iterator points to the first instance of the internal array.
* If the array is empty, the returned iterator will be equal to `end()`.
*
* @return An iterator to the first instance of the internal array.
*/
[[nodiscard]] const_iterator cbegin() const noexcept {
return packed.first().begin();
}
/*! @copydoc cbegin */
[[nodiscard]] const_iterator begin() const noexcept {
return cbegin();
}
/*! @copydoc begin */
[[nodiscard]] iterator begin() noexcept {
return packed.first().begin();
}
/**
* @brief Returns an iterator to the end.
*
* The returned iterator points to the element following the last instance
* of the internal array. Attempting to dereference the returned iterator
* results in undefined behavior.
*
* @return An iterator to the element following the last instance of the
* internal array.
*/
[[nodiscard]] const_iterator cend() const noexcept {
return packed.first().end();
}
/*! @copydoc cend */
[[nodiscard]] const_iterator end() const noexcept {
return cend();
}
/*! @copydoc end */
[[nodiscard]] iterator end() noexcept {
return packed.first().end();
}
/**
* @brief Checks whether a container is empty.
* @return True if the container is empty, false otherwise.
*/
[[nodiscard]] bool empty() const noexcept {
return packed.first().empty();
}
/**
* @brief Returns the number of elements in a container.
* @return Number of elements in a container.
*/
[[nodiscard]] size_type size() const noexcept {
return packed.first().size();
}
/**
* @brief Returns the maximum possible number of elements.
* @return Maximum possible number of elements.
*/
[[nodiscard]] size_type max_size() const noexcept {
return packed.first().max_size();
}
/*! @brief Clears the container. */
void clear() noexcept {
sparse.first().clear();
packed.first().clear();
rehash(0u);
}
/**
* @brief Inserts an element into the container, if it does not exist.
* @param value An element to insert into the container.
* @return A pair consisting of an iterator to the inserted element (or to
* the element that prevented the insertion) and a bool denoting whether the
* insertion took place.
*/
std::pair<iterator, bool> insert(const value_type &value) {
return insert_or_do_nothing(value);
}
/*! @copydoc insert */
std::pair<iterator, bool> insert(value_type &&value) {
return insert_or_do_nothing(std::move(value));
}
/**
* @brief Inserts elements into the container, if they do not exist.
* @tparam It Type of input iterator.
* @param first An iterator to the first element of the range of elements.
* @param last An iterator past the last element of the range of elements.
*/
template<typename It>
void insert(It first, It last) {
for(; first != last; ++first) {
insert(*first);
}
}
/**
* @brief Constructs an element in-place, if it does not exist.
*
* The element is also constructed when the container already has the key,
* in which case the newly constructed object is destroyed immediately.
*
* @tparam Args Types of arguments to forward to the constructor of the
* element.
* @param args Arguments to forward to the constructor of the element.
* @return A pair consisting of an iterator to the inserted element (or to
* the element that prevented the insertion) and a bool denoting whether the
* insertion took place.
*/
template<typename... Args>
std::pair<iterator, bool> emplace(Args &&...args) {
if constexpr(((sizeof...(Args) == 1u) && ... && std::is_same_v<std::decay_t<Args>, value_type>)) {
return insert_or_do_nothing(std::forward<Args>(args)...);
} else {
auto &node = packed.first().emplace_back(std::piecewise_construct, std::make_tuple(packed.first().size()), std::forward_as_tuple(std::forward<Args>(args)...));
const auto index = value_to_bucket(node.second);
if(auto it = constrained_find(node.second, index); it != end()) {
packed.first().pop_back();
return std::make_pair(it, false);
}
std::swap(node.first, sparse.first()[index]);
rehash_if_required();
return std::make_pair(--end(), true);
}
}
/**
* @brief Removes an element from a given position.
* @param pos An iterator to the element to remove.
* @return An iterator following the removed element.
*/
iterator erase(const_iterator pos) {
const auto diff = pos - cbegin();
erase(*pos);
return begin() + diff;
}
/**
* @brief Removes the given elements from a container.
* @param first An iterator to the first element of the range of elements.
* @param last An iterator past the last element of the range of elements.
* @return An iterator following the last removed element.
*/
iterator erase(const_iterator first, const_iterator last) {
const auto dist = first - cbegin();
for(auto from = last - cbegin(); from != dist; --from) {
erase(packed.first()[from - 1u].second);
}
return (begin() + dist);
}
/**
* @brief Removes the element associated with a given value.
* @param value Value of an element to remove.
* @return Number of elements removed (either 0 or 1).
*/
size_type erase(const value_type &value) {
for(size_type *curr = sparse.first().data() + value_to_bucket(value); *curr != (std::numeric_limits<size_type>::max)(); curr = &packed.first()[*curr].first) {
if(packed.second()(packed.first()[*curr].second, value)) {
const auto index = *curr;
*curr = packed.first()[*curr].first;
move_and_pop(index);
return 1u;
}
}
return 0u;
}
/**
* @brief Exchanges the contents with those of a given container.
* @param other Container to exchange the content with.
*/
void swap(dense_set &other) {
using std::swap;
swap(sparse, other.sparse);
swap(packed, other.packed);
swap(threshold, other.threshold);
}
/**
* @brief Returns the number of elements matching a value (either 1 or 0).
* @param key Key value of an element to search for.
* @return Number of elements matching the key (either 1 or 0).
*/
[[nodiscard]] size_type count(const value_type &key) const {
return find(key) != end();
}
/**
* @brief Returns the number of elements matching a key (either 1 or 0).
* @tparam Other Type of the key value of an element to search for.
* @param key Key value of an element to search for.
* @return Number of elements matching the key (either 1 or 0).
*/
template<typename Other>
[[nodiscard]] std::enable_if_t<is_transparent_v<hasher> && is_transparent_v<key_equal>, std::conditional_t<false, Other, size_type>>
count(const Other &key) const {
return find(key) != end();
}
/**
* @brief Finds an element with a given value.
* @param value Value of an element to search for.
* @return An iterator to an element with the given value. If no such
* element is found, a past-the-end iterator is returned.
*/
[[nodiscard]] iterator find(const value_type &value) {
return constrained_find(value, value_to_bucket(value));
}
/*! @copydoc find */
[[nodiscard]] const_iterator find(const value_type &value) const {
return constrained_find(value, value_to_bucket(value));
}
/**
* @brief Finds an element that compares _equivalent_ to a given value.
* @tparam Other Type of an element to search for.
* @param value Value of an element to search for.
* @return An iterator to an element with the given value. If no such
* element is found, a past-the-end iterator is returned.
*/
template<typename Other>
[[nodiscard]] std::enable_if_t<is_transparent_v<hasher> && is_transparent_v<key_equal>, std::conditional_t<false, Other, iterator>>
find(const Other &value) {
return constrained_find(value, value_to_bucket(value));
}
/*! @copydoc find */
template<typename Other>
[[nodiscard]] std::enable_if_t<is_transparent_v<hasher> && is_transparent_v<key_equal>, std::conditional_t<false, Other, const_iterator>>
find(const Other &value) const {
return constrained_find(value, value_to_bucket(value));
}
/**
* @brief Returns a range containing all elements with a given value.
* @param value Value of an element to search for.
* @return A pair of iterators pointing to the first element and past the
* last element of the range.
*/
[[nodiscard]] std::pair<iterator, iterator> equal_range(const value_type &value) {
const auto it = find(value);
return {it, it + !(it == end())};
}
/*! @copydoc equal_range */
[[nodiscard]] std::pair<const_iterator, const_iterator> equal_range(const value_type &value) const {
const auto it = find(value);
return {it, it + !(it == cend())};
}
/**
* @brief Returns a range containing all elements that compare _equivalent_
* to a given value.
* @tparam Other Type of an element to search for.
* @param value Value of an element to search for.
* @return A pair of iterators pointing to the first element and past the
* last element of the range.
*/
template<typename Other>
[[nodiscard]] std::enable_if_t<is_transparent_v<hasher> && is_transparent_v<key_equal>, std::conditional_t<false, Other, std::pair<iterator, iterator>>>
equal_range(const Other &value) {
const auto it = find(value);
return {it, it + !(it == end())};
}
/*! @copydoc equal_range */
template<class Other>
[[nodiscard]] std::enable_if_t<is_transparent_v<hasher> && is_transparent_v<key_equal>, std::conditional_t<false, Other, std::pair<const_iterator, const_iterator>>>
equal_range(const Other &value) const {
const auto it = find(value);
return {it, it + !(it == cend())};
}
/**
* @brief Checks if the container contains an element with a given value.
* @param value Value of an element to search for.
* @return True if there is such an element, false otherwise.
*/
[[nodiscard]] bool contains(const value_type &value) const {
return (find(value) != cend());
}
/**
* @brief Checks if the container contains an element that compares
* _equivalent_ to a given value.
* @tparam Other Type of an element to search for.
* @param value Value of an element to search for.
* @return True if there is such an element, false otherwise.
*/
template<typename Other>
[[nodiscard]] std::enable_if_t<is_transparent_v<hasher> && is_transparent_v<key_equal>, std::conditional_t<false, Other, bool>>
contains(const Other &value) const {
return (find(value) != cend());
}
/**
* @brief Returns an iterator to the beginning of a given bucket.
* @param index An index of a bucket to access.
* @return An iterator to the beginning of the given bucket.
*/
[[nodiscard]] const_local_iterator cbegin(const size_type index) const {
return {packed.first().begin(), sparse.first()[index]};
}
/**
* @brief Returns an iterator to the beginning of a given bucket.
* @param index An index of a bucket to access.
* @return An iterator to the beginning of the given bucket.
*/
[[nodiscard]] const_local_iterator begin(const size_type index) const {
return cbegin(index);
}
/**
* @brief Returns an iterator to the beginning of a given bucket.
* @param index An index of a bucket to access.
* @return An iterator to the beginning of the given bucket.
*/
[[nodiscard]] local_iterator begin(const size_type index) {
return {packed.first().begin(), sparse.first()[index]};
}
/**
* @brief Returns an iterator to the end of a given bucket.
* @param index An index of a bucket to access.
* @return An iterator to the end of the given bucket.
*/
[[nodiscard]] const_local_iterator cend([[maybe_unused]] const size_type index) const {
return {packed.first().begin(), (std::numeric_limits<size_type>::max)()};
}
/**
* @brief Returns an iterator to the end of a given bucket.
* @param index An index of a bucket to access.
* @return An iterator to the end of the given bucket.
*/
[[nodiscard]] const_local_iterator end(const size_type index) const {
return cend(index);
}
/**
* @brief Returns an iterator to the end of a given bucket.
* @param index An index of a bucket to access.
* @return An iterator to the end of the given bucket.
*/
[[nodiscard]] local_iterator end([[maybe_unused]] const size_type index) {
return {packed.first().begin(), (std::numeric_limits<size_type>::max)()};
}
/**
* @brief Returns the number of buckets.
* @return The number of buckets.
*/
[[nodiscard]] size_type bucket_count() const {
return sparse.first().size();
}
/**
* @brief Returns the maximum number of buckets.
* @return The maximum number of buckets.
*/
[[nodiscard]] size_type max_bucket_count() const {
return sparse.first().max_size();
}
/**
* @brief Returns the number of elements in a given bucket.
* @param index The index of the bucket to examine.
* @return The number of elements in the given bucket.
*/
[[nodiscard]] size_type bucket_size(const size_type index) const {
return static_cast<size_type>(std::distance(begin(index), end(index)));
}
/**
* @brief Returns the bucket for a given element.
* @param value The value of the element to examine.
* @return The bucket for the given element.
*/
[[nodiscard]] size_type bucket(const value_type &value) const {
return value_to_bucket(value);
}
/**
* @brief Returns the average number of elements per bucket.
* @return The average number of elements per bucket.
*/
[[nodiscard]] float load_factor() const {
return size() / static_cast<float>(bucket_count());
}
/**
* @brief Returns the maximum average number of elements per bucket.
* @return The maximum average number of elements per bucket.
*/
[[nodiscard]] float max_load_factor() const {
return threshold;
}
/**
* @brief Sets the desired maximum average number of elements per bucket.
* @param value A desired maximum average number of elements per bucket.
*/
void max_load_factor(const float value) {
ENTT_ASSERT(value > 0.f, "Invalid load factor");
threshold = value;
rehash(0u);
}
/**
* @brief Reserves at least the specified number of buckets and regenerates
* the hash table.
* @param cnt New number of buckets.
*/
void rehash(const size_type cnt) {
auto value = cnt > minimum_capacity ? cnt : minimum_capacity;
const auto cap = static_cast<size_type>(size() / max_load_factor());
value = value > cap ? value : cap;
if(const auto sz = next_power_of_two(value); sz != bucket_count()) {
sparse.first().resize(sz);
for(auto &&elem: sparse.first()) {
elem = std::numeric_limits<size_type>::max();
}
for(size_type pos{}, last = size(); pos < last; ++pos) {
const auto index = value_to_bucket(packed.first()[pos].second);
packed.first()[pos].first = std::exchange(sparse.first()[index], pos);
}
}
}
/**
* @brief Reserves space for at least the specified number of elements and
* regenerates the hash table.
* @param cnt New number of elements.
*/
void reserve(const size_type cnt) {
packed.first().reserve(cnt);
rehash(static_cast<size_type>(std::ceil(cnt / max_load_factor())));
}
/**
* @brief Returns the function used to hash the elements.
* @return The function used to hash the elements.
*/
[[nodiscard]] hasher hash_function() const {
return sparse.second();
}
/**
* @brief Returns the function used to compare elements for equality.
* @return The function used to compare elements for equality.
*/
[[nodiscard]] key_equal key_eq() const {
return packed.second();
}
private:
compressed_pair<sparse_container_type, hasher> sparse;
compressed_pair<packed_container_type, key_equal> packed;
float threshold;
};
} // namespace entt
#endif
// #include "../core/compressed_pair.hpp"
#ifndef ENTT_CORE_COMPRESSED_PAIR_HPP
#define ENTT_CORE_COMPRESSED_PAIR_HPP
#include <cstddef>
#include <tuple>
#include <type_traits>
#include <utility>
// #include "type_traits.hpp"
#ifndef ENTT_CORE_TYPE_TRAITS_HPP
#define ENTT_CORE_TYPE_TRAITS_HPP
#include <cstddef>
#include <iterator>
#include <type_traits>
#include <utility>
// #include "../config/config.h"
// #include "fwd.hpp"
#ifndef ENTT_CORE_FWD_HPP
#define ENTT_CORE_FWD_HPP
#include <cstddef>
// #include "../config/config.h"
namespace entt {
template<std::size_t Len = sizeof(double[2]), std::size_t = alignof(double[2])>
class basic_any;
/*! @brief Alias declaration for type identifiers. */
using id_type = ENTT_ID_TYPE;
/*! @brief Alias declaration for the most common use case. */
using any = basic_any<>;
} // namespace entt
#endif
namespace entt {
/**
* @brief Utility class to disambiguate overloaded functions.
* @tparam N Number of choices available.
*/
template<std::size_t N>
struct choice_t
// Unfortunately, doxygen cannot parse such a construct.
: /*! @cond TURN_OFF_DOXYGEN */ choice_t<N - 1> /*! @endcond */
{};
/*! @copybrief choice_t */
template<>
struct choice_t<0> {};
/**
* @brief Variable template for the choice trick.
* @tparam N Number of choices available.
*/
template<std::size_t N>
inline constexpr choice_t<N> choice{};
/**
* @brief Identity type trait.
*
* Useful to establish non-deduced contexts in template argument deduction
* (waiting for C++20) or to provide types through function arguments.
*
* @tparam Type A type.
*/
template<typename Type>
struct type_identity {
/*! @brief Identity type. */
using type = Type;
};
/**
* @brief Helper type.
* @tparam Type A type.
*/
template<typename Type>
using type_identity_t = typename type_identity<Type>::type;
/**
* @brief A type-only `sizeof` wrapper that returns 0 where `sizeof` complains.
* @tparam Type The type of which to return the size.
* @tparam The size of the type if `sizeof` accepts it, 0 otherwise.
*/
template<typename Type, typename = void>
struct size_of: std::integral_constant<std::size_t, 0u> {};
/*! @copydoc size_of */
template<typename Type>
struct size_of<Type, std::void_t<decltype(sizeof(Type))>>
: std::integral_constant<std::size_t, sizeof(Type)> {};
/**
* @brief Helper variable template.
* @tparam Type The type of which to return the size.
*/
template<typename Type>
inline constexpr std::size_t size_of_v = size_of<Type>::value;
/**
* @brief Using declaration to be used to _repeat_ the same type a number of
* times equal to the size of a given parameter pack.
* @tparam Type A type to repeat.
*/
template<typename Type, typename>
using unpack_as_type = Type;
/**
* @brief Helper variable template to be used to _repeat_ the same value a
* number of times equal to the size of a given parameter pack.
* @tparam Value A value to repeat.
*/
template<auto Value, typename>
inline constexpr auto unpack_as_value = Value;
/**
* @brief Wraps a static constant.
* @tparam Value A static constant.
*/
template<auto Value>
using integral_constant = std::integral_constant<decltype(Value), Value>;
/**
* @brief Alias template to facilitate the creation of named values.
* @tparam Value A constant value at least convertible to `id_type`.
*/
template<id_type Value>
using tag = integral_constant<Value>;
/**
* @brief A class to use to push around lists of types, nothing more.
* @tparam Type Types provided by the type list.
*/
template<typename... Type>
struct type_list {
/*! @brief Type list type. */
using type = type_list;
/*! @brief Compile-time number of elements in the type list. */
static constexpr auto size = sizeof...(Type);
};
/*! @brief Primary template isn't defined on purpose. */
template<std::size_t, typename>
struct type_list_element;
/**
* @brief Provides compile-time indexed access to the types of a type list.
* @tparam Index Index of the type to return.
* @tparam First First type provided by the type list.
* @tparam Other Other types provided by the type list.
*/
template<std::size_t Index, typename First, typename... Other>
struct type_list_element<Index, type_list<First, Other...>>
: type_list_element<Index - 1u, type_list<Other...>> {};
/**
* @brief Provides compile-time indexed access to the types of a type list.
* @tparam First First type provided by the type list.
* @tparam Other Other types provided by the type list.
*/
template<typename First, typename... Other>
struct type_list_element<0u, type_list<First, Other...>> {
/*! @brief Searched type. */
using type = First;
};
/**
* @brief Helper type.
* @tparam Index Index of the type to return.
* @tparam List Type list to search into.
*/
template<std::size_t Index, typename List>
using type_list_element_t = typename type_list_element<Index, List>::type;
/*! @brief Primary template isn't defined on purpose. */
template<typename, typename>
struct type_list_index;
/**
* @brief Provides compile-time type access to the types of a type list.
* @tparam Type Type to look for and for which to return the index.
* @tparam First First type provided by the type list.
* @tparam Other Other types provided by the type list.
*/
template<typename Type, typename First, typename... Other>
struct type_list_index<Type, type_list<First, Other...>> {
/*! @brief Unsigned integer type. */
using value_type = std::size_t;
/*! @brief Compile-time position of the given type in the sublist. */
static constexpr value_type value = 1u + type_list_index<Type, type_list<Other...>>::value;
};
/**
* @brief Provides compile-time type access to the types of a type list.
* @tparam Type Type to look for and for which to return the index.
* @tparam Other Other types provided by the type list.
*/
template<typename Type, typename... Other>
struct type_list_index<Type, type_list<Type, Other...>> {
static_assert(type_list_index<Type, type_list<Other...>>::value == sizeof...(Other), "Non-unique type");
/*! @brief Unsigned integer type. */
using value_type = std::size_t;
/*! @brief Compile-time position of the given type in the sublist. */
static constexpr value_type value = 0u;
};
/**
* @brief Provides compile-time type access to the types of a type list.
* @tparam Type Type to look for and for which to return the index.
*/
template<typename Type>
struct type_list_index<Type, type_list<>> {
/*! @brief Unsigned integer type. */
using value_type = std::size_t;
/*! @brief Compile-time position of the given type in the sublist. */
static constexpr value_type value = 0u;
};
/**
* @brief Helper variable template.
* @tparam List Type list.
* @tparam Type Type to look for and for which to return the index.
*/
template<typename Type, typename List>
inline constexpr std::size_t type_list_index_v = type_list_index<Type, List>::value;
/**
* @brief Concatenates multiple type lists.
* @tparam Type Types provided by the first type list.
* @tparam Other Types provided by the second type list.
* @return A type list composed by the types of both the type lists.
*/
template<typename... Type, typename... Other>
constexpr type_list<Type..., Other...> operator+(type_list<Type...>, type_list<Other...>) {
return {};
}
/*! @brief Primary template isn't defined on purpose. */
template<typename...>
struct type_list_cat;
/*! @brief Concatenates multiple type lists. */
template<>
struct type_list_cat<> {
/*! @brief A type list composed by the types of all the type lists. */
using type = type_list<>;
};
/**
* @brief Concatenates multiple type lists.
* @tparam Type Types provided by the first type list.
* @tparam Other Types provided by the second type list.
* @tparam List Other type lists, if any.
*/
template<typename... Type, typename... Other, typename... List>
struct type_list_cat<type_list<Type...>, type_list<Other...>, List...> {
/*! @brief A type list composed by the types of all the type lists. */
using type = typename type_list_cat<type_list<Type..., Other...>, List...>::type;
};
/**
* @brief Concatenates multiple type lists.
* @tparam Type Types provided by the type list.
*/
template<typename... Type>
struct type_list_cat<type_list<Type...>> {
/*! @brief A type list composed by the types of all the type lists. */
using type = type_list<Type...>;
};
/**
* @brief Helper type.
* @tparam List Type lists to concatenate.
*/
template<typename... List>
using type_list_cat_t = typename type_list_cat<List...>::type;
/*! @brief Primary template isn't defined on purpose. */
template<typename>
struct type_list_unique;
/**
* @brief Removes duplicates types from a type list.
* @tparam Type One of the types provided by the given type list.
* @tparam Other The other types provided by the given type list.
*/
template<typename Type, typename... Other>
struct type_list_unique<type_list<Type, Other...>> {
/*! @brief A type list without duplicate types. */
using type = std::conditional_t<
(std::is_same_v<Type, Other> || ...),
typename type_list_unique<type_list<Other...>>::type,
type_list_cat_t<type_list<Type>, typename type_list_unique<type_list<Other...>>::type>>;
};
/*! @brief Removes duplicates types from a type list. */
template<>
struct type_list_unique<type_list<>> {
/*! @brief A type list without duplicate types. */
using type = type_list<>;
};
/**
* @brief Helper type.
* @tparam Type A type list.
*/
template<typename Type>
using type_list_unique_t = typename type_list_unique<Type>::type;
/**
* @brief Provides the member constant `value` to true if a type list contains a
* given type, false otherwise.
* @tparam List Type list.
* @tparam Type Type to look for.
*/
template<typename List, typename Type>
struct type_list_contains;
/**
* @copybrief type_list_contains
* @tparam Type Types provided by the type list.
* @tparam Other Type to look for.
*/
template<typename... Type, typename Other>
struct type_list_contains<type_list<Type...>, Other>: std::disjunction<std::is_same<Type, Other>...> {};
/**
* @brief Helper variable template.
* @tparam List Type list.
* @tparam Type Type to look for.
*/
template<typename List, typename Type>
inline constexpr bool type_list_contains_v = type_list_contains<List, Type>::value;
/*! @brief Primary template isn't defined on purpose. */
template<typename...>
struct type_list_diff;
/**
* @brief Computes the difference between two type lists.
* @tparam Type Types provided by the first type list.
* @tparam Other Types provided by the second type list.
*/
template<typename... Type, typename... Other>
struct type_list_diff<type_list<Type...>, type_list<Other...>> {
/*! @brief A type list that is the difference between the two type lists. */
using type = type_list_cat_t<std::conditional_t<type_list_contains_v<type_list<Other...>, Type>, type_list<>, type_list<Type>>...>;
};
/**
* @brief Helper type.
* @tparam List Type lists between which to compute the difference.
*/
template<typename... List>
using type_list_diff_t = typename type_list_diff<List...>::type;
/*! @brief Primary template isn't defined on purpose. */
template<typename, template<typename...> class>
struct type_list_transform;
/**
* @brief Applies a given _function_ to a type list and generate a new list.
* @tparam Type Types provided by the type list.
* @tparam Op Unary operation as template class with a type member named `type`.
*/
template<typename... Type, template<typename...> class Op>
struct type_list_transform<type_list<Type...>, Op> {
/*! @brief Resulting type list after applying the transform function. */
using type = type_list<typename Op<Type>::type...>;
};
/**
* @brief Helper type.
* @tparam List Type list.
* @tparam Op Unary operation as template class with a type member named `type`.
*/
template<typename List, template<typename...> class Op>
using type_list_transform_t = typename type_list_transform<List, Op>::type;
/**
* @brief A class to use to push around lists of constant values, nothing more.
* @tparam Value Values provided by the value list.
*/
template<auto... Value>
struct value_list {
/*! @brief Value list type. */
using type = value_list;
/*! @brief Compile-time number of elements in the value list. */
static constexpr auto size = sizeof...(Value);
};
/*! @brief Primary template isn't defined on purpose. */
template<std::size_t, typename>
struct value_list_element;
/**
* @brief Provides compile-time indexed access to the values of a value list.
* @tparam Index Index of the value to return.
* @tparam Value First value provided by the value list.
* @tparam Other Other values provided by the value list.
*/
template<std::size_t Index, auto Value, auto... Other>
struct value_list_element<Index, value_list<Value, Other...>>
: value_list_element<Index - 1u, value_list<Other...>> {};
/**
* @brief Provides compile-time indexed access to the types of a type list.
* @tparam Value First value provided by the value list.
* @tparam Other Other values provided by the value list.
*/
template<auto Value, auto... Other>
struct value_list_element<0u, value_list<Value, Other...>> {
/*! @brief Searched value. */
static constexpr auto value = Value;
};
/**
* @brief Helper type.
* @tparam Index Index of the value to return.
* @tparam List Value list to search into.
*/
template<std::size_t Index, typename List>
inline constexpr auto value_list_element_v = value_list_element<Index, List>::value;
/**
* @brief Concatenates multiple value lists.
* @tparam Value Values provided by the first value list.
* @tparam Other Values provided by the second value list.
* @return A value list composed by the values of both the value lists.
*/
template<auto... Value, auto... Other>
constexpr value_list<Value..., Other...> operator+(value_list<Value...>, value_list<Other...>) {
return {};
}
/*! @brief Primary template isn't defined on purpose. */
template<typename...>
struct value_list_cat;
/*! @brief Concatenates multiple value lists. */
template<>
struct value_list_cat<> {
/*! @brief A value list composed by the values of all the value lists. */
using type = value_list<>;
};
/**
* @brief Concatenates multiple value lists.
* @tparam Value Values provided by the first value list.
* @tparam Other Values provided by the second value list.
* @tparam List Other value lists, if any.
*/
template<auto... Value, auto... Other, typename... List>
struct value_list_cat<value_list<Value...>, value_list<Other...>, List...> {
/*! @brief A value list composed by the values of all the value lists. */
using type = typename value_list_cat<value_list<Value..., Other...>, List...>::type;
};
/**
* @brief Concatenates multiple value lists.
* @tparam Value Values provided by the value list.
*/
template<auto... Value>
struct value_list_cat<value_list<Value...>> {
/*! @brief A value list composed by the values of all the value lists. */
using type = value_list<Value...>;
};
/**
* @brief Helper type.
* @tparam List Value lists to concatenate.
*/
template<typename... List>
using value_list_cat_t = typename value_list_cat<List...>::type;
/*! @brief Same as std::is_invocable, but with tuples. */
template<typename, typename>
struct is_applicable: std::false_type {};
/**
* @copybrief is_applicable
* @tparam Func A valid function type.
* @tparam Tuple Tuple-like type.
* @tparam Args The list of arguments to use to probe the function type.
*/
template<typename Func, template<typename...> class Tuple, typename... Args>
struct is_applicable<Func, Tuple<Args...>>: std::is_invocable<Func, Args...> {};
/**
* @copybrief is_applicable
* @tparam Func A valid function type.
* @tparam Tuple Tuple-like type.
* @tparam Args The list of arguments to use to probe the function type.
*/
template<typename Func, template<typename...> class Tuple, typename... Args>
struct is_applicable<Func, const Tuple<Args...>>: std::is_invocable<Func, Args...> {};
/**
* @brief Helper variable template.
* @tparam Func A valid function type.
* @tparam Args The list of arguments to use to probe the function type.
*/
template<typename Func, typename Args>
inline constexpr bool is_applicable_v = is_applicable<Func, Args>::value;
/*! @brief Same as std::is_invocable_r, but with tuples for arguments. */
template<typename, typename, typename>
struct is_applicable_r: std::false_type {};
/**
* @copybrief is_applicable_r
* @tparam Ret The type to which the return type of the function should be
* convertible.
* @tparam Func A valid function type.
* @tparam Args The list of arguments to use to probe the function type.
*/
template<typename Ret, typename Func, typename... Args>
struct is_applicable_r<Ret, Func, std::tuple<Args...>>: std::is_invocable_r<Ret, Func, Args...> {};
/**
* @brief Helper variable template.
* @tparam Ret The type to which the return type of the function should be
* convertible.
* @tparam Func A valid function type.
* @tparam Args The list of arguments to use to probe the function type.
*/
template<typename Ret, typename Func, typename Args>
inline constexpr bool is_applicable_r_v = is_applicable_r<Ret, Func, Args>::value;
/**
* @brief Provides the member constant `value` to true if a given type is
* complete, false otherwise.
* @tparam Type The type to test.
*/
template<typename Type, typename = void>
struct is_complete: std::false_type {};
/*! @copydoc is_complete */
template<typename Type>
struct is_complete<Type, std::void_t<decltype(sizeof(Type))>>: std::true_type {};
/**
* @brief Helper variable template.
* @tparam Type The type to test.
*/
template<typename Type>
inline constexpr bool is_complete_v = is_complete<Type>::value;
/**
* @brief Provides the member constant `value` to true if a given type is an
* iterator, false otherwise.
* @tparam Type The type to test.
*/
template<typename Type, typename = void>
struct is_iterator: std::false_type {};
/**
* @cond TURN_OFF_DOXYGEN
* Internal details not to be documented.
*/
namespace internal {
template<typename, typename = void>
struct has_iterator_category: std::false_type {};
template<typename Type>
struct has_iterator_category<Type, std::void_t<typename std::iterator_traits<Type>::iterator_category>>: std::true_type {};
} // namespace internal
/**
* Internal details not to be documented.
* @endcond
*/
/*! @copydoc is_iterator */
template<typename Type>
struct is_iterator<Type, std::enable_if_t<!std::is_same_v<std::remove_cv_t<std::remove_pointer_t<Type>>, void>>>
: internal::has_iterator_category<Type> {};
/**
* @brief Helper variable template.
* @tparam Type The type to test.
*/
template<typename Type>
inline constexpr bool is_iterator_v = is_iterator<Type>::value;
/**
* @brief Provides the member constant `value` to true if a given type is both
* an empty and non-final class, false otherwise.
* @tparam Type The type to test
*/
template<typename Type>
struct is_ebco_eligible
: std::conjunction<std::is_empty<Type>, std::negation<std::is_final<Type>>> {};
/**
* @brief Helper variable template.
* @tparam Type The type to test.
*/
template<typename Type>
inline constexpr bool is_ebco_eligible_v = is_ebco_eligible<Type>::value;
/**
* @brief Provides the member constant `value` to true if `Type::is_transparent`
* is valid and denotes a type, false otherwise.
* @tparam Type The type to test.
*/
template<typename Type, typename = void>
struct is_transparent: std::false_type {};
/*! @copydoc is_transparent */
template<typename Type>
struct is_transparent<Type, std::void_t<typename Type::is_transparent>>: std::true_type {};
/**
* @brief Helper variable template.
* @tparam Type The type to test.
*/
template<typename Type>
inline constexpr bool is_transparent_v = is_transparent<Type>::value;
/**
* @brief Provides the member constant `value` to true if a given type is
* equality comparable, false otherwise.
* @tparam Type The type to test.
*/
template<typename Type, typename = void>
struct is_equality_comparable: std::false_type {};
/**
* @cond TURN_OFF_DOXYGEN
* Internal details not to be documented.
*/
namespace internal {
template<typename, typename = void>
struct has_tuple_size_value: std::false_type {};
template<typename Type>
struct has_tuple_size_value<Type, std::void_t<decltype(std::tuple_size<const Type>::value)>>: std::true_type {};
template<typename Type, std::size_t... Index>
[[nodiscard]] constexpr bool unpack_maybe_equality_comparable(std::index_sequence<Index...>) {
return (is_equality_comparable<std::tuple_element_t<Index, Type>>::value && ...);
}
template<typename>
[[nodiscard]] constexpr bool maybe_equality_comparable(choice_t<0>) {
return true;
}
template<typename Type>
[[nodiscard]] constexpr auto maybe_equality_comparable(choice_t<1>) -> decltype(std::declval<typename Type::value_type>(), bool{}) {
if constexpr(is_iterator_v<Type>) {
return true;
} else if constexpr(std::is_same_v<typename Type::value_type, Type>) {
return maybe_equality_comparable<Type>(choice<0>);
} else {
return is_equality_comparable<typename Type::value_type>::value;
}
}
template<typename Type>
[[nodiscard]] constexpr std::enable_if_t<is_complete_v<std::tuple_size<std::remove_cv_t<Type>>>, bool> maybe_equality_comparable(choice_t<2>) {
if constexpr(has_tuple_size_value<Type>::value) {
return unpack_maybe_equality_comparable<Type>(std::make_index_sequence<std::tuple_size<Type>::value>{});
} else {
return maybe_equality_comparable<Type>(choice<1>);
}
}
} // namespace internal
/**
* Internal details not to be documented.
* @endcond
*/
/*! @copydoc is_equality_comparable */
template<typename Type>
struct is_equality_comparable<Type, std::void_t<decltype(std::declval<Type>() == std::declval<Type>())>>
: std::bool_constant<internal::maybe_equality_comparable<Type>(choice<2>)> {};
/**
* @brief Helper variable template.
* @tparam Type The type to test.
*/
template<typename Type>
inline constexpr bool is_equality_comparable_v = is_equality_comparable<Type>::value;
/**
* @brief Transcribes the constness of a type to another type.
* @tparam To The type to which to transcribe the constness.
* @tparam From The type from which to transcribe the constness.
*/
template<typename To, typename From>
struct constness_as {
/*! @brief The type resulting from the transcription of the constness. */
using type = std::remove_const_t<To>;
};
/*! @copydoc constness_as */
template<typename To, typename From>
struct constness_as<To, const From> {
/*! @brief The type resulting from the transcription of the constness. */
using type = const To;
};
/**
* @brief Alias template to facilitate the transcription of the constness.
* @tparam To The type to which to transcribe the constness.
* @tparam From The type from which to transcribe the constness.
*/
template<typename To, typename From>
using constness_as_t = typename constness_as<To, From>::type;
/**
* @brief Extracts the class of a non-static member object or function.
* @tparam Member A pointer to a non-static member object or function.
*/
template<typename Member>
class member_class {
static_assert(std::is_member_pointer_v<Member>, "Invalid pointer type to non-static member object or function");
template<typename Class, typename Ret, typename... Args>
static Class *clazz(Ret (Class::*)(Args...));
template<typename Class, typename Ret, typename... Args>
static Class *clazz(Ret (Class::*)(Args...) const);
template<typename Class, typename Type>
static Class *clazz(Type Class::*);
public:
/*! @brief The class of the given non-static member object or function. */
using type = std::remove_pointer_t<decltype(clazz(std::declval<Member>()))>;
};
/**
* @brief Helper type.
* @tparam Member A pointer to a non-static member object or function.
*/
template<typename Member>
using member_class_t = typename member_class<Member>::type;
/**
* @brief Extracts the n-th argument of a given function or member function.
* @tparam Index The index of the argument to extract.
* @tparam Candidate A valid function, member function or data member.
*/
template<std::size_t Index, auto Candidate>
class nth_argument {
template<typename Ret, typename... Args>
static constexpr type_list<Args...> pick_up(Ret (*)(Args...));
template<typename Ret, typename Class, typename... Args>
static constexpr type_list<Args...> pick_up(Ret (Class ::*)(Args...));
template<typename Ret, typename Class, typename... Args>
static constexpr type_list<Args...> pick_up(Ret (Class ::*)(Args...) const);
template<typename Type, typename Class>
static constexpr type_list<Type> pick_up(Type Class ::*);
public:
/*! @brief N-th argument of the given function or member function. */
using type = type_list_element_t<Index, decltype(pick_up(Candidate))>;
};
/**
* @brief Helper type.
* @tparam Index The index of the argument to extract.
* @tparam Candidate A valid function, member function or data member.
*/
template<std::size_t Index, auto Candidate>
using nth_argument_t = typename nth_argument<Index, Candidate>::type;
} // namespace entt
#endif
namespace entt {
/**
* @cond TURN_OFF_DOXYGEN
* Internal details not to be documented.
*/
namespace internal {
template<typename Type, std::size_t, typename = void>
struct compressed_pair_element {
using reference = Type &;
using const_reference = const Type &;
template<bool Dummy = true, typename = std::enable_if_t<Dummy && std::is_default_constructible_v<Type>>>
constexpr compressed_pair_element() noexcept(std::is_nothrow_default_constructible_v<Type>)
: value{} {}
template<typename Arg, typename = std::enable_if_t<!std::is_same_v<std::remove_cv_t<std::remove_reference_t<Arg>>, compressed_pair_element>>>
constexpr compressed_pair_element(Arg &&arg) noexcept(std::is_nothrow_constructible_v<Type, Arg>)
: value{std::forward<Arg>(arg)} {}
template<typename... Args, std::size_t... Index>
constexpr compressed_pair_element(std::tuple<Args...> args, std::index_sequence<Index...>) noexcept(std::is_nothrow_constructible_v<Type, Args...>)
: value{std::forward<Args>(std::get<Index>(args))...} {}
[[nodiscard]] constexpr reference get() noexcept {
return value;
}
[[nodiscard]] constexpr const_reference get() const noexcept {
return value;
}
private:
Type value;
};
template<typename Type, std::size_t Tag>
struct compressed_pair_element<Type, Tag, std::enable_if_t<is_ebco_eligible_v<Type>>>: Type {
using reference = Type &;
using const_reference = const Type &;
using base_type = Type;
template<bool Dummy = true, typename = std::enable_if_t<Dummy && std::is_default_constructible_v<base_type>>>
constexpr compressed_pair_element() noexcept(std::is_nothrow_default_constructible_v<base_type>)
: base_type{} {}
template<typename Arg, typename = std::enable_if_t<!std::is_same_v<std::remove_cv_t<std::remove_reference_t<Arg>>, compressed_pair_element>>>
constexpr compressed_pair_element(Arg &&arg) noexcept(std::is_nothrow_constructible_v<base_type, Arg>)
: base_type{std::forward<Arg>(arg)} {}
template<typename... Args, std::size_t... Index>
constexpr compressed_pair_element(std::tuple<Args...> args, std::index_sequence<Index...>) noexcept(std::is_nothrow_constructible_v<base_type, Args...>)
: base_type{std::forward<Args>(std::get<Index>(args))...} {}
[[nodiscard]] constexpr reference get() noexcept {
return *this;
}
[[nodiscard]] constexpr const_reference get() const noexcept {
return *this;
}
};
} // namespace internal
/**
* Internal details not to be documented.
* @endcond
*/
/**
* @brief A compressed pair.
*
* A pair that exploits the _Empty Base Class Optimization_ (or _EBCO_) to
* reduce its final size to a minimum.
*
* @tparam First The type of the first element that the pair stores.
* @tparam Second The type of the second element that the pair stores.
*/
template<typename First, typename Second>
class compressed_pair final
: internal::compressed_pair_element<First, 0u>,
internal::compressed_pair_element<Second, 1u> {
using first_base = internal::compressed_pair_element<First, 0u>;
using second_base = internal::compressed_pair_element<Second, 1u>;
public:
/*! @brief The type of the first element that the pair stores. */
using first_type = First;
/*! @brief The type of the second element that the pair stores. */
using second_type = Second;
/**
* @brief Default constructor, conditionally enabled.
*
* This constructor is only available when the types that the pair stores
* are both at least default constructible.
*
* @tparam Dummy Dummy template parameter used for internal purposes.
*/
template<bool Dummy = true, typename = std::enable_if_t<Dummy && std::is_default_constructible_v<first_type> && std::is_default_constructible_v<second_type>>>
constexpr compressed_pair() noexcept(std::is_nothrow_default_constructible_v<first_base> &&std::is_nothrow_default_constructible_v<second_base>)
: first_base{},
second_base{} {}
/**
* @brief Copy constructor.
* @param other The instance to copy from.
*/
constexpr compressed_pair(const compressed_pair &other) noexcept(std::is_nothrow_copy_constructible_v<first_base> &&std::is_nothrow_copy_constructible_v<second_base>) = default;
/**
* @brief Move constructor.
* @param other The instance to move from.
*/
constexpr compressed_pair(compressed_pair &&other) noexcept(std::is_nothrow_move_constructible_v<first_base> &&std::is_nothrow_move_constructible_v<second_base>) = default;
/**
* @brief Constructs a pair from its values.
* @tparam Arg Type of value to use to initialize the first element.
* @tparam Other Type of value to use to initialize the second element.
* @param arg Value to use to initialize the first element.
* @param other Value to use to initialize the second element.
*/
template<typename Arg, typename Other>
constexpr compressed_pair(Arg &&arg, Other &&other) noexcept(std::is_nothrow_constructible_v<first_base, Arg> &&std::is_nothrow_constructible_v<second_base, Other>)
: first_base{std::forward<Arg>(arg)},
second_base{std::forward<Other>(other)} {}
/**
* @brief Constructs a pair by forwarding the arguments to its parts.
* @tparam Args Types of arguments to use to initialize the first element.
* @tparam Other Types of arguments to use to initialize the second element.
* @param args Arguments to use to initialize the first element.
* @param other Arguments to use to initialize the second element.
*/
template<typename... Args, typename... Other>
constexpr compressed_pair(std::piecewise_construct_t, std::tuple<Args...> args, std::tuple<Other...> other) noexcept(std::is_nothrow_constructible_v<first_base, Args...> &&std::is_nothrow_constructible_v<second_base, Other...>)
: first_base{std::move(args), std::index_sequence_for<Args...>{}},
second_base{std::move(other), std::index_sequence_for<Other...>{}} {}
/**
* @brief Copy assignment operator.
* @param other The instance to copy from.
* @return This compressed pair object.
*/
constexpr compressed_pair &operator=(const compressed_pair &other) noexcept(std::is_nothrow_copy_assignable_v<first_base> &&std::is_nothrow_copy_assignable_v<second_base>) = default;
/**
* @brief Move assignment operator.
* @param other The instance to move from.
* @return This compressed pair object.
*/
constexpr compressed_pair &operator=(compressed_pair &&other) noexcept(std::is_nothrow_move_assignable_v<first_base> &&std::is_nothrow_move_assignable_v<second_base>) = default;
/**
* @brief Returns the first element that a pair stores.
* @return The first element that a pair stores.
*/
[[nodiscard]] constexpr first_type &first() noexcept {
return static_cast<first_base &>(*this).get();
}
/*! @copydoc first */
[[nodiscard]] constexpr const first_type &first() const noexcept {
return static_cast<const first_base &>(*this).get();
}
/**
* @brief Returns the second element that a pair stores.
* @return The second element that a pair stores.
*/
[[nodiscard]] constexpr second_type &second() noexcept {
return static_cast<second_base &>(*this).get();
}
/*! @copydoc second */
[[nodiscard]] constexpr const second_type &second() const noexcept {
return static_cast<const second_base &>(*this).get();
}
/**
* @brief Swaps two compressed pair objects.
* @param other The compressed pair to swap with.
*/
constexpr void swap(compressed_pair &other) noexcept(std::is_nothrow_swappable_v<first_type> &&std::is_nothrow_swappable_v<second_type>) {
using std::swap;
swap(first(), other.first());
swap(second(), other.second());
}
/**
* @brief Extracts an element from the compressed pair.
* @tparam Index An integer value that is either 0 or 1.
* @return Returns a reference to the first element if `Index` is 0 and a
* reference to the second element if `Index` is 1.
*/
template<std::size_t Index>
constexpr decltype(auto) get() noexcept {
if constexpr(Index == 0u) {
return first();
} else {
static_assert(Index == 1u, "Index out of bounds");
return second();
}
}
/*! @copydoc get */
template<std::size_t Index>
constexpr decltype(auto) get() const noexcept {
if constexpr(Index == 0u) {
return first();
} else {
static_assert(Index == 1u, "Index out of bounds");
return second();
}
}
};
/**
* @brief Deduction guide.
* @tparam Type Type of value to use to initialize the first element.
* @tparam Other Type of value to use to initialize the second element.
*/
template<typename Type, typename Other>
compressed_pair(Type &&, Other &&) -> compressed_pair<std::decay_t<Type>, std::decay_t<Other>>;
/**
* @brief Swaps two compressed pair objects.
* @tparam First The type of the first element that the pairs store.
* @tparam Second The type of the second element that the pairs store.
* @param lhs A valid compressed pair object.
* @param rhs A valid compressed pair object.
*/
template<typename First, typename Second>
inline constexpr void swap(compressed_pair<First, Second> &lhs, compressed_pair<First, Second> &rhs) {
lhs.swap(rhs);
}
} // namespace entt
// disable structured binding support for clang 6, it messes when specializing tuple_size
#if !defined __clang_major__ || __clang_major__ > 6
namespace std {
/**
* @brief `std::tuple_size` specialization for `compressed_pair`s.
* @tparam First The type of the first element that the pair stores.
* @tparam Second The type of the second element that the pair stores.
*/
template<typename First, typename Second>
struct tuple_size<entt::compressed_pair<First, Second>>: integral_constant<size_t, 2u> {};
/**
* @brief `std::tuple_element` specialization for `compressed_pair`s.
* @tparam Index The index of the type to return.
* @tparam First The type of the first element that the pair stores.
* @tparam Second The type of the second element that the pair stores.
*/
template<size_t Index, typename First, typename Second>
struct tuple_element<Index, entt::compressed_pair<First, Second>>: conditional<Index == 0u, First, Second> {
static_assert(Index < 2u, "Index out of bounds");
};
} // namespace std
#endif
#endif
// #include "../core/fwd.hpp"
// #include "../core/iterator.hpp"
// #include "../core/utility.hpp"
#ifndef ENTT_CORE_UTILITY_HPP
#define ENTT_CORE_UTILITY_HPP
#include <type_traits>
#include <utility>
namespace entt {
/*! @brief Identity function object (waiting for C++20). */
struct identity {
/*! @brief Indicates that this is a transparent function object. */
using is_transparent = void;
/**
* @brief Returns its argument unchanged.
* @tparam Type Type of the argument.
* @param value The actual argument.
* @return The submitted value as-is.
*/
template<class Type>
[[nodiscard]] constexpr Type &&operator()(Type &&value) const noexcept {
return std::forward<Type>(value);
}
};
/**
* @brief Constant utility to disambiguate overloaded members of a class.
* @tparam Type Type of the desired overload.
* @tparam Class Type of class to which the member belongs.
* @param member A valid pointer to a member.
* @return Pointer to the member.
*/
template<typename Type, typename Class>
[[nodiscard]] constexpr auto overload(Type Class::*member) noexcept {
return member;
}
/**
* @brief Constant utility to disambiguate overloaded functions.
* @tparam Func Function type of the desired overload.
* @param func A valid pointer to a function.
* @return Pointer to the function.
*/
template<typename Func>
[[nodiscard]] constexpr auto overload(Func *func) noexcept {
return func;
}
/**
* @brief Helper type for visitors.
* @tparam Func Types of function objects.
*/
template<class... Func>
struct overloaded: Func... {
using Func::operator()...;
};
/**
* @brief Deduction guide.
* @tparam Func Types of function objects.
*/
template<class... Func>
overloaded(Func...) -> overloaded<Func...>;
/**
* @brief Basic implementation of a y-combinator.
* @tparam Func Type of a potentially recursive function.
*/
template<class Func>
struct y_combinator {
/**
* @brief Constructs a y-combinator from a given function.
* @param recursive A potentially recursive function.
*/
constexpr y_combinator(Func recursive) noexcept(std::is_nothrow_move_constructible_v<Func>)
: func{std::move(recursive)} {}
/**
* @brief Invokes a y-combinator and therefore its underlying function.
* @tparam Args Types of arguments to use to invoke the underlying function.
* @param args Parameters to use to invoke the underlying function.
* @return Return value of the underlying function, if any.
*/
template<class... Args>
constexpr decltype(auto) operator()(Args &&...args) const noexcept(std::is_nothrow_invocable_v<Func, const y_combinator &, Args...>) {
return func(*this, std::forward<Args>(args)...);
}
/*! @copydoc operator()() */
template<class... Args>
constexpr decltype(auto) operator()(Args &&...args) noexcept(std::is_nothrow_invocable_v<Func, y_combinator &, Args...>) {
return func(*this, std::forward<Args>(args)...);
}
private:
Func func;
};
} // namespace entt
#endif
// #include "adjacency_matrix.hpp"
#ifndef ENTT_GRAPH_ADJACENCY_MATRIX_HPP
#define ENTT_GRAPH_ADJACENCY_MATRIX_HPP
#include <cstddef>
#include <iterator>
#include <memory>
#include <type_traits>
#include <utility>
#include <vector>
// #include "../config/config.h"
// #include "../core/iterator.hpp"
// #include "fwd.hpp"
namespace entt {
/**
* @cond TURN_OFF_DOXYGEN
* Internal details not to be documented.
*/
namespace internal {
template<typename It>
class edge_iterator {
using size_type = std::size_t;
public:
using value_type = std::pair<size_type, size_type>;
using pointer = input_iterator_pointer<value_type>;
using reference = value_type;
using difference_type = std::ptrdiff_t;
using iterator_category = std::input_iterator_tag;
constexpr edge_iterator() noexcept
: it{},
vert{},
pos{},
last{},
offset{} {}
constexpr edge_iterator(It base, const size_type vertices, const size_type from, const size_type to, const size_type step) noexcept
: it{std::move(base)},
vert{vertices},
pos{from},
last{to},
offset{step} {
for(; pos != last && !it[pos]; pos += offset) {}
}
constexpr edge_iterator &operator++() noexcept {
for(pos += offset; pos != last && !it[pos]; pos += offset) {}
return *this;
}
constexpr edge_iterator operator++(int) noexcept {
edge_iterator orig = *this;
return ++(*this), orig;
}
[[nodiscard]] constexpr reference operator*() const noexcept {
return *operator->();
}
[[nodiscard]] constexpr pointer operator->() const noexcept {
return std::make_pair<size_type>(pos / vert, pos % vert);
}
template<typename Type>
friend constexpr bool operator==(const edge_iterator<Type> &, const edge_iterator<Type> &) noexcept;
private:
It it;
size_type vert;
size_type pos;
size_type last;
size_type offset{};
};
template<typename Container>
[[nodiscard]] inline constexpr bool operator==(const edge_iterator<Container> &lhs, const edge_iterator<Container> &rhs) noexcept {
return lhs.pos == rhs.pos;
}
template<typename Container>
[[nodiscard]] inline constexpr bool operator!=(const edge_iterator<Container> &lhs, const edge_iterator<Container> &rhs) noexcept {
return !(lhs == rhs);
}
} // namespace internal
/**
* Internal details not to be documented.
* @endcond
*/
/**
* @brief Basic implementation of a directed adjacency matrix.
* @tparam Category Either a directed or undirected category tag.
* @tparam Allocator Type of allocator used to manage memory and elements.
*/
template<typename Category, typename Allocator>
class adjacency_matrix {
using alloc_traits = std::allocator_traits<Allocator>;
static_assert(std::is_base_of_v<directed_tag, Category>, "Invalid graph category");
static_assert(std::is_same_v<typename alloc_traits::value_type, std::size_t>, "Invalid value type");
using container_type = std::vector<std::size_t, typename alloc_traits::template rebind_alloc<std::size_t>>;
public:
/*! @brief Allocator type. */
using allocator_type = Allocator;
/*! @brief Unsigned integer type. */
using size_type = std::size_t;
/*! @brief Vertex type. */
using vertex_type = size_type;
/*! @brief Edge type. */
using edge_type = std::pair<vertex_type, vertex_type>;
/*! @brief Vertex iterator type. */
using vertex_iterator = iota_iterator<vertex_type>;
/*! @brief Edge iterator type. */
using edge_iterator = internal::edge_iterator<typename container_type::const_iterator>;
/*! @brief Out edge iterator type. */
using out_edge_iterator = edge_iterator;
/*! @brief In edge iterator type. */
using in_edge_iterator = edge_iterator;
/*! @brief Graph category tag. */
using graph_category = Category;
/*! @brief Default constructor. */
adjacency_matrix() noexcept(noexcept(allocator_type{}))
: adjacency_matrix{0u} {}
/**
* @brief Constructs an empty container with a given allocator.
* @param allocator The allocator to use.
*/
explicit adjacency_matrix(const allocator_type &allocator) noexcept
: adjacency_matrix{0u, allocator} {}
/**
* @brief Constructs an empty container with a given allocator and user
* supplied number of vertices.
* @param vertices Number of vertices.
* @param allocator The allocator to use.
*/
adjacency_matrix(const size_type vertices, const allocator_type &allocator = allocator_type{})
: matrix{vertices * vertices, allocator},
vert{vertices} {}
/**
* @brief Copy constructor.
* @param other The instance to copy from.
*/
adjacency_matrix(const adjacency_matrix &other)
: adjacency_matrix{other, other.get_allocator()} {}
/**
* @brief Allocator-extended copy constructor.
* @param other The instance to copy from.
* @param allocator The allocator to use.
*/
adjacency_matrix(const adjacency_matrix &other, const allocator_type &allocator)
: matrix{other.matrix, allocator},
vert{other.vert} {}
/**
* @brief Move constructor.
* @param other The instance to move from.
*/
adjacency_matrix(adjacency_matrix &&other) noexcept
: adjacency_matrix{std::move(other), other.get_allocator()} {}
/**
* @brief Allocator-extended move constructor.
* @param other The instance to move from.
* @param allocator The allocator to use.
*/
adjacency_matrix(adjacency_matrix &&other, const allocator_type &allocator)
: matrix{std::move(other.matrix), allocator},
vert{std::exchange(other.vert, 0u)} {}
/**
* @brief Default copy assignment operator.
* @param other The instance to copy from.
* @return This container.
*/
adjacency_matrix &operator=(const adjacency_matrix &other) {
matrix = other.matrix;
vert = other.vert;
return *this;
}
/**
* @brief Default move assignment operator.
* @param other The instance to move from.
* @return This container.
*/
adjacency_matrix &operator=(adjacency_matrix &&other) noexcept {
matrix = std::move(other.matrix);
vert = std::exchange(other.vert, 0u);
return *this;
}
/**
* @brief Returns the associated allocator.
* @return The associated allocator.
*/
[[nodiscard]] constexpr allocator_type get_allocator() const noexcept {
return matrix.get_allocator();
}
/*! @brief Clears the adjacency matrix. */
void clear() noexcept {
matrix.clear();
vert = {};
}
/**
* @brief Exchanges the contents with those of a given adjacency matrix.
* @param other Adjacency matrix to exchange the content with.
*/
void swap(adjacency_matrix &other) {
using std::swap;
swap(matrix, other.matrix);
swap(vert, other.vert);
}
/**
* @brief Returns the number of vertices.
* @return The number of vertices.
*/
[[nodiscard]] size_type size() const noexcept {
return vert;
}
/**
* @brief Returns an iterable object to visit all vertices of a matrix.
* @return An iterable object to visit all vertices of a matrix.
*/
[[nodiscard]] iterable_adaptor<vertex_iterator> vertices() const noexcept {
return {0u, vert};
}
/**
* @brief Returns an iterable object to visit all edges of a matrix.
* @return An iterable object to visit all edges of a matrix.
*/
[[nodiscard]] iterable_adaptor<edge_iterator> edges() const noexcept {
const auto it = matrix.cbegin();
const auto sz = matrix.size();
return {{it, vert, 0u, sz, 1u}, {it, vert, sz, sz, 1u}};
}
/**
* @brief Returns an iterable object to visit all out edges of a vertex.
* @param vertex The vertex of which to return all out edges.
* @return An iterable object to visit all out edges of a vertex.
*/
[[nodiscard]] iterable_adaptor<out_edge_iterator> out_edges(const vertex_type vertex) const noexcept {
const auto it = matrix.cbegin();
const auto from = vertex * vert;
const auto to = vertex * vert + vert;
return {{it, vert, from, to, 1u}, {it, vert, to, to, 1u}};
}
/**
* @brief Returns an iterable object to visit all in edges of a vertex.
* @param vertex The vertex of which to return all in edges.
* @return An iterable object to visit all in edges of a vertex.
*/
[[nodiscard]] iterable_adaptor<in_edge_iterator> in_edges(const vertex_type vertex) const noexcept {
const auto it = matrix.cbegin();
const auto from = vertex;
const auto to = vert * (vert - 1u) + vertex;
return {{it, vert, from, to, vert}, {it, vert, to, to, vert}};
}
/**
* @brief Resizes an adjacency matrix.
* @param vertices The new number of vertices.
*/
void resize(const size_type vertices) {
adjacency_matrix other{vertices, get_allocator()};
for(auto [lhs, rhs]: edges()) {
other.insert(lhs, rhs);
}
other.swap(*this);
}
/**
* @brief Inserts an edge into the adjacency matrix, if it does not exist.
* @param lhs The left hand vertex of the edge.
* @param rhs The right hand vertex of the edge.
* @return A pair consisting of an iterator to the inserted element (or to
* the element that prevented the insertion) and a bool denoting whether the
* insertion took place.
*/
std::pair<edge_iterator, bool> insert(const vertex_type lhs, const vertex_type rhs) {
const auto pos = lhs * vert + rhs;
if constexpr(std::is_same_v<graph_category, undirected_tag>) {
const auto rev = rhs * vert + lhs;
ENTT_ASSERT(matrix[pos] == matrix[rev], "Something went really wrong");
matrix[rev] = 1u;
}
const auto inserted = !std::exchange(matrix[pos], 1u);
return {edge_iterator{matrix.cbegin(), vert, pos, matrix.size(), 1u}, inserted};
}
/**
* @brief Removes the edge associated with a pair of given vertices.
* @param lhs The left hand vertex of the edge.
* @param rhs The right hand vertex of the edge.
* @return Number of elements removed (either 0 or 1).
*/
size_type erase(const vertex_type lhs, const vertex_type rhs) {
const auto pos = lhs * vert + rhs;
if constexpr(std::is_same_v<graph_category, undirected_tag>) {
const auto rev = rhs * vert + lhs;
ENTT_ASSERT(matrix[pos] == matrix[rev], "Something went really wrong");
matrix[rev] = 0u;
}
return std::exchange(matrix[pos], 0u);
}
/**
* @brief Checks if an adjacency matrix contains a given edge.
* @param lhs The left hand vertex of the edge.
* @param rhs The right hand vertex of the edge.
* @return True if there is such an edge, false otherwise.
*/
[[nodiscard]] bool contains(const vertex_type lhs, const vertex_type rhs) const {
const auto pos = lhs * vert + rhs;
return pos < matrix.size() && matrix[pos];
}
private:
container_type matrix;
size_type vert;
};
} // namespace entt
#endif
// #include "fwd.hpp"
namespace entt {
/**
* @brief Utility class for creating task graphs.
* @tparam Allocator Type of allocator used to manage memory and elements.
*/
template<typename Allocator>
class basic_flow {
using alloc_traits = std::allocator_traits<Allocator>;
static_assert(std::is_same_v<typename alloc_traits::value_type, id_type>, "Invalid value type");
using task_container_type = dense_set<id_type, identity, std::equal_to<id_type>, typename alloc_traits::template rebind_alloc<id_type>>;
using ro_rw_container_type = std::vector<std::pair<std::size_t, bool>, typename alloc_traits::template rebind_alloc<std::pair<std::size_t, bool>>>;
using deps_container_type = dense_map<id_type, ro_rw_container_type, identity, std::equal_to<id_type>, typename alloc_traits::template rebind_alloc<std::pair<const id_type, ro_rw_container_type>>>;
void emplace(const id_type res, const bool is_rw) {
ENTT_ASSERT(index.first() < vertices.size(), "Invalid node");
if(!deps.contains(res) && sync_on != vertices.size()) {
deps[res].emplace_back(sync_on, true);
}
deps[res].emplace_back(index.first(), is_rw);
}
public:
/*! @brief Allocator type. */
using allocator_type = Allocator;
/*! @brief Unsigned integer type. */
using size_type = std::size_t;
/*! @brief Iterable task list. */
using iterable = iterable_adaptor<typename task_container_type::const_iterator>;
/*! @brief Default constructor. */
basic_flow()
: basic_flow{allocator_type{}} {}
/**
* @brief Constructs a flow builder with a given allocator.
* @param allocator The allocator to use.
*/
explicit basic_flow(const allocator_type &allocator)
: index{0u, allocator},
vertices{},
deps{},
sync_on{} {}
/*! @brief Default copy constructor. */
basic_flow(const basic_flow &) = default;
/**
* @brief Allocator-extended copy constructor.
* @param other The instance to copy from.
* @param allocator The allocator to use.
*/
basic_flow(const basic_flow &other, const allocator_type &allocator)
: index{other.index.first(), allocator},
vertices{other.vertices, allocator},
deps{other.deps, allocator},
sync_on{other.sync_on} {}
/*! @brief Default move constructor. */
basic_flow(basic_flow &&) noexcept = default;
/**
* @brief Allocator-extended move constructor.
* @param other The instance to move from.
* @param allocator The allocator to use.
*/
basic_flow(basic_flow &&other, const allocator_type &allocator)
: index{other.index.first(), allocator},
vertices{std::move(other.vertices), allocator},
deps{std::move(other.deps), allocator},
sync_on{other.sync_on} {}
/**
* @brief Default copy assignment operator.
* @return This flow builder.
*/
basic_flow &operator=(const basic_flow &) = default;
/**
* @brief Default move assignment operator.
* @return This flow builder.
*/
basic_flow &operator=(basic_flow &&) noexcept = default;
/**
* @brief Returns the associated allocator.
* @return The associated allocator.
*/
[[nodiscard]] constexpr allocator_type get_allocator() const noexcept {
return allocator_type{index.second()};
}
/**
* @brief Returns the identifier at specified location.
* @param pos Position of the identifier to return.
* @return The requested identifier.
*/
[[nodiscard]] id_type operator[](const size_type pos) const {
return vertices.cbegin()[pos];
}
/*! @brief Clears the flow builder. */
void clear() noexcept {
index.first() = sync_on = {};
vertices.clear();
deps.clear();
}
/**
* @brief Exchanges the contents with those of a given flow builder.
* @param other Flow builder to exchange the content with.
*/
void swap(basic_flow &other) {
using std::swap;
std::swap(index, other.index);
std::swap(vertices, other.vertices);
std::swap(deps, other.deps);
std::swap(sync_on, other.sync_on);
}
/**
* @brief Returns the number of tasks.
* @return The number of tasks.
*/
[[nodiscard]] size_type size() const noexcept {
return vertices.size();
}
/**
* @brief Binds a task to a flow builder.
* @param value Task identifier.
* @return This flow builder.
*/
basic_flow &bind(const id_type value) {
sync_on += (sync_on == vertices.size());
const auto it = vertices.emplace(value).first;
index.first() = size_type(it - vertices.begin());
return *this;
}
/**
* @brief Turns the current task into a sync point.
* @return This flow builder.
*/
basic_flow &sync() {
ENTT_ASSERT(index.first() < vertices.size(), "Invalid node");
sync_on = index.first();
for(const auto &elem: deps) {
elem.second.emplace_back(sync_on, true);
}
return *this;
}
/**
* @brief Assigns a resource to the current task with a given access mode.
* @param res Resource identifier.
* @param is_rw Access mode.
* @return This flow builder.
*/
basic_flow &set(const id_type res, bool is_rw = false) {
emplace(res, is_rw);
return *this;
}
/**
* @brief Assigns a read-only resource to the current task.
* @param res Resource identifier.
* @return This flow builder.
*/
basic_flow &ro(const id_type res) {
emplace(res, false);
return *this;
}
/**
* @brief Assigns a range of read-only resources to the current task.
* @tparam It Type of input iterator.
* @param first An iterator to the first element of the range of elements.
* @param last An iterator past the last element of the range of elements.
* @return This flow builder.
*/
template<typename It>
std::enable_if_t<std::is_same_v<std::remove_const_t<typename std::iterator_traits<It>::value_type>, id_type>, basic_flow &>
ro(It first, It last) {
for(; first != last; ++first) {
emplace(*first, false);
}
return *this;
}
/**
* @brief Assigns a writable resource to the current task.
* @param res Resource identifier.
* @return This flow builder.
*/
basic_flow &rw(const id_type res) {
emplace(res, true);
return *this;
}
/**
* @brief Assigns a range of writable resources to the current task.
* @tparam It Type of input iterator.
* @param first An iterator to the first element of the range of elements.
* @param last An iterator past the last element of the range of elements.
* @return This flow builder.
*/
template<typename It>
std::enable_if_t<std::is_same_v<std::remove_const_t<typename std::iterator_traits<It>::value_type>, id_type>, basic_flow &>
rw(It first, It last) {
for(; first != last; ++first) {
emplace(*first, true);
}
return *this;
}
/**
* @brief Generates a task graph for the current content.
* @return The adjacency matrix of the task graph.
*/
[[nodiscard]] adjacency_matrix<directed_tag> graph() const {
const auto length = vertices.size();
adjacency_matrix<directed_tag> matrix{length};
// creates the adjacency matrix
for(const auto &elem: deps) {
const auto last = elem.second.cend();
auto it = elem.second.cbegin();
while(it != last) {
if(it->second) {
// rw item
if(auto curr = it++; it != last) {
if(it->second) {
matrix.insert(curr->first, it->first);
} else if(const auto next = std::find_if(it, last, [](const auto &value) { return value.second; }); next != last) {
for(; it != next; ++it) {
matrix.insert(curr->first, it->first);
matrix.insert(it->first, next->first);
}
} else {
for(; it != next; ++it) {
matrix.insert(curr->first, it->first);
}
}
}
} else {
// ro item (first iteration only)
if(const auto next = std::find_if(it, last, [](const auto &value) { return value.second; }); next != last) {
for(; it != next; ++it) {
matrix.insert(it->first, next->first);
}
} else {
it = last;
}
}
}
}
// computes the transitive closure
for(std::size_t vk{}; vk < length; ++vk) {
for(std::size_t vi{}; vi < length; ++vi) {
for(std::size_t vj{}; vj < length; ++vj) {
if(matrix.contains(vi, vk) && matrix.contains(vk, vj)) {
matrix.insert(vi, vj);
}
}
}
}
// applies the transitive reduction
for(std::size_t vert{}; vert < length; ++vert) {
matrix.erase(vert, vert);
}
for(std::size_t vj{}; vj < length; ++vj) {
for(std::size_t vi{}; vi < length; ++vi) {
if(matrix.contains(vi, vj)) {
for(std::size_t vk{}; vk < length; ++vk) {
if(matrix.contains(vj, vk)) {
matrix.erase(vi, vk);
}
}
}
}
}
return matrix;
}
private:
compressed_pair<size_type, allocator_type> index;
task_container_type vertices;
deps_container_type deps;
size_type sync_on;
};
} // namespace entt
#endif
// #include "locator/locator.hpp"
#ifndef ENTT_LOCATOR_LOCATOR_HPP
#define ENTT_LOCATOR_LOCATOR_HPP
#include <memory>
#include <utility>
// #include "../config/config.h"
#ifndef ENTT_CONFIG_CONFIG_H
#define ENTT_CONFIG_CONFIG_H
// #include "version.h"
#ifndef ENTT_CONFIG_VERSION_H
#define ENTT_CONFIG_VERSION_H
// #include "macro.h"
#ifndef ENTT_CONFIG_MACRO_H
#define ENTT_CONFIG_MACRO_H
#define ENTT_STR(arg) #arg
#define ENTT_XSTR(arg) ENTT_STR(arg)
#endif
#define ENTT_VERSION_MAJOR 3
#define ENTT_VERSION_MINOR 11
#define ENTT_VERSION_PATCH 1
#define ENTT_VERSION \
ENTT_XSTR(ENTT_VERSION_MAJOR) \
"." ENTT_XSTR(ENTT_VERSION_MINOR) "." ENTT_XSTR(ENTT_VERSION_PATCH)
#endif
#if defined(__cpp_exceptions) && !defined(ENTT_NOEXCEPTION)
# define ENTT_CONSTEXPR
# define ENTT_THROW throw
# define ENTT_TRY try
# define ENTT_CATCH catch(...)
#else
# define ENTT_CONSTEXPR constexpr // use only with throwing functions (waiting for C++20)
# define ENTT_THROW
# define ENTT_TRY if(true)
# define ENTT_CATCH if(false)
#endif
#ifdef ENTT_USE_ATOMIC
# include <atomic>
# define ENTT_MAYBE_ATOMIC(Type) std::atomic<Type>
#else
# define ENTT_MAYBE_ATOMIC(Type) Type
#endif
#ifndef ENTT_ID_TYPE
# include <cstdint>
# define ENTT_ID_TYPE std::uint32_t
#endif
#ifndef ENTT_SPARSE_PAGE
# define ENTT_SPARSE_PAGE 4096
#endif
#ifndef ENTT_PACKED_PAGE
# define ENTT_PACKED_PAGE 1024
#endif
#ifdef ENTT_DISABLE_ASSERT
# undef ENTT_ASSERT
# define ENTT_ASSERT(condition, msg) (void(0))
#elif !defined ENTT_ASSERT
# include <cassert>
# define ENTT_ASSERT(condition, msg) assert(condition)
#endif
#ifdef ENTT_DISABLE_ASSERT
# undef ENTT_ASSERT_CONSTEXPR
# define ENTT_ASSERT_CONSTEXPR(condition, msg) (void(0))
#elif !defined ENTT_ASSERT_CONSTEXPR
# define ENTT_ASSERT_CONSTEXPR(condition, msg) ENTT_ASSERT(condition, msg)
#endif
#ifdef ENTT_NO_ETO
# define ENTT_ETO_TYPE(Type) void
#else
# define ENTT_ETO_TYPE(Type) Type
#endif
#ifdef ENTT_STANDARD_CPP
# define ENTT_NONSTD false
#else
# define ENTT_NONSTD true
# if defined __clang__ || defined __GNUC__
# define ENTT_PRETTY_FUNCTION __PRETTY_FUNCTION__
# define ENTT_PRETTY_FUNCTION_PREFIX '='
# define ENTT_PRETTY_FUNCTION_SUFFIX ']'
# elif defined _MSC_VER
# define ENTT_PRETTY_FUNCTION __FUNCSIG__
# define ENTT_PRETTY_FUNCTION_PREFIX '<'
# define ENTT_PRETTY_FUNCTION_SUFFIX '>'
# endif
#endif
#if defined _MSC_VER
# pragma detect_mismatch("entt.version", ENTT_VERSION)
# pragma detect_mismatch("entt.noexcept", ENTT_XSTR(ENTT_TRY))
# pragma detect_mismatch("entt.id", ENTT_XSTR(ENTT_ID_TYPE))
# pragma detect_mismatch("entt.nonstd", ENTT_XSTR(ENTT_NONSTD))
#endif
#endif
namespace entt {
/**
* @brief Service locator, nothing more.
*
* A service locator is used to do what it promises: locate services.<br/>
* Usually service locators are tightly bound to the services they expose and
* thus it's hard to define a general purpose class to do that. This tiny class
* tries to fill the gap and to get rid of the burden of defining a different
* specific locator for each application.
*
* @note
* Users shouldn't retain references to a service. The recommended way is to
* retrieve the service implementation currently set each and every time the
* need for it arises. The risk is to incur in unexpected behaviors otherwise.
*
* @tparam Service Service type.
*/
template<typename Service>
class locator final {
class service_handle {
friend class locator<Service>;
std::shared_ptr<Service> value{};
};
public:
/*! @brief Service type. */
using type = Service;
/*! @brief Service node type. */
using node_type = service_handle;
/*! @brief Default constructor, deleted on purpose. */
locator() = delete;
/*! @brief Default destructor, deleted on purpose. */
~locator() = delete;
/**
* @brief Checks whether a service locator contains a value.
* @return True if the service locator contains a value, false otherwise.
*/
[[nodiscard]] static bool has_value() noexcept {
return (service != nullptr);
}
/**
* @brief Returns a reference to a valid service, if any.
*
* @warning
* Invoking this function can result in undefined behavior if the service
* hasn't been set yet.
*
* @return A reference to the service currently set, if any.
*/
[[nodiscard]] static Service &value() noexcept {
ENTT_ASSERT(has_value(), "Service not available");
return *service;
}
/**
* @brief Returns a service if available or sets it from a fallback type.
*
* Arguments are used only if a service doesn't already exist. In all other
* cases, they are discarded.
*
* @tparam Args Types of arguments to use to construct the fallback service.
* @tparam Impl Fallback service type.
* @param args Parameters to use to construct the fallback service.
* @return A reference to a valid service.
*/
template<typename Impl = Service, typename... Args>
[[nodiscard]] static Service &value_or(Args &&...args) {
return service ? *service : emplace<Impl>(std::forward<Args>(args)...);
}
/**
* @brief Sets or replaces a service.
* @tparam Impl Service type.
* @tparam Args Types of arguments to use to construct the service.
* @param args Parameters to use to construct the service.
* @return A reference to a valid service.
*/
template<typename Impl = Service, typename... Args>
static Service &emplace(Args &&...args) {
service = std::make_shared<Impl>(std::forward<Args>(args)...);
return *service;
}
/**
* @brief Sets or replaces a service using a given allocator.
* @tparam Impl Service type.
* @tparam Allocator Type of allocator used to manage memory and elements.
* @tparam Args Types of arguments to use to construct the service.
* @param alloc The allocator to use.
* @param args Parameters to use to construct the service.
* @return A reference to a valid service.
*/
template<typename Impl = Service, typename Allocator, typename... Args>
static Service &allocate_emplace(Allocator alloc, Args &&...args) {
service = std::allocate_shared<Impl>(alloc, std::forward<Args>(args)...);
return *service;
}
/**
* @brief Returns a handle to the underlying service.
* @return A handle to the underlying service.
*/
static node_type handle() noexcept {
node_type node{};
node.value = service;
return node;
}
/**
* @brief Resets or replaces a service.
* @param other Optional handle with which to replace the service.
*/
static void reset(const node_type &other = {}) noexcept {
service = other.value;
}
private:
// std::shared_ptr because of its type erased allocator which is useful here
inline static std::shared_ptr<Service> service{};
};
} // namespace entt
#endif
// #include "meta/adl_pointer.hpp"
#ifndef ENTT_META_ADL_POINTER_HPP
#define ENTT_META_ADL_POINTER_HPP
namespace entt {
/**
* @brief ADL based lookup function for dereferencing meta pointer-like types.
* @tparam Type Element type.
* @param value A pointer-like object.
* @return The value returned from the dereferenced pointer.
*/
template<typename Type>
decltype(auto) dereference_meta_pointer_like(const Type &value) {
return *value;
}
/**
* @brief Fake ADL based lookup function for meta pointer-like types.
* @tparam Type Element type.
*/
template<typename Type>
struct adl_meta_pointer_like {
/**
* @brief Uses the default ADL based lookup method to resolve the call.
* @param value A pointer-like object.
* @return The value returned from the dereferenced pointer.
*/
static decltype(auto) dereference(const Type &value) {
return dereference_meta_pointer_like(value);
}
};
} // namespace entt
#endif
// #include "meta/container.hpp"
#ifndef ENTT_META_CONTAINER_HPP
#define ENTT_META_CONTAINER_HPP
#include <array>
#include <deque>
#include <iterator>
#include <list>
#include <map>
#include <set>
#include <type_traits>
#include <unordered_map>
#include <unordered_set>
#include <vector>
// #include "../container/dense_map.hpp"
#ifndef ENTT_CONTAINER_DENSE_MAP_HPP
#define ENTT_CONTAINER_DENSE_MAP_HPP
#include <cmath>
#include <cstddef>
#include <functional>
#include <iterator>
#include <limits>
#include <memory>
#include <tuple>
#include <type_traits>
#include <utility>
#include <vector>
// #include "../config/config.h"
#ifndef ENTT_CONFIG_CONFIG_H
#define ENTT_CONFIG_CONFIG_H
// #include "version.h"
#ifndef ENTT_CONFIG_VERSION_H
#define ENTT_CONFIG_VERSION_H
// #include "macro.h"
#ifndef ENTT_CONFIG_MACRO_H
#define ENTT_CONFIG_MACRO_H
#define ENTT_STR(arg) #arg
#define ENTT_XSTR(arg) ENTT_STR(arg)
#endif
#define ENTT_VERSION_MAJOR 3
#define ENTT_VERSION_MINOR 11
#define ENTT_VERSION_PATCH 1
#define ENTT_VERSION \
ENTT_XSTR(ENTT_VERSION_MAJOR) \
"." ENTT_XSTR(ENTT_VERSION_MINOR) "." ENTT_XSTR(ENTT_VERSION_PATCH)
#endif
#if defined(__cpp_exceptions) && !defined(ENTT_NOEXCEPTION)
# define ENTT_CONSTEXPR
# define ENTT_THROW throw
# define ENTT_TRY try
# define ENTT_CATCH catch(...)
#else
# define ENTT_CONSTEXPR constexpr // use only with throwing functions (waiting for C++20)
# define ENTT_THROW
# define ENTT_TRY if(true)
# define ENTT_CATCH if(false)
#endif
#ifdef ENTT_USE_ATOMIC
# include <atomic>
# define ENTT_MAYBE_ATOMIC(Type) std::atomic<Type>
#else
# define ENTT_MAYBE_ATOMIC(Type) Type
#endif
#ifndef ENTT_ID_TYPE
# include <cstdint>
# define ENTT_ID_TYPE std::uint32_t
#endif
#ifndef ENTT_SPARSE_PAGE
# define ENTT_SPARSE_PAGE 4096
#endif
#ifndef ENTT_PACKED_PAGE
# define ENTT_PACKED_PAGE 1024
#endif
#ifdef ENTT_DISABLE_ASSERT
# undef ENTT_ASSERT
# define ENTT_ASSERT(condition, msg) (void(0))
#elif !defined ENTT_ASSERT
# include <cassert>
# define ENTT_ASSERT(condition, msg) assert(condition)
#endif
#ifdef ENTT_DISABLE_ASSERT
# undef ENTT_ASSERT_CONSTEXPR
# define ENTT_ASSERT_CONSTEXPR(condition, msg) (void(0))
#elif !defined ENTT_ASSERT_CONSTEXPR
# define ENTT_ASSERT_CONSTEXPR(condition, msg) ENTT_ASSERT(condition, msg)
#endif
#ifdef ENTT_NO_ETO
# define ENTT_ETO_TYPE(Type) void
#else
# define ENTT_ETO_TYPE(Type) Type
#endif
#ifdef ENTT_STANDARD_CPP
# define ENTT_NONSTD false
#else
# define ENTT_NONSTD true
# if defined __clang__ || defined __GNUC__
# define ENTT_PRETTY_FUNCTION __PRETTY_FUNCTION__
# define ENTT_PRETTY_FUNCTION_PREFIX '='
# define ENTT_PRETTY_FUNCTION_SUFFIX ']'
# elif defined _MSC_VER
# define ENTT_PRETTY_FUNCTION __FUNCSIG__
# define ENTT_PRETTY_FUNCTION_PREFIX '<'
# define ENTT_PRETTY_FUNCTION_SUFFIX '>'
# endif
#endif
#if defined _MSC_VER
# pragma detect_mismatch("entt.version", ENTT_VERSION)
# pragma detect_mismatch("entt.noexcept", ENTT_XSTR(ENTT_TRY))
# pragma detect_mismatch("entt.id", ENTT_XSTR(ENTT_ID_TYPE))
# pragma detect_mismatch("entt.nonstd", ENTT_XSTR(ENTT_NONSTD))
#endif
#endif
// #include "../core/compressed_pair.hpp"
#ifndef ENTT_CORE_COMPRESSED_PAIR_HPP
#define ENTT_CORE_COMPRESSED_PAIR_HPP
#include <cstddef>
#include <tuple>
#include <type_traits>
#include <utility>
// #include "type_traits.hpp"
#ifndef ENTT_CORE_TYPE_TRAITS_HPP
#define ENTT_CORE_TYPE_TRAITS_HPP
#include <cstddef>
#include <iterator>
#include <type_traits>
#include <utility>
// #include "../config/config.h"
#ifndef ENTT_CONFIG_CONFIG_H
#define ENTT_CONFIG_CONFIG_H
// #include "version.h"
#ifndef ENTT_CONFIG_VERSION_H
#define ENTT_CONFIG_VERSION_H
// #include "macro.h"
#ifndef ENTT_CONFIG_MACRO_H
#define ENTT_CONFIG_MACRO_H
#define ENTT_STR(arg) #arg
#define ENTT_XSTR(arg) ENTT_STR(arg)
#endif
#define ENTT_VERSION_MAJOR 3
#define ENTT_VERSION_MINOR 11
#define ENTT_VERSION_PATCH 1
#define ENTT_VERSION \
ENTT_XSTR(ENTT_VERSION_MAJOR) \
"." ENTT_XSTR(ENTT_VERSION_MINOR) "." ENTT_XSTR(ENTT_VERSION_PATCH)
#endif
#if defined(__cpp_exceptions) && !defined(ENTT_NOEXCEPTION)
# define ENTT_CONSTEXPR
# define ENTT_THROW throw
# define ENTT_TRY try
# define ENTT_CATCH catch(...)
#else
# define ENTT_CONSTEXPR constexpr // use only with throwing functions (waiting for C++20)
# define ENTT_THROW
# define ENTT_TRY if(true)
# define ENTT_CATCH if(false)
#endif
#ifdef ENTT_USE_ATOMIC
# include <atomic>
# define ENTT_MAYBE_ATOMIC(Type) std::atomic<Type>
#else
# define ENTT_MAYBE_ATOMIC(Type) Type
#endif
#ifndef ENTT_ID_TYPE
# include <cstdint>
# define ENTT_ID_TYPE std::uint32_t
#endif
#ifndef ENTT_SPARSE_PAGE
# define ENTT_SPARSE_PAGE 4096
#endif
#ifndef ENTT_PACKED_PAGE
# define ENTT_PACKED_PAGE 1024
#endif
#ifdef ENTT_DISABLE_ASSERT
# undef ENTT_ASSERT
# define ENTT_ASSERT(condition, msg) (void(0))
#elif !defined ENTT_ASSERT
# include <cassert>
# define ENTT_ASSERT(condition, msg) assert(condition)
#endif
#ifdef ENTT_DISABLE_ASSERT
# undef ENTT_ASSERT_CONSTEXPR
# define ENTT_ASSERT_CONSTEXPR(condition, msg) (void(0))
#elif !defined ENTT_ASSERT_CONSTEXPR
# define ENTT_ASSERT_CONSTEXPR(condition, msg) ENTT_ASSERT(condition, msg)
#endif
#ifdef ENTT_NO_ETO
# define ENTT_ETO_TYPE(Type) void
#else
# define ENTT_ETO_TYPE(Type) Type
#endif
#ifdef ENTT_STANDARD_CPP
# define ENTT_NONSTD false
#else
# define ENTT_NONSTD true
# if defined __clang__ || defined __GNUC__
# define ENTT_PRETTY_FUNCTION __PRETTY_FUNCTION__
# define ENTT_PRETTY_FUNCTION_PREFIX '='
# define ENTT_PRETTY_FUNCTION_SUFFIX ']'
# elif defined _MSC_VER
# define ENTT_PRETTY_FUNCTION __FUNCSIG__
# define ENTT_PRETTY_FUNCTION_PREFIX '<'
# define ENTT_PRETTY_FUNCTION_SUFFIX '>'
# endif
#endif
#if defined _MSC_VER
# pragma detect_mismatch("entt.version", ENTT_VERSION)
# pragma detect_mismatch("entt.noexcept", ENTT_XSTR(ENTT_TRY))
# pragma detect_mismatch("entt.id", ENTT_XSTR(ENTT_ID_TYPE))
# pragma detect_mismatch("entt.nonstd", ENTT_XSTR(ENTT_NONSTD))
#endif
#endif
// #include "fwd.hpp"
#ifndef ENTT_CORE_FWD_HPP
#define ENTT_CORE_FWD_HPP
#include <cstddef>
// #include "../config/config.h"
namespace entt {
template<std::size_t Len = sizeof(double[2]), std::size_t = alignof(double[2])>
class basic_any;
/*! @brief Alias declaration for type identifiers. */
using id_type = ENTT_ID_TYPE;
/*! @brief Alias declaration for the most common use case. */
using any = basic_any<>;
} // namespace entt
#endif
namespace entt {
/**
* @brief Utility class to disambiguate overloaded functions.
* @tparam N Number of choices available.
*/
template<std::size_t N>
struct choice_t
// Unfortunately, doxygen cannot parse such a construct.
: /*! @cond TURN_OFF_DOXYGEN */ choice_t<N - 1> /*! @endcond */
{};
/*! @copybrief choice_t */
template<>
struct choice_t<0> {};
/**
* @brief Variable template for the choice trick.
* @tparam N Number of choices available.
*/
template<std::size_t N>
inline constexpr choice_t<N> choice{};
/**
* @brief Identity type trait.
*
* Useful to establish non-deduced contexts in template argument deduction
* (waiting for C++20) or to provide types through function arguments.
*
* @tparam Type A type.
*/
template<typename Type>
struct type_identity {
/*! @brief Identity type. */
using type = Type;
};
/**
* @brief Helper type.
* @tparam Type A type.
*/
template<typename Type>
using type_identity_t = typename type_identity<Type>::type;
/**
* @brief A type-only `sizeof` wrapper that returns 0 where `sizeof` complains.
* @tparam Type The type of which to return the size.
* @tparam The size of the type if `sizeof` accepts it, 0 otherwise.
*/
template<typename Type, typename = void>
struct size_of: std::integral_constant<std::size_t, 0u> {};
/*! @copydoc size_of */
template<typename Type>
struct size_of<Type, std::void_t<decltype(sizeof(Type))>>
: std::integral_constant<std::size_t, sizeof(Type)> {};
/**
* @brief Helper variable template.
* @tparam Type The type of which to return the size.
*/
template<typename Type>
inline constexpr std::size_t size_of_v = size_of<Type>::value;
/**
* @brief Using declaration to be used to _repeat_ the same type a number of
* times equal to the size of a given parameter pack.
* @tparam Type A type to repeat.
*/
template<typename Type, typename>
using unpack_as_type = Type;
/**
* @brief Helper variable template to be used to _repeat_ the same value a
* number of times equal to the size of a given parameter pack.
* @tparam Value A value to repeat.
*/
template<auto Value, typename>
inline constexpr auto unpack_as_value = Value;
/**
* @brief Wraps a static constant.
* @tparam Value A static constant.
*/
template<auto Value>
using integral_constant = std::integral_constant<decltype(Value), Value>;
/**
* @brief Alias template to facilitate the creation of named values.
* @tparam Value A constant value at least convertible to `id_type`.
*/
template<id_type Value>
using tag = integral_constant<Value>;
/**
* @brief A class to use to push around lists of types, nothing more.
* @tparam Type Types provided by the type list.
*/
template<typename... Type>
struct type_list {
/*! @brief Type list type. */
using type = type_list;
/*! @brief Compile-time number of elements in the type list. */
static constexpr auto size = sizeof...(Type);
};
/*! @brief Primary template isn't defined on purpose. */
template<std::size_t, typename>
struct type_list_element;
/**
* @brief Provides compile-time indexed access to the types of a type list.
* @tparam Index Index of the type to return.
* @tparam First First type provided by the type list.
* @tparam Other Other types provided by the type list.
*/
template<std::size_t Index, typename First, typename... Other>
struct type_list_element<Index, type_list<First, Other...>>
: type_list_element<Index - 1u, type_list<Other...>> {};
/**
* @brief Provides compile-time indexed access to the types of a type list.
* @tparam First First type provided by the type list.
* @tparam Other Other types provided by the type list.
*/
template<typename First, typename... Other>
struct type_list_element<0u, type_list<First, Other...>> {
/*! @brief Searched type. */
using type = First;
};
/**
* @brief Helper type.
* @tparam Index Index of the type to return.
* @tparam List Type list to search into.
*/
template<std::size_t Index, typename List>
using type_list_element_t = typename type_list_element<Index, List>::type;
/*! @brief Primary template isn't defined on purpose. */
template<typename, typename>
struct type_list_index;
/**
* @brief Provides compile-time type access to the types of a type list.
* @tparam Type Type to look for and for which to return the index.
* @tparam First First type provided by the type list.
* @tparam Other Other types provided by the type list.
*/
template<typename Type, typename First, typename... Other>
struct type_list_index<Type, type_list<First, Other...>> {
/*! @brief Unsigned integer type. */
using value_type = std::size_t;
/*! @brief Compile-time position of the given type in the sublist. */
static constexpr value_type value = 1u + type_list_index<Type, type_list<Other...>>::value;
};
/**
* @brief Provides compile-time type access to the types of a type list.
* @tparam Type Type to look for and for which to return the index.
* @tparam Other Other types provided by the type list.
*/
template<typename Type, typename... Other>
struct type_list_index<Type, type_list<Type, Other...>> {
static_assert(type_list_index<Type, type_list<Other...>>::value == sizeof...(Other), "Non-unique type");
/*! @brief Unsigned integer type. */
using value_type = std::size_t;
/*! @brief Compile-time position of the given type in the sublist. */
static constexpr value_type value = 0u;
};
/**
* @brief Provides compile-time type access to the types of a type list.
* @tparam Type Type to look for and for which to return the index.
*/
template<typename Type>
struct type_list_index<Type, type_list<>> {
/*! @brief Unsigned integer type. */
using value_type = std::size_t;
/*! @brief Compile-time position of the given type in the sublist. */
static constexpr value_type value = 0u;
};
/**
* @brief Helper variable template.
* @tparam List Type list.
* @tparam Type Type to look for and for which to return the index.
*/
template<typename Type, typename List>
inline constexpr std::size_t type_list_index_v = type_list_index<Type, List>::value;
/**
* @brief Concatenates multiple type lists.
* @tparam Type Types provided by the first type list.
* @tparam Other Types provided by the second type list.
* @return A type list composed by the types of both the type lists.
*/
template<typename... Type, typename... Other>
constexpr type_list<Type..., Other...> operator+(type_list<Type...>, type_list<Other...>) {
return {};
}
/*! @brief Primary template isn't defined on purpose. */
template<typename...>
struct type_list_cat;
/*! @brief Concatenates multiple type lists. */
template<>
struct type_list_cat<> {
/*! @brief A type list composed by the types of all the type lists. */
using type = type_list<>;
};
/**
* @brief Concatenates multiple type lists.
* @tparam Type Types provided by the first type list.
* @tparam Other Types provided by the second type list.
* @tparam List Other type lists, if any.
*/
template<typename... Type, typename... Other, typename... List>
struct type_list_cat<type_list<Type...>, type_list<Other...>, List...> {
/*! @brief A type list composed by the types of all the type lists. */
using type = typename type_list_cat<type_list<Type..., Other...>, List...>::type;
};
/**
* @brief Concatenates multiple type lists.
* @tparam Type Types provided by the type list.
*/
template<typename... Type>
struct type_list_cat<type_list<Type...>> {
/*! @brief A type list composed by the types of all the type lists. */
using type = type_list<Type...>;
};
/**
* @brief Helper type.
* @tparam List Type lists to concatenate.
*/
template<typename... List>
using type_list_cat_t = typename type_list_cat<List...>::type;
/*! @brief Primary template isn't defined on purpose. */
template<typename>
struct type_list_unique;
/**
* @brief Removes duplicates types from a type list.
* @tparam Type One of the types provided by the given type list.
* @tparam Other The other types provided by the given type list.
*/
template<typename Type, typename... Other>
struct type_list_unique<type_list<Type, Other...>> {
/*! @brief A type list without duplicate types. */
using type = std::conditional_t<
(std::is_same_v<Type, Other> || ...),
typename type_list_unique<type_list<Other...>>::type,
type_list_cat_t<type_list<Type>, typename type_list_unique<type_list<Other...>>::type>>;
};
/*! @brief Removes duplicates types from a type list. */
template<>
struct type_list_unique<type_list<>> {
/*! @brief A type list without duplicate types. */
using type = type_list<>;
};
/**
* @brief Helper type.
* @tparam Type A type list.
*/
template<typename Type>
using type_list_unique_t = typename type_list_unique<Type>::type;
/**
* @brief Provides the member constant `value` to true if a type list contains a
* given type, false otherwise.
* @tparam List Type list.
* @tparam Type Type to look for.
*/
template<typename List, typename Type>
struct type_list_contains;
/**
* @copybrief type_list_contains
* @tparam Type Types provided by the type list.
* @tparam Other Type to look for.
*/
template<typename... Type, typename Other>
struct type_list_contains<type_list<Type...>, Other>: std::disjunction<std::is_same<Type, Other>...> {};
/**
* @brief Helper variable template.
* @tparam List Type list.
* @tparam Type Type to look for.
*/
template<typename List, typename Type>
inline constexpr bool type_list_contains_v = type_list_contains<List, Type>::value;
/*! @brief Primary template isn't defined on purpose. */
template<typename...>
struct type_list_diff;
/**
* @brief Computes the difference between two type lists.
* @tparam Type Types provided by the first type list.
* @tparam Other Types provided by the second type list.
*/
template<typename... Type, typename... Other>
struct type_list_diff<type_list<Type...>, type_list<Other...>> {
/*! @brief A type list that is the difference between the two type lists. */
using type = type_list_cat_t<std::conditional_t<type_list_contains_v<type_list<Other...>, Type>, type_list<>, type_list<Type>>...>;
};
/**
* @brief Helper type.
* @tparam List Type lists between which to compute the difference.
*/
template<typename... List>
using type_list_diff_t = typename type_list_diff<List...>::type;
/*! @brief Primary template isn't defined on purpose. */
template<typename, template<typename...> class>
struct type_list_transform;
/**
* @brief Applies a given _function_ to a type list and generate a new list.
* @tparam Type Types provided by the type list.
* @tparam Op Unary operation as template class with a type member named `type`.
*/
template<typename... Type, template<typename...> class Op>
struct type_list_transform<type_list<Type...>, Op> {
/*! @brief Resulting type list after applying the transform function. */
using type = type_list<typename Op<Type>::type...>;
};
/**
* @brief Helper type.
* @tparam List Type list.
* @tparam Op Unary operation as template class with a type member named `type`.
*/
template<typename List, template<typename...> class Op>
using type_list_transform_t = typename type_list_transform<List, Op>::type;
/**
* @brief A class to use to push around lists of constant values, nothing more.
* @tparam Value Values provided by the value list.
*/
template<auto... Value>
struct value_list {
/*! @brief Value list type. */
using type = value_list;
/*! @brief Compile-time number of elements in the value list. */
static constexpr auto size = sizeof...(Value);
};
/*! @brief Primary template isn't defined on purpose. */
template<std::size_t, typename>
struct value_list_element;
/**
* @brief Provides compile-time indexed access to the values of a value list.
* @tparam Index Index of the value to return.
* @tparam Value First value provided by the value list.
* @tparam Other Other values provided by the value list.
*/
template<std::size_t Index, auto Value, auto... Other>
struct value_list_element<Index, value_list<Value, Other...>>
: value_list_element<Index - 1u, value_list<Other...>> {};
/**
* @brief Provides compile-time indexed access to the types of a type list.
* @tparam Value First value provided by the value list.
* @tparam Other Other values provided by the value list.
*/
template<auto Value, auto... Other>
struct value_list_element<0u, value_list<Value, Other...>> {
/*! @brief Searched value. */
static constexpr auto value = Value;
};
/**
* @brief Helper type.
* @tparam Index Index of the value to return.
* @tparam List Value list to search into.
*/
template<std::size_t Index, typename List>
inline constexpr auto value_list_element_v = value_list_element<Index, List>::value;
/**
* @brief Concatenates multiple value lists.
* @tparam Value Values provided by the first value list.
* @tparam Other Values provided by the second value list.
* @return A value list composed by the values of both the value lists.
*/
template<auto... Value, auto... Other>
constexpr value_list<Value..., Other...> operator+(value_list<Value...>, value_list<Other...>) {
return {};
}
/*! @brief Primary template isn't defined on purpose. */
template<typename...>
struct value_list_cat;
/*! @brief Concatenates multiple value lists. */
template<>
struct value_list_cat<> {
/*! @brief A value list composed by the values of all the value lists. */
using type = value_list<>;
};
/**
* @brief Concatenates multiple value lists.
* @tparam Value Values provided by the first value list.
* @tparam Other Values provided by the second value list.
* @tparam List Other value lists, if any.
*/
template<auto... Value, auto... Other, typename... List>
struct value_list_cat<value_list<Value...>, value_list<Other...>, List...> {
/*! @brief A value list composed by the values of all the value lists. */
using type = typename value_list_cat<value_list<Value..., Other...>, List...>::type;
};
/**
* @brief Concatenates multiple value lists.
* @tparam Value Values provided by the value list.
*/
template<auto... Value>
struct value_list_cat<value_list<Value...>> {
/*! @brief A value list composed by the values of all the value lists. */
using type = value_list<Value...>;
};
/**
* @brief Helper type.
* @tparam List Value lists to concatenate.
*/
template<typename... List>
using value_list_cat_t = typename value_list_cat<List...>::type;
/*! @brief Same as std::is_invocable, but with tuples. */
template<typename, typename>
struct is_applicable: std::false_type {};
/**
* @copybrief is_applicable
* @tparam Func A valid function type.
* @tparam Tuple Tuple-like type.
* @tparam Args The list of arguments to use to probe the function type.
*/
template<typename Func, template<typename...> class Tuple, typename... Args>
struct is_applicable<Func, Tuple<Args...>>: std::is_invocable<Func, Args...> {};
/**
* @copybrief is_applicable
* @tparam Func A valid function type.
* @tparam Tuple Tuple-like type.
* @tparam Args The list of arguments to use to probe the function type.
*/
template<typename Func, template<typename...> class Tuple, typename... Args>
struct is_applicable<Func, const Tuple<Args...>>: std::is_invocable<Func, Args...> {};
/**
* @brief Helper variable template.
* @tparam Func A valid function type.
* @tparam Args The list of arguments to use to probe the function type.
*/
template<typename Func, typename Args>
inline constexpr bool is_applicable_v = is_applicable<Func, Args>::value;
/*! @brief Same as std::is_invocable_r, but with tuples for arguments. */
template<typename, typename, typename>
struct is_applicable_r: std::false_type {};
/**
* @copybrief is_applicable_r
* @tparam Ret The type to which the return type of the function should be
* convertible.
* @tparam Func A valid function type.
* @tparam Args The list of arguments to use to probe the function type.
*/
template<typename Ret, typename Func, typename... Args>
struct is_applicable_r<Ret, Func, std::tuple<Args...>>: std::is_invocable_r<Ret, Func, Args...> {};
/**
* @brief Helper variable template.
* @tparam Ret The type to which the return type of the function should be
* convertible.
* @tparam Func A valid function type.
* @tparam Args The list of arguments to use to probe the function type.
*/
template<typename Ret, typename Func, typename Args>
inline constexpr bool is_applicable_r_v = is_applicable_r<Ret, Func, Args>::value;
/**
* @brief Provides the member constant `value` to true if a given type is
* complete, false otherwise.
* @tparam Type The type to test.
*/
template<typename Type, typename = void>
struct is_complete: std::false_type {};
/*! @copydoc is_complete */
template<typename Type>
struct is_complete<Type, std::void_t<decltype(sizeof(Type))>>: std::true_type {};
/**
* @brief Helper variable template.
* @tparam Type The type to test.
*/
template<typename Type>
inline constexpr bool is_complete_v = is_complete<Type>::value;
/**
* @brief Provides the member constant `value` to true if a given type is an
* iterator, false otherwise.
* @tparam Type The type to test.
*/
template<typename Type, typename = void>
struct is_iterator: std::false_type {};
/**
* @cond TURN_OFF_DOXYGEN
* Internal details not to be documented.
*/
namespace internal {
template<typename, typename = void>
struct has_iterator_category: std::false_type {};
template<typename Type>
struct has_iterator_category<Type, std::void_t<typename std::iterator_traits<Type>::iterator_category>>: std::true_type {};
} // namespace internal
/**
* Internal details not to be documented.
* @endcond
*/
/*! @copydoc is_iterator */
template<typename Type>
struct is_iterator<Type, std::enable_if_t<!std::is_same_v<std::remove_cv_t<std::remove_pointer_t<Type>>, void>>>
: internal::has_iterator_category<Type> {};
/**
* @brief Helper variable template.
* @tparam Type The type to test.
*/
template<typename Type>
inline constexpr bool is_iterator_v = is_iterator<Type>::value;
/**
* @brief Provides the member constant `value` to true if a given type is both
* an empty and non-final class, false otherwise.
* @tparam Type The type to test
*/
template<typename Type>
struct is_ebco_eligible
: std::conjunction<std::is_empty<Type>, std::negation<std::is_final<Type>>> {};
/**
* @brief Helper variable template.
* @tparam Type The type to test.
*/
template<typename Type>
inline constexpr bool is_ebco_eligible_v = is_ebco_eligible<Type>::value;
/**
* @brief Provides the member constant `value` to true if `Type::is_transparent`
* is valid and denotes a type, false otherwise.
* @tparam Type The type to test.
*/
template<typename Type, typename = void>
struct is_transparent: std::false_type {};
/*! @copydoc is_transparent */
template<typename Type>
struct is_transparent<Type, std::void_t<typename Type::is_transparent>>: std::true_type {};
/**
* @brief Helper variable template.
* @tparam Type The type to test.
*/
template<typename Type>
inline constexpr bool is_transparent_v = is_transparent<Type>::value;
/**
* @brief Provides the member constant `value` to true if a given type is
* equality comparable, false otherwise.
* @tparam Type The type to test.
*/
template<typename Type, typename = void>
struct is_equality_comparable: std::false_type {};
/**
* @cond TURN_OFF_DOXYGEN
* Internal details not to be documented.
*/
namespace internal {
template<typename, typename = void>
struct has_tuple_size_value: std::false_type {};
template<typename Type>
struct has_tuple_size_value<Type, std::void_t<decltype(std::tuple_size<const Type>::value)>>: std::true_type {};
template<typename Type, std::size_t... Index>
[[nodiscard]] constexpr bool unpack_maybe_equality_comparable(std::index_sequence<Index...>) {
return (is_equality_comparable<std::tuple_element_t<Index, Type>>::value && ...);
}
template<typename>
[[nodiscard]] constexpr bool maybe_equality_comparable(choice_t<0>) {
return true;
}
template<typename Type>
[[nodiscard]] constexpr auto maybe_equality_comparable(choice_t<1>) -> decltype(std::declval<typename Type::value_type>(), bool{}) {
if constexpr(is_iterator_v<Type>) {
return true;
} else if constexpr(std::is_same_v<typename Type::value_type, Type>) {
return maybe_equality_comparable<Type>(choice<0>);
} else {
return is_equality_comparable<typename Type::value_type>::value;
}
}
template<typename Type>
[[nodiscard]] constexpr std::enable_if_t<is_complete_v<std::tuple_size<std::remove_cv_t<Type>>>, bool> maybe_equality_comparable(choice_t<2>) {
if constexpr(has_tuple_size_value<Type>::value) {
return unpack_maybe_equality_comparable<Type>(std::make_index_sequence<std::tuple_size<Type>::value>{});
} else {
return maybe_equality_comparable<Type>(choice<1>);
}
}
} // namespace internal
/**
* Internal details not to be documented.
* @endcond
*/
/*! @copydoc is_equality_comparable */
template<typename Type>
struct is_equality_comparable<Type, std::void_t<decltype(std::declval<Type>() == std::declval<Type>())>>
: std::bool_constant<internal::maybe_equality_comparable<Type>(choice<2>)> {};
/**
* @brief Helper variable template.
* @tparam Type The type to test.
*/
template<typename Type>
inline constexpr bool is_equality_comparable_v = is_equality_comparable<Type>::value;
/**
* @brief Transcribes the constness of a type to another type.
* @tparam To The type to which to transcribe the constness.
* @tparam From The type from which to transcribe the constness.
*/
template<typename To, typename From>
struct constness_as {
/*! @brief The type resulting from the transcription of the constness. */
using type = std::remove_const_t<To>;
};
/*! @copydoc constness_as */
template<typename To, typename From>
struct constness_as<To, const From> {
/*! @brief The type resulting from the transcription of the constness. */
using type = const To;
};
/**
* @brief Alias template to facilitate the transcription of the constness.
* @tparam To The type to which to transcribe the constness.
* @tparam From The type from which to transcribe the constness.
*/
template<typename To, typename From>
using constness_as_t = typename constness_as<To, From>::type;
/**
* @brief Extracts the class of a non-static member object or function.
* @tparam Member A pointer to a non-static member object or function.
*/
template<typename Member>
class member_class {
static_assert(std::is_member_pointer_v<Member>, "Invalid pointer type to non-static member object or function");
template<typename Class, typename Ret, typename... Args>
static Class *clazz(Ret (Class::*)(Args...));
template<typename Class, typename Ret, typename... Args>
static Class *clazz(Ret (Class::*)(Args...) const);
template<typename Class, typename Type>
static Class *clazz(Type Class::*);
public:
/*! @brief The class of the given non-static member object or function. */
using type = std::remove_pointer_t<decltype(clazz(std::declval<Member>()))>;
};
/**
* @brief Helper type.
* @tparam Member A pointer to a non-static member object or function.
*/
template<typename Member>
using member_class_t = typename member_class<Member>::type;
/**
* @brief Extracts the n-th argument of a given function or member function.
* @tparam Index The index of the argument to extract.
* @tparam Candidate A valid function, member function or data member.
*/
template<std::size_t Index, auto Candidate>
class nth_argument {
template<typename Ret, typename... Args>
static constexpr type_list<Args...> pick_up(Ret (*)(Args...));
template<typename Ret, typename Class, typename... Args>
static constexpr type_list<Args...> pick_up(Ret (Class ::*)(Args...));
template<typename Ret, typename Class, typename... Args>
static constexpr type_list<Args...> pick_up(Ret (Class ::*)(Args...) const);
template<typename Type, typename Class>
static constexpr type_list<Type> pick_up(Type Class ::*);
public:
/*! @brief N-th argument of the given function or member function. */
using type = type_list_element_t<Index, decltype(pick_up(Candidate))>;
};
/**
* @brief Helper type.
* @tparam Index The index of the argument to extract.
* @tparam Candidate A valid function, member function or data member.
*/
template<std::size_t Index, auto Candidate>
using nth_argument_t = typename nth_argument<Index, Candidate>::type;
} // namespace entt
#endif
namespace entt {
/**
* @cond TURN_OFF_DOXYGEN
* Internal details not to be documented.
*/
namespace internal {
template<typename Type, std::size_t, typename = void>
struct compressed_pair_element {
using reference = Type &;
using const_reference = const Type &;
template<bool Dummy = true, typename = std::enable_if_t<Dummy && std::is_default_constructible_v<Type>>>
constexpr compressed_pair_element() noexcept(std::is_nothrow_default_constructible_v<Type>)
: value{} {}
template<typename Arg, typename = std::enable_if_t<!std::is_same_v<std::remove_cv_t<std::remove_reference_t<Arg>>, compressed_pair_element>>>
constexpr compressed_pair_element(Arg &&arg) noexcept(std::is_nothrow_constructible_v<Type, Arg>)
: value{std::forward<Arg>(arg)} {}
template<typename... Args, std::size_t... Index>
constexpr compressed_pair_element(std::tuple<Args...> args, std::index_sequence<Index...>) noexcept(std::is_nothrow_constructible_v<Type, Args...>)
: value{std::forward<Args>(std::get<Index>(args))...} {}
[[nodiscard]] constexpr reference get() noexcept {
return value;
}
[[nodiscard]] constexpr const_reference get() const noexcept {
return value;
}
private:
Type value;
};
template<typename Type, std::size_t Tag>
struct compressed_pair_element<Type, Tag, std::enable_if_t<is_ebco_eligible_v<Type>>>: Type {
using reference = Type &;
using const_reference = const Type &;
using base_type = Type;
template<bool Dummy = true, typename = std::enable_if_t<Dummy && std::is_default_constructible_v<base_type>>>
constexpr compressed_pair_element() noexcept(std::is_nothrow_default_constructible_v<base_type>)
: base_type{} {}
template<typename Arg, typename = std::enable_if_t<!std::is_same_v<std::remove_cv_t<std::remove_reference_t<Arg>>, compressed_pair_element>>>
constexpr compressed_pair_element(Arg &&arg) noexcept(std::is_nothrow_constructible_v<base_type, Arg>)
: base_type{std::forward<Arg>(arg)} {}
template<typename... Args, std::size_t... Index>
constexpr compressed_pair_element(std::tuple<Args...> args, std::index_sequence<Index...>) noexcept(std::is_nothrow_constructible_v<base_type, Args...>)
: base_type{std::forward<Args>(std::get<Index>(args))...} {}
[[nodiscard]] constexpr reference get() noexcept {
return *this;
}
[[nodiscard]] constexpr const_reference get() const noexcept {
return *this;
}
};
} // namespace internal
/**
* Internal details not to be documented.
* @endcond
*/
/**
* @brief A compressed pair.
*
* A pair that exploits the _Empty Base Class Optimization_ (or _EBCO_) to
* reduce its final size to a minimum.
*
* @tparam First The type of the first element that the pair stores.
* @tparam Second The type of the second element that the pair stores.
*/
template<typename First, typename Second>
class compressed_pair final
: internal::compressed_pair_element<First, 0u>,
internal::compressed_pair_element<Second, 1u> {
using first_base = internal::compressed_pair_element<First, 0u>;
using second_base = internal::compressed_pair_element<Second, 1u>;
public:
/*! @brief The type of the first element that the pair stores. */
using first_type = First;
/*! @brief The type of the second element that the pair stores. */
using second_type = Second;
/**
* @brief Default constructor, conditionally enabled.
*
* This constructor is only available when the types that the pair stores
* are both at least default constructible.
*
* @tparam Dummy Dummy template parameter used for internal purposes.
*/
template<bool Dummy = true, typename = std::enable_if_t<Dummy && std::is_default_constructible_v<first_type> && std::is_default_constructible_v<second_type>>>
constexpr compressed_pair() noexcept(std::is_nothrow_default_constructible_v<first_base> &&std::is_nothrow_default_constructible_v<second_base>)
: first_base{},
second_base{} {}
/**
* @brief Copy constructor.
* @param other The instance to copy from.
*/
constexpr compressed_pair(const compressed_pair &other) noexcept(std::is_nothrow_copy_constructible_v<first_base> &&std::is_nothrow_copy_constructible_v<second_base>) = default;
/**
* @brief Move constructor.
* @param other The instance to move from.
*/
constexpr compressed_pair(compressed_pair &&other) noexcept(std::is_nothrow_move_constructible_v<first_base> &&std::is_nothrow_move_constructible_v<second_base>) = default;
/**
* @brief Constructs a pair from its values.
* @tparam Arg Type of value to use to initialize the first element.
* @tparam Other Type of value to use to initialize the second element.
* @param arg Value to use to initialize the first element.
* @param other Value to use to initialize the second element.
*/
template<typename Arg, typename Other>
constexpr compressed_pair(Arg &&arg, Other &&other) noexcept(std::is_nothrow_constructible_v<first_base, Arg> &&std::is_nothrow_constructible_v<second_base, Other>)
: first_base{std::forward<Arg>(arg)},
second_base{std::forward<Other>(other)} {}
/**
* @brief Constructs a pair by forwarding the arguments to its parts.
* @tparam Args Types of arguments to use to initialize the first element.
* @tparam Other Types of arguments to use to initialize the second element.
* @param args Arguments to use to initialize the first element.
* @param other Arguments to use to initialize the second element.
*/
template<typename... Args, typename... Other>
constexpr compressed_pair(std::piecewise_construct_t, std::tuple<Args...> args, std::tuple<Other...> other) noexcept(std::is_nothrow_constructible_v<first_base, Args...> &&std::is_nothrow_constructible_v<second_base, Other...>)
: first_base{std::move(args), std::index_sequence_for<Args...>{}},
second_base{std::move(other), std::index_sequence_for<Other...>{}} {}
/**
* @brief Copy assignment operator.
* @param other The instance to copy from.
* @return This compressed pair object.
*/
constexpr compressed_pair &operator=(const compressed_pair &other) noexcept(std::is_nothrow_copy_assignable_v<first_base> &&std::is_nothrow_copy_assignable_v<second_base>) = default;
/**
* @brief Move assignment operator.
* @param other The instance to move from.
* @return This compressed pair object.
*/
constexpr compressed_pair &operator=(compressed_pair &&other) noexcept(std::is_nothrow_move_assignable_v<first_base> &&std::is_nothrow_move_assignable_v<second_base>) = default;
/**
* @brief Returns the first element that a pair stores.
* @return The first element that a pair stores.
*/
[[nodiscard]] constexpr first_type &first() noexcept {
return static_cast<first_base &>(*this).get();
}
/*! @copydoc first */
[[nodiscard]] constexpr const first_type &first() const noexcept {
return static_cast<const first_base &>(*this).get();
}
/**
* @brief Returns the second element that a pair stores.
* @return The second element that a pair stores.
*/
[[nodiscard]] constexpr second_type &second() noexcept {
return static_cast<second_base &>(*this).get();
}
/*! @copydoc second */
[[nodiscard]] constexpr const second_type &second() const noexcept {
return static_cast<const second_base &>(*this).get();
}
/**
* @brief Swaps two compressed pair objects.
* @param other The compressed pair to swap with.
*/
constexpr void swap(compressed_pair &other) noexcept(std::is_nothrow_swappable_v<first_type> &&std::is_nothrow_swappable_v<second_type>) {
using std::swap;
swap(first(), other.first());
swap(second(), other.second());
}
/**
* @brief Extracts an element from the compressed pair.
* @tparam Index An integer value that is either 0 or 1.
* @return Returns a reference to the first element if `Index` is 0 and a
* reference to the second element if `Index` is 1.
*/
template<std::size_t Index>
constexpr decltype(auto) get() noexcept {
if constexpr(Index == 0u) {
return first();
} else {
static_assert(Index == 1u, "Index out of bounds");
return second();
}
}
/*! @copydoc get */
template<std::size_t Index>
constexpr decltype(auto) get() const noexcept {
if constexpr(Index == 0u) {
return first();
} else {
static_assert(Index == 1u, "Index out of bounds");
return second();
}
}
};
/**
* @brief Deduction guide.
* @tparam Type Type of value to use to initialize the first element.
* @tparam Other Type of value to use to initialize the second element.
*/
template<typename Type, typename Other>
compressed_pair(Type &&, Other &&) -> compressed_pair<std::decay_t<Type>, std::decay_t<Other>>;
/**
* @brief Swaps two compressed pair objects.
* @tparam First The type of the first element that the pairs store.
* @tparam Second The type of the second element that the pairs store.
* @param lhs A valid compressed pair object.
* @param rhs A valid compressed pair object.
*/
template<typename First, typename Second>
inline constexpr void swap(compressed_pair<First, Second> &lhs, compressed_pair<First, Second> &rhs) {
lhs.swap(rhs);
}
} // namespace entt
// disable structured binding support for clang 6, it messes when specializing tuple_size
#if !defined __clang_major__ || __clang_major__ > 6
namespace std {
/**
* @brief `std::tuple_size` specialization for `compressed_pair`s.
* @tparam First The type of the first element that the pair stores.
* @tparam Second The type of the second element that the pair stores.
*/
template<typename First, typename Second>
struct tuple_size<entt::compressed_pair<First, Second>>: integral_constant<size_t, 2u> {};
/**
* @brief `std::tuple_element` specialization for `compressed_pair`s.
* @tparam Index The index of the type to return.
* @tparam First The type of the first element that the pair stores.
* @tparam Second The type of the second element that the pair stores.
*/
template<size_t Index, typename First, typename Second>
struct tuple_element<Index, entt::compressed_pair<First, Second>>: conditional<Index == 0u, First, Second> {
static_assert(Index < 2u, "Index out of bounds");
};
} // namespace std
#endif
#endif
// #include "../core/iterator.hpp"
#ifndef ENTT_CORE_ITERATOR_HPP
#define ENTT_CORE_ITERATOR_HPP
#include <iterator>
#include <memory>
#include <type_traits>
#include <utility>
namespace entt {
/**
* @brief Helper type to use as pointer with input iterators.
* @tparam Type of wrapped value.
*/
template<typename Type>
struct input_iterator_pointer final {
/*! @brief Value type. */
using value_type = Type;
/*! @brief Pointer type. */
using pointer = Type *;
/*! @brief Reference type. */
using reference = Type &;
/**
* @brief Constructs a proxy object by move.
* @param val Value to use to initialize the proxy object.
*/
constexpr input_iterator_pointer(value_type &&val) noexcept(std::is_nothrow_move_constructible_v<value_type>)
: value{std::move(val)} {}
/**
* @brief Access operator for accessing wrapped values.
* @return A pointer to the wrapped value.
*/
[[nodiscard]] constexpr pointer operator->() noexcept {
return std::addressof(value);
}
/**
* @brief Dereference operator for accessing wrapped values.
* @return A reference to the wrapped value.
*/
[[nodiscard]] constexpr reference operator*() noexcept {
return value;
}
private:
Type value;
};
/**
* @brief Plain iota iterator (waiting for C++20).
* @tparam Type Value type.
*/
template<typename Type>
class iota_iterator final {
static_assert(std::is_integral_v<Type>, "Not an integral type");
public:
/*! @brief Value type, likely an integral one. */
using value_type = Type;
/*! @brief Invalid pointer type. */
using pointer = void;
/*! @brief Non-reference type, same as value type. */
using reference = value_type;
/*! @brief Difference type. */
using difference_type = std::ptrdiff_t;
/*! @brief Iterator category. */
using iterator_category = std::input_iterator_tag;
/*! @brief Default constructor. */
constexpr iota_iterator() noexcept
: current{} {}
/**
* @brief Constructs an iota iterator from a given value.
* @param init The initial value assigned to the iota iterator.
*/
constexpr iota_iterator(const value_type init) noexcept
: current{init} {}
/**
* @brief Pre-increment operator.
* @return This iota iterator.
*/
constexpr iota_iterator &operator++() noexcept {
return ++current, *this;
}
/**
* @brief Post-increment operator.
* @return This iota iterator.
*/
constexpr iota_iterator operator++(int) noexcept {
iota_iterator orig = *this;
return ++(*this), orig;
}
/**
* @brief Dereference operator.
* @return The underlying value.
*/
[[nodiscard]] constexpr reference operator*() const noexcept {
return current;
}
private:
value_type current;
};
/**
* @brief Comparison operator.
* @tparam Type Value type of the iota iterator.
* @param lhs A properly initialized iota iterator.
* @param rhs A properly initialized iota iterator.
* @return True if the two iterators are identical, false otherwise.
*/
template<typename Type>
[[nodiscard]] constexpr bool operator==(const iota_iterator<Type> &lhs, const iota_iterator<Type> &rhs) noexcept {
return *lhs == *rhs;
}
/**
* @brief Comparison operator.
* @tparam Type Value type of the iota iterator.
* @param lhs A properly initialized iota iterator.
* @param rhs A properly initialized iota iterator.
* @return True if the two iterators differ, false otherwise.
*/
template<typename Type>
[[nodiscard]] constexpr bool operator!=(const iota_iterator<Type> &lhs, const iota_iterator<Type> &rhs) noexcept {
return !(lhs == rhs);
}
/**
* @brief Utility class to create an iterable object from a pair of iterators.
* @tparam It Type of iterator.
* @tparam Sentinel Type of sentinel.
*/
template<typename It, typename Sentinel = It>
struct iterable_adaptor final {
/*! @brief Value type. */
using value_type = typename std::iterator_traits<It>::value_type;
/*! @brief Iterator type. */
using iterator = It;
/*! @brief Sentinel type. */
using sentinel = Sentinel;
/*! @brief Default constructor. */
constexpr iterable_adaptor() noexcept(std::is_nothrow_default_constructible_v<iterator> &&std::is_nothrow_default_constructible_v<sentinel>)
: first{},
last{} {}
/**
* @brief Creates an iterable object from a pair of iterators.
* @param from Begin iterator.
* @param to End iterator.
*/
constexpr iterable_adaptor(iterator from, sentinel to) noexcept(std::is_nothrow_move_constructible_v<iterator> &&std::is_nothrow_move_constructible_v<sentinel>)
: first{std::move(from)},
last{std::move(to)} {}
/**
* @brief Returns an iterator to the beginning.
* @return An iterator to the first element of the range.
*/
[[nodiscard]] constexpr iterator begin() const noexcept {
return first;
}
/**
* @brief Returns an iterator to the end.
* @return An iterator to the element following the last element of the
* range.
*/
[[nodiscard]] constexpr sentinel end() const noexcept {
return last;
}
/*! @copydoc begin */
[[nodiscard]] constexpr iterator cbegin() const noexcept {
return begin();
}
/*! @copydoc end */
[[nodiscard]] constexpr sentinel cend() const noexcept {
return end();
}
private:
It first;
Sentinel last;
};
} // namespace entt
#endif
// #include "../core/memory.hpp"
#ifndef ENTT_CORE_MEMORY_HPP
#define ENTT_CORE_MEMORY_HPP
#include <cstddef>
#include <limits>
#include <memory>
#include <tuple>
#include <type_traits>
#include <utility>
// #include "../config/config.h"
namespace entt {
/**
* @brief Checks whether a value is a power of two or not.
* @param value A value that may or may not be a power of two.
* @return True if the value is a power of two, false otherwise.
*/
[[nodiscard]] inline constexpr bool is_power_of_two(const std::size_t value) noexcept {
return value && ((value & (value - 1)) == 0);
}
/**
* @brief Computes the smallest power of two greater than or equal to a value.
* @param value The value to use.
* @return The smallest power of two greater than or equal to the given value.
*/
[[nodiscard]] inline constexpr std::size_t next_power_of_two(const std::size_t value) noexcept {
ENTT_ASSERT_CONSTEXPR(value < (std::size_t{1u} << (std::numeric_limits<std::size_t>::digits - 1)), "Numeric limits exceeded");
std::size_t curr = value - (value != 0u);
for(int next = 1; next < std::numeric_limits<std::size_t>::digits; next = next * 2) {
curr |= curr >> next;
}
return ++curr;
}
/**
* @brief Fast module utility function (powers of two only).
* @param value A value for which to calculate the modulus.
* @param mod _Modulus_, it must be a power of two.
* @return The common remainder.
*/
[[nodiscard]] inline constexpr std::size_t fast_mod(const std::size_t value, const std::size_t mod) noexcept {
ENTT_ASSERT_CONSTEXPR(is_power_of_two(mod), "Value must be a power of two");
return value & (mod - 1u);
}
/**
* @brief Unwraps fancy pointers, does nothing otherwise (waiting for C++20).
* @tparam Type Pointer type.
* @param ptr Fancy or raw pointer.
* @return A raw pointer that represents the address of the original pointer.
*/
template<typename Type>
[[nodiscard]] constexpr auto to_address(Type &&ptr) noexcept {
if constexpr(std::is_pointer_v<std::decay_t<Type>>) {
return ptr;
} else {
return to_address(std::forward<Type>(ptr).operator->());
}
}
/**
* @brief Utility function to design allocation-aware containers.
* @tparam Allocator Type of allocator.
* @param lhs A valid allocator.
* @param rhs Another valid allocator.
*/
template<typename Allocator>
constexpr void propagate_on_container_copy_assignment([[maybe_unused]] Allocator &lhs, [[maybe_unused]] Allocator &rhs) noexcept {
if constexpr(std::allocator_traits<Allocator>::propagate_on_container_copy_assignment::value) {
lhs = rhs;
}
}
/**
* @brief Utility function to design allocation-aware containers.
* @tparam Allocator Type of allocator.
* @param lhs A valid allocator.
* @param rhs Another valid allocator.
*/
template<typename Allocator>
constexpr void propagate_on_container_move_assignment([[maybe_unused]] Allocator &lhs, [[maybe_unused]] Allocator &rhs) noexcept {
if constexpr(std::allocator_traits<Allocator>::propagate_on_container_move_assignment::value) {
lhs = std::move(rhs);
}
}
/**
* @brief Utility function to design allocation-aware containers.
* @tparam Allocator Type of allocator.
* @param lhs A valid allocator.
* @param rhs Another valid allocator.
*/
template<typename Allocator>
constexpr void propagate_on_container_swap([[maybe_unused]] Allocator &lhs, [[maybe_unused]] Allocator &rhs) noexcept {
if constexpr(std::allocator_traits<Allocator>::propagate_on_container_swap::value) {
using std::swap;
swap(lhs, rhs);
} else {
ENTT_ASSERT_CONSTEXPR(lhs == rhs, "Cannot swap the containers");
}
}
/**
* @brief Deleter for allocator-aware unique pointers (waiting for C++20).
* @tparam Args Types of arguments to use to construct the object.
*/
template<typename Allocator>
struct allocation_deleter: private Allocator {
/*! @brief Allocator type. */
using allocator_type = Allocator;
/*! @brief Pointer type. */
using pointer = typename std::allocator_traits<Allocator>::pointer;
/**
* @brief Inherited constructors.
* @param alloc The allocator to use.
*/
constexpr allocation_deleter(const allocator_type &alloc) noexcept(std::is_nothrow_copy_constructible_v<allocator_type>)
: Allocator{alloc} {}
/**
* @brief Destroys the pointed object and deallocates its memory.
* @param ptr A valid pointer to an object of the given type.
*/
constexpr void operator()(pointer ptr) noexcept(std::is_nothrow_destructible_v<typename allocator_type::value_type>) {
using alloc_traits = typename std::allocator_traits<Allocator>;
alloc_traits::destroy(*this, to_address(ptr));
alloc_traits::deallocate(*this, ptr, 1u);
}
};
/**
* @brief Allows `std::unique_ptr` to use allocators (waiting for C++20).
* @tparam Type Type of object to allocate for and to construct.
* @tparam Allocator Type of allocator used to manage memory and elements.
* @tparam Args Types of arguments to use to construct the object.
* @param allocator The allocator to use.
* @param args Parameters to use to construct the object.
* @return A properly initialized unique pointer with a custom deleter.
*/
template<typename Type, typename Allocator, typename... Args>
ENTT_CONSTEXPR auto allocate_unique(Allocator &allocator, Args &&...args) {
static_assert(!std::is_array_v<Type>, "Array types are not supported");
using alloc_traits = typename std::allocator_traits<Allocator>::template rebind_traits<Type>;
using allocator_type = typename alloc_traits::allocator_type;
allocator_type alloc{allocator};
auto ptr = alloc_traits::allocate(alloc, 1u);
ENTT_TRY {
alloc_traits::construct(alloc, to_address(ptr), std::forward<Args>(args)...);
}
ENTT_CATCH {
alloc_traits::deallocate(alloc, ptr, 1u);
ENTT_THROW;
}
return std::unique_ptr<Type, allocation_deleter<allocator_type>>{ptr, alloc};
}
/**
* @cond TURN_OFF_DOXYGEN
* Internal details not to be documented.
*/
namespace internal {
template<typename Type>
struct uses_allocator_construction {
template<typename Allocator, typename... Params>
static constexpr auto args([[maybe_unused]] const Allocator &allocator, Params &&...params) noexcept {
if constexpr(!std::uses_allocator_v<Type, Allocator> && std::is_constructible_v<Type, Params...>) {
return std::forward_as_tuple(std::forward<Params>(params)...);
} else {
static_assert(std::uses_allocator_v<Type, Allocator>, "Ill-formed request");
if constexpr(std::is_constructible_v<Type, std::allocator_arg_t, const Allocator &, Params...>) {
return std::tuple<std::allocator_arg_t, const Allocator &, Params &&...>{std::allocator_arg, allocator, std::forward<Params>(params)...};
} else {
static_assert(std::is_constructible_v<Type, Params..., const Allocator &>, "Ill-formed request");
return std::forward_as_tuple(std::forward<Params>(params)..., allocator);
}
}
}
};
template<typename Type, typename Other>
struct uses_allocator_construction<std::pair<Type, Other>> {
using type = std::pair<Type, Other>;
template<typename Allocator, typename First, typename Second>
static constexpr auto args(const Allocator &allocator, std::piecewise_construct_t, First &&first, Second &&second) noexcept {
return std::make_tuple(
std::piecewise_construct,
std::apply([&allocator](auto &&...curr) { return uses_allocator_construction<Type>::args(allocator, std::forward<decltype(curr)>(curr)...); }, std::forward<First>(first)),
std::apply([&allocator](auto &&...curr) { return uses_allocator_construction<Other>::args(allocator, std::forward<decltype(curr)>(curr)...); }, std::forward<Second>(second)));
}
template<typename Allocator>
static constexpr auto args(const Allocator &allocator) noexcept {
return uses_allocator_construction<type>::args(allocator, std::piecewise_construct, std::tuple<>{}, std::tuple<>{});
}
template<typename Allocator, typename First, typename Second>
static constexpr auto args(const Allocator &allocator, First &&first, Second &&second) noexcept {
return uses_allocator_construction<type>::args(allocator, std::piecewise_construct, std::forward_as_tuple(std::forward<First>(first)), std::forward_as_tuple(std::forward<Second>(second)));
}
template<typename Allocator, typename First, typename Second>
static constexpr auto args(const Allocator &allocator, const std::pair<First, Second> &value) noexcept {
return uses_allocator_construction<type>::args(allocator, std::piecewise_construct, std::forward_as_tuple(value.first), std::forward_as_tuple(value.second));
}
template<typename Allocator, typename First, typename Second>
static constexpr auto args(const Allocator &allocator, std::pair<First, Second> &&value) noexcept {
return uses_allocator_construction<type>::args(allocator, std::piecewise_construct, std::forward_as_tuple(std::move(value.first)), std::forward_as_tuple(std::move(value.second)));
}
};
} // namespace internal
/**
* Internal details not to be documented.
* @endcond
*/
/**
* @brief Uses-allocator construction utility (waiting for C++20).
*
* Primarily intended for internal use. Prepares the argument list needed to
* create an object of a given type by means of uses-allocator construction.
*
* @tparam Type Type to return arguments for.
* @tparam Allocator Type of allocator used to manage memory and elements.
* @tparam Args Types of arguments to use to construct the object.
* @param allocator The allocator to use.
* @param args Parameters to use to construct the object.
* @return The arguments needed to create an object of the given type.
*/
template<typename Type, typename Allocator, typename... Args>
constexpr auto uses_allocator_construction_args(const Allocator &allocator, Args &&...args) noexcept {
return internal::uses_allocator_construction<Type>::args(allocator, std::forward<Args>(args)...);
}
/**
* @brief Uses-allocator construction utility (waiting for C++20).
*
* Primarily intended for internal use. Creates an object of a given type by
* means of uses-allocator construction.
*
* @tparam Type Type of object to create.
* @tparam Allocator Type of allocator used to manage memory and elements.
* @tparam Args Types of arguments to use to construct the object.
* @param allocator The allocator to use.
* @param args Parameters to use to construct the object.
* @return A newly created object of the given type.
*/
template<typename Type, typename Allocator, typename... Args>
constexpr Type make_obj_using_allocator(const Allocator &allocator, Args &&...args) {
return std::make_from_tuple<Type>(internal::uses_allocator_construction<Type>::args(allocator, std::forward<Args>(args)...));
}
/**
* @brief Uses-allocator construction utility (waiting for C++20).
*
* Primarily intended for internal use. Creates an object of a given type by
* means of uses-allocator construction at an uninitialized memory location.
*
* @tparam Type Type of object to create.
* @tparam Allocator Type of allocator used to manage memory and elements.
* @tparam Args Types of arguments to use to construct the object.
* @param value Memory location in which to place the object.
* @param allocator The allocator to use.
* @param args Parameters to use to construct the object.
* @return A pointer to the newly created object of the given type.
*/
template<typename Type, typename Allocator, typename... Args>
constexpr Type *uninitialized_construct_using_allocator(Type *value, const Allocator &allocator, Args &&...args) {
return std::apply([value](auto &&...curr) { return new(value) Type(std::forward<decltype(curr)>(curr)...); }, internal::uses_allocator_construction<Type>::args(allocator, std::forward<Args>(args)...));
}
} // namespace entt
#endif
// #include "../core/type_traits.hpp"
#ifndef ENTT_CORE_TYPE_TRAITS_HPP
#define ENTT_CORE_TYPE_TRAITS_HPP
#include <cstddef>
#include <iterator>
#include <type_traits>
#include <utility>
// #include "../config/config.h"
// #include "fwd.hpp"
namespace entt {
/**
* @brief Utility class to disambiguate overloaded functions.
* @tparam N Number of choices available.
*/
template<std::size_t N>
struct choice_t
// Unfortunately, doxygen cannot parse such a construct.
: /*! @cond TURN_OFF_DOXYGEN */ choice_t<N - 1> /*! @endcond */
{};
/*! @copybrief choice_t */
template<>
struct choice_t<0> {};
/**
* @brief Variable template for the choice trick.
* @tparam N Number of choices available.
*/
template<std::size_t N>
inline constexpr choice_t<N> choice{};
/**
* @brief Identity type trait.
*
* Useful to establish non-deduced contexts in template argument deduction
* (waiting for C++20) or to provide types through function arguments.
*
* @tparam Type A type.
*/
template<typename Type>
struct type_identity {
/*! @brief Identity type. */
using type = Type;
};
/**
* @brief Helper type.
* @tparam Type A type.
*/
template<typename Type>
using type_identity_t = typename type_identity<Type>::type;
/**
* @brief A type-only `sizeof` wrapper that returns 0 where `sizeof` complains.
* @tparam Type The type of which to return the size.
* @tparam The size of the type if `sizeof` accepts it, 0 otherwise.
*/
template<typename Type, typename = void>
struct size_of: std::integral_constant<std::size_t, 0u> {};
/*! @copydoc size_of */
template<typename Type>
struct size_of<Type, std::void_t<decltype(sizeof(Type))>>
: std::integral_constant<std::size_t, sizeof(Type)> {};
/**
* @brief Helper variable template.
* @tparam Type The type of which to return the size.
*/
template<typename Type>
inline constexpr std::size_t size_of_v = size_of<Type>::value;
/**
* @brief Using declaration to be used to _repeat_ the same type a number of
* times equal to the size of a given parameter pack.
* @tparam Type A type to repeat.
*/
template<typename Type, typename>
using unpack_as_type = Type;
/**
* @brief Helper variable template to be used to _repeat_ the same value a
* number of times equal to the size of a given parameter pack.
* @tparam Value A value to repeat.
*/
template<auto Value, typename>
inline constexpr auto unpack_as_value = Value;
/**
* @brief Wraps a static constant.
* @tparam Value A static constant.
*/
template<auto Value>
using integral_constant = std::integral_constant<decltype(Value), Value>;
/**
* @brief Alias template to facilitate the creation of named values.
* @tparam Value A constant value at least convertible to `id_type`.
*/
template<id_type Value>
using tag = integral_constant<Value>;
/**
* @brief A class to use to push around lists of types, nothing more.
* @tparam Type Types provided by the type list.
*/
template<typename... Type>
struct type_list {
/*! @brief Type list type. */
using type = type_list;
/*! @brief Compile-time number of elements in the type list. */
static constexpr auto size = sizeof...(Type);
};
/*! @brief Primary template isn't defined on purpose. */
template<std::size_t, typename>
struct type_list_element;
/**
* @brief Provides compile-time indexed access to the types of a type list.
* @tparam Index Index of the type to return.
* @tparam First First type provided by the type list.
* @tparam Other Other types provided by the type list.
*/
template<std::size_t Index, typename First, typename... Other>
struct type_list_element<Index, type_list<First, Other...>>
: type_list_element<Index - 1u, type_list<Other...>> {};
/**
* @brief Provides compile-time indexed access to the types of a type list.
* @tparam First First type provided by the type list.
* @tparam Other Other types provided by the type list.
*/
template<typename First, typename... Other>
struct type_list_element<0u, type_list<First, Other...>> {
/*! @brief Searched type. */
using type = First;
};
/**
* @brief Helper type.
* @tparam Index Index of the type to return.
* @tparam List Type list to search into.
*/
template<std::size_t Index, typename List>
using type_list_element_t = typename type_list_element<Index, List>::type;
/*! @brief Primary template isn't defined on purpose. */
template<typename, typename>
struct type_list_index;
/**
* @brief Provides compile-time type access to the types of a type list.
* @tparam Type Type to look for and for which to return the index.
* @tparam First First type provided by the type list.
* @tparam Other Other types provided by the type list.
*/
template<typename Type, typename First, typename... Other>
struct type_list_index<Type, type_list<First, Other...>> {
/*! @brief Unsigned integer type. */
using value_type = std::size_t;
/*! @brief Compile-time position of the given type in the sublist. */
static constexpr value_type value = 1u + type_list_index<Type, type_list<Other...>>::value;
};
/**
* @brief Provides compile-time type access to the types of a type list.
* @tparam Type Type to look for and for which to return the index.
* @tparam Other Other types provided by the type list.
*/
template<typename Type, typename... Other>
struct type_list_index<Type, type_list<Type, Other...>> {
static_assert(type_list_index<Type, type_list<Other...>>::value == sizeof...(Other), "Non-unique type");
/*! @brief Unsigned integer type. */
using value_type = std::size_t;
/*! @brief Compile-time position of the given type in the sublist. */
static constexpr value_type value = 0u;
};
/**
* @brief Provides compile-time type access to the types of a type list.
* @tparam Type Type to look for and for which to return the index.
*/
template<typename Type>
struct type_list_index<Type, type_list<>> {
/*! @brief Unsigned integer type. */
using value_type = std::size_t;
/*! @brief Compile-time position of the given type in the sublist. */
static constexpr value_type value = 0u;
};
/**
* @brief Helper variable template.
* @tparam List Type list.
* @tparam Type Type to look for and for which to return the index.
*/
template<typename Type, typename List>
inline constexpr std::size_t type_list_index_v = type_list_index<Type, List>::value;
/**
* @brief Concatenates multiple type lists.
* @tparam Type Types provided by the first type list.
* @tparam Other Types provided by the second type list.
* @return A type list composed by the types of both the type lists.
*/
template<typename... Type, typename... Other>
constexpr type_list<Type..., Other...> operator+(type_list<Type...>, type_list<Other...>) {
return {};
}
/*! @brief Primary template isn't defined on purpose. */
template<typename...>
struct type_list_cat;
/*! @brief Concatenates multiple type lists. */
template<>
struct type_list_cat<> {
/*! @brief A type list composed by the types of all the type lists. */
using type = type_list<>;
};
/**
* @brief Concatenates multiple type lists.
* @tparam Type Types provided by the first type list.
* @tparam Other Types provided by the second type list.
* @tparam List Other type lists, if any.
*/
template<typename... Type, typename... Other, typename... List>
struct type_list_cat<type_list<Type...>, type_list<Other...>, List...> {
/*! @brief A type list composed by the types of all the type lists. */
using type = typename type_list_cat<type_list<Type..., Other...>, List...>::type;
};
/**
* @brief Concatenates multiple type lists.
* @tparam Type Types provided by the type list.
*/
template<typename... Type>
struct type_list_cat<type_list<Type...>> {
/*! @brief A type list composed by the types of all the type lists. */
using type = type_list<Type...>;
};
/**
* @brief Helper type.
* @tparam List Type lists to concatenate.
*/
template<typename... List>
using type_list_cat_t = typename type_list_cat<List...>::type;
/*! @brief Primary template isn't defined on purpose. */
template<typename>
struct type_list_unique;
/**
* @brief Removes duplicates types from a type list.
* @tparam Type One of the types provided by the given type list.
* @tparam Other The other types provided by the given type list.
*/
template<typename Type, typename... Other>
struct type_list_unique<type_list<Type, Other...>> {
/*! @brief A type list without duplicate types. */
using type = std::conditional_t<
(std::is_same_v<Type, Other> || ...),
typename type_list_unique<type_list<Other...>>::type,
type_list_cat_t<type_list<Type>, typename type_list_unique<type_list<Other...>>::type>>;
};
/*! @brief Removes duplicates types from a type list. */
template<>
struct type_list_unique<type_list<>> {
/*! @brief A type list without duplicate types. */
using type = type_list<>;
};
/**
* @brief Helper type.
* @tparam Type A type list.
*/
template<typename Type>
using type_list_unique_t = typename type_list_unique<Type>::type;
/**
* @brief Provides the member constant `value` to true if a type list contains a
* given type, false otherwise.
* @tparam List Type list.
* @tparam Type Type to look for.
*/
template<typename List, typename Type>
struct type_list_contains;
/**
* @copybrief type_list_contains
* @tparam Type Types provided by the type list.
* @tparam Other Type to look for.
*/
template<typename... Type, typename Other>
struct type_list_contains<type_list<Type...>, Other>: std::disjunction<std::is_same<Type, Other>...> {};
/**
* @brief Helper variable template.
* @tparam List Type list.
* @tparam Type Type to look for.
*/
template<typename List, typename Type>
inline constexpr bool type_list_contains_v = type_list_contains<List, Type>::value;
/*! @brief Primary template isn't defined on purpose. */
template<typename...>
struct type_list_diff;
/**
* @brief Computes the difference between two type lists.
* @tparam Type Types provided by the first type list.
* @tparam Other Types provided by the second type list.
*/
template<typename... Type, typename... Other>
struct type_list_diff<type_list<Type...>, type_list<Other...>> {
/*! @brief A type list that is the difference between the two type lists. */
using type = type_list_cat_t<std::conditional_t<type_list_contains_v<type_list<Other...>, Type>, type_list<>, type_list<Type>>...>;
};
/**
* @brief Helper type.
* @tparam List Type lists between which to compute the difference.
*/
template<typename... List>
using type_list_diff_t = typename type_list_diff<List...>::type;
/*! @brief Primary template isn't defined on purpose. */
template<typename, template<typename...> class>
struct type_list_transform;
/**
* @brief Applies a given _function_ to a type list and generate a new list.
* @tparam Type Types provided by the type list.
* @tparam Op Unary operation as template class with a type member named `type`.
*/
template<typename... Type, template<typename...> class Op>
struct type_list_transform<type_list<Type...>, Op> {
/*! @brief Resulting type list after applying the transform function. */
using type = type_list<typename Op<Type>::type...>;
};
/**
* @brief Helper type.
* @tparam List Type list.
* @tparam Op Unary operation as template class with a type member named `type`.
*/
template<typename List, template<typename...> class Op>
using type_list_transform_t = typename type_list_transform<List, Op>::type;
/**
* @brief A class to use to push around lists of constant values, nothing more.
* @tparam Value Values provided by the value list.
*/
template<auto... Value>
struct value_list {
/*! @brief Value list type. */
using type = value_list;
/*! @brief Compile-time number of elements in the value list. */
static constexpr auto size = sizeof...(Value);
};
/*! @brief Primary template isn't defined on purpose. */
template<std::size_t, typename>
struct value_list_element;
/**
* @brief Provides compile-time indexed access to the values of a value list.
* @tparam Index Index of the value to return.
* @tparam Value First value provided by the value list.
* @tparam Other Other values provided by the value list.
*/
template<std::size_t Index, auto Value, auto... Other>
struct value_list_element<Index, value_list<Value, Other...>>
: value_list_element<Index - 1u, value_list<Other...>> {};
/**
* @brief Provides compile-time indexed access to the types of a type list.
* @tparam Value First value provided by the value list.
* @tparam Other Other values provided by the value list.
*/
template<auto Value, auto... Other>
struct value_list_element<0u, value_list<Value, Other...>> {
/*! @brief Searched value. */
static constexpr auto value = Value;
};
/**
* @brief Helper type.
* @tparam Index Index of the value to return.
* @tparam List Value list to search into.
*/
template<std::size_t Index, typename List>
inline constexpr auto value_list_element_v = value_list_element<Index, List>::value;
/**
* @brief Concatenates multiple value lists.
* @tparam Value Values provided by the first value list.
* @tparam Other Values provided by the second value list.
* @return A value list composed by the values of both the value lists.
*/
template<auto... Value, auto... Other>
constexpr value_list<Value..., Other...> operator+(value_list<Value...>, value_list<Other...>) {
return {};
}
/*! @brief Primary template isn't defined on purpose. */
template<typename...>
struct value_list_cat;
/*! @brief Concatenates multiple value lists. */
template<>
struct value_list_cat<> {
/*! @brief A value list composed by the values of all the value lists. */
using type = value_list<>;
};
/**
* @brief Concatenates multiple value lists.
* @tparam Value Values provided by the first value list.
* @tparam Other Values provided by the second value list.
* @tparam List Other value lists, if any.
*/
template<auto... Value, auto... Other, typename... List>
struct value_list_cat<value_list<Value...>, value_list<Other...>, List...> {
/*! @brief A value list composed by the values of all the value lists. */
using type = typename value_list_cat<value_list<Value..., Other...>, List...>::type;
};
/**
* @brief Concatenates multiple value lists.
* @tparam Value Values provided by the value list.
*/
template<auto... Value>
struct value_list_cat<value_list<Value...>> {
/*! @brief A value list composed by the values of all the value lists. */
using type = value_list<Value...>;
};
/**
* @brief Helper type.
* @tparam List Value lists to concatenate.
*/
template<typename... List>
using value_list_cat_t = typename value_list_cat<List...>::type;
/*! @brief Same as std::is_invocable, but with tuples. */
template<typename, typename>
struct is_applicable: std::false_type {};
/**
* @copybrief is_applicable
* @tparam Func A valid function type.
* @tparam Tuple Tuple-like type.
* @tparam Args The list of arguments to use to probe the function type.
*/
template<typename Func, template<typename...> class Tuple, typename... Args>
struct is_applicable<Func, Tuple<Args...>>: std::is_invocable<Func, Args...> {};
/**
* @copybrief is_applicable
* @tparam Func A valid function type.
* @tparam Tuple Tuple-like type.
* @tparam Args The list of arguments to use to probe the function type.
*/
template<typename Func, template<typename...> class Tuple, typename... Args>
struct is_applicable<Func, const Tuple<Args...>>: std::is_invocable<Func, Args...> {};
/**
* @brief Helper variable template.
* @tparam Func A valid function type.
* @tparam Args The list of arguments to use to probe the function type.
*/
template<typename Func, typename Args>
inline constexpr bool is_applicable_v = is_applicable<Func, Args>::value;
/*! @brief Same as std::is_invocable_r, but with tuples for arguments. */
template<typename, typename, typename>
struct is_applicable_r: std::false_type {};
/**
* @copybrief is_applicable_r
* @tparam Ret The type to which the return type of the function should be
* convertible.
* @tparam Func A valid function type.
* @tparam Args The list of arguments to use to probe the function type.
*/
template<typename Ret, typename Func, typename... Args>
struct is_applicable_r<Ret, Func, std::tuple<Args...>>: std::is_invocable_r<Ret, Func, Args...> {};
/**
* @brief Helper variable template.
* @tparam Ret The type to which the return type of the function should be
* convertible.
* @tparam Func A valid function type.
* @tparam Args The list of arguments to use to probe the function type.
*/
template<typename Ret, typename Func, typename Args>
inline constexpr bool is_applicable_r_v = is_applicable_r<Ret, Func, Args>::value;
/**
* @brief Provides the member constant `value` to true if a given type is
* complete, false otherwise.
* @tparam Type The type to test.
*/
template<typename Type, typename = void>
struct is_complete: std::false_type {};
/*! @copydoc is_complete */
template<typename Type>
struct is_complete<Type, std::void_t<decltype(sizeof(Type))>>: std::true_type {};
/**
* @brief Helper variable template.
* @tparam Type The type to test.
*/
template<typename Type>
inline constexpr bool is_complete_v = is_complete<Type>::value;
/**
* @brief Provides the member constant `value` to true if a given type is an
* iterator, false otherwise.
* @tparam Type The type to test.
*/
template<typename Type, typename = void>
struct is_iterator: std::false_type {};
/**
* @cond TURN_OFF_DOXYGEN
* Internal details not to be documented.
*/
namespace internal {
template<typename, typename = void>
struct has_iterator_category: std::false_type {};
template<typename Type>
struct has_iterator_category<Type, std::void_t<typename std::iterator_traits<Type>::iterator_category>>: std::true_type {};
} // namespace internal
/**
* Internal details not to be documented.
* @endcond
*/
/*! @copydoc is_iterator */
template<typename Type>
struct is_iterator<Type, std::enable_if_t<!std::is_same_v<std::remove_cv_t<std::remove_pointer_t<Type>>, void>>>
: internal::has_iterator_category<Type> {};
/**
* @brief Helper variable template.
* @tparam Type The type to test.
*/
template<typename Type>
inline constexpr bool is_iterator_v = is_iterator<Type>::value;
/**
* @brief Provides the member constant `value` to true if a given type is both
* an empty and non-final class, false otherwise.
* @tparam Type The type to test
*/
template<typename Type>
struct is_ebco_eligible
: std::conjunction<std::is_empty<Type>, std::negation<std::is_final<Type>>> {};
/**
* @brief Helper variable template.
* @tparam Type The type to test.
*/
template<typename Type>
inline constexpr bool is_ebco_eligible_v = is_ebco_eligible<Type>::value;
/**
* @brief Provides the member constant `value` to true if `Type::is_transparent`
* is valid and denotes a type, false otherwise.
* @tparam Type The type to test.
*/
template<typename Type, typename = void>
struct is_transparent: std::false_type {};
/*! @copydoc is_transparent */
template<typename Type>
struct is_transparent<Type, std::void_t<typename Type::is_transparent>>: std::true_type {};
/**
* @brief Helper variable template.
* @tparam Type The type to test.
*/
template<typename Type>
inline constexpr bool is_transparent_v = is_transparent<Type>::value;
/**
* @brief Provides the member constant `value` to true if a given type is
* equality comparable, false otherwise.
* @tparam Type The type to test.
*/
template<typename Type, typename = void>
struct is_equality_comparable: std::false_type {};
/**
* @cond TURN_OFF_DOXYGEN
* Internal details not to be documented.
*/
namespace internal {
template<typename, typename = void>
struct has_tuple_size_value: std::false_type {};
template<typename Type>
struct has_tuple_size_value<Type, std::void_t<decltype(std::tuple_size<const Type>::value)>>: std::true_type {};
template<typename Type, std::size_t... Index>
[[nodiscard]] constexpr bool unpack_maybe_equality_comparable(std::index_sequence<Index...>) {
return (is_equality_comparable<std::tuple_element_t<Index, Type>>::value && ...);
}
template<typename>
[[nodiscard]] constexpr bool maybe_equality_comparable(choice_t<0>) {
return true;
}
template<typename Type>
[[nodiscard]] constexpr auto maybe_equality_comparable(choice_t<1>) -> decltype(std::declval<typename Type::value_type>(), bool{}) {
if constexpr(is_iterator_v<Type>) {
return true;
} else if constexpr(std::is_same_v<typename Type::value_type, Type>) {
return maybe_equality_comparable<Type>(choice<0>);
} else {
return is_equality_comparable<typename Type::value_type>::value;
}
}
template<typename Type>
[[nodiscard]] constexpr std::enable_if_t<is_complete_v<std::tuple_size<std::remove_cv_t<Type>>>, bool> maybe_equality_comparable(choice_t<2>) {
if constexpr(has_tuple_size_value<Type>::value) {
return unpack_maybe_equality_comparable<Type>(std::make_index_sequence<std::tuple_size<Type>::value>{});
} else {
return maybe_equality_comparable<Type>(choice<1>);
}
}
} // namespace internal
/**
* Internal details not to be documented.
* @endcond
*/
/*! @copydoc is_equality_comparable */
template<typename Type>
struct is_equality_comparable<Type, std::void_t<decltype(std::declval<Type>() == std::declval<Type>())>>
: std::bool_constant<internal::maybe_equality_comparable<Type>(choice<2>)> {};
/**
* @brief Helper variable template.
* @tparam Type The type to test.
*/
template<typename Type>
inline constexpr bool is_equality_comparable_v = is_equality_comparable<Type>::value;
/**
* @brief Transcribes the constness of a type to another type.
* @tparam To The type to which to transcribe the constness.
* @tparam From The type from which to transcribe the constness.
*/
template<typename To, typename From>
struct constness_as {
/*! @brief The type resulting from the transcription of the constness. */
using type = std::remove_const_t<To>;
};
/*! @copydoc constness_as */
template<typename To, typename From>
struct constness_as<To, const From> {
/*! @brief The type resulting from the transcription of the constness. */
using type = const To;
};
/**
* @brief Alias template to facilitate the transcription of the constness.
* @tparam To The type to which to transcribe the constness.
* @tparam From The type from which to transcribe the constness.
*/
template<typename To, typename From>
using constness_as_t = typename constness_as<To, From>::type;
/**
* @brief Extracts the class of a non-static member object or function.
* @tparam Member A pointer to a non-static member object or function.
*/
template<typename Member>
class member_class {
static_assert(std::is_member_pointer_v<Member>, "Invalid pointer type to non-static member object or function");
template<typename Class, typename Ret, typename... Args>
static Class *clazz(Ret (Class::*)(Args...));
template<typename Class, typename Ret, typename... Args>
static Class *clazz(Ret (Class::*)(Args...) const);
template<typename Class, typename Type>
static Class *clazz(Type Class::*);
public:
/*! @brief The class of the given non-static member object or function. */
using type = std::remove_pointer_t<decltype(clazz(std::declval<Member>()))>;
};
/**
* @brief Helper type.
* @tparam Member A pointer to a non-static member object or function.
*/
template<typename Member>
using member_class_t = typename member_class<Member>::type;
/**
* @brief Extracts the n-th argument of a given function or member function.
* @tparam Index The index of the argument to extract.
* @tparam Candidate A valid function, member function or data member.
*/
template<std::size_t Index, auto Candidate>
class nth_argument {
template<typename Ret, typename... Args>
static constexpr type_list<Args...> pick_up(Ret (*)(Args...));
template<typename Ret, typename Class, typename... Args>
static constexpr type_list<Args...> pick_up(Ret (Class ::*)(Args...));
template<typename Ret, typename Class, typename... Args>
static constexpr type_list<Args...> pick_up(Ret (Class ::*)(Args...) const);
template<typename Type, typename Class>
static constexpr type_list<Type> pick_up(Type Class ::*);
public:
/*! @brief N-th argument of the given function or member function. */
using type = type_list_element_t<Index, decltype(pick_up(Candidate))>;
};
/**
* @brief Helper type.
* @tparam Index The index of the argument to extract.
* @tparam Candidate A valid function, member function or data member.
*/
template<std::size_t Index, auto Candidate>
using nth_argument_t = typename nth_argument<Index, Candidate>::type;
} // namespace entt
#endif
// #include "fwd.hpp"
#ifndef ENTT_CONTAINER_FWD_HPP
#define ENTT_CONTAINER_FWD_HPP
#include <functional>
#include <memory>
namespace entt {
template<
typename Key,
typename Type,
typename = std::hash<Key>,
typename = std::equal_to<Key>,
typename = std::allocator<std::pair<const Key, Type>>>
class dense_map;
template<
typename Type,
typename = std::hash<Type>,
typename = std::equal_to<Type>,
typename = std::allocator<Type>>
class dense_set;
} // namespace entt
#endif
namespace entt {
/**
* @cond TURN_OFF_DOXYGEN
* Internal details not to be documented.
*/
namespace internal {
template<typename Key, typename Type>
struct dense_map_node final {
using value_type = std::pair<Key, Type>;
template<typename... Args>
dense_map_node(const std::size_t pos, Args &&...args)
: next{pos},
element{std::forward<Args>(args)...} {}
template<typename Allocator, typename... Args>
dense_map_node(std::allocator_arg_t, const Allocator &allocator, const std::size_t pos, Args &&...args)
: next{pos},
element{entt::make_obj_using_allocator<value_type>(allocator, std::forward<Args>(args)...)} {}
template<typename Allocator>
dense_map_node(std::allocator_arg_t, const Allocator &allocator, const dense_map_node &other)
: next{other.next},
element{entt::make_obj_using_allocator<value_type>(allocator, other.element)} {}
template<typename Allocator>
dense_map_node(std::allocator_arg_t, const Allocator &allocator, dense_map_node &&other)
: next{other.next},
element{entt::make_obj_using_allocator<value_type>(allocator, std::move(other.element))} {}
std::size_t next;
value_type element;
};
template<typename It>
class dense_map_iterator final {
template<typename>
friend class dense_map_iterator;
using first_type = decltype(std::as_const(std::declval<It>()->element.first));
using second_type = decltype((std::declval<It>()->element.second));
public:
using value_type = std::pair<first_type, second_type>;
using pointer = input_iterator_pointer<value_type>;
using reference = value_type;
using difference_type = std::ptrdiff_t;
using iterator_category = std::input_iterator_tag;
constexpr dense_map_iterator() noexcept
: it{} {}
constexpr dense_map_iterator(const It iter) noexcept
: it{iter} {}
template<typename Other, typename = std::enable_if_t<!std::is_same_v<It, Other> && std::is_constructible_v<It, Other>>>
constexpr dense_map_iterator(const dense_map_iterator<Other> &other) noexcept
: it{other.it} {}
constexpr dense_map_iterator &operator++() noexcept {
return ++it, *this;
}
constexpr dense_map_iterator operator++(int) noexcept {
dense_map_iterator orig = *this;
return ++(*this), orig;
}
constexpr dense_map_iterator &operator--() noexcept {
return --it, *this;
}
constexpr dense_map_iterator operator--(int) noexcept {
dense_map_iterator orig = *this;
return operator--(), orig;
}
constexpr dense_map_iterator &operator+=(const difference_type value) noexcept {
it += value;
return *this;
}
constexpr dense_map_iterator operator+(const difference_type value) const noexcept {
dense_map_iterator copy = *this;
return (copy += value);
}
constexpr dense_map_iterator &operator-=(const difference_type value) noexcept {
return (*this += -value);
}
constexpr dense_map_iterator operator-(const difference_type value) const noexcept {
return (*this + -value);
}
[[nodiscard]] constexpr reference operator[](const difference_type value) const noexcept {
return {it[value].element.first, it[value].element.second};
}
[[nodiscard]] constexpr pointer operator->() const noexcept {
return operator*();
}
[[nodiscard]] constexpr reference operator*() const noexcept {
return {it->element.first, it->element.second};
}
template<typename ILhs, typename IRhs>
friend constexpr std::ptrdiff_t operator-(const dense_map_iterator<ILhs> &, const dense_map_iterator<IRhs> &) noexcept;
template<typename ILhs, typename IRhs>
friend constexpr bool operator==(const dense_map_iterator<ILhs> &, const dense_map_iterator<IRhs> &) noexcept;
template<typename ILhs, typename IRhs>
friend constexpr bool operator<(const dense_map_iterator<ILhs> &, const dense_map_iterator<IRhs> &) noexcept;
private:
It it;
};
template<typename ILhs, typename IRhs>
[[nodiscard]] constexpr std::ptrdiff_t operator-(const dense_map_iterator<ILhs> &lhs, const dense_map_iterator<IRhs> &rhs) noexcept {
return lhs.it - rhs.it;
}
template<typename ILhs, typename IRhs>
[[nodiscard]] constexpr bool operator==(const dense_map_iterator<ILhs> &lhs, const dense_map_iterator<IRhs> &rhs) noexcept {
return lhs.it == rhs.it;
}
template<typename ILhs, typename IRhs>
[[nodiscard]] constexpr bool operator!=(const dense_map_iterator<ILhs> &lhs, const dense_map_iterator<IRhs> &rhs) noexcept {
return !(lhs == rhs);
}
template<typename ILhs, typename IRhs>
[[nodiscard]] constexpr bool operator<(const dense_map_iterator<ILhs> &lhs, const dense_map_iterator<IRhs> &rhs) noexcept {
return lhs.it < rhs.it;
}
template<typename ILhs, typename IRhs>
[[nodiscard]] constexpr bool operator>(const dense_map_iterator<ILhs> &lhs, const dense_map_iterator<IRhs> &rhs) noexcept {
return rhs < lhs;
}
template<typename ILhs, typename IRhs>
[[nodiscard]] constexpr bool operator<=(const dense_map_iterator<ILhs> &lhs, const dense_map_iterator<IRhs> &rhs) noexcept {
return !(lhs > rhs);
}
template<typename ILhs, typename IRhs>
[[nodiscard]] constexpr bool operator>=(const dense_map_iterator<ILhs> &lhs, const dense_map_iterator<IRhs> &rhs) noexcept {
return !(lhs < rhs);
}
template<typename It>
class dense_map_local_iterator final {
template<typename>
friend class dense_map_local_iterator;
using first_type = decltype(std::as_const(std::declval<It>()->element.first));
using second_type = decltype((std::declval<It>()->element.second));
public:
using value_type = std::pair<first_type, second_type>;
using pointer = input_iterator_pointer<value_type>;
using reference = value_type;
using difference_type = std::ptrdiff_t;
using iterator_category = std::input_iterator_tag;
constexpr dense_map_local_iterator() noexcept
: it{},
offset{} {}
constexpr dense_map_local_iterator(It iter, const std::size_t pos) noexcept
: it{iter},
offset{pos} {}
template<typename Other, typename = std::enable_if_t<!std::is_same_v<It, Other> && std::is_constructible_v<It, Other>>>
constexpr dense_map_local_iterator(const dense_map_local_iterator<Other> &other) noexcept
: it{other.it},
offset{other.offset} {}
constexpr dense_map_local_iterator &operator++() noexcept {
return offset = it[offset].next, *this;
}
constexpr dense_map_local_iterator operator++(int) noexcept {
dense_map_local_iterator orig = *this;
return ++(*this), orig;
}
[[nodiscard]] constexpr pointer operator->() const noexcept {
return operator*();
}
[[nodiscard]] constexpr reference operator*() const noexcept {
return {it[offset].element.first, it[offset].element.second};
}
[[nodiscard]] constexpr std::size_t index() const noexcept {
return offset;
}
private:
It it;
std::size_t offset;
};
template<typename ILhs, typename IRhs>
[[nodiscard]] constexpr bool operator==(const dense_map_local_iterator<ILhs> &lhs, const dense_map_local_iterator<IRhs> &rhs) noexcept {
return lhs.index() == rhs.index();
}
template<typename ILhs, typename IRhs>
[[nodiscard]] constexpr bool operator!=(const dense_map_local_iterator<ILhs> &lhs, const dense_map_local_iterator<IRhs> &rhs) noexcept {
return !(lhs == rhs);
}
} // namespace internal
/**
* Internal details not to be documented.
* @endcond
*/
/**
* @brief Associative container for key-value pairs with unique keys.
*
* Internally, elements are organized into buckets. Which bucket an element is
* placed into depends entirely on the hash of its key. Keys with the same hash
* code appear in the same bucket.
*
* @tparam Key Key type of the associative container.
* @tparam Type Mapped type of the associative container.
* @tparam Hash Type of function to use to hash the keys.
* @tparam KeyEqual Type of function to use to compare the keys for equality.
* @tparam Allocator Type of allocator used to manage memory and elements.
*/
template<typename Key, typename Type, typename Hash, typename KeyEqual, typename Allocator>
class dense_map {
static constexpr float default_threshold = 0.875f;
static constexpr std::size_t minimum_capacity = 8u;
using node_type = internal::dense_map_node<Key, Type>;
using alloc_traits = typename std::allocator_traits<Allocator>;
static_assert(std::is_same_v<typename alloc_traits::value_type, std::pair<const Key, Type>>, "Invalid value type");
using sparse_container_type = std::vector<std::size_t, typename alloc_traits::template rebind_alloc<std::size_t>>;
using packed_container_type = std::vector<node_type, typename alloc_traits::template rebind_alloc<node_type>>;
template<typename Other>
[[nodiscard]] std::size_t key_to_bucket(const Other &key) const noexcept {
return fast_mod(static_cast<size_type>(sparse.second()(key)), bucket_count());
}
template<typename Other>
[[nodiscard]] auto constrained_find(const Other &key, std::size_t bucket) {
for(auto it = begin(bucket), last = end(bucket); it != last; ++it) {
if(packed.second()(it->first, key)) {
return begin() + static_cast<typename iterator::difference_type>(it.index());
}
}
return end();
}
template<typename Other>
[[nodiscard]] auto constrained_find(const Other &key, std::size_t bucket) const {
for(auto it = cbegin(bucket), last = cend(bucket); it != last; ++it) {
if(packed.second()(it->first, key)) {
return cbegin() + static_cast<typename iterator::difference_type>(it.index());
}
}
return cend();
}
template<typename Other, typename... Args>
[[nodiscard]] auto insert_or_do_nothing(Other &&key, Args &&...args) {
const auto index = key_to_bucket(key);
if(auto it = constrained_find(key, index); it != end()) {
return std::make_pair(it, false);
}
packed.first().emplace_back(sparse.first()[index], std::piecewise_construct, std::forward_as_tuple(std::forward<Other>(key)), std::forward_as_tuple(std::forward<Args>(args)...));
sparse.first()[index] = packed.first().size() - 1u;
rehash_if_required();
return std::make_pair(--end(), true);
}
template<typename Other, typename Arg>
[[nodiscard]] auto insert_or_overwrite(Other &&key, Arg &&value) {
const auto index = key_to_bucket(key);
if(auto it = constrained_find(key, index); it != end()) {
it->second = std::forward<Arg>(value);
return std::make_pair(it, false);
}
packed.first().emplace_back(sparse.first()[index], std::forward<Other>(key), std::forward<Arg>(value));
sparse.first()[index] = packed.first().size() - 1u;
rehash_if_required();
return std::make_pair(--end(), true);
}
void move_and_pop(const std::size_t pos) {
if(const auto last = size() - 1u; pos != last) {
size_type *curr = sparse.first().data() + key_to_bucket(packed.first().back().element.first);
packed.first()[pos] = std::move(packed.first().back());
for(; *curr != last; curr = &packed.first()[*curr].next) {}
*curr = pos;
}
packed.first().pop_back();
}
void rehash_if_required() {
if(size() > (bucket_count() * max_load_factor())) {
rehash(bucket_count() * 2u);
}
}
public:
/*! @brief Key type of the container. */
using key_type = Key;
/*! @brief Mapped type of the container. */
using mapped_type = Type;
/*! @brief Key-value type of the container. */
using value_type = std::pair<const Key, Type>;
/*! @brief Unsigned integer type. */
using size_type = std::size_t;
/*! @brief Type of function to use to hash the keys. */
using hasher = Hash;
/*! @brief Type of function to use to compare the keys for equality. */
using key_equal = KeyEqual;
/*! @brief Allocator type. */
using allocator_type = Allocator;
/*! @brief Input iterator type. */
using iterator = internal::dense_map_iterator<typename packed_container_type::iterator>;
/*! @brief Constant input iterator type. */
using const_iterator = internal::dense_map_iterator<typename packed_container_type::const_iterator>;
/*! @brief Input iterator type. */
using local_iterator = internal::dense_map_local_iterator<typename packed_container_type::iterator>;
/*! @brief Constant input iterator type. */
using const_local_iterator = internal::dense_map_local_iterator<typename packed_container_type::const_iterator>;
/*! @brief Default constructor. */
dense_map()
: dense_map{minimum_capacity} {}
/**
* @brief Constructs an empty container with a given allocator.
* @param allocator The allocator to use.
*/
explicit dense_map(const allocator_type &allocator)
: dense_map{minimum_capacity, hasher{}, key_equal{}, allocator} {}
/**
* @brief Constructs an empty container with a given allocator and user
* supplied minimal number of buckets.
* @param cnt Minimal number of buckets.
* @param allocator The allocator to use.
*/
dense_map(const size_type cnt, const allocator_type &allocator)
: dense_map{cnt, hasher{}, key_equal{}, allocator} {}
/**
* @brief Constructs an empty container with a given allocator, hash
* function and user supplied minimal number of buckets.
* @param cnt Minimal number of buckets.
* @param hash Hash function to use.
* @param allocator The allocator to use.
*/
dense_map(const size_type cnt, const hasher &hash, const allocator_type &allocator)
: dense_map{cnt, hash, key_equal{}, allocator} {}
/**
* @brief Constructs an empty container with a given allocator, hash
* function, compare function and user supplied minimal number of buckets.
* @param cnt Minimal number of buckets.
* @param hash Hash function to use.
* @param equal Compare function to use.
* @param allocator The allocator to use.
*/
explicit dense_map(const size_type cnt, const hasher &hash = hasher{}, const key_equal &equal = key_equal{}, const allocator_type &allocator = allocator_type{})
: sparse{allocator, hash},
packed{allocator, equal},
threshold{default_threshold} {
rehash(cnt);
}
/*! @brief Default copy constructor. */
dense_map(const dense_map &) = default;
/**
* @brief Allocator-extended copy constructor.
* @param other The instance to copy from.
* @param allocator The allocator to use.
*/
dense_map(const dense_map &other, const allocator_type &allocator)
: sparse{std::piecewise_construct, std::forward_as_tuple(other.sparse.first(), allocator), std::forward_as_tuple(other.sparse.second())},
packed{std::piecewise_construct, std::forward_as_tuple(other.packed.first(), allocator), std::forward_as_tuple(other.packed.second())},
threshold{other.threshold} {}
/*! @brief Default move constructor. */
dense_map(dense_map &&) noexcept(std::is_nothrow_move_constructible_v<compressed_pair<sparse_container_type, hasher>> &&std::is_nothrow_move_constructible_v<compressed_pair<packed_container_type, key_equal>>) = default;
/**
* @brief Allocator-extended move constructor.
* @param other The instance to move from.
* @param allocator The allocator to use.
*/
dense_map(dense_map &&other, const allocator_type &allocator)
: sparse{std::piecewise_construct, std::forward_as_tuple(std::move(other.sparse.first()), allocator), std::forward_as_tuple(std::move(other.sparse.second()))},
packed{std::piecewise_construct, std::forward_as_tuple(std::move(other.packed.first()), allocator), std::forward_as_tuple(std::move(other.packed.second()))},
threshold{other.threshold} {}
/**
* @brief Default copy assignment operator.
* @return This container.
*/
dense_map &operator=(const dense_map &) = default;
/**
* @brief Default move assignment operator.
* @return This container.
*/
dense_map &operator=(dense_map &&) noexcept(std::is_nothrow_move_assignable_v<compressed_pair<sparse_container_type, hasher>> &&std::is_nothrow_move_assignable_v<compressed_pair<packed_container_type, key_equal>>) = default;
/**
* @brief Returns the associated allocator.
* @return The associated allocator.
*/
[[nodiscard]] constexpr allocator_type get_allocator() const noexcept {
return sparse.first().get_allocator();
}
/**
* @brief Returns an iterator to the beginning.
*
* The returned iterator points to the first instance of the internal array.
* If the array is empty, the returned iterator will be equal to `end()`.
*
* @return An iterator to the first instance of the internal array.
*/
[[nodiscard]] const_iterator cbegin() const noexcept {
return packed.first().begin();
}
/*! @copydoc cbegin */
[[nodiscard]] const_iterator begin() const noexcept {
return cbegin();
}
/*! @copydoc begin */
[[nodiscard]] iterator begin() noexcept {
return packed.first().begin();
}
/**
* @brief Returns an iterator to the end.
*
* The returned iterator points to the element following the last instance
* of the internal array. Attempting to dereference the returned iterator
* results in undefined behavior.
*
* @return An iterator to the element following the last instance of the
* internal array.
*/
[[nodiscard]] const_iterator cend() const noexcept {
return packed.first().end();
}
/*! @copydoc cend */
[[nodiscard]] const_iterator end() const noexcept {
return cend();
}
/*! @copydoc end */
[[nodiscard]] iterator end() noexcept {
return packed.first().end();
}
/**
* @brief Checks whether a container is empty.
* @return True if the container is empty, false otherwise.
*/
[[nodiscard]] bool empty() const noexcept {
return packed.first().empty();
}
/**
* @brief Returns the number of elements in a container.
* @return Number of elements in a container.
*/
[[nodiscard]] size_type size() const noexcept {
return packed.first().size();
}
/**
* @brief Returns the maximum possible number of elements.
* @return Maximum possible number of elements.
*/
[[nodiscard]] size_type max_size() const noexcept {
return packed.first().max_size();
}
/*! @brief Clears the container. */
void clear() noexcept {
sparse.first().clear();
packed.first().clear();
rehash(0u);
}
/**
* @brief Inserts an element into the container, if the key does not exist.
* @param value A key-value pair eventually convertible to the value type.
* @return A pair consisting of an iterator to the inserted element (or to
* the element that prevented the insertion) and a bool denoting whether the
* insertion took place.
*/
std::pair<iterator, bool> insert(const value_type &value) {
return insert_or_do_nothing(value.first, value.second);
}
/*! @copydoc insert */
std::pair<iterator, bool> insert(value_type &&value) {
return insert_or_do_nothing(std::move(value.first), std::move(value.second));
}
/**
* @copydoc insert
* @tparam Arg Type of the key-value pair to insert into the container.
*/
template<typename Arg>
std::enable_if_t<std::is_constructible_v<value_type, Arg &&>, std::pair<iterator, bool>>
insert(Arg &&value) {
return insert_or_do_nothing(std::forward<Arg>(value).first, std::forward<Arg>(value).second);
}
/**
* @brief Inserts elements into the container, if their keys do not exist.
* @tparam It Type of input iterator.
* @param first An iterator to the first element of the range of elements.
* @param last An iterator past the last element of the range of elements.
*/
template<typename It>
void insert(It first, It last) {
for(; first != last; ++first) {
insert(*first);
}
}
/**
* @brief Inserts an element into the container or assigns to the current
* element if the key already exists.
* @tparam Arg Type of the value to insert or assign.
* @param key A key used both to look up and to insert if not found.
* @param value A value to insert or assign.
* @return A pair consisting of an iterator to the element and a bool
* denoting whether the insertion took place.
*/
template<typename Arg>
std::pair<iterator, bool> insert_or_assign(const key_type &key, Arg &&value) {
return insert_or_overwrite(key, std::forward<Arg>(value));
}
/*! @copydoc insert_or_assign */
template<typename Arg>
std::pair<iterator, bool> insert_or_assign(key_type &&key, Arg &&value) {
return insert_or_overwrite(std::move(key), std::forward<Arg>(value));
}
/**
* @brief Constructs an element in-place, if the key does not exist.
*
* The element is also constructed when the container already has the key,
* in which case the newly constructed object is destroyed immediately.
*
* @tparam Args Types of arguments to forward to the constructor of the
* element.
* @param args Arguments to forward to the constructor of the element.
* @return A pair consisting of an iterator to the inserted element (or to
* the element that prevented the insertion) and a bool denoting whether the
* insertion took place.
*/
template<typename... Args>
std::pair<iterator, bool> emplace([[maybe_unused]] Args &&...args) {
if constexpr(sizeof...(Args) == 0u) {
return insert_or_do_nothing(key_type{});
} else if constexpr(sizeof...(Args) == 1u) {
return insert_or_do_nothing(std::forward<Args>(args).first..., std::forward<Args>(args).second...);
} else if constexpr(sizeof...(Args) == 2u) {
return insert_or_do_nothing(std::forward<Args>(args)...);
} else {
auto &node = packed.first().emplace_back(packed.first().size(), std::forward<Args>(args)...);
const auto index = key_to_bucket(node.element.first);
if(auto it = constrained_find(node.element.first, index); it != end()) {
packed.first().pop_back();
return std::make_pair(it, false);
}
std::swap(node.next, sparse.first()[index]);
rehash_if_required();
return std::make_pair(--end(), true);
}
}
/**
* @brief Inserts in-place if the key does not exist, does nothing if the
* key exists.
* @tparam Args Types of arguments to forward to the constructor of the
* element.
* @param key A key used both to look up and to insert if not found.
* @param args Arguments to forward to the constructor of the element.
* @return A pair consisting of an iterator to the inserted element (or to
* the element that prevented the insertion) and a bool denoting whether the
* insertion took place.
*/
template<typename... Args>
std::pair<iterator, bool> try_emplace(const key_type &key, Args &&...args) {
return insert_or_do_nothing(key, std::forward<Args>(args)...);
}
/*! @copydoc try_emplace */
template<typename... Args>
std::pair<iterator, bool> try_emplace(key_type &&key, Args &&...args) {
return insert_or_do_nothing(std::move(key), std::forward<Args>(args)...);
}
/**
* @brief Removes an element from a given position.
* @param pos An iterator to the element to remove.
* @return An iterator following the removed element.
*/
iterator erase(const_iterator pos) {
const auto diff = pos - cbegin();
erase(pos->first);
return begin() + diff;
}
/**
* @brief Removes the given elements from a container.
* @param first An iterator to the first element of the range of elements.
* @param last An iterator past the last element of the range of elements.
* @return An iterator following the last removed element.
*/
iterator erase(const_iterator first, const_iterator last) {
const auto dist = first - cbegin();
for(auto from = last - cbegin(); from != dist; --from) {
erase(packed.first()[from - 1u].element.first);
}
return (begin() + dist);
}
/**
* @brief Removes the element associated with a given key.
* @param key A key value of an element to remove.
* @return Number of elements removed (either 0 or 1).
*/
size_type erase(const key_type &key) {
for(size_type *curr = sparse.first().data() + key_to_bucket(key); *curr != (std::numeric_limits<size_type>::max)(); curr = &packed.first()[*curr].next) {
if(packed.second()(packed.first()[*curr].element.first, key)) {
const auto index = *curr;
*curr = packed.first()[*curr].next;
move_and_pop(index);
return 1u;
}
}
return 0u;
}
/**
* @brief Exchanges the contents with those of a given container.
* @param other Container to exchange the content with.
*/
void swap(dense_map &other) {
using std::swap;
swap(sparse, other.sparse);
swap(packed, other.packed);
swap(threshold, other.threshold);
}
/**
* @brief Accesses a given element with bounds checking.
* @param key A key of an element to find.
* @return A reference to the mapped value of the requested element.
*/
[[nodiscard]] mapped_type &at(const key_type &key) {
auto it = find(key);
ENTT_ASSERT(it != end(), "Invalid key");
return it->second;
}
/*! @copydoc at */
[[nodiscard]] const mapped_type &at(const key_type &key) const {
auto it = find(key);
ENTT_ASSERT(it != cend(), "Invalid key");
return it->second;
}
/**
* @brief Accesses or inserts a given element.
* @param key A key of an element to find or insert.
* @return A reference to the mapped value of the requested element.
*/
[[nodiscard]] mapped_type &operator[](const key_type &key) {
return insert_or_do_nothing(key).first->second;
}
/**
* @brief Accesses or inserts a given element.
* @param key A key of an element to find or insert.
* @return A reference to the mapped value of the requested element.
*/
[[nodiscard]] mapped_type &operator[](key_type &&key) {
return insert_or_do_nothing(std::move(key)).first->second;
}
/**
* @brief Returns the number of elements matching a key (either 1 or 0).
* @param key Key value of an element to search for.
* @return Number of elements matching the key (either 1 or 0).
*/
[[nodiscard]] size_type count(const key_type &key) const {
return find(key) != end();
}
/**
* @brief Returns the number of elements matching a key (either 1 or 0).
* @tparam Other Type of the key value of an element to search for.
* @param key Key value of an element to search for.
* @return Number of elements matching the key (either 1 or 0).
*/
template<typename Other>
[[nodiscard]] std::enable_if_t<is_transparent_v<hasher> && is_transparent_v<key_equal>, std::conditional_t<false, Other, size_type>>
count(const Other &key) const {
return find(key) != end();
}
/**
* @brief Finds an element with a given key.
* @param key Key value of an element to search for.
* @return An iterator to an element with the given key. If no such element
* is found, a past-the-end iterator is returned.
*/
[[nodiscard]] iterator find(const key_type &key) {
return constrained_find(key, key_to_bucket(key));
}
/*! @copydoc find */
[[nodiscard]] const_iterator find(const key_type &key) const {
return constrained_find(key, key_to_bucket(key));
}
/**
* @brief Finds an element with a key that compares _equivalent_ to a given
* key.
* @tparam Other Type of the key value of an element to search for.
* @param key Key value of an element to search for.
* @return An iterator to an element with the given key. If no such element
* is found, a past-the-end iterator is returned.
*/
template<typename Other>
[[nodiscard]] std::enable_if_t<is_transparent_v<hasher> && is_transparent_v<key_equal>, std::conditional_t<false, Other, iterator>>
find(const Other &key) {
return constrained_find(key, key_to_bucket(key));
}
/*! @copydoc find */
template<typename Other>
[[nodiscard]] std::enable_if_t<is_transparent_v<hasher> && is_transparent_v<key_equal>, std::conditional_t<false, Other, const_iterator>>
find(const Other &key) const {
return constrained_find(key, key_to_bucket(key));
}
/**
* @brief Returns a range containing all elements with a given key.
* @param key Key value of an element to search for.
* @return A pair of iterators pointing to the first element and past the
* last element of the range.
*/
[[nodiscard]] std::pair<iterator, iterator> equal_range(const key_type &key) {
const auto it = find(key);
return {it, it + !(it == end())};
}
/*! @copydoc equal_range */
[[nodiscard]] std::pair<const_iterator, const_iterator> equal_range(const key_type &key) const {
const auto it = find(key);
return {it, it + !(it == cend())};
}
/**
* @brief Returns a range containing all elements that compare _equivalent_
* to a given key.
* @tparam Other Type of an element to search for.
* @param key Key value of an element to search for.
* @return A pair of iterators pointing to the first element and past the
* last element of the range.
*/
template<typename Other>
[[nodiscard]] std::enable_if_t<is_transparent_v<hasher> && is_transparent_v<key_equal>, std::conditional_t<false, Other, std::pair<iterator, iterator>>>
equal_range(const Other &key) {
const auto it = find(key);
return {it, it + !(it == end())};
}
/*! @copydoc equal_range */
template<class Other>
[[nodiscard]] std::enable_if_t<is_transparent_v<hasher> && is_transparent_v<key_equal>, std::conditional_t<false, Other, std::pair<const_iterator, const_iterator>>>
equal_range(const Other &key) const {
const auto it = find(key);
return {it, it + !(it == cend())};
}
/**
* @brief Checks if the container contains an element with a given key.
* @param key Key value of an element to search for.
* @return True if there is such an element, false otherwise.
*/
[[nodiscard]] bool contains(const key_type &key) const {
return (find(key) != cend());
}
/**
* @brief Checks if the container contains an element with a key that
* compares _equivalent_ to a given value.
* @tparam Other Type of the key value of an element to search for.
* @param key Key value of an element to search for.
* @return True if there is such an element, false otherwise.
*/
template<typename Other>
[[nodiscard]] std::enable_if_t<is_transparent_v<hasher> && is_transparent_v<key_equal>, std::conditional_t<false, Other, bool>>
contains(const Other &key) const {
return (find(key) != cend());
}
/**
* @brief Returns an iterator to the beginning of a given bucket.
* @param index An index of a bucket to access.
* @return An iterator to the beginning of the given bucket.
*/
[[nodiscard]] const_local_iterator cbegin(const size_type index) const {
return {packed.first().begin(), sparse.first()[index]};
}
/**
* @brief Returns an iterator to the beginning of a given bucket.
* @param index An index of a bucket to access.
* @return An iterator to the beginning of the given bucket.
*/
[[nodiscard]] const_local_iterator begin(const size_type index) const {
return cbegin(index);
}
/**
* @brief Returns an iterator to the beginning of a given bucket.
* @param index An index of a bucket to access.
* @return An iterator to the beginning of the given bucket.
*/
[[nodiscard]] local_iterator begin(const size_type index) {
return {packed.first().begin(), sparse.first()[index]};
}
/**
* @brief Returns an iterator to the end of a given bucket.
* @param index An index of a bucket to access.
* @return An iterator to the end of the given bucket.
*/
[[nodiscard]] const_local_iterator cend([[maybe_unused]] const size_type index) const {
return {packed.first().begin(), (std::numeric_limits<size_type>::max)()};
}
/**
* @brief Returns an iterator to the end of a given bucket.
* @param index An index of a bucket to access.
* @return An iterator to the end of the given bucket.
*/
[[nodiscard]] const_local_iterator end(const size_type index) const {
return cend(index);
}
/**
* @brief Returns an iterator to the end of a given bucket.
* @param index An index of a bucket to access.
* @return An iterator to the end of the given bucket.
*/
[[nodiscard]] local_iterator end([[maybe_unused]] const size_type index) {
return {packed.first().begin(), (std::numeric_limits<size_type>::max)()};
}
/**
* @brief Returns the number of buckets.
* @return The number of buckets.
*/
[[nodiscard]] size_type bucket_count() const {
return sparse.first().size();
}
/**
* @brief Returns the maximum number of buckets.
* @return The maximum number of buckets.
*/
[[nodiscard]] size_type max_bucket_count() const {
return sparse.first().max_size();
}
/**
* @brief Returns the number of elements in a given bucket.
* @param index The index of the bucket to examine.
* @return The number of elements in the given bucket.
*/
[[nodiscard]] size_type bucket_size(const size_type index) const {
return static_cast<size_type>(std::distance(begin(index), end(index)));
}
/**
* @brief Returns the bucket for a given key.
* @param key The value of the key to examine.
* @return The bucket for the given key.
*/
[[nodiscard]] size_type bucket(const key_type &key) const {
return key_to_bucket(key);
}
/**
* @brief Returns the average number of elements per bucket.
* @return The average number of elements per bucket.
*/
[[nodiscard]] float load_factor() const {
return size() / static_cast<float>(bucket_count());
}
/**
* @brief Returns the maximum average number of elements per bucket.
* @return The maximum average number of elements per bucket.
*/
[[nodiscard]] float max_load_factor() const {
return threshold;
}
/**
* @brief Sets the desired maximum average number of elements per bucket.
* @param value A desired maximum average number of elements per bucket.
*/
void max_load_factor(const float value) {
ENTT_ASSERT(value > 0.f, "Invalid load factor");
threshold = value;
rehash(0u);
}
/**
* @brief Reserves at least the specified number of buckets and regenerates
* the hash table.
* @param cnt New number of buckets.
*/
void rehash(const size_type cnt) {
auto value = cnt > minimum_capacity ? cnt : minimum_capacity;
const auto cap = static_cast<size_type>(size() / max_load_factor());
value = value > cap ? value : cap;
if(const auto sz = next_power_of_two(value); sz != bucket_count()) {
sparse.first().resize(sz);
for(auto &&elem: sparse.first()) {
elem = std::numeric_limits<size_type>::max();
}
for(size_type pos{}, last = size(); pos < last; ++pos) {
const auto index = key_to_bucket(packed.first()[pos].element.first);
packed.first()[pos].next = std::exchange(sparse.first()[index], pos);
}
}
}
/**
* @brief Reserves space for at least the specified number of elements and
* regenerates the hash table.
* @param cnt New number of elements.
*/
void reserve(const size_type cnt) {
packed.first().reserve(cnt);
rehash(static_cast<size_type>(std::ceil(cnt / max_load_factor())));
}
/**
* @brief Returns the function used to hash the keys.
* @return The function used to hash the keys.
*/
[[nodiscard]] hasher hash_function() const {
return sparse.second();
}
/**
* @brief Returns the function used to compare keys for equality.
* @return The function used to compare keys for equality.
*/
[[nodiscard]] key_equal key_eq() const {
return packed.second();
}
private:
compressed_pair<sparse_container_type, hasher> sparse;
compressed_pair<packed_container_type, key_equal> packed;
float threshold;
};
} // namespace entt
/**
* @cond TURN_OFF_DOXYGEN
* Internal details not to be documented.
*/
namespace std {
template<typename Key, typename Value, typename Allocator>
struct uses_allocator<entt::internal::dense_map_node<Key, Value>, Allocator>
: std::true_type {};
} // namespace std
/**
* Internal details not to be documented.
* @endcond
*/
#endif
// #include "../container/dense_set.hpp"
#ifndef ENTT_CONTAINER_DENSE_SET_HPP
#define ENTT_CONTAINER_DENSE_SET_HPP
#include <cmath>
#include <cstddef>
#include <functional>
#include <iterator>
#include <limits>
#include <memory>
#include <tuple>
#include <type_traits>
#include <utility>
#include <vector>
// #include "../config/config.h"
// #include "../core/compressed_pair.hpp"
// #include "../core/memory.hpp"
// #include "../core/type_traits.hpp"
// #include "fwd.hpp"
namespace entt {
/**
* @cond TURN_OFF_DOXYGEN
* Internal details not to be documented.
*/
namespace internal {
template<typename It>
class dense_set_iterator final {
template<typename>
friend class dense_set_iterator;
public:
using value_type = typename It::value_type::second_type;
using pointer = const value_type *;
using reference = const value_type &;
using difference_type = std::ptrdiff_t;
using iterator_category = std::random_access_iterator_tag;
constexpr dense_set_iterator() noexcept
: it{} {}
constexpr dense_set_iterator(const It iter) noexcept
: it{iter} {}
template<typename Other, typename = std::enable_if_t<!std::is_same_v<It, Other> && std::is_constructible_v<It, Other>>>
constexpr dense_set_iterator(const dense_set_iterator<Other> &other) noexcept
: it{other.it} {}
constexpr dense_set_iterator &operator++() noexcept {
return ++it, *this;
}
constexpr dense_set_iterator operator++(int) noexcept {
dense_set_iterator orig = *this;
return ++(*this), orig;
}
constexpr dense_set_iterator &operator--() noexcept {
return --it, *this;
}
constexpr dense_set_iterator operator--(int) noexcept {
dense_set_iterator orig = *this;
return operator--(), orig;
}
constexpr dense_set_iterator &operator+=(const difference_type value) noexcept {
it += value;
return *this;
}
constexpr dense_set_iterator operator+(const difference_type value) const noexcept {
dense_set_iterator copy = *this;
return (copy += value);
}
constexpr dense_set_iterator &operator-=(const difference_type value) noexcept {
return (*this += -value);
}
constexpr dense_set_iterator operator-(const difference_type value) const noexcept {
return (*this + -value);
}
[[nodiscard]] constexpr reference operator[](const difference_type value) const noexcept {
return it[value].second;
}
[[nodiscard]] constexpr pointer operator->() const noexcept {
return std::addressof(it->second);
}
[[nodiscard]] constexpr reference operator*() const noexcept {
return *operator->();
}
template<typename ILhs, typename IRhs>
friend constexpr std::ptrdiff_t operator-(const dense_set_iterator<ILhs> &, const dense_set_iterator<IRhs> &) noexcept;
template<typename ILhs, typename IRhs>
friend constexpr bool operator==(const dense_set_iterator<ILhs> &, const dense_set_iterator<IRhs> &) noexcept;
template<typename ILhs, typename IRhs>
friend constexpr bool operator<(const dense_set_iterator<ILhs> &, const dense_set_iterator<IRhs> &) noexcept;
private:
It it;
};
template<typename ILhs, typename IRhs>
[[nodiscard]] constexpr std::ptrdiff_t operator-(const dense_set_iterator<ILhs> &lhs, const dense_set_iterator<IRhs> &rhs) noexcept {
return lhs.it - rhs.it;
}
template<typename ILhs, typename IRhs>
[[nodiscard]] constexpr bool operator==(const dense_set_iterator<ILhs> &lhs, const dense_set_iterator<IRhs> &rhs) noexcept {
return lhs.it == rhs.it;
}
template<typename ILhs, typename IRhs>
[[nodiscard]] constexpr bool operator!=(const dense_set_iterator<ILhs> &lhs, const dense_set_iterator<IRhs> &rhs) noexcept {
return !(lhs == rhs);
}
template<typename ILhs, typename IRhs>
[[nodiscard]] constexpr bool operator<(const dense_set_iterator<ILhs> &lhs, const dense_set_iterator<IRhs> &rhs) noexcept {
return lhs.it < rhs.it;
}
template<typename ILhs, typename IRhs>
[[nodiscard]] constexpr bool operator>(const dense_set_iterator<ILhs> &lhs, const dense_set_iterator<IRhs> &rhs) noexcept {
return rhs < lhs;
}
template<typename ILhs, typename IRhs>
[[nodiscard]] constexpr bool operator<=(const dense_set_iterator<ILhs> &lhs, const dense_set_iterator<IRhs> &rhs) noexcept {
return !(lhs > rhs);
}
template<typename ILhs, typename IRhs>
[[nodiscard]] constexpr bool operator>=(const dense_set_iterator<ILhs> &lhs, const dense_set_iterator<IRhs> &rhs) noexcept {
return !(lhs < rhs);
}
template<typename It>
class dense_set_local_iterator final {
template<typename>
friend class dense_set_local_iterator;
public:
using value_type = typename It::value_type::second_type;
using pointer = const value_type *;
using reference = const value_type &;
using difference_type = std::ptrdiff_t;
using iterator_category = std::forward_iterator_tag;
constexpr dense_set_local_iterator() noexcept
: it{},
offset{} {}
constexpr dense_set_local_iterator(It iter, const std::size_t pos) noexcept
: it{iter},
offset{pos} {}
template<typename Other, typename = std::enable_if_t<!std::is_same_v<It, Other> && std::is_constructible_v<It, Other>>>
constexpr dense_set_local_iterator(const dense_set_local_iterator<Other> &other) noexcept
: it{other.it},
offset{other.offset} {}
constexpr dense_set_local_iterator &operator++() noexcept {
return offset = it[offset].first, *this;
}
constexpr dense_set_local_iterator operator++(int) noexcept {
dense_set_local_iterator orig = *this;
return ++(*this), orig;
}
[[nodiscard]] constexpr pointer operator->() const noexcept {
return std::addressof(it[offset].second);
}
[[nodiscard]] constexpr reference operator*() const noexcept {
return *operator->();
}
[[nodiscard]] constexpr std::size_t index() const noexcept {
return offset;
}
private:
It it;
std::size_t offset;
};
template<typename ILhs, typename IRhs>
[[nodiscard]] constexpr bool operator==(const dense_set_local_iterator<ILhs> &lhs, const dense_set_local_iterator<IRhs> &rhs) noexcept {
return lhs.index() == rhs.index();
}
template<typename ILhs, typename IRhs>
[[nodiscard]] constexpr bool operator!=(const dense_set_local_iterator<ILhs> &lhs, const dense_set_local_iterator<IRhs> &rhs) noexcept {
return !(lhs == rhs);
}
} // namespace internal
/**
* Internal details not to be documented.
* @endcond
*/
/**
* @brief Associative container for unique objects of a given type.
*
* Internally, elements are organized into buckets. Which bucket an element is
* placed into depends entirely on its hash. Elements with the same hash code
* appear in the same bucket.
*
* @tparam Type Value type of the associative container.
* @tparam Hash Type of function to use to hash the values.
* @tparam KeyEqual Type of function to use to compare the values for equality.
* @tparam Allocator Type of allocator used to manage memory and elements.
*/
template<typename Type, typename Hash, typename KeyEqual, typename Allocator>
class dense_set {
static constexpr float default_threshold = 0.875f;
static constexpr std::size_t minimum_capacity = 8u;
using node_type = std::pair<std::size_t, Type>;
using alloc_traits = std::allocator_traits<Allocator>;
static_assert(std::is_same_v<typename alloc_traits::value_type, Type>, "Invalid value type");
using sparse_container_type = std::vector<std::size_t, typename alloc_traits::template rebind_alloc<std::size_t>>;
using packed_container_type = std::vector<node_type, typename alloc_traits::template rebind_alloc<node_type>>;
template<typename Other>
[[nodiscard]] std::size_t value_to_bucket(const Other &value) const noexcept {
return fast_mod(static_cast<size_type>(sparse.second()(value)), bucket_count());
}
template<typename Other>
[[nodiscard]] auto constrained_find(const Other &value, std::size_t bucket) {
for(auto it = begin(bucket), last = end(bucket); it != last; ++it) {
if(packed.second()(*it, value)) {
return begin() + static_cast<typename iterator::difference_type>(it.index());
}
}
return end();
}
template<typename Other>
[[nodiscard]] auto constrained_find(const Other &value, std::size_t bucket) const {
for(auto it = cbegin(bucket), last = cend(bucket); it != last; ++it) {
if(packed.second()(*it, value)) {
return cbegin() + static_cast<typename iterator::difference_type>(it.index());
}
}
return cend();
}
template<typename Other>
[[nodiscard]] auto insert_or_do_nothing(Other &&value) {
const auto index = value_to_bucket(value);
if(auto it = constrained_find(value, index); it != end()) {
return std::make_pair(it, false);
}
packed.first().emplace_back(sparse.first()[index], std::forward<Other>(value));
sparse.first()[index] = packed.first().size() - 1u;
rehash_if_required();
return std::make_pair(--end(), true);
}
void move_and_pop(const std::size_t pos) {
if(const auto last = size() - 1u; pos != last) {
size_type *curr = sparse.first().data() + value_to_bucket(packed.first().back().second);
packed.first()[pos] = std::move(packed.first().back());
for(; *curr != last; curr = &packed.first()[*curr].first) {}
*curr = pos;
}
packed.first().pop_back();
}
void rehash_if_required() {
if(size() > (bucket_count() * max_load_factor())) {
rehash(bucket_count() * 2u);
}
}
public:
/*! @brief Key type of the container. */
using key_type = Type;
/*! @brief Value type of the container. */
using value_type = Type;
/*! @brief Unsigned integer type. */
using size_type = std::size_t;
/*! @brief Type of function to use to hash the elements. */
using hasher = Hash;
/*! @brief Type of function to use to compare the elements for equality. */
using key_equal = KeyEqual;
/*! @brief Allocator type. */
using allocator_type = Allocator;
/*! @brief Random access iterator type. */
using iterator = internal::dense_set_iterator<typename packed_container_type::iterator>;
/*! @brief Constant random access iterator type. */
using const_iterator = internal::dense_set_iterator<typename packed_container_type::const_iterator>;
/*! @brief Forward iterator type. */
using local_iterator = internal::dense_set_local_iterator<typename packed_container_type::iterator>;
/*! @brief Constant forward iterator type. */
using const_local_iterator = internal::dense_set_local_iterator<typename packed_container_type::const_iterator>;
/*! @brief Default constructor. */
dense_set()
: dense_set{minimum_capacity} {}
/**
* @brief Constructs an empty container with a given allocator.
* @param allocator The allocator to use.
*/
explicit dense_set(const allocator_type &allocator)
: dense_set{minimum_capacity, hasher{}, key_equal{}, allocator} {}
/**
* @brief Constructs an empty container with a given allocator and user
* supplied minimal number of buckets.
* @param cnt Minimal number of buckets.
* @param allocator The allocator to use.
*/
dense_set(const size_type cnt, const allocator_type &allocator)
: dense_set{cnt, hasher{}, key_equal{}, allocator} {}
/**
* @brief Constructs an empty container with a given allocator, hash
* function and user supplied minimal number of buckets.
* @param cnt Minimal number of buckets.
* @param hash Hash function to use.
* @param allocator The allocator to use.
*/
dense_set(const size_type cnt, const hasher &hash, const allocator_type &allocator)
: dense_set{cnt, hash, key_equal{}, allocator} {}
/**
* @brief Constructs an empty container with a given allocator, hash
* function, compare function and user supplied minimal number of buckets.
* @param cnt Minimal number of buckets.
* @param hash Hash function to use.
* @param equal Compare function to use.
* @param allocator The allocator to use.
*/
explicit dense_set(const size_type cnt, const hasher &hash = hasher{}, const key_equal &equal = key_equal{}, const allocator_type &allocator = allocator_type{})
: sparse{allocator, hash},
packed{allocator, equal},
threshold{default_threshold} {
rehash(cnt);
}
/*! @brief Default copy constructor. */
dense_set(const dense_set &) = default;
/**
* @brief Allocator-extended copy constructor.
* @param other The instance to copy from.
* @param allocator The allocator to use.
*/
dense_set(const dense_set &other, const allocator_type &allocator)
: sparse{std::piecewise_construct, std::forward_as_tuple(other.sparse.first(), allocator), std::forward_as_tuple(other.sparse.second())},
packed{std::piecewise_construct, std::forward_as_tuple(other.packed.first(), allocator), std::forward_as_tuple(other.packed.second())},
threshold{other.threshold} {}
/*! @brief Default move constructor. */
dense_set(dense_set &&) noexcept(std::is_nothrow_move_constructible_v<compressed_pair<sparse_container_type, hasher>> &&std::is_nothrow_move_constructible_v<compressed_pair<packed_container_type, key_equal>>) = default;
/**
* @brief Allocator-extended move constructor.
* @param other The instance to move from.
* @param allocator The allocator to use.
*/
dense_set(dense_set &&other, const allocator_type &allocator)
: sparse{std::piecewise_construct, std::forward_as_tuple(std::move(other.sparse.first()), allocator), std::forward_as_tuple(std::move(other.sparse.second()))},
packed{std::piecewise_construct, std::forward_as_tuple(std::move(other.packed.first()), allocator), std::forward_as_tuple(std::move(other.packed.second()))},
threshold{other.threshold} {}
/**
* @brief Default copy assignment operator.
* @return This container.
*/
dense_set &operator=(const dense_set &) = default;
/**
* @brief Default move assignment operator.
* @return This container.
*/
dense_set &operator=(dense_set &&) noexcept(std::is_nothrow_move_assignable_v<compressed_pair<sparse_container_type, hasher>> &&std::is_nothrow_move_assignable_v<compressed_pair<packed_container_type, key_equal>>) = default;
/**
* @brief Returns the associated allocator.
* @return The associated allocator.
*/
[[nodiscard]] constexpr allocator_type get_allocator() const noexcept {
return sparse.first().get_allocator();
}
/**
* @brief Returns an iterator to the beginning.
*
* The returned iterator points to the first instance of the internal array.
* If the array is empty, the returned iterator will be equal to `end()`.
*
* @return An iterator to the first instance of the internal array.
*/
[[nodiscard]] const_iterator cbegin() const noexcept {
return packed.first().begin();
}
/*! @copydoc cbegin */
[[nodiscard]] const_iterator begin() const noexcept {
return cbegin();
}
/*! @copydoc begin */
[[nodiscard]] iterator begin() noexcept {
return packed.first().begin();
}
/**
* @brief Returns an iterator to the end.
*
* The returned iterator points to the element following the last instance
* of the internal array. Attempting to dereference the returned iterator
* results in undefined behavior.
*
* @return An iterator to the element following the last instance of the
* internal array.
*/
[[nodiscard]] const_iterator cend() const noexcept {
return packed.first().end();
}
/*! @copydoc cend */
[[nodiscard]] const_iterator end() const noexcept {
return cend();
}
/*! @copydoc end */
[[nodiscard]] iterator end() noexcept {
return packed.first().end();
}
/**
* @brief Checks whether a container is empty.
* @return True if the container is empty, false otherwise.
*/
[[nodiscard]] bool empty() const noexcept {
return packed.first().empty();
}
/**
* @brief Returns the number of elements in a container.
* @return Number of elements in a container.
*/
[[nodiscard]] size_type size() const noexcept {
return packed.first().size();
}
/**
* @brief Returns the maximum possible number of elements.
* @return Maximum possible number of elements.
*/
[[nodiscard]] size_type max_size() const noexcept {
return packed.first().max_size();
}
/*! @brief Clears the container. */
void clear() noexcept {
sparse.first().clear();
packed.first().clear();
rehash(0u);
}
/**
* @brief Inserts an element into the container, if it does not exist.
* @param value An element to insert into the container.
* @return A pair consisting of an iterator to the inserted element (or to
* the element that prevented the insertion) and a bool denoting whether the
* insertion took place.
*/
std::pair<iterator, bool> insert(const value_type &value) {
return insert_or_do_nothing(value);
}
/*! @copydoc insert */
std::pair<iterator, bool> insert(value_type &&value) {
return insert_or_do_nothing(std::move(value));
}
/**
* @brief Inserts elements into the container, if they do not exist.
* @tparam It Type of input iterator.
* @param first An iterator to the first element of the range of elements.
* @param last An iterator past the last element of the range of elements.
*/
template<typename It>
void insert(It first, It last) {
for(; first != last; ++first) {
insert(*first);
}
}
/**
* @brief Constructs an element in-place, if it does not exist.
*
* The element is also constructed when the container already has the key,
* in which case the newly constructed object is destroyed immediately.
*
* @tparam Args Types of arguments to forward to the constructor of the
* element.
* @param args Arguments to forward to the constructor of the element.
* @return A pair consisting of an iterator to the inserted element (or to
* the element that prevented the insertion) and a bool denoting whether the
* insertion took place.
*/
template<typename... Args>
std::pair<iterator, bool> emplace(Args &&...args) {
if constexpr(((sizeof...(Args) == 1u) && ... && std::is_same_v<std::decay_t<Args>, value_type>)) {
return insert_or_do_nothing(std::forward<Args>(args)...);
} else {
auto &node = packed.first().emplace_back(std::piecewise_construct, std::make_tuple(packed.first().size()), std::forward_as_tuple(std::forward<Args>(args)...));
const auto index = value_to_bucket(node.second);
if(auto it = constrained_find(node.second, index); it != end()) {
packed.first().pop_back();
return std::make_pair(it, false);
}
std::swap(node.first, sparse.first()[index]);
rehash_if_required();
return std::make_pair(--end(), true);
}
}
/**
* @brief Removes an element from a given position.
* @param pos An iterator to the element to remove.
* @return An iterator following the removed element.
*/
iterator erase(const_iterator pos) {
const auto diff = pos - cbegin();
erase(*pos);
return begin() + diff;
}
/**
* @brief Removes the given elements from a container.
* @param first An iterator to the first element of the range of elements.
* @param last An iterator past the last element of the range of elements.
* @return An iterator following the last removed element.
*/
iterator erase(const_iterator first, const_iterator last) {
const auto dist = first - cbegin();
for(auto from = last - cbegin(); from != dist; --from) {
erase(packed.first()[from - 1u].second);
}
return (begin() + dist);
}
/**
* @brief Removes the element associated with a given value.
* @param value Value of an element to remove.
* @return Number of elements removed (either 0 or 1).
*/
size_type erase(const value_type &value) {
for(size_type *curr = sparse.first().data() + value_to_bucket(value); *curr != (std::numeric_limits<size_type>::max)(); curr = &packed.first()[*curr].first) {
if(packed.second()(packed.first()[*curr].second, value)) {
const auto index = *curr;
*curr = packed.first()[*curr].first;
move_and_pop(index);
return 1u;
}
}
return 0u;
}
/**
* @brief Exchanges the contents with those of a given container.
* @param other Container to exchange the content with.
*/
void swap(dense_set &other) {
using std::swap;
swap(sparse, other.sparse);
swap(packed, other.packed);
swap(threshold, other.threshold);
}
/**
* @brief Returns the number of elements matching a value (either 1 or 0).
* @param key Key value of an element to search for.
* @return Number of elements matching the key (either 1 or 0).
*/
[[nodiscard]] size_type count(const value_type &key) const {
return find(key) != end();
}
/**
* @brief Returns the number of elements matching a key (either 1 or 0).
* @tparam Other Type of the key value of an element to search for.
* @param key Key value of an element to search for.
* @return Number of elements matching the key (either 1 or 0).
*/
template<typename Other>
[[nodiscard]] std::enable_if_t<is_transparent_v<hasher> && is_transparent_v<key_equal>, std::conditional_t<false, Other, size_type>>
count(const Other &key) const {
return find(key) != end();
}
/**
* @brief Finds an element with a given value.
* @param value Value of an element to search for.
* @return An iterator to an element with the given value. If no such
* element is found, a past-the-end iterator is returned.
*/
[[nodiscard]] iterator find(const value_type &value) {
return constrained_find(value, value_to_bucket(value));
}
/*! @copydoc find */
[[nodiscard]] const_iterator find(const value_type &value) const {
return constrained_find(value, value_to_bucket(value));
}
/**
* @brief Finds an element that compares _equivalent_ to a given value.
* @tparam Other Type of an element to search for.
* @param value Value of an element to search for.
* @return An iterator to an element with the given value. If no such
* element is found, a past-the-end iterator is returned.
*/
template<typename Other>
[[nodiscard]] std::enable_if_t<is_transparent_v<hasher> && is_transparent_v<key_equal>, std::conditional_t<false, Other, iterator>>
find(const Other &value) {
return constrained_find(value, value_to_bucket(value));
}
/*! @copydoc find */
template<typename Other>
[[nodiscard]] std::enable_if_t<is_transparent_v<hasher> && is_transparent_v<key_equal>, std::conditional_t<false, Other, const_iterator>>
find(const Other &value) const {
return constrained_find(value, value_to_bucket(value));
}
/**
* @brief Returns a range containing all elements with a given value.
* @param value Value of an element to search for.
* @return A pair of iterators pointing to the first element and past the
* last element of the range.
*/
[[nodiscard]] std::pair<iterator, iterator> equal_range(const value_type &value) {
const auto it = find(value);
return {it, it + !(it == end())};
}
/*! @copydoc equal_range */
[[nodiscard]] std::pair<const_iterator, const_iterator> equal_range(const value_type &value) const {
const auto it = find(value);
return {it, it + !(it == cend())};
}
/**
* @brief Returns a range containing all elements that compare _equivalent_
* to a given value.
* @tparam Other Type of an element to search for.
* @param value Value of an element to search for.
* @return A pair of iterators pointing to the first element and past the
* last element of the range.
*/
template<typename Other>
[[nodiscard]] std::enable_if_t<is_transparent_v<hasher> && is_transparent_v<key_equal>, std::conditional_t<false, Other, std::pair<iterator, iterator>>>
equal_range(const Other &value) {
const auto it = find(value);
return {it, it + !(it == end())};
}
/*! @copydoc equal_range */
template<class Other>
[[nodiscard]] std::enable_if_t<is_transparent_v<hasher> && is_transparent_v<key_equal>, std::conditional_t<false, Other, std::pair<const_iterator, const_iterator>>>
equal_range(const Other &value) const {
const auto it = find(value);
return {it, it + !(it == cend())};
}
/**
* @brief Checks if the container contains an element with a given value.
* @param value Value of an element to search for.
* @return True if there is such an element, false otherwise.
*/
[[nodiscard]] bool contains(const value_type &value) const {
return (find(value) != cend());
}
/**
* @brief Checks if the container contains an element that compares
* _equivalent_ to a given value.
* @tparam Other Type of an element to search for.
* @param value Value of an element to search for.
* @return True if there is such an element, false otherwise.
*/
template<typename Other>
[[nodiscard]] std::enable_if_t<is_transparent_v<hasher> && is_transparent_v<key_equal>, std::conditional_t<false, Other, bool>>
contains(const Other &value) const {
return (find(value) != cend());
}
/**
* @brief Returns an iterator to the beginning of a given bucket.
* @param index An index of a bucket to access.
* @return An iterator to the beginning of the given bucket.
*/
[[nodiscard]] const_local_iterator cbegin(const size_type index) const {
return {packed.first().begin(), sparse.first()[index]};
}
/**
* @brief Returns an iterator to the beginning of a given bucket.
* @param index An index of a bucket to access.
* @return An iterator to the beginning of the given bucket.
*/
[[nodiscard]] const_local_iterator begin(const size_type index) const {
return cbegin(index);
}
/**
* @brief Returns an iterator to the beginning of a given bucket.
* @param index An index of a bucket to access.
* @return An iterator to the beginning of the given bucket.
*/
[[nodiscard]] local_iterator begin(const size_type index) {
return {packed.first().begin(), sparse.first()[index]};
}
/**
* @brief Returns an iterator to the end of a given bucket.
* @param index An index of a bucket to access.
* @return An iterator to the end of the given bucket.
*/
[[nodiscard]] const_local_iterator cend([[maybe_unused]] const size_type index) const {
return {packed.first().begin(), (std::numeric_limits<size_type>::max)()};
}
/**
* @brief Returns an iterator to the end of a given bucket.
* @param index An index of a bucket to access.
* @return An iterator to the end of the given bucket.
*/
[[nodiscard]] const_local_iterator end(const size_type index) const {
return cend(index);
}
/**
* @brief Returns an iterator to the end of a given bucket.
* @param index An index of a bucket to access.
* @return An iterator to the end of the given bucket.
*/
[[nodiscard]] local_iterator end([[maybe_unused]] const size_type index) {
return {packed.first().begin(), (std::numeric_limits<size_type>::max)()};
}
/**
* @brief Returns the number of buckets.
* @return The number of buckets.
*/
[[nodiscard]] size_type bucket_count() const {
return sparse.first().size();
}
/**
* @brief Returns the maximum number of buckets.
* @return The maximum number of buckets.
*/
[[nodiscard]] size_type max_bucket_count() const {
return sparse.first().max_size();
}
/**
* @brief Returns the number of elements in a given bucket.
* @param index The index of the bucket to examine.
* @return The number of elements in the given bucket.
*/
[[nodiscard]] size_type bucket_size(const size_type index) const {
return static_cast<size_type>(std::distance(begin(index), end(index)));
}
/**
* @brief Returns the bucket for a given element.
* @param value The value of the element to examine.
* @return The bucket for the given element.
*/
[[nodiscard]] size_type bucket(const value_type &value) const {
return value_to_bucket(value);
}
/**
* @brief Returns the average number of elements per bucket.
* @return The average number of elements per bucket.
*/
[[nodiscard]] float load_factor() const {
return size() / static_cast<float>(bucket_count());
}
/**
* @brief Returns the maximum average number of elements per bucket.
* @return The maximum average number of elements per bucket.
*/
[[nodiscard]] float max_load_factor() const {
return threshold;
}
/**
* @brief Sets the desired maximum average number of elements per bucket.
* @param value A desired maximum average number of elements per bucket.
*/
void max_load_factor(const float value) {
ENTT_ASSERT(value > 0.f, "Invalid load factor");
threshold = value;
rehash(0u);
}
/**
* @brief Reserves at least the specified number of buckets and regenerates
* the hash table.
* @param cnt New number of buckets.
*/
void rehash(const size_type cnt) {
auto value = cnt > minimum_capacity ? cnt : minimum_capacity;
const auto cap = static_cast<size_type>(size() / max_load_factor());
value = value > cap ? value : cap;
if(const auto sz = next_power_of_two(value); sz != bucket_count()) {
sparse.first().resize(sz);
for(auto &&elem: sparse.first()) {
elem = std::numeric_limits<size_type>::max();
}
for(size_type pos{}, last = size(); pos < last; ++pos) {
const auto index = value_to_bucket(packed.first()[pos].second);
packed.first()[pos].first = std::exchange(sparse.first()[index], pos);
}
}
}
/**
* @brief Reserves space for at least the specified number of elements and
* regenerates the hash table.
* @param cnt New number of elements.
*/
void reserve(const size_type cnt) {
packed.first().reserve(cnt);
rehash(static_cast<size_type>(std::ceil(cnt / max_load_factor())));
}
/**
* @brief Returns the function used to hash the elements.
* @return The function used to hash the elements.
*/
[[nodiscard]] hasher hash_function() const {
return sparse.second();
}
/**
* @brief Returns the function used to compare elements for equality.
* @return The function used to compare elements for equality.
*/
[[nodiscard]] key_equal key_eq() const {
return packed.second();
}
private:
compressed_pair<sparse_container_type, hasher> sparse;
compressed_pair<packed_container_type, key_equal> packed;
float threshold;
};
} // namespace entt
#endif
// #include "context.hpp"
#ifndef ENTT_META_CTX_HPP
#define ENTT_META_CTX_HPP
// #include "../container/dense_map.hpp"
// #include "../core/fwd.hpp"
#ifndef ENTT_CORE_FWD_HPP
#define ENTT_CORE_FWD_HPP
#include <cstddef>
// #include "../config/config.h"
#ifndef ENTT_CONFIG_CONFIG_H
#define ENTT_CONFIG_CONFIG_H
// #include "version.h"
#ifndef ENTT_CONFIG_VERSION_H
#define ENTT_CONFIG_VERSION_H
// #include "macro.h"
#ifndef ENTT_CONFIG_MACRO_H
#define ENTT_CONFIG_MACRO_H
#define ENTT_STR(arg) #arg
#define ENTT_XSTR(arg) ENTT_STR(arg)
#endif
#define ENTT_VERSION_MAJOR 3
#define ENTT_VERSION_MINOR 11
#define ENTT_VERSION_PATCH 1
#define ENTT_VERSION \
ENTT_XSTR(ENTT_VERSION_MAJOR) \
"." ENTT_XSTR(ENTT_VERSION_MINOR) "." ENTT_XSTR(ENTT_VERSION_PATCH)
#endif
#if defined(__cpp_exceptions) && !defined(ENTT_NOEXCEPTION)
# define ENTT_CONSTEXPR
# define ENTT_THROW throw
# define ENTT_TRY try
# define ENTT_CATCH catch(...)
#else
# define ENTT_CONSTEXPR constexpr // use only with throwing functions (waiting for C++20)
# define ENTT_THROW
# define ENTT_TRY if(true)
# define ENTT_CATCH if(false)
#endif
#ifdef ENTT_USE_ATOMIC
# include <atomic>
# define ENTT_MAYBE_ATOMIC(Type) std::atomic<Type>
#else
# define ENTT_MAYBE_ATOMIC(Type) Type
#endif
#ifndef ENTT_ID_TYPE
# include <cstdint>
# define ENTT_ID_TYPE std::uint32_t
#endif
#ifndef ENTT_SPARSE_PAGE
# define ENTT_SPARSE_PAGE 4096
#endif
#ifndef ENTT_PACKED_PAGE
# define ENTT_PACKED_PAGE 1024
#endif
#ifdef ENTT_DISABLE_ASSERT
# undef ENTT_ASSERT
# define ENTT_ASSERT(condition, msg) (void(0))
#elif !defined ENTT_ASSERT
# include <cassert>
# define ENTT_ASSERT(condition, msg) assert(condition)
#endif
#ifdef ENTT_DISABLE_ASSERT
# undef ENTT_ASSERT_CONSTEXPR
# define ENTT_ASSERT_CONSTEXPR(condition, msg) (void(0))
#elif !defined ENTT_ASSERT_CONSTEXPR
# define ENTT_ASSERT_CONSTEXPR(condition, msg) ENTT_ASSERT(condition, msg)
#endif
#ifdef ENTT_NO_ETO
# define ENTT_ETO_TYPE(Type) void
#else
# define ENTT_ETO_TYPE(Type) Type
#endif
#ifdef ENTT_STANDARD_CPP
# define ENTT_NONSTD false
#else
# define ENTT_NONSTD true
# if defined __clang__ || defined __GNUC__
# define ENTT_PRETTY_FUNCTION __PRETTY_FUNCTION__
# define ENTT_PRETTY_FUNCTION_PREFIX '='
# define ENTT_PRETTY_FUNCTION_SUFFIX ']'
# elif defined _MSC_VER
# define ENTT_PRETTY_FUNCTION __FUNCSIG__
# define ENTT_PRETTY_FUNCTION_PREFIX '<'
# define ENTT_PRETTY_FUNCTION_SUFFIX '>'
# endif
#endif
#if defined _MSC_VER
# pragma detect_mismatch("entt.version", ENTT_VERSION)
# pragma detect_mismatch("entt.noexcept", ENTT_XSTR(ENTT_TRY))
# pragma detect_mismatch("entt.id", ENTT_XSTR(ENTT_ID_TYPE))
# pragma detect_mismatch("entt.nonstd", ENTT_XSTR(ENTT_NONSTD))
#endif
#endif
namespace entt {
template<std::size_t Len = sizeof(double[2]), std::size_t = alignof(double[2])>
class basic_any;
/*! @brief Alias declaration for type identifiers. */
using id_type = ENTT_ID_TYPE;
/*! @brief Alias declaration for the most common use case. */
using any = basic_any<>;
} // namespace entt
#endif
// #include "../core/utility.hpp"
#ifndef ENTT_CORE_UTILITY_HPP
#define ENTT_CORE_UTILITY_HPP
#include <type_traits>
#include <utility>
namespace entt {
/*! @brief Identity function object (waiting for C++20). */
struct identity {
/*! @brief Indicates that this is a transparent function object. */
using is_transparent = void;
/**
* @brief Returns its argument unchanged.
* @tparam Type Type of the argument.
* @param value The actual argument.
* @return The submitted value as-is.
*/
template<class Type>
[[nodiscard]] constexpr Type &&operator()(Type &&value) const noexcept {
return std::forward<Type>(value);
}
};
/**
* @brief Constant utility to disambiguate overloaded members of a class.
* @tparam Type Type of the desired overload.
* @tparam Class Type of class to which the member belongs.
* @param member A valid pointer to a member.
* @return Pointer to the member.
*/
template<typename Type, typename Class>
[[nodiscard]] constexpr auto overload(Type Class::*member) noexcept {
return member;
}
/**
* @brief Constant utility to disambiguate overloaded functions.
* @tparam Func Function type of the desired overload.
* @param func A valid pointer to a function.
* @return Pointer to the function.
*/
template<typename Func>
[[nodiscard]] constexpr auto overload(Func *func) noexcept {
return func;
}
/**
* @brief Helper type for visitors.
* @tparam Func Types of function objects.
*/
template<class... Func>
struct overloaded: Func... {
using Func::operator()...;
};
/**
* @brief Deduction guide.
* @tparam Func Types of function objects.
*/
template<class... Func>
overloaded(Func...) -> overloaded<Func...>;
/**
* @brief Basic implementation of a y-combinator.
* @tparam Func Type of a potentially recursive function.
*/
template<class Func>
struct y_combinator {
/**
* @brief Constructs a y-combinator from a given function.
* @param recursive A potentially recursive function.
*/
constexpr y_combinator(Func recursive) noexcept(std::is_nothrow_move_constructible_v<Func>)
: func{std::move(recursive)} {}
/**
* @brief Invokes a y-combinator and therefore its underlying function.
* @tparam Args Types of arguments to use to invoke the underlying function.
* @param args Parameters to use to invoke the underlying function.
* @return Return value of the underlying function, if any.
*/
template<class... Args>
constexpr decltype(auto) operator()(Args &&...args) const noexcept(std::is_nothrow_invocable_v<Func, const y_combinator &, Args...>) {
return func(*this, std::forward<Args>(args)...);
}
/*! @copydoc operator()() */
template<class... Args>
constexpr decltype(auto) operator()(Args &&...args) noexcept(std::is_nothrow_invocable_v<Func, y_combinator &, Args...>) {
return func(*this, std::forward<Args>(args)...);
}
private:
Func func;
};
} // namespace entt
#endif
namespace entt {
class meta_ctx;
/**
* @cond TURN_OFF_DOXYGEN
* Internal details not to be documented.
*/
namespace internal {
struct meta_type_node;
struct meta_context {
dense_map<id_type, meta_type_node, identity> value{};
static inline meta_context &from(meta_ctx &ctx);
static inline const meta_context &from(const meta_ctx &ctx);
};
} // namespace internal
/**
* Internal details not to be documented.
* @endcond
*/
/*! @brief Disambiguation tag for constructors and the like. */
class meta_ctx_arg_t final {};
/*! @brief Constant of type meta_context_arg_t used to disambiguate calls. */
inline constexpr meta_ctx_arg_t meta_ctx_arg{};
/*! @brief Opaque meta context type. */
class meta_ctx: private internal::meta_context {
/*! @brief Attorney idiom like model to access the base class. */
friend struct internal::meta_context;
};
/**
* @cond TURN_OFF_DOXYGEN
* Internal details not to be documented.
*/
inline internal::meta_context &internal::meta_context::from(meta_ctx &ctx) {
return ctx;
}
inline const internal::meta_context &internal::meta_context::from(const meta_ctx &ctx) {
return ctx;
}
/**
* Internal details not to be documented.
* @endcond
*/
} // namespace entt
#endif
// #include "meta.hpp"
#ifndef ENTT_META_META_HPP
#define ENTT_META_META_HPP
#include <cstddef>
#include <iterator>
#include <memory>
#include <type_traits>
#include <utility>
// #include "../config/config.h"
#ifndef ENTT_CONFIG_CONFIG_H
#define ENTT_CONFIG_CONFIG_H
// #include "version.h"
#ifndef ENTT_CONFIG_VERSION_H
#define ENTT_CONFIG_VERSION_H
// #include "macro.h"
#ifndef ENTT_CONFIG_MACRO_H
#define ENTT_CONFIG_MACRO_H
#define ENTT_STR(arg) #arg
#define ENTT_XSTR(arg) ENTT_STR(arg)
#endif
#define ENTT_VERSION_MAJOR 3
#define ENTT_VERSION_MINOR 11
#define ENTT_VERSION_PATCH 1
#define ENTT_VERSION \
ENTT_XSTR(ENTT_VERSION_MAJOR) \
"." ENTT_XSTR(ENTT_VERSION_MINOR) "." ENTT_XSTR(ENTT_VERSION_PATCH)
#endif
#if defined(__cpp_exceptions) && !defined(ENTT_NOEXCEPTION)
# define ENTT_CONSTEXPR
# define ENTT_THROW throw
# define ENTT_TRY try
# define ENTT_CATCH catch(...)
#else
# define ENTT_CONSTEXPR constexpr // use only with throwing functions (waiting for C++20)
# define ENTT_THROW
# define ENTT_TRY if(true)
# define ENTT_CATCH if(false)
#endif
#ifdef ENTT_USE_ATOMIC
# include <atomic>
# define ENTT_MAYBE_ATOMIC(Type) std::atomic<Type>
#else
# define ENTT_MAYBE_ATOMIC(Type) Type
#endif
#ifndef ENTT_ID_TYPE
# include <cstdint>
# define ENTT_ID_TYPE std::uint32_t
#endif
#ifndef ENTT_SPARSE_PAGE
# define ENTT_SPARSE_PAGE 4096
#endif
#ifndef ENTT_PACKED_PAGE
# define ENTT_PACKED_PAGE 1024
#endif
#ifdef ENTT_DISABLE_ASSERT
# undef ENTT_ASSERT
# define ENTT_ASSERT(condition, msg) (void(0))
#elif !defined ENTT_ASSERT
# include <cassert>
# define ENTT_ASSERT(condition, msg) assert(condition)
#endif
#ifdef ENTT_DISABLE_ASSERT
# undef ENTT_ASSERT_CONSTEXPR
# define ENTT_ASSERT_CONSTEXPR(condition, msg) (void(0))
#elif !defined ENTT_ASSERT_CONSTEXPR
# define ENTT_ASSERT_CONSTEXPR(condition, msg) ENTT_ASSERT(condition, msg)
#endif
#ifdef ENTT_NO_ETO
# define ENTT_ETO_TYPE(Type) void
#else
# define ENTT_ETO_TYPE(Type) Type
#endif
#ifdef ENTT_STANDARD_CPP
# define ENTT_NONSTD false
#else
# define ENTT_NONSTD true
# if defined __clang__ || defined __GNUC__
# define ENTT_PRETTY_FUNCTION __PRETTY_FUNCTION__
# define ENTT_PRETTY_FUNCTION_PREFIX '='
# define ENTT_PRETTY_FUNCTION_SUFFIX ']'
# elif defined _MSC_VER
# define ENTT_PRETTY_FUNCTION __FUNCSIG__
# define ENTT_PRETTY_FUNCTION_PREFIX '<'
# define ENTT_PRETTY_FUNCTION_SUFFIX '>'
# endif
#endif
#if defined _MSC_VER
# pragma detect_mismatch("entt.version", ENTT_VERSION)
# pragma detect_mismatch("entt.noexcept", ENTT_XSTR(ENTT_TRY))
# pragma detect_mismatch("entt.id", ENTT_XSTR(ENTT_ID_TYPE))
# pragma detect_mismatch("entt.nonstd", ENTT_XSTR(ENTT_NONSTD))
#endif
#endif
// #include "../core/any.hpp"
#ifndef ENTT_CORE_ANY_HPP
#define ENTT_CORE_ANY_HPP
#include <cstddef>
#include <memory>
#include <type_traits>
#include <utility>
// #include "../config/config.h"
// #include "../core/utility.hpp"
#ifndef ENTT_CORE_UTILITY_HPP
#define ENTT_CORE_UTILITY_HPP
#include <type_traits>
#include <utility>
namespace entt {
/*! @brief Identity function object (waiting for C++20). */
struct identity {
/*! @brief Indicates that this is a transparent function object. */
using is_transparent = void;
/**
* @brief Returns its argument unchanged.
* @tparam Type Type of the argument.
* @param value The actual argument.
* @return The submitted value as-is.
*/
template<class Type>
[[nodiscard]] constexpr Type &&operator()(Type &&value) const noexcept {
return std::forward<Type>(value);
}
};
/**
* @brief Constant utility to disambiguate overloaded members of a class.
* @tparam Type Type of the desired overload.
* @tparam Class Type of class to which the member belongs.
* @param member A valid pointer to a member.
* @return Pointer to the member.
*/
template<typename Type, typename Class>
[[nodiscard]] constexpr auto overload(Type Class::*member) noexcept {
return member;
}
/**
* @brief Constant utility to disambiguate overloaded functions.
* @tparam Func Function type of the desired overload.
* @param func A valid pointer to a function.
* @return Pointer to the function.
*/
template<typename Func>
[[nodiscard]] constexpr auto overload(Func *func) noexcept {
return func;
}
/**
* @brief Helper type for visitors.
* @tparam Func Types of function objects.
*/
template<class... Func>
struct overloaded: Func... {
using Func::operator()...;
};
/**
* @brief Deduction guide.
* @tparam Func Types of function objects.
*/
template<class... Func>
overloaded(Func...) -> overloaded<Func...>;
/**
* @brief Basic implementation of a y-combinator.
* @tparam Func Type of a potentially recursive function.
*/
template<class Func>
struct y_combinator {
/**
* @brief Constructs a y-combinator from a given function.
* @param recursive A potentially recursive function.
*/
constexpr y_combinator(Func recursive) noexcept(std::is_nothrow_move_constructible_v<Func>)
: func{std::move(recursive)} {}
/**
* @brief Invokes a y-combinator and therefore its underlying function.
* @tparam Args Types of arguments to use to invoke the underlying function.
* @param args Parameters to use to invoke the underlying function.
* @return Return value of the underlying function, if any.
*/
template<class... Args>
constexpr decltype(auto) operator()(Args &&...args) const noexcept(std::is_nothrow_invocable_v<Func, const y_combinator &, Args...>) {
return func(*this, std::forward<Args>(args)...);
}
/*! @copydoc operator()() */
template<class... Args>
constexpr decltype(auto) operator()(Args &&...args) noexcept(std::is_nothrow_invocable_v<Func, y_combinator &, Args...>) {
return func(*this, std::forward<Args>(args)...);
}
private:
Func func;
};
} // namespace entt
#endif
// #include "fwd.hpp"
#ifndef ENTT_CORE_FWD_HPP
#define ENTT_CORE_FWD_HPP
#include <cstddef>
// #include "../config/config.h"
namespace entt {
template<std::size_t Len = sizeof(double[2]), std::size_t = alignof(double[2])>
class basic_any;
/*! @brief Alias declaration for type identifiers. */
using id_type = ENTT_ID_TYPE;
/*! @brief Alias declaration for the most common use case. */
using any = basic_any<>;
} // namespace entt
#endif
// #include "type_info.hpp"
#ifndef ENTT_CORE_TYPE_INFO_HPP
#define ENTT_CORE_TYPE_INFO_HPP
#include <string_view>
#include <type_traits>
#include <utility>
// #include "../config/config.h"
// #include "../core/attribute.h"
#ifndef ENTT_CORE_ATTRIBUTE_H
#define ENTT_CORE_ATTRIBUTE_H
#ifndef ENTT_EXPORT
# if defined _WIN32 || defined __CYGWIN__ || defined _MSC_VER
# define ENTT_EXPORT __declspec(dllexport)
# define ENTT_IMPORT __declspec(dllimport)
# define ENTT_HIDDEN
# elif defined __GNUC__ && __GNUC__ >= 4
# define ENTT_EXPORT __attribute__((visibility("default")))
# define ENTT_IMPORT __attribute__((visibility("default")))
# define ENTT_HIDDEN __attribute__((visibility("hidden")))
# else /* Unsupported compiler */
# define ENTT_EXPORT
# define ENTT_IMPORT
# define ENTT_HIDDEN
# endif
#endif
#ifndef ENTT_API
# if defined ENTT_API_EXPORT
# define ENTT_API ENTT_EXPORT
# elif defined ENTT_API_IMPORT
# define ENTT_API ENTT_IMPORT
# else /* No API */
# define ENTT_API
# endif
#endif
#endif
// #include "fwd.hpp"
// #include "hashed_string.hpp"
#ifndef ENTT_CORE_HASHED_STRING_HPP
#define ENTT_CORE_HASHED_STRING_HPP
#include <cstddef>
#include <cstdint>
// #include "fwd.hpp"
namespace entt {
/**
* @cond TURN_OFF_DOXYGEN
* Internal details not to be documented.
*/
namespace internal {
template<typename>
struct fnv1a_traits;
template<>
struct fnv1a_traits<std::uint32_t> {
using type = std::uint32_t;
static constexpr std::uint32_t offset = 2166136261;
static constexpr std::uint32_t prime = 16777619;
};
template<>
struct fnv1a_traits<std::uint64_t> {
using type = std::uint64_t;
static constexpr std::uint64_t offset = 14695981039346656037ull;
static constexpr std::uint64_t prime = 1099511628211ull;
};
template<typename Char>
struct basic_hashed_string {
using value_type = Char;
using size_type = std::size_t;
using hash_type = id_type;
const value_type *repr;
size_type length;
hash_type hash;
};
} // namespace internal
/**
* Internal details not to be documented.
* @endcond
*/
/**
* @brief Zero overhead unique identifier.
*
* A hashed string is a compile-time tool that allows users to use
* human-readable identifiers in the codebase while using their numeric
* counterparts at runtime.<br/>
* Because of that, a hashed string can also be used in constant expressions if
* required.
*
* @warning
* This class doesn't take ownership of user-supplied strings nor does it make a
* copy of them.
*
* @tparam Char Character type.
*/
template<typename Char>
class basic_hashed_string: internal::basic_hashed_string<Char> {
using base_type = internal::basic_hashed_string<Char>;
using hs_traits = internal::fnv1a_traits<id_type>;
struct const_wrapper {
// non-explicit constructor on purpose
constexpr const_wrapper(const Char *str) noexcept
: repr{str} {}
const Char *repr;
};
// FowlerNollVo hash function v. 1a - the good
[[nodiscard]] static constexpr auto helper(const Char *str) noexcept {
base_type base{str, 0u, hs_traits::offset};
for(; str[base.length]; ++base.length) {
base.hash = (base.hash ^ static_cast<hs_traits::type>(str[base.length])) * hs_traits::prime;
}
return base;
}
// FowlerNollVo hash function v. 1a - the good
[[nodiscard]] static constexpr auto helper(const Char *str, const std::size_t len) noexcept {
base_type base{str, len, hs_traits::offset};
for(size_type pos{}; pos < len; ++pos) {
base.hash = (base.hash ^ static_cast<hs_traits::type>(str[pos])) * hs_traits::prime;
}
return base;
}
public:
/*! @brief Character type. */
using value_type = typename base_type::value_type;
/*! @brief Unsigned integer type. */
using size_type = typename base_type::size_type;
/*! @brief Unsigned integer type. */
using hash_type = typename base_type::hash_type;
/**
* @brief Returns directly the numeric representation of a string view.
* @param str Human-readable identifier.
* @param len Length of the string to hash.
* @return The numeric representation of the string.
*/
[[nodiscard]] static constexpr hash_type value(const value_type *str, const size_type len) noexcept {
return basic_hashed_string{str, len};
}
/**
* @brief Returns directly the numeric representation of a string.
* @tparam N Number of characters of the identifier.
* @param str Human-readable identifier.
* @return The numeric representation of the string.
*/
template<std::size_t N>
[[nodiscard]] static constexpr hash_type value(const value_type (&str)[N]) noexcept {
return basic_hashed_string{str};
}
/**
* @brief Returns directly the numeric representation of a string.
* @param wrapper Helps achieving the purpose by relying on overloading.
* @return The numeric representation of the string.
*/
[[nodiscard]] static constexpr hash_type value(const_wrapper wrapper) noexcept {
return basic_hashed_string{wrapper};
}
/*! @brief Constructs an empty hashed string. */
constexpr basic_hashed_string() noexcept
: base_type{} {}
/**
* @brief Constructs a hashed string from a string view.
* @param str Human-readable identifier.
* @param len Length of the string to hash.
*/
constexpr basic_hashed_string(const value_type *str, const size_type len) noexcept
: base_type{helper(str, len)} {}
/**
* @brief Constructs a hashed string from an array of const characters.
* @tparam N Number of characters of the identifier.
* @param str Human-readable identifier.
*/
template<std::size_t N>
constexpr basic_hashed_string(const value_type (&str)[N]) noexcept
: base_type{helper(str)} {}
/**
* @brief Explicit constructor on purpose to avoid constructing a hashed
* string directly from a `const value_type *`.
*
* @warning
* The lifetime of the string is not extended nor is it copied.
*
* @param wrapper Helps achieving the purpose by relying on overloading.
*/
explicit constexpr basic_hashed_string(const_wrapper wrapper) noexcept
: base_type{helper(wrapper.repr)} {}
/**
* @brief Returns the size a hashed string.
* @return The size of the hashed string.
*/
[[nodiscard]] constexpr size_type size() const noexcept {
return base_type::length;
}
/**
* @brief Returns the human-readable representation of a hashed string.
* @return The string used to initialize the hashed string.
*/
[[nodiscard]] constexpr const value_type *data() const noexcept {
return base_type::repr;
}
/**
* @brief Returns the numeric representation of a hashed string.
* @return The numeric representation of the hashed string.
*/
[[nodiscard]] constexpr hash_type value() const noexcept {
return base_type::hash;
}
/*! @copydoc data */
[[nodiscard]] constexpr operator const value_type *() const noexcept {
return data();
}
/**
* @brief Returns the numeric representation of a hashed string.
* @return The numeric representation of the hashed string.
*/
[[nodiscard]] constexpr operator hash_type() const noexcept {
return value();
}
};
/**
* @brief Deduction guide.
* @tparam Char Character type.
* @param str Human-readable identifier.
* @param len Length of the string to hash.
*/
template<typename Char>
basic_hashed_string(const Char *str, const std::size_t len) -> basic_hashed_string<Char>;
/**
* @brief Deduction guide.
* @tparam Char Character type.
* @tparam N Number of characters of the identifier.
* @param str Human-readable identifier.
*/
template<typename Char, std::size_t N>
basic_hashed_string(const Char (&str)[N]) -> basic_hashed_string<Char>;
/**
* @brief Compares two hashed strings.
* @tparam Char Character type.
* @param lhs A valid hashed string.
* @param rhs A valid hashed string.
* @return True if the two hashed strings are identical, false otherwise.
*/
template<typename Char>
[[nodiscard]] constexpr bool operator==(const basic_hashed_string<Char> &lhs, const basic_hashed_string<Char> &rhs) noexcept {
return lhs.value() == rhs.value();
}
/**
* @brief Compares two hashed strings.
* @tparam Char Character type.
* @param lhs A valid hashed string.
* @param rhs A valid hashed string.
* @return True if the two hashed strings differ, false otherwise.
*/
template<typename Char>
[[nodiscard]] constexpr bool operator!=(const basic_hashed_string<Char> &lhs, const basic_hashed_string<Char> &rhs) noexcept {
return !(lhs == rhs);
}
/**
* @brief Compares two hashed strings.
* @tparam Char Character type.
* @param lhs A valid hashed string.
* @param rhs A valid hashed string.
* @return True if the first element is less than the second, false otherwise.
*/
template<typename Char>
[[nodiscard]] constexpr bool operator<(const basic_hashed_string<Char> &lhs, const basic_hashed_string<Char> &rhs) noexcept {
return lhs.value() < rhs.value();
}
/**
* @brief Compares two hashed strings.
* @tparam Char Character type.
* @param lhs A valid hashed string.
* @param rhs A valid hashed string.
* @return True if the first element is less than or equal to the second, false
* otherwise.
*/
template<typename Char>
[[nodiscard]] constexpr bool operator<=(const basic_hashed_string<Char> &lhs, const basic_hashed_string<Char> &rhs) noexcept {
return !(rhs < lhs);
}
/**
* @brief Compares two hashed strings.
* @tparam Char Character type.
* @param lhs A valid hashed string.
* @param rhs A valid hashed string.
* @return True if the first element is greater than the second, false
* otherwise.
*/
template<typename Char>
[[nodiscard]] constexpr bool operator>(const basic_hashed_string<Char> &lhs, const basic_hashed_string<Char> &rhs) noexcept {
return rhs < lhs;
}
/**
* @brief Compares two hashed strings.
* @tparam Char Character type.
* @param lhs A valid hashed string.
* @param rhs A valid hashed string.
* @return True if the first element is greater than or equal to the second,
* false otherwise.
*/
template<typename Char>
[[nodiscard]] constexpr bool operator>=(const basic_hashed_string<Char> &lhs, const basic_hashed_string<Char> &rhs) noexcept {
return !(lhs < rhs);
}
/*! @brief Aliases for common character types. */
using hashed_string = basic_hashed_string<char>;
/*! @brief Aliases for common character types. */
using hashed_wstring = basic_hashed_string<wchar_t>;
inline namespace literals {
/**
* @brief User defined literal for hashed strings.
* @param str The literal without its suffix.
* @return A properly initialized hashed string.
*/
[[nodiscard]] constexpr hashed_string operator"" _hs(const char *str, std::size_t) noexcept {
return hashed_string{str};
}
/**
* @brief User defined literal for hashed wstrings.
* @param str The literal without its suffix.
* @return A properly initialized hashed wstring.
*/
[[nodiscard]] constexpr hashed_wstring operator"" _hws(const wchar_t *str, std::size_t) noexcept {
return hashed_wstring{str};
}
} // namespace literals
} // namespace entt
#endif
namespace entt {
/**
* @cond TURN_OFF_DOXYGEN
* Internal details not to be documented.
*/
namespace internal {
struct ENTT_API type_index final {
[[nodiscard]] static id_type next() noexcept {
static ENTT_MAYBE_ATOMIC(id_type) value{};
return value++;
}
};
template<typename Type>
[[nodiscard]] constexpr auto stripped_type_name() noexcept {
#if defined ENTT_PRETTY_FUNCTION
std::string_view pretty_function{ENTT_PRETTY_FUNCTION};
auto first = pretty_function.find_first_not_of(' ', pretty_function.find_first_of(ENTT_PRETTY_FUNCTION_PREFIX) + 1);
auto value = pretty_function.substr(first, pretty_function.find_last_of(ENTT_PRETTY_FUNCTION_SUFFIX) - first);
return value;
#else
return std::string_view{""};
#endif
}
template<typename Type, auto = stripped_type_name<Type>().find_first_of('.')>
[[nodiscard]] static constexpr std::string_view type_name(int) noexcept {
constexpr auto value = stripped_type_name<Type>();
return value;
}
template<typename Type>
[[nodiscard]] static std::string_view type_name(char) noexcept {
static const auto value = stripped_type_name<Type>();
return value;
}
template<typename Type, auto = stripped_type_name<Type>().find_first_of('.')>
[[nodiscard]] static constexpr id_type type_hash(int) noexcept {
constexpr auto stripped = stripped_type_name<Type>();
constexpr auto value = hashed_string::value(stripped.data(), stripped.size());
return value;
}
template<typename Type>
[[nodiscard]] static id_type type_hash(char) noexcept {
static const auto value = [](const auto stripped) {
return hashed_string::value(stripped.data(), stripped.size());
}(stripped_type_name<Type>());
return value;
}
} // namespace internal
/**
* Internal details not to be documented.
* @endcond
*/
/**
* @brief Type sequential identifier.
* @tparam Type Type for which to generate a sequential identifier.
*/
template<typename Type, typename = void>
struct ENTT_API type_index final {
/**
* @brief Returns the sequential identifier of a given type.
* @return The sequential identifier of a given type.
*/
[[nodiscard]] static id_type value() noexcept {
static const id_type value = internal::type_index::next();
return value;
}
/*! @copydoc value */
[[nodiscard]] constexpr operator id_type() const noexcept {
return value();
}
};
/**
* @brief Type hash.
* @tparam Type Type for which to generate a hash value.
*/
template<typename Type, typename = void>
struct type_hash final {
/**
* @brief Returns the numeric representation of a given type.
* @return The numeric representation of the given type.
*/
#if defined ENTT_PRETTY_FUNCTION
[[nodiscard]] static constexpr id_type value() noexcept {
return internal::type_hash<Type>(0);
#else
[[nodiscard]] static constexpr id_type value() noexcept {
return type_index<Type>::value();
#endif
}
/*! @copydoc value */
[[nodiscard]] constexpr operator id_type() const noexcept {
return value();
}
};
/**
* @brief Type name.
* @tparam Type Type for which to generate a name.
*/
template<typename Type, typename = void>
struct type_name final {
/**
* @brief Returns the name of a given type.
* @return The name of the given type.
*/
[[nodiscard]] static constexpr std::string_view value() noexcept {
return internal::type_name<Type>(0);
}
/*! @copydoc value */
[[nodiscard]] constexpr operator std::string_view() const noexcept {
return value();
}
};
/*! @brief Implementation specific information about a type. */
struct type_info final {
/**
* @brief Constructs a type info object for a given type.
* @tparam Type Type for which to construct a type info object.
*/
template<typename Type>
constexpr type_info(std::in_place_type_t<Type>) noexcept
: seq{type_index<std::remove_cv_t<std::remove_reference_t<Type>>>::value()},
identifier{type_hash<std::remove_cv_t<std::remove_reference_t<Type>>>::value()},
alias{type_name<std::remove_cv_t<std::remove_reference_t<Type>>>::value()} {}
/**
* @brief Type index.
* @return Type index.
*/
[[nodiscard]] constexpr id_type index() const noexcept {
return seq;
}
/**
* @brief Type hash.
* @return Type hash.
*/
[[nodiscard]] constexpr id_type hash() const noexcept {
return identifier;
}
/**
* @brief Type name.
* @return Type name.
*/
[[nodiscard]] constexpr std::string_view name() const noexcept {
return alias;
}
private:
id_type seq;
id_type identifier;
std::string_view alias;
};
/**
* @brief Compares the contents of two type info objects.
* @param lhs A type info object.
* @param rhs A type info object.
* @return True if the two type info objects are identical, false otherwise.
*/
[[nodiscard]] inline constexpr bool operator==(const type_info &lhs, const type_info &rhs) noexcept {
return lhs.hash() == rhs.hash();
}
/**
* @brief Compares the contents of two type info objects.
* @param lhs A type info object.
* @param rhs A type info object.
* @return True if the two type info objects differ, false otherwise.
*/
[[nodiscard]] inline constexpr bool operator!=(const type_info &lhs, const type_info &rhs) noexcept {
return !(lhs == rhs);
}
/**
* @brief Compares two type info objects.
* @param lhs A valid type info object.
* @param rhs A valid type info object.
* @return True if the first element is less than the second, false otherwise.
*/
[[nodiscard]] constexpr bool operator<(const type_info &lhs, const type_info &rhs) noexcept {
return lhs.index() < rhs.index();
}
/**
* @brief Compares two type info objects.
* @param lhs A valid type info object.
* @param rhs A valid type info object.
* @return True if the first element is less than or equal to the second, false
* otherwise.
*/
[[nodiscard]] constexpr bool operator<=(const type_info &lhs, const type_info &rhs) noexcept {
return !(rhs < lhs);
}
/**
* @brief Compares two type info objects.
* @param lhs A valid type info object.
* @param rhs A valid type info object.
* @return True if the first element is greater than the second, false
* otherwise.
*/
[[nodiscard]] constexpr bool operator>(const type_info &lhs, const type_info &rhs) noexcept {
return rhs < lhs;
}
/**
* @brief Compares two type info objects.
* @param lhs A valid type info object.
* @param rhs A valid type info object.
* @return True if the first element is greater than or equal to the second,
* false otherwise.
*/
[[nodiscard]] constexpr bool operator>=(const type_info &lhs, const type_info &rhs) noexcept {
return !(lhs < rhs);
}
/**
* @brief Returns the type info object associated to a given type.
*
* The returned element refers to an object with static storage duration.<br/>
* The type doesn't need to be a complete type. If the type is a reference, the
* result refers to the referenced type. In all cases, top-level cv-qualifiers
* are ignored.
*
* @tparam Type Type for which to generate a type info object.
* @return A reference to a properly initialized type info object.
*/
template<typename Type>
[[nodiscard]] const type_info &type_id() noexcept {
if constexpr(std::is_same_v<Type, std::remove_cv_t<std::remove_reference_t<Type>>>) {
static type_info instance{std::in_place_type<Type>};
return instance;
} else {
return type_id<std::remove_cv_t<std::remove_reference_t<Type>>>();
}
}
/*! @copydoc type_id */
template<typename Type>
[[nodiscard]] const type_info &type_id(Type &&) noexcept {
return type_id<std::remove_cv_t<std::remove_reference_t<Type>>>();
}
} // namespace entt
#endif
// #include "type_traits.hpp"
#ifndef ENTT_CORE_TYPE_TRAITS_HPP
#define ENTT_CORE_TYPE_TRAITS_HPP
#include <cstddef>
#include <iterator>
#include <type_traits>
#include <utility>
// #include "../config/config.h"
// #include "fwd.hpp"
namespace entt {
/**
* @brief Utility class to disambiguate overloaded functions.
* @tparam N Number of choices available.
*/
template<std::size_t N>
struct choice_t
// Unfortunately, doxygen cannot parse such a construct.
: /*! @cond TURN_OFF_DOXYGEN */ choice_t<N - 1> /*! @endcond */
{};
/*! @copybrief choice_t */
template<>
struct choice_t<0> {};
/**
* @brief Variable template for the choice trick.
* @tparam N Number of choices available.
*/
template<std::size_t N>
inline constexpr choice_t<N> choice{};
/**
* @brief Identity type trait.
*
* Useful to establish non-deduced contexts in template argument deduction
* (waiting for C++20) or to provide types through function arguments.
*
* @tparam Type A type.
*/
template<typename Type>
struct type_identity {
/*! @brief Identity type. */
using type = Type;
};
/**
* @brief Helper type.
* @tparam Type A type.
*/
template<typename Type>
using type_identity_t = typename type_identity<Type>::type;
/**
* @brief A type-only `sizeof` wrapper that returns 0 where `sizeof` complains.
* @tparam Type The type of which to return the size.
* @tparam The size of the type if `sizeof` accepts it, 0 otherwise.
*/
template<typename Type, typename = void>
struct size_of: std::integral_constant<std::size_t, 0u> {};
/*! @copydoc size_of */
template<typename Type>
struct size_of<Type, std::void_t<decltype(sizeof(Type))>>
: std::integral_constant<std::size_t, sizeof(Type)> {};
/**
* @brief Helper variable template.
* @tparam Type The type of which to return the size.
*/
template<typename Type>
inline constexpr std::size_t size_of_v = size_of<Type>::value;
/**
* @brief Using declaration to be used to _repeat_ the same type a number of
* times equal to the size of a given parameter pack.
* @tparam Type A type to repeat.
*/
template<typename Type, typename>
using unpack_as_type = Type;
/**
* @brief Helper variable template to be used to _repeat_ the same value a
* number of times equal to the size of a given parameter pack.
* @tparam Value A value to repeat.
*/
template<auto Value, typename>
inline constexpr auto unpack_as_value = Value;
/**
* @brief Wraps a static constant.
* @tparam Value A static constant.
*/
template<auto Value>
using integral_constant = std::integral_constant<decltype(Value), Value>;
/**
* @brief Alias template to facilitate the creation of named values.
* @tparam Value A constant value at least convertible to `id_type`.
*/
template<id_type Value>
using tag = integral_constant<Value>;
/**
* @brief A class to use to push around lists of types, nothing more.
* @tparam Type Types provided by the type list.
*/
template<typename... Type>
struct type_list {
/*! @brief Type list type. */
using type = type_list;
/*! @brief Compile-time number of elements in the type list. */
static constexpr auto size = sizeof...(Type);
};
/*! @brief Primary template isn't defined on purpose. */
template<std::size_t, typename>
struct type_list_element;
/**
* @brief Provides compile-time indexed access to the types of a type list.
* @tparam Index Index of the type to return.
* @tparam First First type provided by the type list.
* @tparam Other Other types provided by the type list.
*/
template<std::size_t Index, typename First, typename... Other>
struct type_list_element<Index, type_list<First, Other...>>
: type_list_element<Index - 1u, type_list<Other...>> {};
/**
* @brief Provides compile-time indexed access to the types of a type list.
* @tparam First First type provided by the type list.
* @tparam Other Other types provided by the type list.
*/
template<typename First, typename... Other>
struct type_list_element<0u, type_list<First, Other...>> {
/*! @brief Searched type. */
using type = First;
};
/**
* @brief Helper type.
* @tparam Index Index of the type to return.
* @tparam List Type list to search into.
*/
template<std::size_t Index, typename List>
using type_list_element_t = typename type_list_element<Index, List>::type;
/*! @brief Primary template isn't defined on purpose. */
template<typename, typename>
struct type_list_index;
/**
* @brief Provides compile-time type access to the types of a type list.
* @tparam Type Type to look for and for which to return the index.
* @tparam First First type provided by the type list.
* @tparam Other Other types provided by the type list.
*/
template<typename Type, typename First, typename... Other>
struct type_list_index<Type, type_list<First, Other...>> {
/*! @brief Unsigned integer type. */
using value_type = std::size_t;
/*! @brief Compile-time position of the given type in the sublist. */
static constexpr value_type value = 1u + type_list_index<Type, type_list<Other...>>::value;
};
/**
* @brief Provides compile-time type access to the types of a type list.
* @tparam Type Type to look for and for which to return the index.
* @tparam Other Other types provided by the type list.
*/
template<typename Type, typename... Other>
struct type_list_index<Type, type_list<Type, Other...>> {
static_assert(type_list_index<Type, type_list<Other...>>::value == sizeof...(Other), "Non-unique type");
/*! @brief Unsigned integer type. */
using value_type = std::size_t;
/*! @brief Compile-time position of the given type in the sublist. */
static constexpr value_type value = 0u;
};
/**
* @brief Provides compile-time type access to the types of a type list.
* @tparam Type Type to look for and for which to return the index.
*/
template<typename Type>
struct type_list_index<Type, type_list<>> {
/*! @brief Unsigned integer type. */
using value_type = std::size_t;
/*! @brief Compile-time position of the given type in the sublist. */
static constexpr value_type value = 0u;
};
/**
* @brief Helper variable template.
* @tparam List Type list.
* @tparam Type Type to look for and for which to return the index.
*/
template<typename Type, typename List>
inline constexpr std::size_t type_list_index_v = type_list_index<Type, List>::value;
/**
* @brief Concatenates multiple type lists.
* @tparam Type Types provided by the first type list.
* @tparam Other Types provided by the second type list.
* @return A type list composed by the types of both the type lists.
*/
template<typename... Type, typename... Other>
constexpr type_list<Type..., Other...> operator+(type_list<Type...>, type_list<Other...>) {
return {};
}
/*! @brief Primary template isn't defined on purpose. */
template<typename...>
struct type_list_cat;
/*! @brief Concatenates multiple type lists. */
template<>
struct type_list_cat<> {
/*! @brief A type list composed by the types of all the type lists. */
using type = type_list<>;
};
/**
* @brief Concatenates multiple type lists.
* @tparam Type Types provided by the first type list.
* @tparam Other Types provided by the second type list.
* @tparam List Other type lists, if any.
*/
template<typename... Type, typename... Other, typename... List>
struct type_list_cat<type_list<Type...>, type_list<Other...>, List...> {
/*! @brief A type list composed by the types of all the type lists. */
using type = typename type_list_cat<type_list<Type..., Other...>, List...>::type;
};
/**
* @brief Concatenates multiple type lists.
* @tparam Type Types provided by the type list.
*/
template<typename... Type>
struct type_list_cat<type_list<Type...>> {
/*! @brief A type list composed by the types of all the type lists. */
using type = type_list<Type...>;
};
/**
* @brief Helper type.
* @tparam List Type lists to concatenate.
*/
template<typename... List>
using type_list_cat_t = typename type_list_cat<List...>::type;
/*! @brief Primary template isn't defined on purpose. */
template<typename>
struct type_list_unique;
/**
* @brief Removes duplicates types from a type list.
* @tparam Type One of the types provided by the given type list.
* @tparam Other The other types provided by the given type list.
*/
template<typename Type, typename... Other>
struct type_list_unique<type_list<Type, Other...>> {
/*! @brief A type list without duplicate types. */
using type = std::conditional_t<
(std::is_same_v<Type, Other> || ...),
typename type_list_unique<type_list<Other...>>::type,
type_list_cat_t<type_list<Type>, typename type_list_unique<type_list<Other...>>::type>>;
};
/*! @brief Removes duplicates types from a type list. */
template<>
struct type_list_unique<type_list<>> {
/*! @brief A type list without duplicate types. */
using type = type_list<>;
};
/**
* @brief Helper type.
* @tparam Type A type list.
*/
template<typename Type>
using type_list_unique_t = typename type_list_unique<Type>::type;
/**
* @brief Provides the member constant `value` to true if a type list contains a
* given type, false otherwise.
* @tparam List Type list.
* @tparam Type Type to look for.
*/
template<typename List, typename Type>
struct type_list_contains;
/**
* @copybrief type_list_contains
* @tparam Type Types provided by the type list.
* @tparam Other Type to look for.
*/
template<typename... Type, typename Other>
struct type_list_contains<type_list<Type...>, Other>: std::disjunction<std::is_same<Type, Other>...> {};
/**
* @brief Helper variable template.
* @tparam List Type list.
* @tparam Type Type to look for.
*/
template<typename List, typename Type>
inline constexpr bool type_list_contains_v = type_list_contains<List, Type>::value;
/*! @brief Primary template isn't defined on purpose. */
template<typename...>
struct type_list_diff;
/**
* @brief Computes the difference between two type lists.
* @tparam Type Types provided by the first type list.
* @tparam Other Types provided by the second type list.
*/
template<typename... Type, typename... Other>
struct type_list_diff<type_list<Type...>, type_list<Other...>> {
/*! @brief A type list that is the difference between the two type lists. */
using type = type_list_cat_t<std::conditional_t<type_list_contains_v<type_list<Other...>, Type>, type_list<>, type_list<Type>>...>;
};
/**
* @brief Helper type.
* @tparam List Type lists between which to compute the difference.
*/
template<typename... List>
using type_list_diff_t = typename type_list_diff<List...>::type;
/*! @brief Primary template isn't defined on purpose. */
template<typename, template<typename...> class>
struct type_list_transform;
/**
* @brief Applies a given _function_ to a type list and generate a new list.
* @tparam Type Types provided by the type list.
* @tparam Op Unary operation as template class with a type member named `type`.
*/
template<typename... Type, template<typename...> class Op>
struct type_list_transform<type_list<Type...>, Op> {
/*! @brief Resulting type list after applying the transform function. */
using type = type_list<typename Op<Type>::type...>;
};
/**
* @brief Helper type.
* @tparam List Type list.
* @tparam Op Unary operation as template class with a type member named `type`.
*/
template<typename List, template<typename...> class Op>
using type_list_transform_t = typename type_list_transform<List, Op>::type;
/**
* @brief A class to use to push around lists of constant values, nothing more.
* @tparam Value Values provided by the value list.
*/
template<auto... Value>
struct value_list {
/*! @brief Value list type. */
using type = value_list;
/*! @brief Compile-time number of elements in the value list. */
static constexpr auto size = sizeof...(Value);
};
/*! @brief Primary template isn't defined on purpose. */
template<std::size_t, typename>
struct value_list_element;
/**
* @brief Provides compile-time indexed access to the values of a value list.
* @tparam Index Index of the value to return.
* @tparam Value First value provided by the value list.
* @tparam Other Other values provided by the value list.
*/
template<std::size_t Index, auto Value, auto... Other>
struct value_list_element<Index, value_list<Value, Other...>>
: value_list_element<Index - 1u, value_list<Other...>> {};
/**
* @brief Provides compile-time indexed access to the types of a type list.
* @tparam Value First value provided by the value list.
* @tparam Other Other values provided by the value list.
*/
template<auto Value, auto... Other>
struct value_list_element<0u, value_list<Value, Other...>> {
/*! @brief Searched value. */
static constexpr auto value = Value;
};
/**
* @brief Helper type.
* @tparam Index Index of the value to return.
* @tparam List Value list to search into.
*/
template<std::size_t Index, typename List>
inline constexpr auto value_list_element_v = value_list_element<Index, List>::value;
/**
* @brief Concatenates multiple value lists.
* @tparam Value Values provided by the first value list.
* @tparam Other Values provided by the second value list.
* @return A value list composed by the values of both the value lists.
*/
template<auto... Value, auto... Other>
constexpr value_list<Value..., Other...> operator+(value_list<Value...>, value_list<Other...>) {
return {};
}
/*! @brief Primary template isn't defined on purpose. */
template<typename...>
struct value_list_cat;
/*! @brief Concatenates multiple value lists. */
template<>
struct value_list_cat<> {
/*! @brief A value list composed by the values of all the value lists. */
using type = value_list<>;
};
/**
* @brief Concatenates multiple value lists.
* @tparam Value Values provided by the first value list.
* @tparam Other Values provided by the second value list.
* @tparam List Other value lists, if any.
*/
template<auto... Value, auto... Other, typename... List>
struct value_list_cat<value_list<Value...>, value_list<Other...>, List...> {
/*! @brief A value list composed by the values of all the value lists. */
using type = typename value_list_cat<value_list<Value..., Other...>, List...>::type;
};
/**
* @brief Concatenates multiple value lists.
* @tparam Value Values provided by the value list.
*/
template<auto... Value>
struct value_list_cat<value_list<Value...>> {
/*! @brief A value list composed by the values of all the value lists. */
using type = value_list<Value...>;
};
/**
* @brief Helper type.
* @tparam List Value lists to concatenate.
*/
template<typename... List>
using value_list_cat_t = typename value_list_cat<List...>::type;
/*! @brief Same as std::is_invocable, but with tuples. */
template<typename, typename>
struct is_applicable: std::false_type {};
/**
* @copybrief is_applicable
* @tparam Func A valid function type.
* @tparam Tuple Tuple-like type.
* @tparam Args The list of arguments to use to probe the function type.
*/
template<typename Func, template<typename...> class Tuple, typename... Args>
struct is_applicable<Func, Tuple<Args...>>: std::is_invocable<Func, Args...> {};
/**
* @copybrief is_applicable
* @tparam Func A valid function type.
* @tparam Tuple Tuple-like type.
* @tparam Args The list of arguments to use to probe the function type.
*/
template<typename Func, template<typename...> class Tuple, typename... Args>
struct is_applicable<Func, const Tuple<Args...>>: std::is_invocable<Func, Args...> {};
/**
* @brief Helper variable template.
* @tparam Func A valid function type.
* @tparam Args The list of arguments to use to probe the function type.
*/
template<typename Func, typename Args>
inline constexpr bool is_applicable_v = is_applicable<Func, Args>::value;
/*! @brief Same as std::is_invocable_r, but with tuples for arguments. */
template<typename, typename, typename>
struct is_applicable_r: std::false_type {};
/**
* @copybrief is_applicable_r
* @tparam Ret The type to which the return type of the function should be
* convertible.
* @tparam Func A valid function type.
* @tparam Args The list of arguments to use to probe the function type.
*/
template<typename Ret, typename Func, typename... Args>
struct is_applicable_r<Ret, Func, std::tuple<Args...>>: std::is_invocable_r<Ret, Func, Args...> {};
/**
* @brief Helper variable template.
* @tparam Ret The type to which the return type of the function should be
* convertible.
* @tparam Func A valid function type.
* @tparam Args The list of arguments to use to probe the function type.
*/
template<typename Ret, typename Func, typename Args>
inline constexpr bool is_applicable_r_v = is_applicable_r<Ret, Func, Args>::value;
/**
* @brief Provides the member constant `value` to true if a given type is
* complete, false otherwise.
* @tparam Type The type to test.
*/
template<typename Type, typename = void>
struct is_complete: std::false_type {};
/*! @copydoc is_complete */
template<typename Type>
struct is_complete<Type, std::void_t<decltype(sizeof(Type))>>: std::true_type {};
/**
* @brief Helper variable template.
* @tparam Type The type to test.
*/
template<typename Type>
inline constexpr bool is_complete_v = is_complete<Type>::value;
/**
* @brief Provides the member constant `value` to true if a given type is an
* iterator, false otherwise.
* @tparam Type The type to test.
*/
template<typename Type, typename = void>
struct is_iterator: std::false_type {};
/**
* @cond TURN_OFF_DOXYGEN
* Internal details not to be documented.
*/
namespace internal {
template<typename, typename = void>
struct has_iterator_category: std::false_type {};
template<typename Type>
struct has_iterator_category<Type, std::void_t<typename std::iterator_traits<Type>::iterator_category>>: std::true_type {};
} // namespace internal
/**
* Internal details not to be documented.
* @endcond
*/
/*! @copydoc is_iterator */
template<typename Type>
struct is_iterator<Type, std::enable_if_t<!std::is_same_v<std::remove_cv_t<std::remove_pointer_t<Type>>, void>>>
: internal::has_iterator_category<Type> {};
/**
* @brief Helper variable template.
* @tparam Type The type to test.
*/
template<typename Type>
inline constexpr bool is_iterator_v = is_iterator<Type>::value;
/**
* @brief Provides the member constant `value` to true if a given type is both
* an empty and non-final class, false otherwise.
* @tparam Type The type to test
*/
template<typename Type>
struct is_ebco_eligible
: std::conjunction<std::is_empty<Type>, std::negation<std::is_final<Type>>> {};
/**
* @brief Helper variable template.
* @tparam Type The type to test.
*/
template<typename Type>
inline constexpr bool is_ebco_eligible_v = is_ebco_eligible<Type>::value;
/**
* @brief Provides the member constant `value` to true if `Type::is_transparent`
* is valid and denotes a type, false otherwise.
* @tparam Type The type to test.
*/
template<typename Type, typename = void>
struct is_transparent: std::false_type {};
/*! @copydoc is_transparent */
template<typename Type>
struct is_transparent<Type, std::void_t<typename Type::is_transparent>>: std::true_type {};
/**
* @brief Helper variable template.
* @tparam Type The type to test.
*/
template<typename Type>
inline constexpr bool is_transparent_v = is_transparent<Type>::value;
/**
* @brief Provides the member constant `value` to true if a given type is
* equality comparable, false otherwise.
* @tparam Type The type to test.
*/
template<typename Type, typename = void>
struct is_equality_comparable: std::false_type {};
/**
* @cond TURN_OFF_DOXYGEN
* Internal details not to be documented.
*/
namespace internal {
template<typename, typename = void>
struct has_tuple_size_value: std::false_type {};
template<typename Type>
struct has_tuple_size_value<Type, std::void_t<decltype(std::tuple_size<const Type>::value)>>: std::true_type {};
template<typename Type, std::size_t... Index>
[[nodiscard]] constexpr bool unpack_maybe_equality_comparable(std::index_sequence<Index...>) {
return (is_equality_comparable<std::tuple_element_t<Index, Type>>::value && ...);
}
template<typename>
[[nodiscard]] constexpr bool maybe_equality_comparable(choice_t<0>) {
return true;
}
template<typename Type>
[[nodiscard]] constexpr auto maybe_equality_comparable(choice_t<1>) -> decltype(std::declval<typename Type::value_type>(), bool{}) {
if constexpr(is_iterator_v<Type>) {
return true;
} else if constexpr(std::is_same_v<typename Type::value_type, Type>) {
return maybe_equality_comparable<Type>(choice<0>);
} else {
return is_equality_comparable<typename Type::value_type>::value;
}
}
template<typename Type>
[[nodiscard]] constexpr std::enable_if_t<is_complete_v<std::tuple_size<std::remove_cv_t<Type>>>, bool> maybe_equality_comparable(choice_t<2>) {
if constexpr(has_tuple_size_value<Type>::value) {
return unpack_maybe_equality_comparable<Type>(std::make_index_sequence<std::tuple_size<Type>::value>{});
} else {
return maybe_equality_comparable<Type>(choice<1>);
}
}
} // namespace internal
/**
* Internal details not to be documented.
* @endcond
*/
/*! @copydoc is_equality_comparable */
template<typename Type>
struct is_equality_comparable<Type, std::void_t<decltype(std::declval<Type>() == std::declval<Type>())>>
: std::bool_constant<internal::maybe_equality_comparable<Type>(choice<2>)> {};
/**
* @brief Helper variable template.
* @tparam Type The type to test.
*/
template<typename Type>
inline constexpr bool is_equality_comparable_v = is_equality_comparable<Type>::value;
/**
* @brief Transcribes the constness of a type to another type.
* @tparam To The type to which to transcribe the constness.
* @tparam From The type from which to transcribe the constness.
*/
template<typename To, typename From>
struct constness_as {
/*! @brief The type resulting from the transcription of the constness. */
using type = std::remove_const_t<To>;
};
/*! @copydoc constness_as */
template<typename To, typename From>
struct constness_as<To, const From> {
/*! @brief The type resulting from the transcription of the constness. */
using type = const To;
};
/**
* @brief Alias template to facilitate the transcription of the constness.
* @tparam To The type to which to transcribe the constness.
* @tparam From The type from which to transcribe the constness.
*/
template<typename To, typename From>
using constness_as_t = typename constness_as<To, From>::type;
/**
* @brief Extracts the class of a non-static member object or function.
* @tparam Member A pointer to a non-static member object or function.
*/
template<typename Member>
class member_class {
static_assert(std::is_member_pointer_v<Member>, "Invalid pointer type to non-static member object or function");
template<typename Class, typename Ret, typename... Args>
static Class *clazz(Ret (Class::*)(Args...));
template<typename Class, typename Ret, typename... Args>
static Class *clazz(Ret (Class::*)(Args...) const);
template<typename Class, typename Type>
static Class *clazz(Type Class::*);
public:
/*! @brief The class of the given non-static member object or function. */
using type = std::remove_pointer_t<decltype(clazz(std::declval<Member>()))>;
};
/**
* @brief Helper type.
* @tparam Member A pointer to a non-static member object or function.
*/
template<typename Member>
using member_class_t = typename member_class<Member>::type;
/**
* @brief Extracts the n-th argument of a given function or member function.
* @tparam Index The index of the argument to extract.
* @tparam Candidate A valid function, member function or data member.
*/
template<std::size_t Index, auto Candidate>
class nth_argument {
template<typename Ret, typename... Args>
static constexpr type_list<Args...> pick_up(Ret (*)(Args...));
template<typename Ret, typename Class, typename... Args>
static constexpr type_list<Args...> pick_up(Ret (Class ::*)(Args...));
template<typename Ret, typename Class, typename... Args>
static constexpr type_list<Args...> pick_up(Ret (Class ::*)(Args...) const);
template<typename Type, typename Class>
static constexpr type_list<Type> pick_up(Type Class ::*);
public:
/*! @brief N-th argument of the given function or member function. */
using type = type_list_element_t<Index, decltype(pick_up(Candidate))>;
};
/**
* @brief Helper type.
* @tparam Index The index of the argument to extract.
* @tparam Candidate A valid function, member function or data member.
*/
template<std::size_t Index, auto Candidate>
using nth_argument_t = typename nth_argument<Index, Candidate>::type;
} // namespace entt
#endif
namespace entt {
/**
* @cond TURN_OFF_DOXYGEN
* Internal details not to be documented.
*/
namespace internal {
enum class any_operation : std::uint8_t {
copy,
move,
transfer,
assign,
destroy,
compare,
get
};
enum class any_policy : std::uint8_t {
owner,
ref,
cref
};
} // namespace internal
/**
* Internal details not to be documented.
* @endcond
*/
/**
* @brief A SBO friendly, type-safe container for single values of any type.
* @tparam Len Size of the storage reserved for the small buffer optimization.
* @tparam Align Optional alignment requirement.
*/
template<std::size_t Len, std::size_t Align>
class basic_any {
using operation = internal::any_operation;
using policy = internal::any_policy;
using vtable_type = const void *(const operation, const basic_any &, const void *);
struct storage_type {
alignas(Align) std::byte data[Len + !Len];
};
template<typename Type>
static constexpr bool in_situ = Len && alignof(Type) <= Align && sizeof(Type) <= Len &&std::is_nothrow_move_constructible_v<Type>;
template<typename Type>
static const void *basic_vtable(const operation op, const basic_any &value, const void *other) {
static_assert(!std::is_same_v<Type, void> && std::is_same_v<std::remove_cv_t<std::remove_reference_t<Type>>, Type>, "Invalid type");
const Type *element = nullptr;
if constexpr(in_situ<Type>) {
element = value.owner() ? reinterpret_cast<const Type *>(&value.storage) : static_cast<const Type *>(value.instance);
} else {
element = static_cast<const Type *>(value.instance);
}
switch(op) {
case operation::copy:
if constexpr(std::is_copy_constructible_v<Type>) {
static_cast<basic_any *>(const_cast<void *>(other))->initialize<Type>(*element);
}
break;
case operation::move:
if constexpr(in_situ<Type>) {
if(value.owner()) {
return new(&static_cast<basic_any *>(const_cast<void *>(other))->storage) Type{std::move(*const_cast<Type *>(element))};
}
}
return (static_cast<basic_any *>(const_cast<void *>(other))->instance = std::exchange(const_cast<basic_any &>(value).instance, nullptr));
case operation::transfer:
if constexpr(std::is_move_assignable_v<Type>) {
*const_cast<Type *>(element) = std::move(*static_cast<Type *>(const_cast<void *>(other)));
return other;
}
[[fallthrough]];
case operation::assign:
if constexpr(std::is_copy_assignable_v<Type>) {
*const_cast<Type *>(element) = *static_cast<const Type *>(other);
return other;
}
break;
case operation::destroy:
if constexpr(in_situ<Type>) {
element->~Type();
} else if constexpr(std::is_array_v<Type>) {
delete[] element;
} else {
delete element;
}
break;
case operation::compare:
if constexpr(!std::is_function_v<Type> && !std::is_array_v<Type> && is_equality_comparable_v<Type>) {
return *element == *static_cast<const Type *>(other) ? other : nullptr;
} else {
return (element == other) ? other : nullptr;
}
case operation::get:
return element;
}
return nullptr;
}
template<typename Type, typename... Args>
void initialize([[maybe_unused]] Args &&...args) {
info = &type_id<std::remove_cv_t<std::remove_reference_t<Type>>>();
if constexpr(!std::is_void_v<Type>) {
vtable = basic_vtable<std::remove_cv_t<std::remove_reference_t<Type>>>;
if constexpr(std::is_lvalue_reference_v<Type>) {
static_assert(sizeof...(Args) == 1u && (std::is_lvalue_reference_v<Args> && ...), "Invalid arguments");
mode = std::is_const_v<std::remove_reference_t<Type>> ? policy::cref : policy::ref;
instance = (std::addressof(args), ...);
} else if constexpr(in_situ<std::remove_cv_t<std::remove_reference_t<Type>>>) {
if constexpr(sizeof...(Args) != 0u && std::is_aggregate_v<std::remove_cv_t<std::remove_reference_t<Type>>>) {
new(&storage) std::remove_cv_t<std::remove_reference_t<Type>>{std::forward<Args>(args)...};
} else {
new(&storage) std::remove_cv_t<std::remove_reference_t<Type>>(std::forward<Args>(args)...);
}
} else {
if constexpr(sizeof...(Args) != 0u && std::is_aggregate_v<std::remove_cv_t<std::remove_reference_t<Type>>>) {
instance = new std::remove_cv_t<std::remove_reference_t<Type>>{std::forward<Args>(args)...};
} else {
instance = new std::remove_cv_t<std::remove_reference_t<Type>>(std::forward<Args>(args)...);
}
}
}
}
basic_any(const basic_any &other, const policy pol) noexcept
: instance{other.data()},
info{other.info},
vtable{other.vtable},
mode{pol} {}
public:
/*! @brief Size of the internal storage. */
static constexpr auto length = Len;
/*! @brief Alignment requirement. */
static constexpr auto alignment = Align;
/*! @brief Default constructor. */
constexpr basic_any() noexcept
: basic_any{std::in_place_type<void>} {}
/**
* @brief Constructs a wrapper by directly initializing the new object.
* @tparam Type Type of object to use to initialize the wrapper.
* @tparam Args Types of arguments to use to construct the new instance.
* @param args Parameters to use to construct the instance.
*/
template<typename Type, typename... Args>
explicit basic_any(std::in_place_type_t<Type>, Args &&...args)
: instance{},
info{},
vtable{},
mode{policy::owner} {
initialize<Type>(std::forward<Args>(args)...);
}
/**
* @brief Constructs a wrapper from a given value.
* @tparam Type Type of object to use to initialize the wrapper.
* @param value An instance of an object to use to initialize the wrapper.
*/
template<typename Type, typename = std::enable_if_t<!std::is_same_v<std::decay_t<Type>, basic_any>>>
basic_any(Type &&value)
: basic_any{std::in_place_type<std::decay_t<Type>>, std::forward<Type>(value)} {}
/**
* @brief Copy constructor.
* @param other The instance to copy from.
*/
basic_any(const basic_any &other)
: basic_any{} {
if(other.vtable) {
other.vtable(operation::copy, other, this);
}
}
/**
* @brief Move constructor.
* @param other The instance to move from.
*/
basic_any(basic_any &&other) noexcept
: instance{},
info{other.info},
vtable{other.vtable},
mode{other.mode} {
if(other.vtable) {
other.vtable(operation::move, other, this);
}
}
/*! @brief Frees the internal storage, whatever it means. */
~basic_any() {
if(vtable && owner()) {
vtable(operation::destroy, *this, nullptr);
}
}
/**
* @brief Copy assignment operator.
* @param other The instance to copy from.
* @return This any object.
*/
basic_any &operator=(const basic_any &other) {
reset();
if(other.vtable) {
other.vtable(operation::copy, other, this);
}
return *this;
}
/**
* @brief Move assignment operator.
* @param other The instance to move from.
* @return This any object.
*/
basic_any &operator=(basic_any &&other) noexcept {
reset();
if(other.vtable) {
other.vtable(operation::move, other, this);
info = other.info;
vtable = other.vtable;
mode = other.mode;
}
return *this;
}
/**
* @brief Value assignment operator.
* @tparam Type Type of object to use to initialize the wrapper.
* @param value An instance of an object to use to initialize the wrapper.
* @return This any object.
*/
template<typename Type>
std::enable_if_t<!std::is_same_v<std::decay_t<Type>, basic_any>, basic_any &>
operator=(Type &&value) {
emplace<std::decay_t<Type>>(std::forward<Type>(value));
return *this;
}
/**
* @brief Returns the object type if any, `type_id<void>()` otherwise.
* @return The object type if any, `type_id<void>()` otherwise.
*/
[[nodiscard]] const type_info &type() const noexcept {
return *info;
}
/**
* @brief Returns an opaque pointer to the contained instance.
* @return An opaque pointer the contained instance, if any.
*/
[[nodiscard]] const void *data() const noexcept {
return vtable ? vtable(operation::get, *this, nullptr) : nullptr;
}
/**
* @brief Returns an opaque pointer to the contained instance.
* @param req Expected type.
* @return An opaque pointer the contained instance, if any.
*/
[[nodiscard]] const void *data(const type_info &req) const noexcept {
return *info == req ? data() : nullptr;
}
/**
* @brief Returns an opaque pointer to the contained instance.
* @return An opaque pointer the contained instance, if any.
*/
[[nodiscard]] void *data() noexcept {
return mode == policy::cref ? nullptr : const_cast<void *>(std::as_const(*this).data());
}
/**
* @brief Returns an opaque pointer to the contained instance.
* @param req Expected type.
* @return An opaque pointer the contained instance, if any.
*/
[[nodiscard]] void *data(const type_info &req) noexcept {
return mode == policy::cref ? nullptr : const_cast<void *>(std::as_const(*this).data(req));
}
/**
* @brief Replaces the contained object by creating a new instance directly.
* @tparam Type Type of object to use to initialize the wrapper.
* @tparam Args Types of arguments to use to construct the new instance.
* @param args Parameters to use to construct the instance.
*/
template<typename Type, typename... Args>
void emplace(Args &&...args) {
reset();
initialize<Type>(std::forward<Args>(args)...);
}
/**
* @brief Assigns a value to the contained object without replacing it.
* @param other The value to assign to the contained object.
* @return True in case of success, false otherwise.
*/
bool assign(const basic_any &other) {
if(vtable && mode != policy::cref && *info == *other.info) {
return (vtable(operation::assign, *this, other.data()) != nullptr);
}
return false;
}
/*! @copydoc assign */
bool assign(basic_any &&other) {
if(vtable && mode != policy::cref && *info == *other.info) {
if(auto *val = other.data(); val) {
return (vtable(operation::transfer, *this, val) != nullptr);
} else {
return (vtable(operation::assign, *this, std::as_const(other).data()) != nullptr);
}
}
return false;
}
/*! @brief Destroys contained object */
void reset() {
if(vtable && owner()) {
vtable(operation::destroy, *this, nullptr);
}
// unnecessary but it helps to detect nasty bugs
ENTT_ASSERT((instance = nullptr) == nullptr, "");
info = &type_id<void>();
vtable = nullptr;
mode = policy::owner;
}
/**
* @brief Returns false if a wrapper is empty, true otherwise.
* @return False if the wrapper is empty, true otherwise.
*/
[[nodiscard]] explicit operator bool() const noexcept {
return vtable != nullptr;
}
/**
* @brief Checks if two wrappers differ in their content.
* @param other Wrapper with which to compare.
* @return False if the two objects differ in their content, true otherwise.
*/
[[nodiscard]] bool operator==(const basic_any &other) const noexcept {
if(vtable && *info == *other.info) {
return (vtable(operation::compare, *this, other.data()) != nullptr);
}
return (!vtable && !other.vtable);
}
/**
* @brief Checks if two wrappers differ in their content.
* @param other Wrapper with which to compare.
* @return True if the two objects differ in their content, false otherwise.
*/
[[nodiscard]] bool operator!=(const basic_any &other) const noexcept {
return !(*this == other);
}
/**
* @brief Aliasing constructor.
* @return A wrapper that shares a reference to an unmanaged object.
*/
[[nodiscard]] basic_any as_ref() noexcept {
return basic_any{*this, (mode == policy::cref ? policy::cref : policy::ref)};
}
/*! @copydoc as_ref */
[[nodiscard]] basic_any as_ref() const noexcept {
return basic_any{*this, policy::cref};
}
/**
* @brief Returns true if a wrapper owns its object, false otherwise.
* @return True if the wrapper owns its object, false otherwise.
*/
[[nodiscard]] bool owner() const noexcept {
return (mode == policy::owner);
}
private:
union {
const void *instance;
storage_type storage;
};
const type_info *info;
vtable_type *vtable;
policy mode;
};
/**
* @brief Performs type-safe access to the contained object.
* @tparam Type Type to which conversion is required.
* @tparam Len Size of the storage reserved for the small buffer optimization.
* @tparam Align Alignment requirement.
* @param data Target any object.
* @return The element converted to the requested type.
*/
template<typename Type, std::size_t Len, std::size_t Align>
Type any_cast(const basic_any<Len, Align> &data) noexcept {
const auto *const instance = any_cast<std::remove_reference_t<Type>>(&data);
ENTT_ASSERT(instance, "Invalid instance");
return static_cast<Type>(*instance);
}
/*! @copydoc any_cast */
template<typename Type, std::size_t Len, std::size_t Align>
Type any_cast(basic_any<Len, Align> &data) noexcept {
// forces const on non-reference types to make them work also with wrappers for const references
auto *const instance = any_cast<std::remove_reference_t<const Type>>(&data);
ENTT_ASSERT(instance, "Invalid instance");
return static_cast<Type>(*instance);
}
/*! @copydoc any_cast */
template<typename Type, std::size_t Len, std::size_t Align>
Type any_cast(basic_any<Len, Align> &&data) noexcept {
if constexpr(std::is_copy_constructible_v<std::remove_cv_t<std::remove_reference_t<Type>>>) {
if(auto *const instance = any_cast<std::remove_reference_t<Type>>(&data); instance) {
return static_cast<Type>(std::move(*instance));
} else {
return any_cast<Type>(data);
}
} else {
auto *const instance = any_cast<std::remove_reference_t<Type>>(&data);
ENTT_ASSERT(instance, "Invalid instance");
return static_cast<Type>(std::move(*instance));
}
}
/*! @copydoc any_cast */
template<typename Type, std::size_t Len, std::size_t Align>
const Type *any_cast(const basic_any<Len, Align> *data) noexcept {
const auto &info = type_id<std::remove_cv_t<Type>>();
return static_cast<const Type *>(data->data(info));
}
/*! @copydoc any_cast */
template<typename Type, std::size_t Len, std::size_t Align>
Type *any_cast(basic_any<Len, Align> *data) noexcept {
if constexpr(std::is_const_v<Type>) {
// last attempt to make wrappers for const references return their values
return any_cast<Type>(&std::as_const(*data));
} else {
const auto &info = type_id<std::remove_cv_t<Type>>();
return static_cast<Type *>(data->data(info));
}
}
/**
* @brief Constructs a wrapper from a given type, passing it all arguments.
* @tparam Type Type of object to use to initialize the wrapper.
* @tparam Len Size of the storage reserved for the small buffer optimization.
* @tparam Align Optional alignment requirement.
* @tparam Args Types of arguments to use to construct the new instance.
* @param args Parameters to use to construct the instance.
* @return A properly initialized wrapper for an object of the given type.
*/
template<typename Type, std::size_t Len = basic_any<>::length, std::size_t Align = basic_any<Len>::alignment, typename... Args>
basic_any<Len, Align> make_any(Args &&...args) {
return basic_any<Len, Align>{std::in_place_type<Type>, std::forward<Args>(args)...};
}
/**
* @brief Forwards its argument and avoids copies for lvalue references.
* @tparam Len Size of the storage reserved for the small buffer optimization.
* @tparam Align Optional alignment requirement.
* @tparam Type Type of argument to use to construct the new instance.
* @param value Parameter to use to construct the instance.
* @return A properly initialized and not necessarily owning wrapper.
*/
template<std::size_t Len = basic_any<>::length, std::size_t Align = basic_any<Len>::alignment, typename Type>
basic_any<Len, Align> forward_as_any(Type &&value) {
return basic_any<Len, Align>{std::in_place_type<Type &&>, std::forward<Type>(value)};
}
} // namespace entt
#endif
// #include "../core/fwd.hpp"
// #include "../core/iterator.hpp"
#ifndef ENTT_CORE_ITERATOR_HPP
#define ENTT_CORE_ITERATOR_HPP
#include <iterator>
#include <memory>
#include <type_traits>
#include <utility>
namespace entt {
/**
* @brief Helper type to use as pointer with input iterators.
* @tparam Type of wrapped value.
*/
template<typename Type>
struct input_iterator_pointer final {
/*! @brief Value type. */
using value_type = Type;
/*! @brief Pointer type. */
using pointer = Type *;
/*! @brief Reference type. */
using reference = Type &;
/**
* @brief Constructs a proxy object by move.
* @param val Value to use to initialize the proxy object.
*/
constexpr input_iterator_pointer(value_type &&val) noexcept(std::is_nothrow_move_constructible_v<value_type>)
: value{std::move(val)} {}
/**
* @brief Access operator for accessing wrapped values.
* @return A pointer to the wrapped value.
*/
[[nodiscard]] constexpr pointer operator->() noexcept {
return std::addressof(value);
}
/**
* @brief Dereference operator for accessing wrapped values.
* @return A reference to the wrapped value.
*/
[[nodiscard]] constexpr reference operator*() noexcept {
return value;
}
private:
Type value;
};
/**
* @brief Plain iota iterator (waiting for C++20).
* @tparam Type Value type.
*/
template<typename Type>
class iota_iterator final {
static_assert(std::is_integral_v<Type>, "Not an integral type");
public:
/*! @brief Value type, likely an integral one. */
using value_type = Type;
/*! @brief Invalid pointer type. */
using pointer = void;
/*! @brief Non-reference type, same as value type. */
using reference = value_type;
/*! @brief Difference type. */
using difference_type = std::ptrdiff_t;
/*! @brief Iterator category. */
using iterator_category = std::input_iterator_tag;
/*! @brief Default constructor. */
constexpr iota_iterator() noexcept
: current{} {}
/**
* @brief Constructs an iota iterator from a given value.
* @param init The initial value assigned to the iota iterator.
*/
constexpr iota_iterator(const value_type init) noexcept
: current{init} {}
/**
* @brief Pre-increment operator.
* @return This iota iterator.
*/
constexpr iota_iterator &operator++() noexcept {
return ++current, *this;
}
/**
* @brief Post-increment operator.
* @return This iota iterator.
*/
constexpr iota_iterator operator++(int) noexcept {
iota_iterator orig = *this;
return ++(*this), orig;
}
/**
* @brief Dereference operator.
* @return The underlying value.
*/
[[nodiscard]] constexpr reference operator*() const noexcept {
return current;
}
private:
value_type current;
};
/**
* @brief Comparison operator.
* @tparam Type Value type of the iota iterator.
* @param lhs A properly initialized iota iterator.
* @param rhs A properly initialized iota iterator.
* @return True if the two iterators are identical, false otherwise.
*/
template<typename Type>
[[nodiscard]] constexpr bool operator==(const iota_iterator<Type> &lhs, const iota_iterator<Type> &rhs) noexcept {
return *lhs == *rhs;
}
/**
* @brief Comparison operator.
* @tparam Type Value type of the iota iterator.
* @param lhs A properly initialized iota iterator.
* @param rhs A properly initialized iota iterator.
* @return True if the two iterators differ, false otherwise.
*/
template<typename Type>
[[nodiscard]] constexpr bool operator!=(const iota_iterator<Type> &lhs, const iota_iterator<Type> &rhs) noexcept {
return !(lhs == rhs);
}
/**
* @brief Utility class to create an iterable object from a pair of iterators.
* @tparam It Type of iterator.
* @tparam Sentinel Type of sentinel.
*/
template<typename It, typename Sentinel = It>
struct iterable_adaptor final {
/*! @brief Value type. */
using value_type = typename std::iterator_traits<It>::value_type;
/*! @brief Iterator type. */
using iterator = It;
/*! @brief Sentinel type. */
using sentinel = Sentinel;
/*! @brief Default constructor. */
constexpr iterable_adaptor() noexcept(std::is_nothrow_default_constructible_v<iterator> &&std::is_nothrow_default_constructible_v<sentinel>)
: first{},
last{} {}
/**
* @brief Creates an iterable object from a pair of iterators.
* @param from Begin iterator.
* @param to End iterator.
*/
constexpr iterable_adaptor(iterator from, sentinel to) noexcept(std::is_nothrow_move_constructible_v<iterator> &&std::is_nothrow_move_constructible_v<sentinel>)
: first{std::move(from)},
last{std::move(to)} {}
/**
* @brief Returns an iterator to the beginning.
* @return An iterator to the first element of the range.
*/
[[nodiscard]] constexpr iterator begin() const noexcept {
return first;
}
/**
* @brief Returns an iterator to the end.
* @return An iterator to the element following the last element of the
* range.
*/
[[nodiscard]] constexpr sentinel end() const noexcept {
return last;
}
/*! @copydoc begin */
[[nodiscard]] constexpr iterator cbegin() const noexcept {
return begin();
}
/*! @copydoc end */
[[nodiscard]] constexpr sentinel cend() const noexcept {
return end();
}
private:
It first;
Sentinel last;
};
} // namespace entt
#endif
// #include "../core/type_info.hpp"
#ifndef ENTT_CORE_TYPE_INFO_HPP
#define ENTT_CORE_TYPE_INFO_HPP
#include <string_view>
#include <type_traits>
#include <utility>
// #include "../config/config.h"
// #include "../core/attribute.h"
// #include "fwd.hpp"
// #include "hashed_string.hpp"
namespace entt {
/**
* @cond TURN_OFF_DOXYGEN
* Internal details not to be documented.
*/
namespace internal {
struct ENTT_API type_index final {
[[nodiscard]] static id_type next() noexcept {
static ENTT_MAYBE_ATOMIC(id_type) value{};
return value++;
}
};
template<typename Type>
[[nodiscard]] constexpr auto stripped_type_name() noexcept {
#if defined ENTT_PRETTY_FUNCTION
std::string_view pretty_function{ENTT_PRETTY_FUNCTION};
auto first = pretty_function.find_first_not_of(' ', pretty_function.find_first_of(ENTT_PRETTY_FUNCTION_PREFIX) + 1);
auto value = pretty_function.substr(first, pretty_function.find_last_of(ENTT_PRETTY_FUNCTION_SUFFIX) - first);
return value;
#else
return std::string_view{""};
#endif
}
template<typename Type, auto = stripped_type_name<Type>().find_first_of('.')>
[[nodiscard]] static constexpr std::string_view type_name(int) noexcept {
constexpr auto value = stripped_type_name<Type>();
return value;
}
template<typename Type>
[[nodiscard]] static std::string_view type_name(char) noexcept {
static const auto value = stripped_type_name<Type>();
return value;
}
template<typename Type, auto = stripped_type_name<Type>().find_first_of('.')>
[[nodiscard]] static constexpr id_type type_hash(int) noexcept {
constexpr auto stripped = stripped_type_name<Type>();
constexpr auto value = hashed_string::value(stripped.data(), stripped.size());
return value;
}
template<typename Type>
[[nodiscard]] static id_type type_hash(char) noexcept {
static const auto value = [](const auto stripped) {
return hashed_string::value(stripped.data(), stripped.size());
}(stripped_type_name<Type>());
return value;
}
} // namespace internal
/**
* Internal details not to be documented.
* @endcond
*/
/**
* @brief Type sequential identifier.
* @tparam Type Type for which to generate a sequential identifier.
*/
template<typename Type, typename = void>
struct ENTT_API type_index final {
/**
* @brief Returns the sequential identifier of a given type.
* @return The sequential identifier of a given type.
*/
[[nodiscard]] static id_type value() noexcept {
static const id_type value = internal::type_index::next();
return value;
}
/*! @copydoc value */
[[nodiscard]] constexpr operator id_type() const noexcept {
return value();
}
};
/**
* @brief Type hash.
* @tparam Type Type for which to generate a hash value.
*/
template<typename Type, typename = void>
struct type_hash final {
/**
* @brief Returns the numeric representation of a given type.
* @return The numeric representation of the given type.
*/
#if defined ENTT_PRETTY_FUNCTION
[[nodiscard]] static constexpr id_type value() noexcept {
return internal::type_hash<Type>(0);
#else
[[nodiscard]] static constexpr id_type value() noexcept {
return type_index<Type>::value();
#endif
}
/*! @copydoc value */
[[nodiscard]] constexpr operator id_type() const noexcept {
return value();
}
};
/**
* @brief Type name.
* @tparam Type Type for which to generate a name.
*/
template<typename Type, typename = void>
struct type_name final {
/**
* @brief Returns the name of a given type.
* @return The name of the given type.
*/
[[nodiscard]] static constexpr std::string_view value() noexcept {
return internal::type_name<Type>(0);
}
/*! @copydoc value */
[[nodiscard]] constexpr operator std::string_view() const noexcept {
return value();
}
};
/*! @brief Implementation specific information about a type. */
struct type_info final {
/**
* @brief Constructs a type info object for a given type.
* @tparam Type Type for which to construct a type info object.
*/
template<typename Type>
constexpr type_info(std::in_place_type_t<Type>) noexcept
: seq{type_index<std::remove_cv_t<std::remove_reference_t<Type>>>::value()},
identifier{type_hash<std::remove_cv_t<std::remove_reference_t<Type>>>::value()},
alias{type_name<std::remove_cv_t<std::remove_reference_t<Type>>>::value()} {}
/**
* @brief Type index.
* @return Type index.
*/
[[nodiscard]] constexpr id_type index() const noexcept {
return seq;
}
/**
* @brief Type hash.
* @return Type hash.
*/
[[nodiscard]] constexpr id_type hash() const noexcept {
return identifier;
}
/**
* @brief Type name.
* @return Type name.
*/
[[nodiscard]] constexpr std::string_view name() const noexcept {
return alias;
}
private:
id_type seq;
id_type identifier;
std::string_view alias;
};
/**
* @brief Compares the contents of two type info objects.
* @param lhs A type info object.
* @param rhs A type info object.
* @return True if the two type info objects are identical, false otherwise.
*/
[[nodiscard]] inline constexpr bool operator==(const type_info &lhs, const type_info &rhs) noexcept {
return lhs.hash() == rhs.hash();
}
/**
* @brief Compares the contents of two type info objects.
* @param lhs A type info object.
* @param rhs A type info object.
* @return True if the two type info objects differ, false otherwise.
*/
[[nodiscard]] inline constexpr bool operator!=(const type_info &lhs, const type_info &rhs) noexcept {
return !(lhs == rhs);
}
/**
* @brief Compares two type info objects.
* @param lhs A valid type info object.
* @param rhs A valid type info object.
* @return True if the first element is less than the second, false otherwise.
*/
[[nodiscard]] constexpr bool operator<(const type_info &lhs, const type_info &rhs) noexcept {
return lhs.index() < rhs.index();
}
/**
* @brief Compares two type info objects.
* @param lhs A valid type info object.
* @param rhs A valid type info object.
* @return True if the first element is less than or equal to the second, false
* otherwise.
*/
[[nodiscard]] constexpr bool operator<=(const type_info &lhs, const type_info &rhs) noexcept {
return !(rhs < lhs);
}
/**
* @brief Compares two type info objects.
* @param lhs A valid type info object.
* @param rhs A valid type info object.
* @return True if the first element is greater than the second, false
* otherwise.
*/
[[nodiscard]] constexpr bool operator>(const type_info &lhs, const type_info &rhs) noexcept {
return rhs < lhs;
}
/**
* @brief Compares two type info objects.
* @param lhs A valid type info object.
* @param rhs A valid type info object.
* @return True if the first element is greater than or equal to the second,
* false otherwise.
*/
[[nodiscard]] constexpr bool operator>=(const type_info &lhs, const type_info &rhs) noexcept {
return !(lhs < rhs);
}
/**
* @brief Returns the type info object associated to a given type.
*
* The returned element refers to an object with static storage duration.<br/>
* The type doesn't need to be a complete type. If the type is a reference, the
* result refers to the referenced type. In all cases, top-level cv-qualifiers
* are ignored.
*
* @tparam Type Type for which to generate a type info object.
* @return A reference to a properly initialized type info object.
*/
template<typename Type>
[[nodiscard]] const type_info &type_id() noexcept {
if constexpr(std::is_same_v<Type, std::remove_cv_t<std::remove_reference_t<Type>>>) {
static type_info instance{std::in_place_type<Type>};
return instance;
} else {
return type_id<std::remove_cv_t<std::remove_reference_t<Type>>>();
}
}
/*! @copydoc type_id */
template<typename Type>
[[nodiscard]] const type_info &type_id(Type &&) noexcept {
return type_id<std::remove_cv_t<std::remove_reference_t<Type>>>();
}
} // namespace entt
#endif
// #include "../core/type_traits.hpp"
#ifndef ENTT_CORE_TYPE_TRAITS_HPP
#define ENTT_CORE_TYPE_TRAITS_HPP
#include <cstddef>
#include <iterator>
#include <type_traits>
#include <utility>
// #include "../config/config.h"
// #include "fwd.hpp"
namespace entt {
/**
* @brief Utility class to disambiguate overloaded functions.
* @tparam N Number of choices available.
*/
template<std::size_t N>
struct choice_t
// Unfortunately, doxygen cannot parse such a construct.
: /*! @cond TURN_OFF_DOXYGEN */ choice_t<N - 1> /*! @endcond */
{};
/*! @copybrief choice_t */
template<>
struct choice_t<0> {};
/**
* @brief Variable template for the choice trick.
* @tparam N Number of choices available.
*/
template<std::size_t N>
inline constexpr choice_t<N> choice{};
/**
* @brief Identity type trait.
*
* Useful to establish non-deduced contexts in template argument deduction
* (waiting for C++20) or to provide types through function arguments.
*
* @tparam Type A type.
*/
template<typename Type>
struct type_identity {
/*! @brief Identity type. */
using type = Type;
};
/**
* @brief Helper type.
* @tparam Type A type.
*/
template<typename Type>
using type_identity_t = typename type_identity<Type>::type;
/**
* @brief A type-only `sizeof` wrapper that returns 0 where `sizeof` complains.
* @tparam Type The type of which to return the size.
* @tparam The size of the type if `sizeof` accepts it, 0 otherwise.
*/
template<typename Type, typename = void>
struct size_of: std::integral_constant<std::size_t, 0u> {};
/*! @copydoc size_of */
template<typename Type>
struct size_of<Type, std::void_t<decltype(sizeof(Type))>>
: std::integral_constant<std::size_t, sizeof(Type)> {};
/**
* @brief Helper variable template.
* @tparam Type The type of which to return the size.
*/
template<typename Type>
inline constexpr std::size_t size_of_v = size_of<Type>::value;
/**
* @brief Using declaration to be used to _repeat_ the same type a number of
* times equal to the size of a given parameter pack.
* @tparam Type A type to repeat.
*/
template<typename Type, typename>
using unpack_as_type = Type;
/**
* @brief Helper variable template to be used to _repeat_ the same value a
* number of times equal to the size of a given parameter pack.
* @tparam Value A value to repeat.
*/
template<auto Value, typename>
inline constexpr auto unpack_as_value = Value;
/**
* @brief Wraps a static constant.
* @tparam Value A static constant.
*/
template<auto Value>
using integral_constant = std::integral_constant<decltype(Value), Value>;
/**
* @brief Alias template to facilitate the creation of named values.
* @tparam Value A constant value at least convertible to `id_type`.
*/
template<id_type Value>
using tag = integral_constant<Value>;
/**
* @brief A class to use to push around lists of types, nothing more.
* @tparam Type Types provided by the type list.
*/
template<typename... Type>
struct type_list {
/*! @brief Type list type. */
using type = type_list;
/*! @brief Compile-time number of elements in the type list. */
static constexpr auto size = sizeof...(Type);
};
/*! @brief Primary template isn't defined on purpose. */
template<std::size_t, typename>
struct type_list_element;
/**
* @brief Provides compile-time indexed access to the types of a type list.
* @tparam Index Index of the type to return.
* @tparam First First type provided by the type list.
* @tparam Other Other types provided by the type list.
*/
template<std::size_t Index, typename First, typename... Other>
struct type_list_element<Index, type_list<First, Other...>>
: type_list_element<Index - 1u, type_list<Other...>> {};
/**
* @brief Provides compile-time indexed access to the types of a type list.
* @tparam First First type provided by the type list.
* @tparam Other Other types provided by the type list.
*/
template<typename First, typename... Other>
struct type_list_element<0u, type_list<First, Other...>> {
/*! @brief Searched type. */
using type = First;
};
/**
* @brief Helper type.
* @tparam Index Index of the type to return.
* @tparam List Type list to search into.
*/
template<std::size_t Index, typename List>
using type_list_element_t = typename type_list_element<Index, List>::type;
/*! @brief Primary template isn't defined on purpose. */
template<typename, typename>
struct type_list_index;
/**
* @brief Provides compile-time type access to the types of a type list.
* @tparam Type Type to look for and for which to return the index.
* @tparam First First type provided by the type list.
* @tparam Other Other types provided by the type list.
*/
template<typename Type, typename First, typename... Other>
struct type_list_index<Type, type_list<First, Other...>> {
/*! @brief Unsigned integer type. */
using value_type = std::size_t;
/*! @brief Compile-time position of the given type in the sublist. */
static constexpr value_type value = 1u + type_list_index<Type, type_list<Other...>>::value;
};
/**
* @brief Provides compile-time type access to the types of a type list.
* @tparam Type Type to look for and for which to return the index.
* @tparam Other Other types provided by the type list.
*/
template<typename Type, typename... Other>
struct type_list_index<Type, type_list<Type, Other...>> {
static_assert(type_list_index<Type, type_list<Other...>>::value == sizeof...(Other), "Non-unique type");
/*! @brief Unsigned integer type. */
using value_type = std::size_t;
/*! @brief Compile-time position of the given type in the sublist. */
static constexpr value_type value = 0u;
};
/**
* @brief Provides compile-time type access to the types of a type list.
* @tparam Type Type to look for and for which to return the index.
*/
template<typename Type>
struct type_list_index<Type, type_list<>> {
/*! @brief Unsigned integer type. */
using value_type = std::size_t;
/*! @brief Compile-time position of the given type in the sublist. */
static constexpr value_type value = 0u;
};
/**
* @brief Helper variable template.
* @tparam List Type list.
* @tparam Type Type to look for and for which to return the index.
*/
template<typename Type, typename List>
inline constexpr std::size_t type_list_index_v = type_list_index<Type, List>::value;
/**
* @brief Concatenates multiple type lists.
* @tparam Type Types provided by the first type list.
* @tparam Other Types provided by the second type list.
* @return A type list composed by the types of both the type lists.
*/
template<typename... Type, typename... Other>
constexpr type_list<Type..., Other...> operator+(type_list<Type...>, type_list<Other...>) {
return {};
}
/*! @brief Primary template isn't defined on purpose. */
template<typename...>
struct type_list_cat;
/*! @brief Concatenates multiple type lists. */
template<>
struct type_list_cat<> {
/*! @brief A type list composed by the types of all the type lists. */
using type = type_list<>;
};
/**
* @brief Concatenates multiple type lists.
* @tparam Type Types provided by the first type list.
* @tparam Other Types provided by the second type list.
* @tparam List Other type lists, if any.
*/
template<typename... Type, typename... Other, typename... List>
struct type_list_cat<type_list<Type...>, type_list<Other...>, List...> {
/*! @brief A type list composed by the types of all the type lists. */
using type = typename type_list_cat<type_list<Type..., Other...>, List...>::type;
};
/**
* @brief Concatenates multiple type lists.
* @tparam Type Types provided by the type list.
*/
template<typename... Type>
struct type_list_cat<type_list<Type...>> {
/*! @brief A type list composed by the types of all the type lists. */
using type = type_list<Type...>;
};
/**
* @brief Helper type.
* @tparam List Type lists to concatenate.
*/
template<typename... List>
using type_list_cat_t = typename type_list_cat<List...>::type;
/*! @brief Primary template isn't defined on purpose. */
template<typename>
struct type_list_unique;
/**
* @brief Removes duplicates types from a type list.
* @tparam Type One of the types provided by the given type list.
* @tparam Other The other types provided by the given type list.
*/
template<typename Type, typename... Other>
struct type_list_unique<type_list<Type, Other...>> {
/*! @brief A type list without duplicate types. */
using type = std::conditional_t<
(std::is_same_v<Type, Other> || ...),
typename type_list_unique<type_list<Other...>>::type,
type_list_cat_t<type_list<Type>, typename type_list_unique<type_list<Other...>>::type>>;
};
/*! @brief Removes duplicates types from a type list. */
template<>
struct type_list_unique<type_list<>> {
/*! @brief A type list without duplicate types. */
using type = type_list<>;
};
/**
* @brief Helper type.
* @tparam Type A type list.
*/
template<typename Type>
using type_list_unique_t = typename type_list_unique<Type>::type;
/**
* @brief Provides the member constant `value` to true if a type list contains a
* given type, false otherwise.
* @tparam List Type list.
* @tparam Type Type to look for.
*/
template<typename List, typename Type>
struct type_list_contains;
/**
* @copybrief type_list_contains
* @tparam Type Types provided by the type list.
* @tparam Other Type to look for.
*/
template<typename... Type, typename Other>
struct type_list_contains<type_list<Type...>, Other>: std::disjunction<std::is_same<Type, Other>...> {};
/**
* @brief Helper variable template.
* @tparam List Type list.
* @tparam Type Type to look for.
*/
template<typename List, typename Type>
inline constexpr bool type_list_contains_v = type_list_contains<List, Type>::value;
/*! @brief Primary template isn't defined on purpose. */
template<typename...>
struct type_list_diff;
/**
* @brief Computes the difference between two type lists.
* @tparam Type Types provided by the first type list.
* @tparam Other Types provided by the second type list.
*/
template<typename... Type, typename... Other>
struct type_list_diff<type_list<Type...>, type_list<Other...>> {
/*! @brief A type list that is the difference between the two type lists. */
using type = type_list_cat_t<std::conditional_t<type_list_contains_v<type_list<Other...>, Type>, type_list<>, type_list<Type>>...>;
};
/**
* @brief Helper type.
* @tparam List Type lists between which to compute the difference.
*/
template<typename... List>
using type_list_diff_t = typename type_list_diff<List...>::type;
/*! @brief Primary template isn't defined on purpose. */
template<typename, template<typename...> class>
struct type_list_transform;
/**
* @brief Applies a given _function_ to a type list and generate a new list.
* @tparam Type Types provided by the type list.
* @tparam Op Unary operation as template class with a type member named `type`.
*/
template<typename... Type, template<typename...> class Op>
struct type_list_transform<type_list<Type...>, Op> {
/*! @brief Resulting type list after applying the transform function. */
using type = type_list<typename Op<Type>::type...>;
};
/**
* @brief Helper type.
* @tparam List Type list.
* @tparam Op Unary operation as template class with a type member named `type`.
*/
template<typename List, template<typename...> class Op>
using type_list_transform_t = typename type_list_transform<List, Op>::type;
/**
* @brief A class to use to push around lists of constant values, nothing more.
* @tparam Value Values provided by the value list.
*/
template<auto... Value>
struct value_list {
/*! @brief Value list type. */
using type = value_list;
/*! @brief Compile-time number of elements in the value list. */
static constexpr auto size = sizeof...(Value);
};
/*! @brief Primary template isn't defined on purpose. */
template<std::size_t, typename>
struct value_list_element;
/**
* @brief Provides compile-time indexed access to the values of a value list.
* @tparam Index Index of the value to return.
* @tparam Value First value provided by the value list.
* @tparam Other Other values provided by the value list.
*/
template<std::size_t Index, auto Value, auto... Other>
struct value_list_element<Index, value_list<Value, Other...>>
: value_list_element<Index - 1u, value_list<Other...>> {};
/**
* @brief Provides compile-time indexed access to the types of a type list.
* @tparam Value First value provided by the value list.
* @tparam Other Other values provided by the value list.
*/
template<auto Value, auto... Other>
struct value_list_element<0u, value_list<Value, Other...>> {
/*! @brief Searched value. */
static constexpr auto value = Value;
};
/**
* @brief Helper type.
* @tparam Index Index of the value to return.
* @tparam List Value list to search into.
*/
template<std::size_t Index, typename List>
inline constexpr auto value_list_element_v = value_list_element<Index, List>::value;
/**
* @brief Concatenates multiple value lists.
* @tparam Value Values provided by the first value list.
* @tparam Other Values provided by the second value list.
* @return A value list composed by the values of both the value lists.
*/
template<auto... Value, auto... Other>
constexpr value_list<Value..., Other...> operator+(value_list<Value...>, value_list<Other...>) {
return {};
}
/*! @brief Primary template isn't defined on purpose. */
template<typename...>
struct value_list_cat;
/*! @brief Concatenates multiple value lists. */
template<>
struct value_list_cat<> {
/*! @brief A value list composed by the values of all the value lists. */
using type = value_list<>;
};
/**
* @brief Concatenates multiple value lists.
* @tparam Value Values provided by the first value list.
* @tparam Other Values provided by the second value list.
* @tparam List Other value lists, if any.
*/
template<auto... Value, auto... Other, typename... List>
struct value_list_cat<value_list<Value...>, value_list<Other...>, List...> {
/*! @brief A value list composed by the values of all the value lists. */
using type = typename value_list_cat<value_list<Value..., Other...>, List...>::type;
};
/**
* @brief Concatenates multiple value lists.
* @tparam Value Values provided by the value list.
*/
template<auto... Value>
struct value_list_cat<value_list<Value...>> {
/*! @brief A value list composed by the values of all the value lists. */
using type = value_list<Value...>;
};
/**
* @brief Helper type.
* @tparam List Value lists to concatenate.
*/
template<typename... List>
using value_list_cat_t = typename value_list_cat<List...>::type;
/*! @brief Same as std::is_invocable, but with tuples. */
template<typename, typename>
struct is_applicable: std::false_type {};
/**
* @copybrief is_applicable
* @tparam Func A valid function type.
* @tparam Tuple Tuple-like type.
* @tparam Args The list of arguments to use to probe the function type.
*/
template<typename Func, template<typename...> class Tuple, typename... Args>
struct is_applicable<Func, Tuple<Args...>>: std::is_invocable<Func, Args...> {};
/**
* @copybrief is_applicable
* @tparam Func A valid function type.
* @tparam Tuple Tuple-like type.
* @tparam Args The list of arguments to use to probe the function type.
*/
template<typename Func, template<typename...> class Tuple, typename... Args>
struct is_applicable<Func, const Tuple<Args...>>: std::is_invocable<Func, Args...> {};
/**
* @brief Helper variable template.
* @tparam Func A valid function type.
* @tparam Args The list of arguments to use to probe the function type.
*/
template<typename Func, typename Args>
inline constexpr bool is_applicable_v = is_applicable<Func, Args>::value;
/*! @brief Same as std::is_invocable_r, but with tuples for arguments. */
template<typename, typename, typename>
struct is_applicable_r: std::false_type {};
/**
* @copybrief is_applicable_r
* @tparam Ret The type to which the return type of the function should be
* convertible.
* @tparam Func A valid function type.
* @tparam Args The list of arguments to use to probe the function type.
*/
template<typename Ret, typename Func, typename... Args>
struct is_applicable_r<Ret, Func, std::tuple<Args...>>: std::is_invocable_r<Ret, Func, Args...> {};
/**
* @brief Helper variable template.
* @tparam Ret The type to which the return type of the function should be
* convertible.
* @tparam Func A valid function type.
* @tparam Args The list of arguments to use to probe the function type.
*/
template<typename Ret, typename Func, typename Args>
inline constexpr bool is_applicable_r_v = is_applicable_r<Ret, Func, Args>::value;
/**
* @brief Provides the member constant `value` to true if a given type is
* complete, false otherwise.
* @tparam Type The type to test.
*/
template<typename Type, typename = void>
struct is_complete: std::false_type {};
/*! @copydoc is_complete */
template<typename Type>
struct is_complete<Type, std::void_t<decltype(sizeof(Type))>>: std::true_type {};
/**
* @brief Helper variable template.
* @tparam Type The type to test.
*/
template<typename Type>
inline constexpr bool is_complete_v = is_complete<Type>::value;
/**
* @brief Provides the member constant `value` to true if a given type is an
* iterator, false otherwise.
* @tparam Type The type to test.
*/
template<typename Type, typename = void>
struct is_iterator: std::false_type {};
/**
* @cond TURN_OFF_DOXYGEN
* Internal details not to be documented.
*/
namespace internal {
template<typename, typename = void>
struct has_iterator_category: std::false_type {};
template<typename Type>
struct has_iterator_category<Type, std::void_t<typename std::iterator_traits<Type>::iterator_category>>: std::true_type {};
} // namespace internal
/**
* Internal details not to be documented.
* @endcond
*/
/*! @copydoc is_iterator */
template<typename Type>
struct is_iterator<Type, std::enable_if_t<!std::is_same_v<std::remove_cv_t<std::remove_pointer_t<Type>>, void>>>
: internal::has_iterator_category<Type> {};
/**
* @brief Helper variable template.
* @tparam Type The type to test.
*/
template<typename Type>
inline constexpr bool is_iterator_v = is_iterator<Type>::value;
/**
* @brief Provides the member constant `value` to true if a given type is both
* an empty and non-final class, false otherwise.
* @tparam Type The type to test
*/
template<typename Type>
struct is_ebco_eligible
: std::conjunction<std::is_empty<Type>, std::negation<std::is_final<Type>>> {};
/**
* @brief Helper variable template.
* @tparam Type The type to test.
*/
template<typename Type>
inline constexpr bool is_ebco_eligible_v = is_ebco_eligible<Type>::value;
/**
* @brief Provides the member constant `value` to true if `Type::is_transparent`
* is valid and denotes a type, false otherwise.
* @tparam Type The type to test.
*/
template<typename Type, typename = void>
struct is_transparent: std::false_type {};
/*! @copydoc is_transparent */
template<typename Type>
struct is_transparent<Type, std::void_t<typename Type::is_transparent>>: std::true_type {};
/**
* @brief Helper variable template.
* @tparam Type The type to test.
*/
template<typename Type>
inline constexpr bool is_transparent_v = is_transparent<Type>::value;
/**
* @brief Provides the member constant `value` to true if a given type is
* equality comparable, false otherwise.
* @tparam Type The type to test.
*/
template<typename Type, typename = void>
struct is_equality_comparable: std::false_type {};
/**
* @cond TURN_OFF_DOXYGEN
* Internal details not to be documented.
*/
namespace internal {
template<typename, typename = void>
struct has_tuple_size_value: std::false_type {};
template<typename Type>
struct has_tuple_size_value<Type, std::void_t<decltype(std::tuple_size<const Type>::value)>>: std::true_type {};
template<typename Type, std::size_t... Index>
[[nodiscard]] constexpr bool unpack_maybe_equality_comparable(std::index_sequence<Index...>) {
return (is_equality_comparable<std::tuple_element_t<Index, Type>>::value && ...);
}
template<typename>
[[nodiscard]] constexpr bool maybe_equality_comparable(choice_t<0>) {
return true;
}
template<typename Type>
[[nodiscard]] constexpr auto maybe_equality_comparable(choice_t<1>) -> decltype(std::declval<typename Type::value_type>(), bool{}) {
if constexpr(is_iterator_v<Type>) {
return true;
} else if constexpr(std::is_same_v<typename Type::value_type, Type>) {
return maybe_equality_comparable<Type>(choice<0>);
} else {
return is_equality_comparable<typename Type::value_type>::value;
}
}
template<typename Type>
[[nodiscard]] constexpr std::enable_if_t<is_complete_v<std::tuple_size<std::remove_cv_t<Type>>>, bool> maybe_equality_comparable(choice_t<2>) {
if constexpr(has_tuple_size_value<Type>::value) {
return unpack_maybe_equality_comparable<Type>(std::make_index_sequence<std::tuple_size<Type>::value>{});
} else {
return maybe_equality_comparable<Type>(choice<1>);
}
}
} // namespace internal
/**
* Internal details not to be documented.
* @endcond
*/
/*! @copydoc is_equality_comparable */
template<typename Type>
struct is_equality_comparable<Type, std::void_t<decltype(std::declval<Type>() == std::declval<Type>())>>
: std::bool_constant<internal::maybe_equality_comparable<Type>(choice<2>)> {};
/**
* @brief Helper variable template.
* @tparam Type The type to test.
*/
template<typename Type>
inline constexpr bool is_equality_comparable_v = is_equality_comparable<Type>::value;
/**
* @brief Transcribes the constness of a type to another type.
* @tparam To The type to which to transcribe the constness.
* @tparam From The type from which to transcribe the constness.
*/
template<typename To, typename From>
struct constness_as {
/*! @brief The type resulting from the transcription of the constness. */
using type = std::remove_const_t<To>;
};
/*! @copydoc constness_as */
template<typename To, typename From>
struct constness_as<To, const From> {
/*! @brief The type resulting from the transcription of the constness. */
using type = const To;
};
/**
* @brief Alias template to facilitate the transcription of the constness.
* @tparam To The type to which to transcribe the constness.
* @tparam From The type from which to transcribe the constness.
*/
template<typename To, typename From>
using constness_as_t = typename constness_as<To, From>::type;
/**
* @brief Extracts the class of a non-static member object or function.
* @tparam Member A pointer to a non-static member object or function.
*/
template<typename Member>
class member_class {
static_assert(std::is_member_pointer_v<Member>, "Invalid pointer type to non-static member object or function");
template<typename Class, typename Ret, typename... Args>
static Class *clazz(Ret (Class::*)(Args...));
template<typename Class, typename Ret, typename... Args>
static Class *clazz(Ret (Class::*)(Args...) const);
template<typename Class, typename Type>
static Class *clazz(Type Class::*);
public:
/*! @brief The class of the given non-static member object or function. */
using type = std::remove_pointer_t<decltype(clazz(std::declval<Member>()))>;
};
/**
* @brief Helper type.
* @tparam Member A pointer to a non-static member object or function.
*/
template<typename Member>
using member_class_t = typename member_class<Member>::type;
/**
* @brief Extracts the n-th argument of a given function or member function.
* @tparam Index The index of the argument to extract.
* @tparam Candidate A valid function, member function or data member.
*/
template<std::size_t Index, auto Candidate>
class nth_argument {
template<typename Ret, typename... Args>
static constexpr type_list<Args...> pick_up(Ret (*)(Args...));
template<typename Ret, typename Class, typename... Args>
static constexpr type_list<Args...> pick_up(Ret (Class ::*)(Args...));
template<typename Ret, typename Class, typename... Args>
static constexpr type_list<Args...> pick_up(Ret (Class ::*)(Args...) const);
template<typename Type, typename Class>
static constexpr type_list<Type> pick_up(Type Class ::*);
public:
/*! @brief N-th argument of the given function or member function. */
using type = type_list_element_t<Index, decltype(pick_up(Candidate))>;
};
/**
* @brief Helper type.
* @tparam Index The index of the argument to extract.
* @tparam Candidate A valid function, member function or data member.
*/
template<std::size_t Index, auto Candidate>
using nth_argument_t = typename nth_argument<Index, Candidate>::type;
} // namespace entt
#endif
// #include "../core/utility.hpp"
// #include "../locator/locator.hpp"
#ifndef ENTT_LOCATOR_LOCATOR_HPP
#define ENTT_LOCATOR_LOCATOR_HPP
#include <memory>
#include <utility>
// #include "../config/config.h"
#ifndef ENTT_CONFIG_CONFIG_H
#define ENTT_CONFIG_CONFIG_H
// #include "version.h"
#ifndef ENTT_CONFIG_VERSION_H
#define ENTT_CONFIG_VERSION_H
// #include "macro.h"
#ifndef ENTT_CONFIG_MACRO_H
#define ENTT_CONFIG_MACRO_H
#define ENTT_STR(arg) #arg
#define ENTT_XSTR(arg) ENTT_STR(arg)
#endif
#define ENTT_VERSION_MAJOR 3
#define ENTT_VERSION_MINOR 11
#define ENTT_VERSION_PATCH 1
#define ENTT_VERSION \
ENTT_XSTR(ENTT_VERSION_MAJOR) \
"." ENTT_XSTR(ENTT_VERSION_MINOR) "." ENTT_XSTR(ENTT_VERSION_PATCH)
#endif
#if defined(__cpp_exceptions) && !defined(ENTT_NOEXCEPTION)
# define ENTT_CONSTEXPR
# define ENTT_THROW throw
# define ENTT_TRY try
# define ENTT_CATCH catch(...)
#else
# define ENTT_CONSTEXPR constexpr // use only with throwing functions (waiting for C++20)
# define ENTT_THROW
# define ENTT_TRY if(true)
# define ENTT_CATCH if(false)
#endif
#ifdef ENTT_USE_ATOMIC
# include <atomic>
# define ENTT_MAYBE_ATOMIC(Type) std::atomic<Type>
#else
# define ENTT_MAYBE_ATOMIC(Type) Type
#endif
#ifndef ENTT_ID_TYPE
# include <cstdint>
# define ENTT_ID_TYPE std::uint32_t
#endif
#ifndef ENTT_SPARSE_PAGE
# define ENTT_SPARSE_PAGE 4096
#endif
#ifndef ENTT_PACKED_PAGE
# define ENTT_PACKED_PAGE 1024
#endif
#ifdef ENTT_DISABLE_ASSERT
# undef ENTT_ASSERT
# define ENTT_ASSERT(condition, msg) (void(0))
#elif !defined ENTT_ASSERT
# include <cassert>
# define ENTT_ASSERT(condition, msg) assert(condition)
#endif
#ifdef ENTT_DISABLE_ASSERT
# undef ENTT_ASSERT_CONSTEXPR
# define ENTT_ASSERT_CONSTEXPR(condition, msg) (void(0))
#elif !defined ENTT_ASSERT_CONSTEXPR
# define ENTT_ASSERT_CONSTEXPR(condition, msg) ENTT_ASSERT(condition, msg)
#endif
#ifdef ENTT_NO_ETO
# define ENTT_ETO_TYPE(Type) void
#else
# define ENTT_ETO_TYPE(Type) Type
#endif
#ifdef ENTT_STANDARD_CPP
# define ENTT_NONSTD false
#else
# define ENTT_NONSTD true
# if defined __clang__ || defined __GNUC__
# define ENTT_PRETTY_FUNCTION __PRETTY_FUNCTION__
# define ENTT_PRETTY_FUNCTION_PREFIX '='
# define ENTT_PRETTY_FUNCTION_SUFFIX ']'
# elif defined _MSC_VER
# define ENTT_PRETTY_FUNCTION __FUNCSIG__
# define ENTT_PRETTY_FUNCTION_PREFIX '<'
# define ENTT_PRETTY_FUNCTION_SUFFIX '>'
# endif
#endif
#if defined _MSC_VER
# pragma detect_mismatch("entt.version", ENTT_VERSION)
# pragma detect_mismatch("entt.noexcept", ENTT_XSTR(ENTT_TRY))
# pragma detect_mismatch("entt.id", ENTT_XSTR(ENTT_ID_TYPE))
# pragma detect_mismatch("entt.nonstd", ENTT_XSTR(ENTT_NONSTD))
#endif
#endif
namespace entt {
/**
* @brief Service locator, nothing more.
*
* A service locator is used to do what it promises: locate services.<br/>
* Usually service locators are tightly bound to the services they expose and
* thus it's hard to define a general purpose class to do that. This tiny class
* tries to fill the gap and to get rid of the burden of defining a different
* specific locator for each application.
*
* @note
* Users shouldn't retain references to a service. The recommended way is to
* retrieve the service implementation currently set each and every time the
* need for it arises. The risk is to incur in unexpected behaviors otherwise.
*
* @tparam Service Service type.
*/
template<typename Service>
class locator final {
class service_handle {
friend class locator<Service>;
std::shared_ptr<Service> value{};
};
public:
/*! @brief Service type. */
using type = Service;
/*! @brief Service node type. */
using node_type = service_handle;
/*! @brief Default constructor, deleted on purpose. */
locator() = delete;
/*! @brief Default destructor, deleted on purpose. */
~locator() = delete;
/**
* @brief Checks whether a service locator contains a value.
* @return True if the service locator contains a value, false otherwise.
*/
[[nodiscard]] static bool has_value() noexcept {
return (service != nullptr);
}
/**
* @brief Returns a reference to a valid service, if any.
*
* @warning
* Invoking this function can result in undefined behavior if the service
* hasn't been set yet.
*
* @return A reference to the service currently set, if any.
*/
[[nodiscard]] static Service &value() noexcept {
ENTT_ASSERT(has_value(), "Service not available");
return *service;
}
/**
* @brief Returns a service if available or sets it from a fallback type.
*
* Arguments are used only if a service doesn't already exist. In all other
* cases, they are discarded.
*
* @tparam Args Types of arguments to use to construct the fallback service.
* @tparam Impl Fallback service type.
* @param args Parameters to use to construct the fallback service.
* @return A reference to a valid service.
*/
template<typename Impl = Service, typename... Args>
[[nodiscard]] static Service &value_or(Args &&...args) {
return service ? *service : emplace<Impl>(std::forward<Args>(args)...);
}
/**
* @brief Sets or replaces a service.
* @tparam Impl Service type.
* @tparam Args Types of arguments to use to construct the service.
* @param args Parameters to use to construct the service.
* @return A reference to a valid service.
*/
template<typename Impl = Service, typename... Args>
static Service &emplace(Args &&...args) {
service = std::make_shared<Impl>(std::forward<Args>(args)...);
return *service;
}
/**
* @brief Sets or replaces a service using a given allocator.
* @tparam Impl Service type.
* @tparam Allocator Type of allocator used to manage memory and elements.
* @tparam Args Types of arguments to use to construct the service.
* @param alloc The allocator to use.
* @param args Parameters to use to construct the service.
* @return A reference to a valid service.
*/
template<typename Impl = Service, typename Allocator, typename... Args>
static Service &allocate_emplace(Allocator alloc, Args &&...args) {
service = std::allocate_shared<Impl>(alloc, std::forward<Args>(args)...);
return *service;
}
/**
* @brief Returns a handle to the underlying service.
* @return A handle to the underlying service.
*/
static node_type handle() noexcept {
node_type node{};
node.value = service;
return node;
}
/**
* @brief Resets or replaces a service.
* @param other Optional handle with which to replace the service.
*/
static void reset(const node_type &other = {}) noexcept {
service = other.value;
}
private:
// std::shared_ptr because of its type erased allocator which is useful here
inline static std::shared_ptr<Service> service{};
};
} // namespace entt
#endif
// #include "adl_pointer.hpp"
#ifndef ENTT_META_ADL_POINTER_HPP
#define ENTT_META_ADL_POINTER_HPP
namespace entt {
/**
* @brief ADL based lookup function for dereferencing meta pointer-like types.
* @tparam Type Element type.
* @param value A pointer-like object.
* @return The value returned from the dereferenced pointer.
*/
template<typename Type>
decltype(auto) dereference_meta_pointer_like(const Type &value) {
return *value;
}
/**
* @brief Fake ADL based lookup function for meta pointer-like types.
* @tparam Type Element type.
*/
template<typename Type>
struct adl_meta_pointer_like {
/**
* @brief Uses the default ADL based lookup method to resolve the call.
* @param value A pointer-like object.
* @return The value returned from the dereferenced pointer.
*/
static decltype(auto) dereference(const Type &value) {
return dereference_meta_pointer_like(value);
}
};
} // namespace entt
#endif
// #include "context.hpp"
// #include "fwd.hpp"
#ifndef ENTT_META_FWD_HPP
#define ENTT_META_FWD_HPP
namespace entt {
class meta_sequence_container;
class meta_associative_container;
class meta_any;
struct meta_handle;
struct meta_prop;
struct meta_data;
struct meta_func;
class meta_type;
} // namespace entt
#endif
// #include "node.hpp"
#ifndef ENTT_META_NODE_HPP
#define ENTT_META_NODE_HPP
#include <cstddef>
#include <memory>
#include <type_traits>
#include <utility>
// #include "../config/config.h"
// #include "../container/dense_map.hpp"
// #include "../core/attribute.h"
#ifndef ENTT_CORE_ATTRIBUTE_H
#define ENTT_CORE_ATTRIBUTE_H
#ifndef ENTT_EXPORT
# if defined _WIN32 || defined __CYGWIN__ || defined _MSC_VER
# define ENTT_EXPORT __declspec(dllexport)
# define ENTT_IMPORT __declspec(dllimport)
# define ENTT_HIDDEN
# elif defined __GNUC__ && __GNUC__ >= 4
# define ENTT_EXPORT __attribute__((visibility("default")))
# define ENTT_IMPORT __attribute__((visibility("default")))
# define ENTT_HIDDEN __attribute__((visibility("hidden")))
# else /* Unsupported compiler */
# define ENTT_EXPORT
# define ENTT_IMPORT
# define ENTT_HIDDEN
# endif
#endif
#ifndef ENTT_API
# if defined ENTT_API_EXPORT
# define ENTT_API ENTT_EXPORT
# elif defined ENTT_API_IMPORT
# define ENTT_API ENTT_IMPORT
# else /* No API */
# define ENTT_API
# endif
#endif
#endif
// #include "../core/enum.hpp"
#ifndef ENTT_CORE_ENUM_HPP
#define ENTT_CORE_ENUM_HPP
#include <type_traits>
namespace entt {
/**
* @brief Enable bitmask support for enum classes.
* @tparam Type The enum type for which to enable bitmask support.
*/
template<typename Type, typename = void>
struct enum_as_bitmask: std::false_type {};
/*! @copydoc enum_as_bitmask */
template<typename Type>
struct enum_as_bitmask<Type, std::void_t<decltype(Type::_entt_enum_as_bitmask)>>: std::is_enum<Type> {};
/**
* @brief Helper variable template.
* @tparam Type The enum class type for which to enable bitmask support.
*/
template<typename Type>
inline constexpr bool enum_as_bitmask_v = enum_as_bitmask<Type>::value;
} // namespace entt
/**
* @brief Operator available for enums for which bitmask support is enabled.
* @tparam Type Enum class type.
* @param lhs The first value to use.
* @param rhs The second value to use.
* @return The result of invoking the operator on the underlying types of the
* two values provided.
*/
template<typename Type>
[[nodiscard]] constexpr std::enable_if_t<entt::enum_as_bitmask_v<Type>, Type>
operator|(const Type lhs, const Type rhs) noexcept {
return static_cast<Type>(static_cast<std::underlying_type_t<Type>>(lhs) | static_cast<std::underlying_type_t<Type>>(rhs));
}
/*! @copydoc operator| */
template<typename Type>
[[nodiscard]] constexpr std::enable_if_t<entt::enum_as_bitmask_v<Type>, Type>
operator&(const Type lhs, const Type rhs) noexcept {
return static_cast<Type>(static_cast<std::underlying_type_t<Type>>(lhs) & static_cast<std::underlying_type_t<Type>>(rhs));
}
/*! @copydoc operator| */
template<typename Type>
[[nodiscard]] constexpr std::enable_if_t<entt::enum_as_bitmask_v<Type>, Type>
operator^(const Type lhs, const Type rhs) noexcept {
return static_cast<Type>(static_cast<std::underlying_type_t<Type>>(lhs) ^ static_cast<std::underlying_type_t<Type>>(rhs));
}
/**
* @brief Operator available for enums for which bitmask support is enabled.
* @tparam Type Enum class type.
* @param value The value to use.
* @return The result of invoking the operator on the underlying types of the
* value provided.
*/
template<typename Type>
[[nodiscard]] constexpr std::enable_if_t<entt::enum_as_bitmask_v<Type>, Type>
operator~(const Type value) noexcept {
return static_cast<Type>(~static_cast<std::underlying_type_t<Type>>(value));
}
/*! @copydoc operator~ */
template<typename Type>
[[nodiscard]] constexpr std::enable_if_t<entt::enum_as_bitmask_v<Type>, bool>
operator!(const Type value) noexcept {
return !static_cast<std::underlying_type_t<Type>>(value);
}
/*! @copydoc operator| */
template<typename Type>
constexpr std::enable_if_t<entt::enum_as_bitmask_v<Type>, Type &>
operator|=(Type &lhs, const Type rhs) noexcept {
return (lhs = (lhs | rhs));
}
/*! @copydoc operator| */
template<typename Type>
constexpr std::enable_if_t<entt::enum_as_bitmask_v<Type>, Type &>
operator&=(Type &lhs, const Type rhs) noexcept {
return (lhs = (lhs & rhs));
}
/*! @copydoc operator| */
template<typename Type>
constexpr std::enable_if_t<entt::enum_as_bitmask_v<Type>, Type &>
operator^=(Type &lhs, const Type rhs) noexcept {
return (lhs = (lhs ^ rhs));
}
#endif
// #include "../core/fwd.hpp"
// #include "../core/type_info.hpp"
// #include "../core/type_traits.hpp"
// #include "../core/utility.hpp"
// #include "context.hpp"
// #include "type_traits.hpp"
#ifndef ENTT_META_TYPE_TRAITS_HPP
#define ENTT_META_TYPE_TRAITS_HPP
#include <type_traits>
#include <utility>
namespace entt {
/**
* @brief Traits class template to be specialized to enable support for meta
* template information.
*/
template<typename>
struct meta_template_traits;
/**
* @brief Traits class template to be specialized to enable support for meta
* sequence containers.
*/
template<typename>
struct meta_sequence_container_traits;
/**
* @brief Traits class template to be specialized to enable support for meta
* associative containers.
*/
template<typename>
struct meta_associative_container_traits;
/**
* @brief Provides the member constant `value` to true if a given type is a
* pointer-like type from the point of view of the meta system, false otherwise.
* @tparam Type Potentially pointer-like type.
*/
template<typename>
struct is_meta_pointer_like: std::false_type {};
/**
* @brief Partial specialization to ensure that const pointer-like types are
* also accepted.
* @tparam Type Potentially pointer-like type.
*/
template<typename Type>
struct is_meta_pointer_like<const Type>: is_meta_pointer_like<Type> {};
/**
* @brief Helper variable template.
* @tparam Type Potentially pointer-like type.
*/
template<typename Type>
inline constexpr auto is_meta_pointer_like_v = is_meta_pointer_like<Type>::value;
} // namespace entt
#endif
namespace entt {
class meta_any;
class meta_type;
struct meta_handle;
/**
* @cond TURN_OFF_DOXYGEN
* Internal details not to be documented.
*/
namespace internal {
enum class meta_traits : std::uint32_t {
is_none = 0x0000,
is_const = 0x0001,
is_static = 0x0002,
is_arithmetic = 0x0004,
is_integral = 0x0008,
is_signed = 0x0010,
is_array = 0x0020,
is_enum = 0x0040,
is_class = 0x0080,
is_meta_pointer_like = 0x0100,
is_meta_sequence_container = 0x0200,
is_meta_associative_container = 0x0400,
_entt_enum_as_bitmask
};
struct meta_type_node;
struct meta_prop_node {
meta_type_node (*type)(const meta_context &) noexcept {};
std::shared_ptr<void> value{};
};
struct meta_base_node {
meta_type_node (*type)(const meta_context &) noexcept {};
const void *(*cast)(const void *) noexcept {};
};
struct meta_conv_node {
meta_any (*conv)(const meta_ctx &, const void *){};
};
struct meta_ctor_node {
using size_type = std::size_t;
size_type arity{0u};
meta_type (*arg)(const meta_ctx &, const size_type) noexcept {};
meta_any (*invoke)(const meta_ctx &, meta_any *const){};
};
struct meta_dtor_node {
void (*dtor)(void *){};
};
struct meta_data_node {
using size_type = std::size_t;
meta_traits traits{meta_traits::is_none};
size_type arity{0u};
meta_type_node (*type)(const meta_context &) noexcept {};
meta_type (*arg)(const meta_ctx &, const size_type) noexcept {};
bool (*set)(meta_handle, meta_any){};
meta_any (*get)(const meta_ctx &, meta_handle){};
dense_map<id_type, meta_prop_node, identity> prop{};
};
struct meta_func_node {
using size_type = std::size_t;
meta_traits traits{meta_traits::is_none};
size_type arity{0u};
meta_type_node (*ret)(const meta_context &) noexcept {};
meta_type (*arg)(const meta_ctx &, const size_type) noexcept {};
meta_any (*invoke)(const meta_ctx &, meta_handle, meta_any *const){};
std::shared_ptr<meta_func_node> next{};
dense_map<id_type, meta_prop_node, identity> prop{};
};
struct meta_template_node {
using size_type = std::size_t;
size_type arity{0u};
meta_type_node (*type)(const meta_context &) noexcept {};
meta_type_node (*arg)(const meta_context &, const size_type) noexcept {};
};
struct meta_type_descriptor {
dense_map<id_type, meta_ctor_node, identity> ctor{};
dense_map<id_type, meta_base_node, identity> base{};
dense_map<id_type, meta_conv_node, identity> conv{};
dense_map<id_type, meta_data_node, identity> data{};
dense_map<id_type, meta_func_node, identity> func{};
dense_map<id_type, meta_prop_node, identity> prop{};
};
struct meta_type_node {
using size_type = std::size_t;
const type_info *info{};
id_type id{};
meta_traits traits{meta_traits::is_none};
size_type size_of{0u};
meta_type_node (*resolve)(const meta_context &) noexcept {};
meta_type_node (*remove_pointer)(const meta_context &) noexcept {};
meta_any (*default_constructor)(const meta_ctx &){};
double (*conversion_helper)(void *, const void *){};
meta_any (*from_void)(const meta_ctx &, void *, const void *){};
meta_template_node templ{};
meta_dtor_node dtor{};
std::shared_ptr<meta_type_descriptor> details{};
};
template<typename Type>
meta_type_node resolve(const meta_context &) noexcept;
template<typename... Args>
[[nodiscard]] auto meta_arg_node(const meta_context &context, type_list<Args...>, [[maybe_unused]] const std::size_t index) noexcept {
[[maybe_unused]] std::size_t pos{};
meta_type_node (*value)(const meta_context &) noexcept = nullptr;
((value = (pos++ == index ? &resolve<std::remove_cv_t<std::remove_reference_t<Args>>> : value)), ...);
ENTT_ASSERT(value != nullptr, "Out of bounds");
return value(context);
}
[[nodiscard]] inline const void *try_cast(const meta_context &context, const meta_type_node &from, const meta_type_node &to, const void *instance) noexcept {
if(from.info && to.info && *from.info == *to.info) {
return instance;
}
if(from.details) {
for(auto &&curr: from.details->base) {
if(const void *elem = try_cast(context, curr.second.type(context), to, curr.second.cast(instance)); elem) {
return elem;
}
}
}
return nullptr;
}
[[nodiscard]] inline const meta_type_node *try_resolve(const meta_context &context, const type_info &info) noexcept {
const auto it = context.value.find(info.hash());
return it != context.value.end() ? &it->second : nullptr;
}
template<typename Type>
[[nodiscard]] meta_type_node resolve(const meta_context &context) noexcept {
static_assert(std::is_same_v<Type, std::remove_const_t<std::remove_reference_t<Type>>>, "Invalid type");
if(auto *elem = try_resolve(context, type_id<Type>()); elem) {
return *elem;
}
meta_type_node node{
&type_id<Type>(),
type_id<Type>().hash(),
(std::is_arithmetic_v<Type> ? meta_traits::is_arithmetic : meta_traits::is_none)
| (std::is_integral_v<Type> ? meta_traits::is_integral : meta_traits::is_none)
| (std::is_signed_v<Type> ? meta_traits::is_signed : meta_traits::is_none)
| (std::is_array_v<Type> ? meta_traits::is_array : meta_traits::is_none)
| (std::is_enum_v<Type> ? meta_traits::is_enum : meta_traits::is_none)
| (std::is_class_v<Type> ? meta_traits::is_class : meta_traits::is_none)
| (is_meta_pointer_like_v<Type> ? meta_traits::is_meta_pointer_like : meta_traits::is_none)
| (is_complete_v<meta_sequence_container_traits<Type>> ? meta_traits::is_meta_sequence_container : meta_traits::is_none)
| (is_complete_v<meta_associative_container_traits<Type>> ? meta_traits::is_meta_associative_container : meta_traits::is_none),
size_of_v<Type>,
&resolve<Type>,
&resolve<std::remove_cv_t<std::remove_pointer_t<Type>>>};
if constexpr(std::is_default_constructible_v<Type>) {
node.default_constructor = +[](const meta_ctx &ctx) {
return meta_any{ctx, std::in_place_type<Type>};
};
}
if constexpr(std::is_arithmetic_v<Type>) {
node.conversion_helper = +[](void *bin, const void *value) {
return bin ? static_cast<double>(*static_cast<Type *>(bin) = static_cast<Type>(*static_cast<const double *>(value))) : static_cast<double>(*static_cast<const Type *>(value));
};
} else if constexpr(std::is_enum_v<Type>) {
node.conversion_helper = +[](void *bin, const void *value) {
return bin ? static_cast<double>(*static_cast<Type *>(bin) = static_cast<Type>(static_cast<std::underlying_type_t<Type>>(*static_cast<const double *>(value)))) : static_cast<double>(*static_cast<const Type *>(value));
};
}
if constexpr(!std::is_same_v<Type, void> && !std::is_function_v<Type>) {
node.from_void = +[](const meta_ctx &ctx, void *element, const void *as_const) {
if(element) {
return meta_any{ctx, std::in_place_type<std::decay_t<Type> &>, *static_cast<std::decay_t<Type> *>(element)};
}
return meta_any{ctx, std::in_place_type<const std::decay_t<Type> &>, *static_cast<const std::decay_t<Type> *>(as_const)};
};
}
if constexpr(is_complete_v<meta_template_traits<Type>>) {
node.templ = meta_template_node{
meta_template_traits<Type>::args_type::size,
&resolve<typename meta_template_traits<Type>::class_type>,
+[](const meta_context &area, const std::size_t index) noexcept { return meta_arg_node(area, typename meta_template_traits<Type>::args_type{}, index); }};
}
return node;
}
} // namespace internal
/**
* Internal details not to be documented.
* @endcond
*/
} // namespace entt
#endif
// #include "range.hpp"
#ifndef ENTT_META_RANGE_HPP
#define ENTT_META_RANGE_HPP
#include <cstddef>
#include <iterator>
#include <utility>
// #include "../core/fwd.hpp"
// #include "../core/iterator.hpp"
// #include "context.hpp"
namespace entt {
/**
* @cond TURN_OFF_DOXYGEN
* Internal details not to be documented.
*/
namespace internal {
template<typename Type, typename It>
struct meta_range_iterator final {
using difference_type = std::ptrdiff_t;
using value_type = std::pair<id_type, Type>;
using pointer = input_iterator_pointer<value_type>;
using reference = value_type;
using iterator_category = std::input_iterator_tag;
meta_range_iterator() noexcept
: it{},
ctx{} {}
meta_range_iterator(const meta_ctx &area, const It iter) noexcept
: it{iter},
ctx{&area} {}
meta_range_iterator &operator++() noexcept {
return ++it, *this;
}
meta_range_iterator operator++(int) noexcept {
meta_range_iterator orig = *this;
return ++(*this), orig;
}
constexpr meta_range_iterator &operator--() noexcept {
return --it, *this;
}
constexpr meta_range_iterator operator--(int) noexcept {
meta_range_iterator orig = *this;
return operator--(), orig;
}
constexpr meta_range_iterator &operator+=(const difference_type value) noexcept {
it += value;
return *this;
}
constexpr meta_range_iterator operator+(const difference_type value) const noexcept {
meta_range_iterator copy = *this;
return (copy += value);
}
constexpr meta_range_iterator &operator-=(const difference_type value) noexcept {
return (*this += -value);
}
constexpr meta_range_iterator operator-(const difference_type value) const noexcept {
return (*this + -value);
}
[[nodiscard]] constexpr reference operator[](const difference_type value) const noexcept {
return {it[value].first, Type{*ctx, it[value].second}};
}
[[nodiscard]] constexpr pointer operator->() const noexcept {
return operator*();
}
[[nodiscard]] constexpr reference operator*() const noexcept {
return {it->first, Type{*ctx, it->second}};
}
template<typename... Args>
friend constexpr std::ptrdiff_t operator-(const meta_range_iterator<Args...> &, const meta_range_iterator<Args...> &) noexcept;
template<typename... Args>
friend constexpr bool operator==(const meta_range_iterator<Args...> &, const meta_range_iterator<Args...> &) noexcept;
template<typename... Args>
friend constexpr bool operator<(const meta_range_iterator<Args...> &, const meta_range_iterator<Args...> &) noexcept;
private:
It it;
const meta_ctx *ctx;
};
template<typename... Args>
[[nodiscard]] constexpr std::ptrdiff_t operator-(const meta_range_iterator<Args...> &lhs, const meta_range_iterator<Args...> &rhs) noexcept {
return lhs.it - rhs.it;
}
template<typename... Args>
[[nodiscard]] constexpr bool operator==(const meta_range_iterator<Args...> &lhs, const meta_range_iterator<Args...> &rhs) noexcept {
return lhs.it == rhs.it;
}
template<typename... Args>
[[nodiscard]] constexpr bool operator!=(const meta_range_iterator<Args...> &lhs, const meta_range_iterator<Args...> &rhs) noexcept {
return !(lhs == rhs);
}
template<typename... Args>
[[nodiscard]] constexpr bool operator<(const meta_range_iterator<Args...> &lhs, const meta_range_iterator<Args...> &rhs) noexcept {
return lhs.it < rhs.it;
}
template<typename... Args>
[[nodiscard]] constexpr bool operator>(const meta_range_iterator<Args...> &lhs, const meta_range_iterator<Args...> &rhs) noexcept {
return rhs < lhs;
}
template<typename... Args>
[[nodiscard]] constexpr bool operator<=(const meta_range_iterator<Args...> &lhs, const meta_range_iterator<Args...> &rhs) noexcept {
return !(lhs > rhs);
}
template<typename... Args>
[[nodiscard]] constexpr bool operator>=(const meta_range_iterator<Args...> &lhs, const meta_range_iterator<Args...> &rhs) noexcept {
return !(lhs < rhs);
}
} // namespace internal
/**
* Internal details not to be documented.
* @endcond
*/
/**
* @brief Iterable range to use to iterate all types of meta objects.
* @tparam Type Type of meta objects returned.
* @tparam It Type of forward iterator.
*/
template<typename Type, typename It>
using meta_range = iterable_adaptor<internal::meta_range_iterator<Type, It>>;
} // namespace entt
#endif
// #include "type_traits.hpp"
namespace entt {
class meta_any;
class meta_type;
/*! @brief Proxy object for sequence containers. */
class meta_sequence_container {
class meta_iterator;
public:
/*! @brief Unsigned integer type. */
using size_type = std::size_t;
/*! @brief Meta iterator type. */
using iterator = meta_iterator;
/**
* @brief Context aware constructor.
* @param area The context from which to search for meta types.
*/
meta_sequence_container(const meta_ctx &area = locator<meta_ctx>::value_or()) noexcept
: ctx{&area} {}
/**
* @brief Rebinds a proxy object to a sequence container type.
* @tparam Type Type of container to wrap.
* @param instance The container to wrap.
*/
template<typename Type>
void rebind(any instance) noexcept {
value_type_node = &internal::resolve<typename Type::value_type>;
size_fn = &meta_sequence_container_traits<Type>::size;
resize_fn = &meta_sequence_container_traits<Type>::resize;
iter_fn = &meta_sequence_container_traits<Type>::iter;
insert_or_erase_fn = &meta_sequence_container_traits<Type>::insert_or_erase;
storage = std::move(instance);
}
[[nodiscard]] inline meta_type value_type() const noexcept;
[[nodiscard]] inline size_type size() const noexcept;
inline bool resize(const size_type);
inline bool clear();
[[nodiscard]] inline iterator begin();
[[nodiscard]] inline iterator end();
inline iterator insert(iterator, meta_any);
inline iterator erase(iterator);
[[nodiscard]] inline meta_any operator[](const size_type);
[[nodiscard]] inline explicit operator bool() const noexcept;
private:
const meta_ctx *ctx{};
internal::meta_type_node (*value_type_node)(const internal::meta_context &){};
size_type (*size_fn)(const any &) noexcept {};
bool (*resize_fn)(any &, size_type){};
iterator (*iter_fn)(const meta_ctx &, any &, const bool){};
iterator (*insert_or_erase_fn)(const meta_ctx &, any &, const any &, meta_any &){};
any storage{};
};
/*! @brief Proxy object for associative containers. */
class meta_associative_container {
class meta_iterator;
public:
/*! @brief Unsigned integer type. */
using size_type = std::size_t;
/*! @brief Meta iterator type. */
using iterator = meta_iterator;
/**
* @brief Context aware constructor.
* @param area The context from which to search for meta types.
*/
meta_associative_container(const meta_ctx &area = locator<meta_ctx>::value_or()) noexcept
: ctx{&area} {}
/**
* @brief Rebinds a proxy object to an associative container type.
* @tparam Type Type of container to wrap.
* @param instance The container to wrap.
*/
template<typename Type>
void rebind(any instance) noexcept {
if constexpr(!meta_associative_container_traits<Type>::key_only) {
mapped_type_node = &internal::resolve<typename Type::mapped_type>;
}
key_only_container = meta_associative_container_traits<Type>::key_only;
key_type_node = &internal::resolve<typename Type::key_type>;
value_type_node = &internal::resolve<typename Type::value_type>;
size_fn = &meta_associative_container_traits<Type>::size;
clear_fn = &meta_associative_container_traits<Type>::clear;
iter_fn = &meta_associative_container_traits<Type>::iter;
insert_or_erase_fn = &meta_associative_container_traits<Type>::insert_or_erase;
find_fn = &meta_associative_container_traits<Type>::find;
storage = std::move(instance);
}
[[nodiscard]] inline bool key_only() const noexcept;
[[nodiscard]] inline meta_type key_type() const noexcept;
[[nodiscard]] inline meta_type mapped_type() const noexcept;
[[nodiscard]] inline meta_type value_type() const noexcept;
[[nodiscard]] inline size_type size() const noexcept;
inline bool clear();
[[nodiscard]] inline iterator begin();
[[nodiscard]] inline iterator end();
inline bool insert(meta_any);
inline bool insert(meta_any, meta_any);
inline size_type erase(meta_any);
[[nodiscard]] inline iterator find(meta_any);
[[nodiscard]] inline explicit operator bool() const noexcept;
private:
const meta_ctx *ctx{};
bool key_only_container{};
internal::meta_type_node (*key_type_node)(const internal::meta_context &){};
internal::meta_type_node (*mapped_type_node)(const internal::meta_context &){};
internal::meta_type_node (*value_type_node)(const internal::meta_context &){};
size_type (*size_fn)(const any &) noexcept {};
bool (*clear_fn)(any &){};
iterator (*iter_fn)(const meta_ctx &, any &, const bool){};
size_type (*insert_or_erase_fn)(any &, meta_any &, meta_any &){};
iterator (*find_fn)(const meta_ctx &, any &, meta_any &){};
any storage{};
};
/*! @brief Opaque wrapper for values of any type. */
class meta_any {
enum class operation : std::uint8_t {
deref,
seq,
assoc
};
using vtable_type = void(const operation, const any &, void *);
template<typename Type>
static void basic_vtable([[maybe_unused]] const operation op, [[maybe_unused]] const any &value, [[maybe_unused]] void *other) {
static_assert(std::is_same_v<std::remove_cv_t<std::remove_reference_t<Type>>, Type>, "Invalid type");
if constexpr(!std::is_void_v<Type>) {
switch(op) {
case operation::deref:
if constexpr(is_meta_pointer_like_v<Type>) {
if constexpr(std::is_function_v<typename std::pointer_traits<Type>::element_type>) {
static_cast<meta_any *>(other)->emplace<Type>(any_cast<Type>(value));
} else if constexpr(!std::is_same_v<std::remove_const_t<typename std::pointer_traits<Type>::element_type>, void>) {
using in_place_type = decltype(adl_meta_pointer_like<Type>::dereference(any_cast<const Type &>(value)));
if constexpr(std::is_constructible_v<bool, Type>) {
if(const auto &pointer_like = any_cast<const Type &>(value); pointer_like) {
static_cast<meta_any *>(other)->emplace<in_place_type>(adl_meta_pointer_like<Type>::dereference(pointer_like));
}
} else {
static_cast<meta_any *>(other)->emplace<in_place_type>(adl_meta_pointer_like<Type>::dereference(any_cast<const Type &>(value)));
}
}
}
break;
case operation::seq:
if constexpr(is_complete_v<meta_sequence_container_traits<Type>>) {
static_cast<meta_sequence_container *>(other)->rebind<Type>(std::move(const_cast<any &>(value)));
}
break;
case operation::assoc:
if constexpr(is_complete_v<meta_associative_container_traits<Type>>) {
static_cast<meta_associative_container *>(other)->rebind<Type>(std::move(const_cast<any &>(value)));
}
break;
}
}
}
void release() {
if(node.dtor.dtor && owner()) {
node.dtor.dtor(storage.data());
}
}
meta_any(const meta_ctx &area, const meta_any &other, any ref) noexcept
: storage{std::move(ref)},
ctx{&area},
node{storage ? other.node : internal::meta_type_node{}},
vtable{storage ? other.vtable : &basic_vtable<void>} {}
public:
/*! Default constructor. */
meta_any() noexcept
: meta_any{meta_ctx_arg, locator<meta_ctx>::value_or()} {}
/**
* @brief Context aware constructor.
* @param area The context from which to search for meta types.
*/
meta_any(meta_ctx_arg_t, const meta_ctx &area) noexcept
: storage{},
ctx{&area},
node{},
vtable{&basic_vtable<void>} {}
/**
* @brief Constructs a wrapper by directly initializing the new object.
* @tparam Type Type of object to use to initialize the wrapper.
* @tparam Args Types of arguments to use to construct the new instance.
* @param args Parameters to use to construct the instance.
*/
template<typename Type, typename... Args>
explicit meta_any(std::in_place_type_t<Type>, Args &&...args)
: meta_any{locator<meta_ctx>::value_or(), std::in_place_type<Type>, std::forward<Args>(args)...} {}
/**
* @brief Constructs a wrapper by directly initializing the new object.
* @tparam Type Type of object to use to initialize the wrapper.
* @tparam Args Types of arguments to use to construct the new instance.
* @param area The context from which to search for meta types.
* @param args Parameters to use to construct the instance.
*/
template<typename Type, typename... Args>
explicit meta_any(const meta_ctx &area, std::in_place_type_t<Type>, Args &&...args)
: storage{std::in_place_type<Type>, std::forward<Args>(args)...},
ctx{&area},
node{internal::resolve<std::remove_cv_t<std::remove_reference_t<Type>>>(internal::meta_context::from(*ctx))},
vtable{&basic_vtable<std::remove_cv_t<std::remove_reference_t<Type>>>} {}
/**
* @brief Constructs a wrapper from a given value.
* @tparam Type Type of object to use to initialize the wrapper.
* @param value An instance of an object to use to initialize the wrapper.
*/
template<typename Type, typename = std::enable_if_t<!std::is_same_v<std::decay_t<Type>, meta_any>>>
meta_any(Type &&value)
: meta_any{locator<meta_ctx>::value_or(), std::forward<Type>(value)} {}
/**
* @brief Constructs a wrapper from a given value.
* @tparam Type Type of object to use to initialize the wrapper.
* @param area The context from which to search for meta types.
* @param value An instance of an object to use to initialize the wrapper.
*/
template<typename Type, typename = std::enable_if_t<!std::is_same_v<std::decay_t<Type>, meta_any>>>
meta_any(const meta_ctx &area, Type &&value)
: meta_any{area, std::in_place_type<std::decay_t<Type>>, std::forward<Type>(value)} {}
/**
* @brief Context aware copy constructor.
* @param area The context from which to search for meta types.
* @param other The instance to copy from.
*/
meta_any(const meta_ctx &area, const meta_any &other)
: meta_any{other} {
ctx = &area;
node = node.resolve ? node.resolve(internal::meta_context::from(*ctx)) : node;
}
/**
* @brief Context aware move constructor.
* @param area The context from which to search for meta types.
* @param other The instance to move from.
*/
meta_any(const meta_ctx &area, meta_any &&other)
: meta_any{std::move(other)} {
ctx = &area;
node = node.resolve ? node.resolve(internal::meta_context::from(*ctx)) : node;
}
/**
* @brief Copy constructor.
* @param other The instance to copy from.
*/
meta_any(const meta_any &other) = default;
/**
* @brief Move constructor.
* @param other The instance to move from.
*/
meta_any(meta_any &&other) noexcept
: storage{std::move(other.storage)},
ctx{other.ctx},
node{std::exchange(other.node, internal::meta_type_node{})},
vtable{std::exchange(other.vtable, &basic_vtable<void>)} {}
/*! @brief Frees the internal storage, whatever it means. */
~meta_any() {
release();
}
/**
* @brief Copy assignment operator.
* @param other The instance to copy from.
* @return This meta any object.
*/
meta_any &operator=(const meta_any &other) {
release();
storage = other.storage;
ctx = other.ctx;
node = other.node;
vtable = other.vtable;
return *this;
}
/**
* @brief Move assignment operator.
* @param other The instance to move from.
* @return This meta any object.
*/
meta_any &operator=(meta_any &&other) noexcept {
release();
storage = std::move(other.storage);
ctx = other.ctx;
node = std::exchange(other.node, internal::meta_type_node{});
vtable = std::exchange(other.vtable, &basic_vtable<void>);
return *this;
}
/**
* @brief Value assignment operator.
* @tparam Type Type of object to use to initialize the wrapper.
* @param value An instance of an object to use to initialize the wrapper.
* @return This meta any object.
*/
template<typename Type>
std::enable_if_t<!std::is_same_v<std::decay_t<Type>, meta_any>, meta_any &>
operator=(Type &&value) {
emplace<std::decay_t<Type>>(std::forward<Type>(value));
return *this;
}
/*! @copydoc any::type */
[[nodiscard]] inline meta_type type() const noexcept;
/*! @copydoc any::data */
[[nodiscard]] const void *data() const noexcept {
return storage.data();
}
/*! @copydoc any::data */
[[nodiscard]] void *data() noexcept {
return storage.data();
}
/**
* @brief Invokes the underlying function, if possible.
* @tparam Args Types of arguments to use to invoke the function.
* @param id Unique identifier.
* @param args Parameters to use to invoke the function.
* @return A wrapper containing the returned value, if any.
*/
template<typename... Args>
meta_any invoke(const id_type id, Args &&...args) const;
/*! @copydoc invoke */
template<typename... Args>
meta_any invoke(const id_type id, Args &&...args);
/**
* @brief Sets the value of a given variable.
* @tparam Type Type of value to assign.
* @param id Unique identifier.
* @param value Parameter to use to set the underlying variable.
* @return True in case of success, false otherwise.
*/
template<typename Type>
bool set(const id_type id, Type &&value);
/**
* @brief Gets the value of a given variable.
* @param id Unique identifier.
* @return A wrapper containing the value of the underlying variable.
*/
[[nodiscard]] meta_any get(const id_type id) const;
/*! @copydoc get */
[[nodiscard]] meta_any get(const id_type id);
/**
* @brief Tries to cast an instance to a given type.
* @tparam Type Type to which to cast the instance.
* @return A (possibly null) pointer to the contained instance.
*/
template<typename Type>
[[nodiscard]] const Type *try_cast() const {
const auto other = internal::resolve<std::remove_cv_t<Type>>(internal::meta_context::from(*ctx));
return static_cast<const Type *>(internal::try_cast(internal::meta_context::from(*ctx), node, other, data()));
}
/*! @copydoc try_cast */
template<typename Type>
[[nodiscard]] Type *try_cast() {
if constexpr(std::is_const_v<Type>) {
return std::as_const(*this).try_cast<std::remove_const_t<Type>>();
} else {
const auto other = internal::resolve<std::remove_cv_t<Type>>(internal::meta_context::from(*ctx));
return static_cast<Type *>(const_cast<void *>(internal::try_cast(internal::meta_context::from(*ctx), node, other, data())));
}
}
/**
* @brief Tries to cast an instance to a given type.
*
* @warning
* Attempting to perform an invalid cast results is undefined behavior.
*
* @tparam Type Type to which to cast the instance.
* @return A reference to the contained instance.
*/
template<typename Type>
[[nodiscard]] Type cast() const {
auto *const instance = try_cast<std::remove_reference_t<Type>>();
ENTT_ASSERT(instance, "Invalid instance");
return static_cast<Type>(*instance);
}
/*! @copydoc cast */
template<typename Type>
[[nodiscard]] Type cast() {
// forces const on non-reference types to make them work also with wrappers for const references
auto *const instance = try_cast<std::remove_reference_t<const Type>>();
ENTT_ASSERT(instance, "Invalid instance");
return static_cast<Type>(*instance);
}
/**
* @brief Converts an object in such a way that a given cast becomes viable.
* @param type Meta type to which the cast is requested.
* @return A valid meta any object if there exists a viable conversion, an
* invalid one otherwise.
*/
[[nodiscard]] meta_any allow_cast(const meta_type &type) const;
/**
* @brief Converts an object in such a way that a given cast becomes viable.
* @param type Meta type to which the cast is requested.
* @return True if there exists a viable conversion, false otherwise.
*/
[[nodiscard]] bool allow_cast(const meta_type &type) {
if(auto other = std::as_const(*this).allow_cast(type); other) {
if(other.owner()) {
std::swap(*this, other);
}
return true;
}
return false;
}
/**
* @brief Converts an object in such a way that a given cast becomes viable.
* @tparam Type Type to which the cast is requested.
* @return A valid meta any object if there exists a viable conversion, an
* invalid one otherwise.
*/
template<typename Type>
[[nodiscard]] meta_any allow_cast() const {
if constexpr(std::is_reference_v<Type> && !std::is_const_v<std::remove_reference_t<Type>>) {
return meta_any{meta_ctx_arg, *ctx};
} else {
auto other = internal::resolve<std::remove_cv_t<std::remove_reference_t<Type>>>(internal::meta_context::from(*ctx));
return allow_cast(meta_type{*ctx, other});
}
}
/**
* @brief Converts an object in such a way that a given cast becomes viable.
* @tparam Type Type to which the cast is requested.
* @return True if there exists a viable conversion, false otherwise.
*/
template<typename Type>
bool allow_cast() {
auto other = internal::resolve<std::remove_cv_t<std::remove_reference_t<Type>>>(internal::meta_context::from(*ctx));
return allow_cast(meta_type{*ctx, other}) && (!(std::is_reference_v<Type> && !std::is_const_v<std::remove_reference_t<Type>>) || storage.data() != nullptr);
}
/*! @copydoc any::emplace */
template<typename Type, typename... Args>
void emplace(Args &&...args) {
release();
storage.emplace<Type>(std::forward<Args>(args)...);
node = internal::resolve<std::remove_cv_t<std::remove_reference_t<Type>>>(internal::meta_context::from(*ctx));
vtable = &basic_vtable<std::remove_cv_t<std::remove_reference_t<Type>>>;
}
/*! @copydoc any::assign */
bool assign(const meta_any &other);
/*! @copydoc any::assign */
bool assign(meta_any &&other);
/*! @copydoc any::reset */
void reset() {
release();
storage.reset();
node = {};
vtable = &basic_vtable<void>;
}
/**
* @brief Returns a sequence container proxy.
* @return A sequence container proxy for the underlying object.
*/
[[nodiscard]] meta_sequence_container as_sequence_container() noexcept {
any detached = storage.as_ref();
meta_sequence_container proxy{*ctx};
vtable(operation::seq, detached, &proxy);
return proxy;
}
/*! @copydoc as_sequence_container */
[[nodiscard]] meta_sequence_container as_sequence_container() const noexcept {
any detached = storage.as_ref();
meta_sequence_container proxy{*ctx};
vtable(operation::seq, detached, &proxy);
return proxy;
}
/**
* @brief Returns an associative container proxy.
* @return An associative container proxy for the underlying object.
*/
[[nodiscard]] meta_associative_container as_associative_container() noexcept {
any detached = storage.as_ref();
meta_associative_container proxy{*ctx};
vtable(operation::assoc, detached, &proxy);
return proxy;
}
/*! @copydoc as_associative_container */
[[nodiscard]] meta_associative_container as_associative_container() const noexcept {
any detached = storage.as_ref();
meta_associative_container proxy{*ctx};
vtable(operation::assoc, detached, &proxy);
return proxy;
}
/**
* @brief Indirection operator for dereferencing opaque objects.
* @return A wrapper that shares a reference to an unmanaged object if the
* wrapped element is dereferenceable, an invalid meta any otherwise.
*/
[[nodiscard]] meta_any operator*() const noexcept {
meta_any ret{meta_ctx_arg, *ctx};
vtable(operation::deref, storage, &ret);
return ret;
}
/**
* @brief Returns false if a wrapper is invalid, true otherwise.
* @return False if the wrapper is invalid, true otherwise.
*/
[[nodiscard]] explicit operator bool() const noexcept {
return !(node.info == nullptr);
}
/*! @copydoc any::operator== */
[[nodiscard]] bool operator==(const meta_any &other) const noexcept {
return (ctx == other.ctx) && ((!node.info && !other.node.info) || (node.info && other.node.info && *node.info == *other.node.info && storage == other.storage));
}
/*! @copydoc any::operator!= */
[[nodiscard]] bool operator!=(const meta_any &other) const noexcept {
return !(*this == other);
}
/*! @copydoc any::as_ref */
[[nodiscard]] meta_any as_ref() noexcept {
return meta_any{*ctx, *this, storage.as_ref()};
}
/*! @copydoc any::as_ref */
[[nodiscard]] meta_any as_ref() const noexcept {
return meta_any{*ctx, *this, storage.as_ref()};
}
/*! @copydoc any::owner */
[[nodiscard]] bool owner() const noexcept {
return storage.owner();
}
private:
any storage;
const meta_ctx *ctx;
internal::meta_type_node node;
vtable_type *vtable;
};
/**
* @brief Forwards its argument and avoids copies for lvalue references.
* @tparam Type Type of argument to use to construct the new instance.
* @param value Parameter to use to construct the instance.
* @param ctx The context from which to search for meta types.
* @return A properly initialized and not necessarily owning wrapper.
*/
template<typename Type>
meta_any forward_as_meta(const meta_ctx &ctx, Type &&value) {
return meta_any{ctx, std::in_place_type<Type &&>, std::forward<Type>(value)};
}
/**
* @brief Forwards its argument and avoids copies for lvalue references.
* @tparam Type Type of argument to use to construct the new instance.
* @param value Parameter to use to construct the instance.
* @return A properly initialized and not necessarily owning wrapper.
*/
template<typename Type>
meta_any forward_as_meta(Type &&value) {
return forward_as_meta(locator<meta_ctx>::value_or(), std::forward<Type>(value));
}
/**
* @brief Opaque pointers to instances of any type.
*
* A handle doesn't perform copies and isn't responsible for the contained
* object. It doesn't prolong the lifetime of the pointed instance.<br/>
* Handles are used to generate references to actual objects when needed.
*/
struct meta_handle {
/*! Default constructor. */
meta_handle() noexcept
: meta_handle{meta_ctx_arg, locator<meta_ctx>::value_or()} {}
/**
* @brief Context aware constructor.
* @param area The context from which to search for meta types.
*/
meta_handle(meta_ctx_arg_t, const meta_ctx &area) noexcept
: any{meta_ctx_arg, area} {}
/**
* @brief Creates a handle that points to an unmanaged object.
* @param value An instance of an object to use to initialize the handle.
*/
meta_handle(meta_any &value) noexcept
: any{value.as_ref()} {}
/**
* @brief Creates a handle that points to an unmanaged object.
* @param value An instance of an object to use to initialize the handle.
*/
meta_handle(const meta_any &value) noexcept
: any{value.as_ref()} {}
/**
* @brief Creates a handle that points to an unmanaged object.
* @tparam Type Type of object to use to initialize the handle.
* @param ctx The context from which to search for meta types.
* @param value An instance of an object to use to initialize the handle.
*/
template<typename Type, typename = std::enable_if_t<!std::is_same_v<std::decay_t<Type>, meta_handle>>>
meta_handle(const meta_ctx &ctx, Type &value) noexcept
: any{ctx, std::in_place_type<Type &>, value} {}
/**
* @brief Creates a handle that points to an unmanaged object.
* @tparam Type Type of object to use to initialize the handle.
* @param value An instance of an object to use to initialize the handle.
*/
template<typename Type, typename = std::enable_if_t<!std::is_same_v<std::decay_t<Type>, meta_handle>>>
meta_handle(Type &value) noexcept
: meta_handle{locator<meta_ctx>::value_or(), value} {}
/**
* @brief Context aware copy constructor.
* @param area The context from which to search for meta types.
* @param other The instance to copy from.
*/
meta_handle(const meta_ctx &area, const meta_handle &other)
: any{area, other.any} {}
/**
* @brief Context aware move constructor.
* @param area The context from which to search for meta types.
* @param other The instance to move from.
*/
meta_handle(const meta_ctx &area, meta_handle &&other)
: any{area, std::move(other.any)} {}
/*! @brief Default copy constructor, deleted on purpose. */
meta_handle(const meta_handle &) = delete;
/*! @brief Default move constructor. */
meta_handle(meta_handle &&) = default;
/**
* @brief Default copy assignment operator, deleted on purpose.
* @return This meta handle.
*/
meta_handle &operator=(const meta_handle &) = delete;
/**
* @brief Default move assignment operator.
* @return This meta handle.
*/
meta_handle &operator=(meta_handle &&) = default;
/**
* @brief Returns false if a handle is invalid, true otherwise.
* @return False if the handle is invalid, true otherwise.
*/
[[nodiscard]] explicit operator bool() const noexcept {
return static_cast<bool>(any);
}
/**
* @brief Access operator for accessing the contained opaque object.
* @return A wrapper that shares a reference to an unmanaged object.
*/
[[nodiscard]] meta_any *operator->() {
return &any;
}
/*! @copydoc operator-> */
[[nodiscard]] const meta_any *operator->() const {
return &any;
}
private:
meta_any any;
};
/*! @brief Opaque wrapper for properties of any type. */
struct meta_prop {
/*! @brief Default constructor. */
meta_prop() noexcept
: node{},
ctx{} {}
/**
* @brief Context aware constructor for meta objects.
* @param area The context from which to search for meta types.
* @param curr The underlying node with which to construct the instance.
*/
meta_prop(const meta_ctx &area, const internal::meta_prop_node &curr) noexcept
: node{&curr},
ctx{&area} {}
/**
* @brief Returns the stored value by copy.
* @return A wrapper containing the value stored with the property.
*/
[[nodiscard]] meta_any value() const {
return node->value ? node->type(internal::meta_context::from(*ctx)).from_void(*ctx, nullptr, node->value.get()) : meta_any{meta_ctx_arg, *ctx};
}
/**
* @brief Returns true if an object is valid, false otherwise.
* @return True if the object is valid, false otherwise.
*/
[[nodiscard]] explicit operator bool() const noexcept {
return (node != nullptr);
}
private:
const internal::meta_prop_node *node;
const meta_ctx *ctx;
};
/*! @brief Opaque wrapper for data members. */
struct meta_data {
/*! @brief Unsigned integer type. */
using size_type = typename internal::meta_data_node::size_type;
/*! @brief Default constructor. */
meta_data() noexcept
: node{},
ctx{} {}
/**
* @brief Context aware constructor for meta objects.
* @param area The context from which to search for meta types.
* @param curr The underlying node with which to construct the instance.
*/
meta_data(const meta_ctx &area, const internal::meta_data_node &curr) noexcept
: node{&curr},
ctx{&area} {}
/**
* @brief Returns the number of setters available.
* @return The number of setters available.
*/
[[nodiscard]] size_type arity() const noexcept {
return node->arity;
}
/**
* @brief Indicates whether a data member is constant or not.
* @return True if the data member is constant, false otherwise.
*/
[[nodiscard]] bool is_const() const noexcept {
return static_cast<bool>(node->traits & internal::meta_traits::is_const);
}
/**
* @brief Indicates whether a data member is static or not.
* @return True if the data member is static, false otherwise.
*/
[[nodiscard]] bool is_static() const noexcept {
return static_cast<bool>(node->traits & internal::meta_traits::is_static);
}
/*! @copydoc meta_any::type */
[[nodiscard]] inline meta_type type() const noexcept;
/**
* @brief Sets the value of a given variable.
* @tparam Type Type of value to assign.
* @param instance An opaque instance of the underlying type.
* @param value Parameter to use to set the underlying variable.
* @return True in case of success, false otherwise.
*/
template<typename Type>
bool set(meta_handle instance, Type &&value) const {
return node->set && node->set(meta_handle{*ctx, std::move(instance)}, meta_any{*ctx, std::forward<Type>(value)});
}
/**
* @brief Gets the value of a given variable.
* @param instance An opaque instance of the underlying type.
* @return A wrapper containing the value of the underlying variable.
*/
[[nodiscard]] meta_any get(meta_handle instance) const {
return node->get(*ctx, meta_handle{*ctx, std::move(instance)});
}
/**
* @brief Returns the type accepted by the i-th setter.
* @param index Index of the setter of which to return the accepted type.
* @return The type accepted by the i-th setter.
*/
[[nodiscard]] inline meta_type arg(const size_type index) const noexcept;
/**
* @brief Returns a range to visit registered meta properties.
* @return An iterable range to visit registered meta properties.
*/
[[nodiscard]] meta_range<meta_prop, typename decltype(internal::meta_data_node::prop)::const_iterator> prop() const noexcept {
return {{*ctx, node->prop.cbegin()}, {*ctx, node->prop.cend()}};
}
/**
* @brief Lookup utility for meta properties.
* @param key The key to use to search for a property.
* @return The registered meta property for the given key, if any.
*/
[[nodiscard]] meta_prop prop(const id_type key) const {
const auto it = node->prop.find(key);
return it != node->prop.cend() ? meta_prop{*ctx, it->second} : meta_prop{};
}
/**
* @brief Returns true if an object is valid, false otherwise.
* @return True if the object is valid, false otherwise.
*/
[[nodiscard]] explicit operator bool() const noexcept {
return (node != nullptr);
}
private:
const internal::meta_data_node *node;
const meta_ctx *ctx;
};
/*! @brief Opaque wrapper for member functions. */
struct meta_func {
/*! @brief Unsigned integer type. */
using size_type = typename internal::meta_func_node::size_type;
/*! @brief Default constructor. */
meta_func() noexcept
: node{},
ctx{} {}
/**
* @brief Context aware constructor for meta objects.
* @param area The context from which to search for meta types.
* @param curr The underlying node with which to construct the instance.
*/
meta_func(const meta_ctx &area, const internal::meta_func_node &curr) noexcept
: node{&curr},
ctx{&area} {}
/**
* @brief Returns the number of arguments accepted by a member function.
* @return The number of arguments accepted by the member function.
*/
[[nodiscard]] size_type arity() const noexcept {
return node->arity;
}
/**
* @brief Indicates whether a member function is constant or not.
* @return True if the member function is constant, false otherwise.
*/
[[nodiscard]] bool is_const() const noexcept {
return static_cast<bool>(node->traits & internal::meta_traits::is_const);
}
/**
* @brief Indicates whether a member function is static or not.
* @return True if the member function is static, false otherwise.
*/
[[nodiscard]] bool is_static() const noexcept {
return static_cast<bool>(node->traits & internal::meta_traits::is_static);
}
/**
* @brief Returns the return type of a member function.
* @return The return type of the member function.
*/
[[nodiscard]] inline meta_type ret() const noexcept;
/**
* @brief Returns the type of the i-th argument of a member function.
* @param index Index of the argument of which to return the type.
* @return The type of the i-th argument of a member function.
*/
[[nodiscard]] inline meta_type arg(const size_type index) const noexcept;
/**
* @brief Invokes the underlying function, if possible.
*
* @warning
* The context of the arguments is **not** changed.<br/>
* It's up to the caller to bind them to the right context(s).
*
* @param instance An opaque instance of the underlying type.
* @param args Parameters to use to invoke the function.
* @param sz Number of parameters to use to invoke the function.
* @return A wrapper containing the returned value, if any.
*/
meta_any invoke(meta_handle instance, meta_any *const args, const size_type sz) const {
return sz == arity() ? node->invoke(*ctx, meta_handle{*ctx, std::move(instance)}, args) : meta_any{meta_ctx_arg, *ctx};
}
/**
* @copybrief invoke
* @tparam Args Types of arguments to use to invoke the function.
* @param instance An opaque instance of the underlying type.
* @param args Parameters to use to invoke the function.
* @return A wrapper containing the returned value, if any.
*/
template<typename... Args>
meta_any invoke(meta_handle instance, Args &&...args) const {
meta_any arguments[sizeof...(Args) + 1u]{{*ctx, std::forward<Args>(args)}...};
return invoke(meta_handle{*ctx, std::move(instance)}, arguments, sizeof...(Args));
}
/*! @copydoc meta_data::prop */
[[nodiscard]] meta_range<meta_prop, typename decltype(internal::meta_func_node::prop)::const_iterator> prop() const noexcept {
return {{*ctx, node->prop.cbegin()}, {*ctx, node->prop.cend()}};
}
/**
* @brief Lookup utility for meta properties.
* @param key The key to use to search for a property.
* @return The registered meta property for the given key, if any.
*/
[[nodiscard]] meta_prop prop(const id_type key) const {
const auto it = node->prop.find(key);
return it != node->prop.cend() ? meta_prop{*ctx, it->second} : meta_prop{};
}
/**
* @brief Returns the next overload of a given function, if any.
* @return The next overload of the given function, if any.
*/
[[nodiscard]] meta_func next() const {
return node->next ? meta_func{*ctx, *node->next} : meta_func{};
}
/**
* @brief Returns true if an object is valid, false otherwise.
* @return True if the object is valid, false otherwise.
*/
[[nodiscard]] explicit operator bool() const noexcept {
return (node != nullptr);
}
private:
const internal::meta_func_node *node;
const meta_ctx *ctx;
};
/*! @brief Opaque wrapper for types. */
class meta_type {
template<typename Func>
[[nodiscard]] auto lookup(meta_any *const args, const typename internal::meta_type_node::size_type sz, [[maybe_unused]] bool constness, Func next) const {
decltype(next()) candidate = nullptr;
size_type same{};
bool ambiguous{};
for(auto curr = next(); curr; curr = next()) {
if constexpr(std::is_same_v<std::decay_t<decltype(*curr)>, internal::meta_func_node>) {
if(constness && !static_cast<bool>(curr->traits & internal::meta_traits::is_const)) {
continue;
}
}
if(curr->arity == sz) {
size_type match{};
size_type pos{};
for(; pos < sz && args[pos]; ++pos) {
const auto other = curr->arg(*ctx, pos);
const auto type = args[pos].type();
if(const auto &info = other.info(); info == type.info()) {
++match;
} else if(!((type.node.details && (type.node.details->base.contains(info.hash()) || type.node.details->conv.contains(info.hash()))) || (type.node.conversion_helper && other.node.conversion_helper))) {
break;
}
}
if(pos == sz) {
if(!candidate || match > same) {
candidate = curr;
same = match;
ambiguous = false;
} else if(match == same) {
if constexpr(std::is_same_v<std::decay_t<decltype(*curr)>, internal::meta_func_node>) {
if(static_cast<bool>(curr->traits & internal::meta_traits::is_const) != static_cast<bool>(candidate->traits & internal::meta_traits::is_const)) {
candidate = static_cast<bool>(candidate->traits & internal::meta_traits::is_const) ? curr : candidate;
ambiguous = false;
continue;
}
}
ambiguous = true;
}
}
}
}
return ambiguous ? nullptr : candidate;
}
public:
/*! @brief Unsigned integer type. */
using size_type = typename internal::meta_type_node::size_type;
/*! @brief Default constructor. */
meta_type() noexcept
: node{},
ctx{} {}
/**
* @brief Context aware constructor for meta objects.
* @param area The context from which to search for meta types.
* @param curr The underlying node with which to construct the instance.
*/
meta_type(const meta_ctx &area, const internal::meta_type_node &curr) noexcept
: node{curr},
ctx{&area} {}
/**
* @brief Context aware constructor for meta objects.
* @param area The context from which to search for meta types.
* @param curr The underlying node with which to construct the instance.
*/
meta_type(const meta_ctx &area, const internal::meta_base_node &curr) noexcept
: meta_type{area, curr.type(internal::meta_context::from(area))} {}
/**
* @brief Returns the type info object of the underlying type.
* @return The type info object of the underlying type.
*/
[[nodiscard]] const type_info &info() const noexcept {
return *node.info;
}
/**
* @brief Returns the identifier assigned to a type.
* @return The identifier assigned to the type.
*/
[[nodiscard]] id_type id() const noexcept {
return node.id;
}
/**
* @brief Returns the size of the underlying type if known.
* @return The size of the underlying type if known, 0 otherwise.
*/
[[nodiscard]] size_type size_of() const noexcept {
return node.size_of;
}
/**
* @brief Checks whether a type refers to an arithmetic type or not.
* @return True if the underlying type is an arithmetic type, false
* otherwise.
*/
[[nodiscard]] bool is_arithmetic() const noexcept {
return static_cast<bool>(node.traits & internal::meta_traits::is_arithmetic);
}
/**
* @brief Checks whether a type refers to an integral type or not.
* @return True if the underlying type is an integral type, false otherwise.
*/
[[nodiscard]] bool is_integral() const noexcept {
return static_cast<bool>(node.traits & internal::meta_traits::is_integral);
}
/**
* @brief Checks whether a type refers to a signed type or not.
* @return True if the underlying type is a signed type, false otherwise.
*/
[[nodiscard]] bool is_signed() const noexcept {
return static_cast<bool>(node.traits & internal::meta_traits::is_signed);
}
/**
* @brief Checks whether a type refers to an array type or not.
* @return True if the underlying type is an array type, false otherwise.
*/
[[nodiscard]] bool is_array() const noexcept {
return static_cast<bool>(node.traits & internal::meta_traits::is_array);
}
/**
* @brief Checks whether a type refers to an enum or not.
* @return True if the underlying type is an enum, false otherwise.
*/
[[nodiscard]] bool is_enum() const noexcept {
return static_cast<bool>(node.traits & internal::meta_traits::is_enum);
}
/**
* @brief Checks whether a type refers to a class or not.
* @return True if the underlying type is a class, false otherwise.
*/
[[nodiscard]] bool is_class() const noexcept {
return static_cast<bool>(node.traits & internal::meta_traits::is_class);
}
/**
* @brief Checks whether a type refers to a pointer or not.
* @return True if the underlying type is a pointer, false otherwise.
*/
[[nodiscard]] bool is_pointer() const noexcept {
return node.info && (node.info->hash() != remove_pointer().info().hash());
}
/**
* @brief Provides the type for which the pointer is defined.
* @return The type for which the pointer is defined or this type if it
* doesn't refer to a pointer type.
*/
[[nodiscard]] meta_type remove_pointer() const noexcept {
return {*ctx, node.remove_pointer(internal::meta_context::from(*ctx))};
}
/**
* @brief Checks whether a type is a pointer-like type or not.
* @return True if the underlying type is a pointer-like one, false
* otherwise.
*/
[[nodiscard]] bool is_pointer_like() const noexcept {
return static_cast<bool>(node.traits & internal::meta_traits::is_meta_pointer_like);
}
/**
* @brief Checks whether a type refers to a sequence container or not.
* @return True if the type is a sequence container, false otherwise.
*/
[[nodiscard]] bool is_sequence_container() const noexcept {
return static_cast<bool>(node.traits & internal::meta_traits::is_meta_sequence_container);
}
/**
* @brief Checks whether a type refers to an associative container or not.
* @return True if the type is an associative container, false otherwise.
*/
[[nodiscard]] bool is_associative_container() const noexcept {
return static_cast<bool>(node.traits & internal::meta_traits::is_meta_associative_container);
}
/**
* @brief Checks whether a type refers to a recognized class template
* specialization or not.
* @return True if the type is a recognized class template specialization,
* false otherwise.
*/
[[nodiscard]] bool is_template_specialization() const noexcept {
return (node.templ.arity != 0u);
}
/**
* @brief Returns the number of template arguments.
* @return The number of template arguments.
*/
[[nodiscard]] size_type template_arity() const noexcept {
return node.templ.arity;
}
/**
* @brief Returns a tag for the class template of the underlying type.
* @return The tag for the class template of the underlying type.
*/
[[nodiscard]] inline meta_type template_type() const noexcept {
return node.templ.type ? meta_type{*ctx, node.templ.type(internal::meta_context::from(*ctx))} : meta_type{};
}
/**
* @brief Returns the type of the i-th template argument of a type.
* @param index Index of the template argument of which to return the type.
* @return The type of the i-th template argument of a type.
*/
[[nodiscard]] inline meta_type template_arg(const size_type index) const noexcept {
return index < template_arity() ? meta_type{*ctx, node.templ.arg(internal::meta_context::from(*ctx), index)} : meta_type{};
}
/**
* @brief Returns a range to visit registered top-level base meta types.
* @return An iterable range to visit registered top-level base meta types.
*/
[[nodiscard]] meta_range<meta_type, typename decltype(internal::meta_type_descriptor::base)::const_iterator> base() const noexcept {
using range_type = meta_range<meta_type, typename decltype(internal::meta_type_descriptor::base)::const_iterator>;
return node.details ? range_type{{*ctx, node.details->base.cbegin()}, {*ctx, node.details->base.cend()}} : range_type{};
}
/**
* @brief Returns a range to visit registered top-level meta data.
* @return An iterable range to visit registered top-level meta data.
*/
[[nodiscard]] meta_range<meta_data, typename decltype(internal::meta_type_descriptor::data)::const_iterator> data() const noexcept {
using range_type = meta_range<meta_data, typename decltype(internal::meta_type_descriptor::data)::const_iterator>;
return node.details ? range_type{{*ctx, node.details->data.cbegin()}, {*ctx, node.details->data.cend()}} : range_type{};
}
/**
* @brief Lookup utility for meta data (bases are also visited).
* @param id Unique identifier.
* @return The registered meta data for the given identifier, if any.
*/
[[nodiscard]] meta_data data(const id_type id) const {
if(node.details) {
if(const auto it = node.details->data.find(id); it != node.details->data.cend()) {
return meta_data{*ctx, it->second};
}
}
for(auto &&curr: base()) {
if(auto elem = curr.second.data(id); elem) {
return elem;
}
}
return meta_data{};
}
/**
* @brief Returns a range to visit registered top-level functions.
* @return An iterable range to visit registered top-level functions.
*/
[[nodiscard]] meta_range<meta_func, typename decltype(internal::meta_type_descriptor::func)::const_iterator> func() const noexcept {
using return_type = meta_range<meta_func, typename decltype(internal::meta_type_descriptor::func)::const_iterator>;
return node.details ? return_type{{*ctx, node.details->func.cbegin()}, {*ctx, node.details->func.cend()}} : return_type{};
}
/**
* @brief Lookup utility for meta functions (bases are also visited).
*
* In case of overloaded functions, the first one with the required
* identifier is returned.
*
* @param id Unique identifier.
* @return The registered meta function for the given identifier, if any.
*/
[[nodiscard]] meta_func func(const id_type id) const {
if(node.details) {
if(const auto it = node.details->func.find(id); it != node.details->func.cend()) {
return meta_func{*ctx, it->second};
}
}
for(auto &&curr: base()) {
if(auto elem = curr.second.func(id); elem) {
return elem;
}
}
return meta_func{};
}
/**
* @brief Creates an instance of the underlying type, if possible.
*
* If suitable, the implicitly generated default constructor is used.
*
* @warning
* The context of the arguments is **not** changed.<br/>
* It's up to the caller to bind them to the right context(s).
*
* @param args Parameters to use to construct the instance.
* @param sz Number of parameters to use to construct the instance.
* @return A wrapper containing the new instance, if any.
*/
[[nodiscard]] meta_any construct(meta_any *const args, const size_type sz) const {
if(node.details) {
if(const auto *candidate = lookup(args, sz, false, [first = node.details->ctor.cbegin(), last = node.details->ctor.cend()]() mutable { return first == last ? nullptr : &(first++)->second; }); candidate) {
return candidate->invoke(*ctx, args);
}
}
if(sz == 0u && node.default_constructor) {
return node.default_constructor(*ctx);
}
return meta_any{meta_ctx_arg, *ctx};
}
/**
* @copybrief construct
* @tparam Args Types of arguments to use to construct the instance.
* @param args Parameters to use to construct the instance.
* @return A wrapper containing the new instance, if any.
*/
template<typename... Args>
[[nodiscard]] meta_any construct(Args &&...args) const {
meta_any arguments[sizeof...(Args) + 1u]{{*ctx, std::forward<Args>(args)}...};
return construct(arguments, sizeof...(Args));
}
/**
* @brief Wraps an opaque element of the underlying type.
* @param element A valid pointer to an element of the underlying type.
* @return A wrapper that references the given instance.
*/
meta_any from_void(void *element) const {
return (element && node.from_void) ? node.from_void(*ctx, element, nullptr) : meta_any{meta_ctx_arg, *ctx};
}
/*! @copydoc from_void */
meta_any from_void(const void *element) const {
return (element && node.from_void) ? node.from_void(*ctx, nullptr, element) : meta_any{meta_ctx_arg, *ctx};
}
/**
* @brief Invokes a function given an identifier, if possible.
*
* @warning
* The context of the arguments is **not** changed.<br/>
* It's up to the caller to bind them to the right context(s).
*
* @param id Unique identifier.
* @param instance An opaque instance of the underlying type.
* @param args Parameters to use to invoke the function.
* @param sz Number of parameters to use to invoke the function.
* @return A wrapper containing the returned value, if any.
*/
meta_any invoke(const id_type id, meta_handle instance, meta_any *const args, const size_type sz) const {
if(node.details) {
if(auto it = node.details->func.find(id); it != node.details->func.cend()) {
if(const auto *candidate = lookup(args, sz, (instance->data() == nullptr), [curr = &it->second]() mutable { return curr ? std::exchange(curr, curr->next.get()) : nullptr; }); candidate) {
return candidate->invoke(*ctx, meta_handle{*ctx, std::move(instance)}, args);
}
}
}
for(auto &&curr: base()) {
if(auto elem = curr.second.invoke(id, *instance.operator->(), args, sz); elem) {
return elem;
}
}
return meta_any{meta_ctx_arg, *ctx};
}
/**
* @copybrief invoke
*
* @param id Unique identifier.
* @tparam Args Types of arguments to use to invoke the function.
* @param instance An opaque instance of the underlying type.
* @param args Parameters to use to invoke the function.
* @return A wrapper containing the returned value, if any.
*/
template<typename... Args>
meta_any invoke(const id_type id, meta_handle instance, Args &&...args) const {
meta_any arguments[sizeof...(Args) + 1u]{{*ctx, std::forward<Args>(args)}...};
return invoke(id, meta_handle{*ctx, std::move(instance)}, arguments, sizeof...(Args));
}
/**
* @brief Sets the value of a given variable.
* @tparam Type Type of value to assign.
* @param id Unique identifier.
* @param instance An opaque instance of the underlying type.
* @param value Parameter to use to set the underlying variable.
* @return True in case of success, false otherwise.
*/
template<typename Type>
bool set(const id_type id, meta_handle instance, Type &&value) const {
const auto candidate = data(id);
return candidate && candidate.set(std::move(instance), std::forward<Type>(value));
}
/**
* @brief Gets the value of a given variable.
* @param id Unique identifier.
* @param instance An opaque instance of the underlying type.
* @return A wrapper containing the value of the underlying variable.
*/
[[nodiscard]] meta_any get(const id_type id, meta_handle instance) const {
const auto candidate = data(id);
return candidate ? candidate.get(std::move(instance)) : meta_any{meta_ctx_arg, *ctx};
}
/**
* @brief Returns a range to visit registered top-level meta properties.
* @return An iterable range to visit registered top-level meta properties.
*/
[[nodiscard]] meta_range<meta_prop, typename decltype(internal::meta_type_descriptor::prop)::const_iterator> prop() const noexcept {
using range_type = meta_range<meta_prop, typename decltype(internal::meta_type_descriptor::prop)::const_iterator>;
return node.details ? range_type{{*ctx, node.details->prop.cbegin()}, {*ctx, node.details->prop.cend()}} : range_type{};
}
/**
* @brief Lookup utility for meta properties (bases are also visited).
* @param key The key to use to search for a property.
* @return The registered meta property for the given key, if any.
*/
[[nodiscard]] meta_prop prop(const id_type key) const {
if(node.details) {
if(const auto it = node.details->prop.find(key); it != node.details->prop.cend()) {
return meta_prop{*ctx, it->second};
}
}
for(auto &&curr: base()) {
if(auto elem = curr.second.prop(key); elem) {
return elem;
}
}
return meta_prop{};
}
/**
* @brief Returns true if an object is valid, false otherwise.
* @return True if the object is valid, false otherwise.
*/
[[nodiscard]] explicit operator bool() const noexcept {
return !(ctx == nullptr);
}
/**
* @brief Checks if two objects refer to the same type.
* @param other The object with which to compare.
* @return True if the objects refer to the same type, false otherwise.
*/
[[nodiscard]] bool operator==(const meta_type &other) const noexcept {
return (ctx == other.ctx) && ((!node.info && !other.node.info) || (node.info && other.node.info && *node.info == *other.node.info));
}
private:
internal::meta_type_node node;
const meta_ctx *ctx;
};
/**
* @brief Checks if two objects refer to the same type.
* @param lhs An object, either valid or not.
* @param rhs An object, either valid or not.
* @return False if the objects refer to the same node, true otherwise.
*/
[[nodiscard]] inline bool operator!=(const meta_type &lhs, const meta_type &rhs) noexcept {
return !(lhs == rhs);
}
[[nodiscard]] inline meta_type meta_any::type() const noexcept {
return node.info ? meta_type{*ctx, node} : meta_type{};
}
template<typename... Args>
meta_any meta_any::invoke(const id_type id, Args &&...args) const {
return type().invoke(id, *this, std::forward<Args>(args)...);
}
template<typename... Args>
meta_any meta_any::invoke(const id_type id, Args &&...args) {
return type().invoke(id, *this, std::forward<Args>(args)...);
}
template<typename Type>
bool meta_any::set(const id_type id, Type &&value) {
return type().set(id, *this, std::forward<Type>(value));
}
[[nodiscard]] inline meta_any meta_any::get(const id_type id) const {
return type().get(id, *this);
}
[[nodiscard]] inline meta_any meta_any::get(const id_type id) {
return type().get(id, *this);
}
[[nodiscard]] inline meta_any meta_any::allow_cast(const meta_type &type) const {
if(node.info && *node.info == type.info()) {
return as_ref();
}
if(const auto *value = data(); node.details) {
if(auto it = node.details->conv.find(type.info().hash()); it != node.details->conv.cend()) {
return it->second.conv(*ctx, data());
}
for(auto &&curr: node.details->base) {
const auto &as_const = curr.second.type(internal::meta_context::from(*ctx)).from_void(*ctx, nullptr, curr.second.cast(value));
if(auto other = as_const.allow_cast(type); other) {
return other;
}
}
}
if(node.conversion_helper && (type.is_arithmetic() || type.is_enum())) {
// exploits the fact that arithmetic types and enums are also default constructible
auto other = type.construct();
ENTT_ASSERT(other.node.conversion_helper, "Conversion helper not found");
const auto value = node.conversion_helper(nullptr, storage.data());
other.node.conversion_helper(other.storage.data(), &value);
return other;
}
return meta_any{meta_ctx_arg, *ctx};
}
inline bool meta_any::assign(const meta_any &other) {
auto value = other.allow_cast({*ctx, node});
return value && storage.assign(std::move(value.storage));
}
inline bool meta_any::assign(meta_any &&other) {
if(*node.info == *other.node.info) {
return storage.assign(std::move(other.storage));
}
return assign(std::as_const(other));
}
[[nodiscard]] inline meta_type meta_data::type() const noexcept {
return meta_type{*ctx, node->type(internal::meta_context::from(*ctx))};
}
[[nodiscard]] inline meta_type meta_data::arg(const size_type index) const noexcept {
return index < arity() ? node->arg(*ctx, index) : meta_type{};
}
[[nodiscard]] inline meta_type meta_func::ret() const noexcept {
return meta_type{*ctx, node->ret(internal::meta_context::from(*ctx))};
}
[[nodiscard]] inline meta_type meta_func::arg(const size_type index) const noexcept {
return index < arity() ? node->arg(*ctx, index) : meta_type{};
}
/**
* @cond TURN_OFF_DOXYGEN
* Internal details not to be documented.
*/
class meta_sequence_container::meta_iterator final {
friend class meta_sequence_container;
enum class operation : std::uint8_t {
incr,
deref
};
using vtable_type = void(const operation, const any &, const std::ptrdiff_t, meta_any *);
template<typename It>
static void basic_vtable(const operation op, const any &value, const std::ptrdiff_t offset, meta_any *other) {
switch(op) {
case operation::incr: {
auto &it = any_cast<It &>(const_cast<any &>(value));
it = std::next(it, offset);
} break;
case operation::deref: {
const auto &it = any_cast<const It &>(value);
other->emplace<decltype(*it)>(*it);
} break;
}
}
public:
using difference_type = std::ptrdiff_t;
using value_type = meta_any;
using pointer = input_iterator_pointer<value_type>;
using reference = value_type;
using iterator_category = std::input_iterator_tag;
constexpr meta_iterator() noexcept
: ctx{},
vtable{},
handle{} {}
template<typename It>
explicit meta_iterator(const meta_ctx &area, It iter) noexcept
: ctx{&area},
vtable{&basic_vtable<It>},
handle{std::move(iter)} {}
meta_iterator &operator++() noexcept {
vtable(operation::incr, handle, 1, nullptr);
return *this;
}
meta_iterator operator++(int value) noexcept {
meta_iterator orig = *this;
vtable(operation::incr, handle, ++value, nullptr);
return orig;
}
meta_iterator &operator--() noexcept {
vtable(operation::incr, handle, -1, nullptr);
return *this;
}
meta_iterator operator--(int value) noexcept {
meta_iterator orig = *this;
vtable(operation::incr, handle, --value, nullptr);
return orig;
}
[[nodiscard]] reference operator*() const {
reference other{meta_ctx_arg, *ctx};
vtable(operation::deref, handle, 0, &other);
return other;
}
[[nodiscard]] pointer operator->() const {
return operator*();
}
[[nodiscard]] explicit operator bool() const noexcept {
return static_cast<bool>(handle);
}
[[nodiscard]] bool operator==(const meta_iterator &other) const noexcept {
return handle == other.handle;
}
[[nodiscard]] bool operator!=(const meta_iterator &other) const noexcept {
return !(*this == other);
}
private:
const meta_ctx *ctx;
vtable_type *vtable;
any handle;
};
class meta_associative_container::meta_iterator final {
enum class operation : std::uint8_t {
incr,
deref
};
using vtable_type = void(const operation, const any &, std::pair<meta_any, meta_any> *);
template<bool KeyOnly, typename It>
static void basic_vtable(const operation op, const any &value, std::pair<meta_any, meta_any> *other) {
switch(op) {
case operation::incr:
++any_cast<It &>(const_cast<any &>(value));
break;
case operation::deref:
const auto &it = any_cast<const It &>(value);
if constexpr(KeyOnly) {
other->first.emplace<decltype(*it)>(*it);
} else {
other->first.emplace<decltype((it->first))>(it->first);
other->second.emplace<decltype((it->second))>(it->second);
}
break;
}
}
public:
using difference_type = std::ptrdiff_t;
using value_type = std::pair<meta_any, meta_any>;
using pointer = input_iterator_pointer<value_type>;
using reference = value_type;
using iterator_category = std::input_iterator_tag;
constexpr meta_iterator() noexcept
: ctx{},
vtable{},
handle{} {}
template<bool KeyOnly, typename It>
meta_iterator(const meta_ctx &area, std::integral_constant<bool, KeyOnly>, It iter) noexcept
: ctx{&area},
vtable{&basic_vtable<KeyOnly, It>},
handle{std::move(iter)} {}
meta_iterator &operator++() noexcept {
vtable(operation::incr, handle, nullptr);
return *this;
}
meta_iterator operator++(int) noexcept {
meta_iterator orig = *this;
return ++(*this), orig;
}
[[nodiscard]] reference operator*() const {
reference other{{meta_ctx_arg, *ctx}, {meta_ctx_arg, *ctx}};
vtable(operation::deref, handle, &other);
return other;
}
[[nodiscard]] pointer operator->() const {
return operator*();
}
[[nodiscard]] explicit operator bool() const noexcept {
return static_cast<bool>(handle);
}
[[nodiscard]] bool operator==(const meta_iterator &other) const noexcept {
return handle == other.handle;
}
[[nodiscard]] bool operator!=(const meta_iterator &other) const noexcept {
return !(*this == other);
}
private:
const meta_ctx *ctx;
vtable_type *vtable;
any handle;
};
/**
* Internal details not to be documented.
* @endcond
*/
/**
* @brief Returns the meta value type of a container.
* @return The meta value type of the container.
*/
[[nodiscard]] inline meta_type meta_sequence_container::value_type() const noexcept {
return value_type_node ? meta_type{*ctx, value_type_node(internal::meta_context::from(*ctx))} : meta_type{};
}
/**
* @brief Returns the size of a container.
* @return The size of the container.
*/
[[nodiscard]] inline meta_sequence_container::size_type meta_sequence_container::size() const noexcept {
return size_fn(storage);
}
/**
* @brief Resizes a container to contain a given number of elements.
* @param sz The new size of the container.
* @return True in case of success, false otherwise.
*/
inline bool meta_sequence_container::resize(const size_type sz) {
return resize_fn(storage, sz);
}
/**
* @brief Clears the content of a container.
* @return True in case of success, false otherwise.
*/
inline bool meta_sequence_container::clear() {
return resize_fn(storage, 0u);
}
/**
* @brief Returns an iterator to the first element of a container.
* @return An iterator to the first element of the container.
*/
[[nodiscard]] inline meta_sequence_container::iterator meta_sequence_container::begin() {
return iter_fn(*ctx, storage, false);
}
/**
* @brief Returns an iterator that is past the last element of a container.
* @return An iterator that is past the last element of the container.
*/
[[nodiscard]] inline meta_sequence_container::iterator meta_sequence_container::end() {
return iter_fn(*ctx, storage, true);
}
/**
* @brief Inserts an element at a specified location of a container.
* @param it Iterator before which the element will be inserted.
* @param value Element value to insert.
* @return A possibly invalid iterator to the inserted element.
*/
inline meta_sequence_container::iterator meta_sequence_container::insert(iterator it, meta_any value) {
return insert_or_erase_fn(*ctx, storage, it.handle, value);
}
/**
* @brief Removes a given element from a container.
* @param it Iterator to the element to remove.
* @return A possibly invalid iterator following the last removed element.
*/
inline meta_sequence_container::iterator meta_sequence_container::erase(iterator it) {
return insert(std::move(it), {});
}
/**
* @brief Returns a reference to the element at a given location of a container
* (no bounds checking is performed).
* @param pos The position of the element to return.
* @return A reference to the requested element properly wrapped.
*/
[[nodiscard]] inline meta_any meta_sequence_container::operator[](const size_type pos) {
auto it = begin();
it.operator++(static_cast<int>(pos) - 1);
return *it;
}
/**
* @brief Returns false if a proxy is invalid, true otherwise.
* @return False if the proxy is invalid, true otherwise.
*/
[[nodiscard]] inline meta_sequence_container::operator bool() const noexcept {
return static_cast<bool>(storage);
}
/**
* @brief Returns true if a container is also key-only, false otherwise.
* @return True if the associative container is also key-only, false otherwise.
*/
[[nodiscard]] inline bool meta_associative_container::key_only() const noexcept {
return key_only_container;
}
/**
* @brief Returns the meta key type of a container.
* @return The meta key type of the a container.
*/
[[nodiscard]] inline meta_type meta_associative_container::key_type() const noexcept {
return key_type_node ? meta_type{*ctx, key_type_node(internal::meta_context::from(*ctx))} : meta_type{};
}
/**
* @brief Returns the meta mapped type of a container.
* @return The meta mapped type of the a container.
*/
[[nodiscard]] inline meta_type meta_associative_container::mapped_type() const noexcept {
return mapped_type_node ? meta_type{*ctx, mapped_type_node(internal::meta_context::from(*ctx))} : meta_type{};
}
/*! @copydoc meta_sequence_container::value_type */
[[nodiscard]] inline meta_type meta_associative_container::value_type() const noexcept {
return value_type_node ? meta_type{*ctx, value_type_node(internal::meta_context::from(*ctx))} : meta_type{};
}
/*! @copydoc meta_sequence_container::size */
[[nodiscard]] inline meta_associative_container::size_type meta_associative_container::size() const noexcept {
return size_fn(storage);
}
/*! @copydoc meta_sequence_container::clear */
inline bool meta_associative_container::clear() {
return clear_fn(storage);
}
/*! @copydoc meta_sequence_container::begin */
[[nodiscard]] inline meta_associative_container::iterator meta_associative_container::begin() {
return iter_fn(*ctx, storage, false);
}
/*! @copydoc meta_sequence_container::end */
[[nodiscard]] inline meta_associative_container::iterator meta_associative_container::end() {
return iter_fn(*ctx, storage, true);
}
/**
* @brief Inserts a key only element into a container.
* @param key The key of the element to insert.
* @return A bool denoting whether the insertion took place.
*/
inline bool meta_associative_container::insert(meta_any key) {
meta_any value{*ctx, std::in_place_type<void>};
return (insert_or_erase_fn(storage, key, value) != 0u);
}
/**
* @brief Inserts a key/value element into a container.
* @param key The key of the element to insert.
* @param value The value of the element to insert.
* @return A bool denoting whether the insertion took place.
*/
inline bool meta_associative_container::insert(meta_any key, meta_any value) {
return (insert_or_erase_fn(storage, key, value) != 0u);
}
/**
* @brief Removes the specified element from a container.
* @param key The key of the element to remove.
* @return A bool denoting whether the removal took place.
*/
inline meta_associative_container::size_type meta_associative_container::erase(meta_any key) {
return insert(std::move(key), meta_any{meta_ctx_arg, *ctx});
}
/**
* @brief Returns an iterator to the element with a given key, if any.
* @param key The key of the element to search.
* @return An iterator to the element with the given key, if any.
*/
[[nodiscard]] inline meta_associative_container::iterator meta_associative_container::find(meta_any key) {
return find_fn(*ctx, storage, key);
}
/**
* @brief Returns false if a proxy is invalid, true otherwise.
* @return False if the proxy is invalid, true otherwise.
*/
[[nodiscard]] inline meta_associative_container::operator bool() const noexcept {
return static_cast<bool>(storage);
}
} // namespace entt
#endif
// #include "type_traits.hpp"
namespace entt {
/**
* @cond TURN_OFF_DOXYGEN
* Internal details not to be documented.
*/
namespace internal {
template<typename, typename = void>
struct is_dynamic_sequence_container: std::false_type {};
template<typename Type>
struct is_dynamic_sequence_container<Type, std::void_t<decltype(&Type::clear)>>: std::true_type {};
template<typename, typename = void>
struct is_key_only_meta_associative_container: std::true_type {};
template<typename Type>
struct is_key_only_meta_associative_container<Type, std::void_t<typename Type::mapped_type>>: std::false_type {};
template<typename Type>
struct basic_meta_sequence_container_traits {
using iterator = meta_sequence_container::iterator;
using size_type = std::size_t;
[[nodiscard]] static size_type size(const any &container) noexcept {
return any_cast<const Type &>(container).size();
}
[[nodiscard]] static bool resize([[maybe_unused]] any &container, [[maybe_unused]] size_type sz) {
if constexpr(is_dynamic_sequence_container<Type>::value) {
if(auto *const cont = any_cast<Type>(&container); cont) {
cont->resize(sz);
return true;
}
}
return false;
}
[[nodiscard]] static iterator iter(const meta_ctx &ctx, any &container, const bool as_end) {
if(auto *const cont = any_cast<Type>(&container); cont) {
return iterator{ctx, as_end ? cont->end() : cont->begin()};
}
const Type &as_const = any_cast<const Type &>(container);
return iterator{ctx, as_end ? as_const.end() : as_const.begin()};
}
[[nodiscard]] static iterator insert_or_erase([[maybe_unused]] const meta_ctx &ctx, [[maybe_unused]] any &container, [[maybe_unused]] const any &handle, [[maybe_unused]] meta_any &value) {
if constexpr(is_dynamic_sequence_container<Type>::value) {
if(auto *const cont = any_cast<Type>(&container); cont) {
typename Type::const_iterator it{};
if(auto *non_const = any_cast<typename Type::iterator>(&handle); non_const) {
it = *non_const;
} else {
it = any_cast<const typename Type::const_iterator &>(handle);
}
if(value) {
// this abomination is necessary because only on macos value_type and const_reference are different types for std::vector<bool>
if(value.allow_cast<typename Type::const_reference>() || value.allow_cast<typename Type::value_type>()) {
const auto *element = value.try_cast<std::remove_reference_t<typename Type::const_reference>>();
return iterator{ctx, cont->insert(it, element ? *element : value.cast<typename Type::value_type>())};
}
} else {
return iterator{ctx, cont->erase(it)};
}
}
}
return iterator{};
}
};
template<typename Type>
struct basic_meta_associative_container_traits {
using iterator = meta_associative_container::iterator;
using size_type = std::size_t;
static constexpr auto key_only = is_key_only_meta_associative_container<Type>::value;
[[nodiscard]] static size_type size(const any &container) noexcept {
return any_cast<const Type &>(container).size();
}
[[nodiscard]] static bool clear(any &container) {
if(auto *const cont = any_cast<Type>(&container); cont) {
cont->clear();
return true;
}
return false;
}
[[nodiscard]] static iterator iter(const meta_ctx &ctx, any &container, const bool as_end) {
if(auto *const cont = any_cast<Type>(&container); cont) {
return iterator{ctx, std::bool_constant<key_only>{}, as_end ? cont->end() : cont->begin()};
}
const auto &as_const = any_cast<const Type &>(container);
return iterator{ctx, std::bool_constant<key_only>{}, as_end ? as_const.end() : as_const.begin()};
}
[[nodiscard]] static size_type insert_or_erase(any &container, meta_any &key, meta_any &value) {
if(auto *const cont = any_cast<Type>(&container); cont && key.allow_cast<const typename Type::key_type &>()) {
if(value) {
if constexpr(key_only) {
return cont->insert(key.cast<const typename Type::key_type &>()).second;
} else {
return value.allow_cast<const typename Type::mapped_type &>() && cont->emplace(key.cast<const typename Type::key_type &>(), value.cast<const typename Type::mapped_type &>()).second;
}
} else {
return cont->erase(key.cast<const typename Type::key_type &>());
}
}
return 0u;
}
[[nodiscard]] static iterator find(const meta_ctx &ctx, any &container, meta_any &key) {
if(key.allow_cast<const typename Type::key_type &>()) {
if(auto *const cont = any_cast<Type>(&container); cont) {
return iterator{ctx, std::bool_constant<key_only>{}, cont->find(key.cast<const typename Type::key_type &>())};
}
return iterator{ctx, std::bool_constant<key_only>{}, any_cast<const Type &>(container).find(key.cast<const typename Type::key_type &>())};
}
return iterator{};
}
};
} // namespace internal
/**
* Internal details not to be documented.
* @endcond
*/
/**
* @brief Meta sequence container traits for `std::vector`s of any type.
* @tparam Args Template arguments for the container.
*/
template<typename... Args>
struct meta_sequence_container_traits<std::vector<Args...>>
: internal::basic_meta_sequence_container_traits<std::vector<Args...>> {};
/**
* @brief Meta sequence container traits for `std::array`s of any type.
* @tparam Type Template arguments for the container.
* @tparam N Template arguments for the container.
*/
template<typename Type, auto N>
struct meta_sequence_container_traits<std::array<Type, N>>
: internal::basic_meta_sequence_container_traits<std::array<Type, N>> {};
/**
* @brief Meta sequence container traits for `std::list`s of any type.
* @tparam Args Template arguments for the container.
*/
template<typename... Args>
struct meta_sequence_container_traits<std::list<Args...>>
: internal::basic_meta_sequence_container_traits<std::list<Args...>> {};
/**
* @brief Meta sequence container traits for `std::deque`s of any type.
* @tparam Args Template arguments for the container.
*/
template<typename... Args>
struct meta_sequence_container_traits<std::deque<Args...>>
: internal::basic_meta_sequence_container_traits<std::deque<Args...>> {};
/**
* @brief Meta associative container traits for `std::map`s of any type.
* @tparam Args Template arguments for the container.
*/
template<typename... Args>
struct meta_associative_container_traits<std::map<Args...>>
: internal::basic_meta_associative_container_traits<std::map<Args...>> {};
/**
* @brief Meta associative container traits for `std::unordered_map`s of any
* type.
* @tparam Args Template arguments for the container.
*/
template<typename... Args>
struct meta_associative_container_traits<std::unordered_map<Args...>>
: internal::basic_meta_associative_container_traits<std::unordered_map<Args...>> {};
/**
* @brief Meta associative container traits for `std::set`s of any type.
* @tparam Args Template arguments for the container.
*/
template<typename... Args>
struct meta_associative_container_traits<std::set<Args...>>
: internal::basic_meta_associative_container_traits<std::set<Args...>> {};
/**
* @brief Meta associative container traits for `std::unordered_set`s of any
* type.
* @tparam Args Template arguments for the container.
*/
template<typename... Args>
struct meta_associative_container_traits<std::unordered_set<Args...>>
: internal::basic_meta_associative_container_traits<std::unordered_set<Args...>> {};
/**
* @brief Meta associative container traits for `dense_map`s of any type.
* @tparam Args Template arguments for the container.
*/
template<typename... Args>
struct meta_associative_container_traits<dense_map<Args...>>
: internal::basic_meta_associative_container_traits<dense_map<Args...>> {};
/**
* @brief Meta associative container traits for `dense_set`s of any type.
* @tparam Args Template arguments for the container.
*/
template<typename... Args>
struct meta_associative_container_traits<dense_set<Args...>>
: internal::basic_meta_associative_container_traits<dense_set<Args...>> {};
} // namespace entt
#endif
// #include "meta/context.hpp"
#ifndef ENTT_META_CTX_HPP
#define ENTT_META_CTX_HPP
// #include "../container/dense_map.hpp"
// #include "../core/fwd.hpp"
// #include "../core/utility.hpp"
namespace entt {
class meta_ctx;
/**
* @cond TURN_OFF_DOXYGEN
* Internal details not to be documented.
*/
namespace internal {
struct meta_type_node;
struct meta_context {
dense_map<id_type, meta_type_node, identity> value{};
static inline meta_context &from(meta_ctx &ctx);
static inline const meta_context &from(const meta_ctx &ctx);
};
} // namespace internal
/**
* Internal details not to be documented.
* @endcond
*/
/*! @brief Disambiguation tag for constructors and the like. */
class meta_ctx_arg_t final {};
/*! @brief Constant of type meta_context_arg_t used to disambiguate calls. */
inline constexpr meta_ctx_arg_t meta_ctx_arg{};
/*! @brief Opaque meta context type. */
class meta_ctx: private internal::meta_context {
/*! @brief Attorney idiom like model to access the base class. */
friend struct internal::meta_context;
};
/**
* @cond TURN_OFF_DOXYGEN
* Internal details not to be documented.
*/
inline internal::meta_context &internal::meta_context::from(meta_ctx &ctx) {
return ctx;
}
inline const internal::meta_context &internal::meta_context::from(const meta_ctx &ctx) {
return ctx;
}
/**
* Internal details not to be documented.
* @endcond
*/
} // namespace entt
#endif
// #include "meta/factory.hpp"
#ifndef ENTT_META_FACTORY_HPP
#define ENTT_META_FACTORY_HPP
#include <cstddef>
#include <functional>
#include <memory>
#include <tuple>
#include <type_traits>
#include <utility>
// #include "../config/config.h"
// #include "../core/fwd.hpp"
// #include "../core/type_info.hpp"
// #include "../core/type_traits.hpp"
// #include "../locator/locator.hpp"
// #include "context.hpp"
// #include "meta.hpp"
// #include "node.hpp"
// #include "policy.hpp"
#ifndef ENTT_META_POLICY_HPP
#define ENTT_META_POLICY_HPP
#include <type_traits>
namespace entt {
/*! @brief Empty class type used to request the _as ref_ policy. */
struct as_ref_t final {
/**
* @cond TURN_OFF_DOXYGEN
* Internal details not to be documented.
*/
template<typename Type>
static constexpr bool value = std::is_reference_v<Type> && !std::is_const_v<std::remove_reference_t<Type>>;
/**
* Internal details not to be documented.
* @endcond
*/
};
/*! @brief Empty class type used to request the _as cref_ policy. */
struct as_cref_t final {
/**
* @cond TURN_OFF_DOXYGEN
* Internal details not to be documented.
*/
template<typename Type>
static constexpr bool value = std::is_reference_v<Type>;
/**
* Internal details not to be documented.
* @endcond
*/
};
/*! @brief Empty class type used to request the _as-is_ policy. */
struct as_is_t final {
/**
* @cond TURN_OFF_DOXYGEN
* Internal details not to be documented.
*/
template<typename>
static constexpr bool value = true;
/**
* Internal details not to be documented.
* @endcond
*/
};
/*! @brief Empty class type used to request the _as void_ policy. */
struct as_void_t final {
/**
* @cond TURN_OFF_DOXYGEN
* Internal details not to be documented.
*/
template<typename>
static constexpr bool value = true;
/**
* Internal details not to be documented.
* @endcond
*/
};
/**
* @brief Provides the member constant `value` to true if a type also is a meta
* policy, false otherwise.
* @tparam Type Type to check.
*/
template<typename Type>
struct is_meta_policy
: std::disjunction<
std::is_same<Type, as_ref_t>,
std::is_same<Type, as_cref_t>,
std::is_same<Type, as_is_t>,
std::is_same<Type, as_void_t>> {};
/**
* @brief Helper variable template.
* @tparam Type Type to check.
*/
template<typename Type>
inline constexpr bool is_meta_policy_v = is_meta_policy<Type>::value;
} // namespace entt
#endif
// #include "range.hpp"
// #include "resolve.hpp"
#ifndef ENTT_META_RESOLVE_HPP
#define ENTT_META_RESOLVE_HPP
#include <type_traits>
// #include "../core/type_info.hpp"
// #include "../locator/locator.hpp"
// #include "context.hpp"
// #include "meta.hpp"
// #include "node.hpp"
// #include "range.hpp"
namespace entt {
/**
* @brief Returns the meta type associated with a given type.
* @tparam Type Type to use to search for a meta type.
* @param ctx The context from which to search for meta types.
* @return The meta type associated with the given type, if any.
*/
template<typename Type>
[[nodiscard]] meta_type resolve(const meta_ctx &ctx) noexcept {
auto &&context = internal::meta_context::from(ctx);
return {ctx, internal::resolve<std::remove_cv_t<std::remove_reference_t<Type>>>(context)};
}
/**
* @brief Returns the meta type associated with a given type.
* @tparam Type Type to use to search for a meta type.
* @return The meta type associated with the given type, if any.
*/
template<typename Type>
[[nodiscard]] meta_type resolve() noexcept {
return resolve<Type>(locator<meta_ctx>::value_or());
}
/**
* @brief Returns a range to use to visit all meta types.
* @param ctx The context from which to search for meta types.
* @return An iterable range to use to visit all meta types.
*/
[[nodiscard]] inline meta_range<meta_type, typename decltype(internal::meta_context::value)::const_iterator> resolve(const meta_ctx &ctx) noexcept {
auto &&context = internal::meta_context::from(ctx);
return {{ctx, context.value.cbegin()}, {ctx, context.value.cend()}};
}
/**
* @brief Returns a range to use to visit all meta types.
* @return An iterable range to use to visit all meta types.
*/
[[nodiscard]] inline meta_range<meta_type, typename decltype(internal::meta_context::value)::const_iterator> resolve() noexcept {
return resolve(locator<meta_ctx>::value_or());
}
/**
* @brief Returns the meta type associated with a given identifier, if any.
* @param ctx The context from which to search for meta types.
* @param id Unique identifier.
* @return The meta type associated with the given identifier, if any.
*/
[[nodiscard]] inline meta_type resolve(const meta_ctx &ctx, const id_type id) noexcept {
for(auto &&curr: resolve(ctx)) {
if(curr.second.id() == id) {
return curr.second;
}
}
return meta_type{};
}
/**
* @brief Returns the meta type associated with a given identifier, if any.
* @param id Unique identifier.
* @return The meta type associated with the given identifier, if any.
*/
[[nodiscard]] inline meta_type resolve(const id_type id) noexcept {
return resolve(locator<meta_ctx>::value_or(), id);
}
/**
* @brief Returns the meta type associated with a given type info object.
* @param ctx The context from which to search for meta types.
* @param info The type info object of the requested type.
* @return The meta type associated with the given type info object, if any.
*/
[[nodiscard]] inline meta_type resolve(const meta_ctx &ctx, const type_info &info) noexcept {
auto &&context = internal::meta_context::from(ctx);
const auto *elem = internal::try_resolve(context, info);
return elem ? meta_type{ctx, *elem} : meta_type{};
}
/**
* @brief Returns the meta type associated with a given type info object.
* @param info The type info object of the requested type.
* @return The meta type associated with the given type info object, if any.
*/
[[nodiscard]] inline meta_type resolve(const type_info &info) noexcept {
return resolve(locator<meta_ctx>::value_or(), info);
}
} // namespace entt
#endif
// #include "utility.hpp"
#ifndef ENTT_META_UTILITY_HPP
#define ENTT_META_UTILITY_HPP
#include <cstddef>
#include <functional>
#include <type_traits>
#include <utility>
// #include "../core/type_traits.hpp"
// #include "../locator/locator.hpp"
// #include "meta.hpp"
// #include "node.hpp"
// #include "policy.hpp"
namespace entt {
/**
* @brief Meta function descriptor traits.
* @tparam Ret Function return type.
* @tparam Args Function arguments.
* @tparam Static Function staticness.
* @tparam Const Function constness.
*/
template<typename Ret, typename Args, bool Static, bool Const>
struct meta_function_descriptor_traits {
/*! @brief Meta function return type. */
using return_type = Ret;
/*! @brief Meta function arguments. */
using args_type = Args;
/*! @brief True if the meta function is static, false otherwise. */
static constexpr bool is_static = Static;
/*! @brief True if the meta function is const, false otherwise. */
static constexpr bool is_const = Const;
};
/*! @brief Primary template isn't defined on purpose. */
template<typename, typename>
struct meta_function_descriptor;
/**
* @brief Meta function descriptor.
* @tparam Type Reflected type to which the meta function is associated.
* @tparam Ret Function return type.
* @tparam Class Actual owner of the member function.
* @tparam Args Function arguments.
*/
template<typename Type, typename Ret, typename Class, typename... Args>
struct meta_function_descriptor<Type, Ret (Class::*)(Args...) const>
: meta_function_descriptor_traits<
Ret,
std::conditional_t<std::is_base_of_v<Class, Type>, type_list<Args...>, type_list<const Class &, Args...>>,
!std::is_base_of_v<Class, Type>,
true> {};
/**
* @brief Meta function descriptor.
* @tparam Type Reflected type to which the meta function is associated.
* @tparam Ret Function return type.
* @tparam Class Actual owner of the member function.
* @tparam Args Function arguments.
*/
template<typename Type, typename Ret, typename Class, typename... Args>
struct meta_function_descriptor<Type, Ret (Class::*)(Args...)>
: meta_function_descriptor_traits<
Ret,
std::conditional_t<std::is_base_of_v<Class, Type>, type_list<Args...>, type_list<Class &, Args...>>,
!std::is_base_of_v<Class, Type>,
false> {};
/**
* @brief Meta function descriptor.
* @tparam Type Reflected type to which the meta data is associated.
* @tparam Class Actual owner of the data member.
* @tparam Ret Data member type.
*/
template<typename Type, typename Ret, typename Class>
struct meta_function_descriptor<Type, Ret Class::*>
: meta_function_descriptor_traits<
Ret &,
std::conditional_t<std::is_base_of_v<Class, Type>, type_list<>, type_list<Class &>>,
!std::is_base_of_v<Class, Type>,
false> {};
/**
* @brief Meta function descriptor.
* @tparam Type Reflected type to which the meta function is associated.
* @tparam Ret Function return type.
* @tparam MaybeType First function argument.
* @tparam Args Other function arguments.
*/
template<typename Type, typename Ret, typename MaybeType, typename... Args>
struct meta_function_descriptor<Type, Ret (*)(MaybeType, Args...)>
: meta_function_descriptor_traits<
Ret,
std::conditional_t<std::is_base_of_v<std::remove_cv_t<std::remove_reference_t<MaybeType>>, Type>, type_list<Args...>, type_list<MaybeType, Args...>>,
!std::is_base_of_v<std::remove_cv_t<std::remove_reference_t<MaybeType>>, Type>,
std::is_base_of_v<std::remove_cv_t<std::remove_reference_t<MaybeType>>, Type> && std::is_const_v<std::remove_reference_t<MaybeType>>> {};
/**
* @brief Meta function descriptor.
* @tparam Type Reflected type to which the meta function is associated.
* @tparam Ret Function return type.
*/
template<typename Type, typename Ret>
struct meta_function_descriptor<Type, Ret (*)()>
: meta_function_descriptor_traits<
Ret,
type_list<>,
true,
false> {};
/**
* @brief Meta function helper.
*
* Converts a function type to be associated with a reflected type into its meta
* function descriptor.
*
* @tparam Type Reflected type to which the meta function is associated.
* @tparam Candidate The actual function to associate with the reflected type.
*/
template<typename Type, typename Candidate>
class meta_function_helper {
template<typename Ret, typename... Args, typename Class>
static constexpr meta_function_descriptor<Type, Ret (Class::*)(Args...) const> get_rid_of_noexcept(Ret (Class::*)(Args...) const);
template<typename Ret, typename... Args, typename Class>
static constexpr meta_function_descriptor<Type, Ret (Class::*)(Args...)> get_rid_of_noexcept(Ret (Class::*)(Args...));
template<typename Ret, typename Class>
static constexpr meta_function_descriptor<Type, Ret Class::*> get_rid_of_noexcept(Ret Class::*);
template<typename Ret, typename... Args>
static constexpr meta_function_descriptor<Type, Ret (*)(Args...)> get_rid_of_noexcept(Ret (*)(Args...));
template<typename Class>
static constexpr meta_function_descriptor<Class, decltype(&Class::operator())> get_rid_of_noexcept(Class);
public:
/*! @brief The meta function descriptor of the given function. */
using type = decltype(get_rid_of_noexcept(std::declval<Candidate>()));
};
/**
* @brief Helper type.
* @tparam Type Reflected type to which the meta function is associated.
* @tparam Candidate The actual function to associate with the reflected type.
*/
template<typename Type, typename Candidate>
using meta_function_helper_t = typename meta_function_helper<Type, Candidate>::type;
/**
* @brief Wraps a value depending on the given policy.
*
* This function always returns a wrapped value in the requested context.<br/>
* Therefore, if the passed value is itself a wrapped object with a different
* context, it undergoes a rebinding to the requested context.
*
* @tparam Policy Optional policy (no policy set by default).
* @tparam Type Type of value to wrap.
* @param ctx The context from which to search for meta types.
* @param value Value to wrap.
* @return A meta any containing the returned value, if any.
*/
template<typename Policy = as_is_t, typename Type>
std::enable_if_t<is_meta_policy_v<Policy>, meta_any> meta_dispatch(const meta_ctx &ctx, [[maybe_unused]] Type &&value) {
if constexpr(std::is_same_v<Policy, as_void_t>) {
return meta_any{ctx, std::in_place_type<void>};
} else if constexpr(std::is_same_v<Policy, as_ref_t>) {
return meta_any{ctx, std::in_place_type<Type>, value};
} else if constexpr(std::is_same_v<Policy, as_cref_t>) {
static_assert(std::is_lvalue_reference_v<Type>, "Invalid type");
return meta_any{ctx, std::in_place_type<const std::remove_reference_t<Type> &>, std::as_const(value)};
} else {
return meta_any{ctx, std::forward<Type>(value)};
}
}
/**
* @brief Wraps a value depending on the given policy.
* @tparam Policy Optional policy (no policy set by default).
* @tparam Type Type of value to wrap.
* @param value Value to wrap.
* @return A meta any containing the returned value, if any.
*/
template<typename Policy = as_is_t, typename Type>
std::enable_if_t<is_meta_policy_v<Policy>, meta_any> meta_dispatch(Type &&value) {
return meta_dispatch<Policy, Type>(locator<meta_ctx>::value_or(), std::forward<Type>(value));
}
/**
* @brief Returns the meta type of the i-th element of a list of arguments.
* @tparam Type Type list of the actual types of arguments.
* @param ctx The context from which to search for meta types.
* @param index The index of the element for which to return the meta type.
* @return The meta type of the i-th element of the list of arguments.
*/
template<typename Type>
[[nodiscard]] static meta_type meta_arg(const meta_ctx &ctx, const std::size_t index) noexcept {
auto &&context = internal::meta_context::from(ctx);
return {ctx, internal::meta_arg_node(context, Type{}, index)};
}
/**
* @brief Returns the meta type of the i-th element of a list of arguments.
* @tparam Type Type list of the actual types of arguments.
* @param index The index of the element for which to return the meta type.
* @return The meta type of the i-th element of the list of arguments.
*/
template<typename Type>
[[nodiscard]] static meta_type meta_arg(const std::size_t index) noexcept {
return meta_arg<Type>(locator<meta_ctx>::value_or(), index);
}
/**
* @brief Sets the value of a given variable.
* @tparam Type Reflected type to which the variable is associated.
* @tparam Data The actual variable to set.
* @param instance An opaque instance of the underlying type, if required.
* @param value Parameter to use to set the variable.
* @return True in case of success, false otherwise.
*/
template<typename Type, auto Data>
[[nodiscard]] bool meta_setter([[maybe_unused]] meta_handle instance, [[maybe_unused]] meta_any value) {
if constexpr(!std::is_same_v<decltype(Data), Type> && !std::is_same_v<decltype(Data), std::nullptr_t>) {
if constexpr(std::is_member_function_pointer_v<decltype(Data)> || std::is_function_v<std::remove_reference_t<std::remove_pointer_t<decltype(Data)>>>) {
using descriptor = meta_function_helper_t<Type, decltype(Data)>;
using data_type = type_list_element_t<descriptor::is_static, typename descriptor::args_type>;
if(auto *const clazz = instance->try_cast<Type>(); clazz && value.allow_cast<data_type>()) {
std::invoke(Data, *clazz, value.cast<data_type>());
return true;
}
} else if constexpr(std::is_member_object_pointer_v<decltype(Data)>) {
using data_type = std::remove_reference_t<typename meta_function_helper_t<Type, decltype(Data)>::return_type>;
if constexpr(!std::is_array_v<data_type> && !std::is_const_v<data_type>) {
if(auto *const clazz = instance->try_cast<Type>(); clazz && value.allow_cast<data_type>()) {
std::invoke(Data, *clazz) = value.cast<data_type>();
return true;
}
}
} else {
using data_type = std::remove_reference_t<decltype(*Data)>;
if constexpr(!std::is_array_v<data_type> && !std::is_const_v<data_type>) {
if(value.allow_cast<data_type>()) {
*Data = value.cast<data_type>();
return true;
}
}
}
}
return false;
}
/**
* @brief Gets the value of a given variable.
*
* @warning
* The context provided is used only for the return type.<br/>
* It's up to the caller to bind the arguments to the right context(s).
*
* @tparam Type Reflected type to which the variable is associated.
* @tparam Data The actual variable to get.
* @tparam Policy Optional policy (no policy set by default).
* @param ctx The context from which to search for meta types.
* @param instance An opaque instance of the underlying type, if required.
* @return A meta any containing the value of the underlying variable.
*/
template<typename Type, auto Data, typename Policy = as_is_t>
[[nodiscard]] std::enable_if_t<is_meta_policy_v<Policy>, meta_any> meta_getter(const meta_ctx &ctx, [[maybe_unused]] meta_handle instance) {
if constexpr(std::is_member_pointer_v<decltype(Data)> || std::is_function_v<std::remove_reference_t<std::remove_pointer_t<decltype(Data)>>>) {
if constexpr(!std::is_array_v<std::remove_cv_t<std::remove_reference_t<std::invoke_result_t<decltype(Data), Type &>>>>) {
if constexpr(std::is_invocable_v<decltype(Data), Type &>) {
if(auto *clazz = instance->try_cast<Type>(); clazz) {
return meta_dispatch<Policy>(ctx, std::invoke(Data, *clazz));
}
}
if constexpr(std::is_invocable_v<decltype(Data), const Type &>) {
if(auto *fallback = instance->try_cast<const Type>(); fallback) {
return meta_dispatch<Policy>(ctx, std::invoke(Data, *fallback));
}
}
}
return meta_any{meta_ctx_arg, ctx};
} else if constexpr(std::is_pointer_v<decltype(Data)>) {
if constexpr(std::is_array_v<std::remove_pointer_t<decltype(Data)>>) {
return meta_any{meta_ctx_arg, ctx};
} else {
return meta_dispatch<Policy>(ctx, *Data);
}
} else {
return meta_dispatch<Policy>(ctx, Data);
}
}
/**
* @brief Gets the value of a given variable.
* @tparam Type Reflected type to which the variable is associated.
* @tparam Data The actual variable to get.
* @tparam Policy Optional policy (no policy set by default).
* @param instance An opaque instance of the underlying type, if required.
* @return A meta any containing the value of the underlying variable.
*/
template<typename Type, auto Data, typename Policy = as_is_t>
[[nodiscard]] std::enable_if_t<is_meta_policy_v<Policy>, meta_any> meta_getter(meta_handle instance) {
return meta_getter<Type, Data, Policy>(locator<meta_ctx>::value_or(), std::move(instance));
}
/**
* @cond TURN_OFF_DOXYGEN
* Internal details not to be documented.
*/
namespace internal {
template<typename Policy, typename Candidate, typename... Args>
[[nodiscard]] meta_any meta_invoke_with_args(const meta_ctx &ctx, Candidate &&candidate, Args &&...args) {
if constexpr(std::is_same_v<decltype(std::invoke(std::forward<Candidate>(candidate), args...)), void>) {
std::invoke(std::forward<Candidate>(candidate), args...);
return meta_any{ctx, std::in_place_type<void>};
} else {
return meta_dispatch<Policy>(ctx, std::invoke(std::forward<Candidate>(candidate), args...));
}
}
template<typename Type, typename Policy, typename Candidate, std::size_t... Index>
[[nodiscard]] meta_any meta_invoke(const meta_ctx &ctx, [[maybe_unused]] meta_handle instance, Candidate &&candidate, [[maybe_unused]] meta_any *args, std::index_sequence<Index...>) {
using descriptor = meta_function_helper_t<Type, std::remove_reference_t<Candidate>>;
if constexpr(std::is_invocable_v<std::remove_reference_t<Candidate>, const Type &, type_list_element_t<Index, typename descriptor::args_type>...>) {
if(const auto *const clazz = instance->try_cast<const Type>(); clazz && ((args + Index)->allow_cast<type_list_element_t<Index, typename descriptor::args_type>>() && ...)) {
return meta_invoke_with_args<Policy>(ctx, std::forward<Candidate>(candidate), *clazz, (args + Index)->cast<type_list_element_t<Index, typename descriptor::args_type>>()...);
}
} else if constexpr(std::is_invocable_v<std::remove_reference_t<Candidate>, Type &, type_list_element_t<Index, typename descriptor::args_type>...>) {
if(auto *const clazz = instance->try_cast<Type>(); clazz && ((args + Index)->allow_cast<type_list_element_t<Index, typename descriptor::args_type>>() && ...)) {
return meta_invoke_with_args<Policy>(ctx, std::forward<Candidate>(candidate), *clazz, (args + Index)->cast<type_list_element_t<Index, typename descriptor::args_type>>()...);
}
} else {
if(((args + Index)->allow_cast<type_list_element_t<Index, typename descriptor::args_type>>() && ...)) {
return meta_invoke_with_args<Policy>(ctx, std::forward<Candidate>(candidate), (args + Index)->cast<type_list_element_t<Index, typename descriptor::args_type>>()...);
}
}
return meta_any{meta_ctx_arg, ctx};
}
template<typename Type, typename... Args, std::size_t... Index>
[[nodiscard]] meta_any meta_construct(const meta_ctx &ctx, meta_any *const args, std::index_sequence<Index...>) {
if(((args + Index)->allow_cast<Args>() && ...)) {
return meta_any{ctx, std::in_place_type<Type>, (args + Index)->cast<Args>()...};
}
return meta_any{meta_ctx_arg, ctx};
}
} // namespace internal
/**
* Internal details not to be documented.
* @endcond
*/
/**
* @brief Tries to _invoke_ an object given a list of erased parameters.
*
* @warning
* The context provided is used only for the return type.<br/>
* It's up to the caller to bind the arguments to the right context(s).
*
* @tparam Type Reflected type to which the object to _invoke_ is associated.
* @tparam Policy Optional policy (no policy set by default).
* @param ctx The context from which to search for meta types.
* @tparam Candidate The type of the actual object to _invoke_.
* @param instance An opaque instance of the underlying type, if required.
* @param candidate The actual object to _invoke_.
* @param args Parameters to use to _invoke_ the object.
* @return A meta any containing the returned value, if any.
*/
template<typename Type, typename Policy = as_is_t, typename Candidate>
[[nodiscard]] std::enable_if_t<is_meta_policy_v<Policy>, meta_any> meta_invoke(const meta_ctx &ctx, meta_handle instance, Candidate &&candidate, meta_any *const args) {
return internal::meta_invoke<Type, Policy>(ctx, std::move(instance), std::forward<Candidate>(candidate), args, std::make_index_sequence<meta_function_helper_t<Type, std::remove_reference_t<Candidate>>::args_type::size>{});
}
/**
* @brief Tries to _invoke_ an object given a list of erased parameters.
* @tparam Type Reflected type to which the object to _invoke_ is associated.
* @tparam Policy Optional policy (no policy set by default).
* @tparam Candidate The type of the actual object to _invoke_.
* @param instance An opaque instance of the underlying type, if required.
* @param candidate The actual object to _invoke_.
* @param args Parameters to use to _invoke_ the object.
* @return A meta any containing the returned value, if any.
*/
template<typename Type, typename Policy = as_is_t, typename Candidate>
[[nodiscard]] std::enable_if_t<is_meta_policy_v<Policy>, meta_any> meta_invoke(meta_handle instance, Candidate &&candidate, meta_any *const args) {
return meta_invoke<Type, Policy>(locator<meta_ctx>::value_or(), std::move(instance), std::forward<Candidate>(candidate), args);
}
/**
* @brief Tries to invoke a function given a list of erased parameters.
*
* @warning
* The context provided is used only for the return type.<br/>
* It's up to the caller to bind the arguments to the right context(s).
*
* @tparam Type Reflected type to which the function is associated.
* @tparam Candidate The actual function to invoke.
* @tparam Policy Optional policy (no policy set by default).
* @param ctx The context from which to search for meta types.
* @param instance An opaque instance of the underlying type, if required.
* @param args Parameters to use to invoke the function.
* @return A meta any containing the returned value, if any.
*/
template<typename Type, auto Candidate, typename Policy = as_is_t>
[[nodiscard]] std::enable_if_t<is_meta_policy_v<Policy>, meta_any> meta_invoke(const meta_ctx &ctx, meta_handle instance, meta_any *const args) {
return internal::meta_invoke<Type, Policy>(ctx, std::move(instance), Candidate, args, std::make_index_sequence<meta_function_helper_t<Type, std::remove_reference_t<decltype(Candidate)>>::args_type::size>{});
}
/**
* @brief Tries to invoke a function given a list of erased parameters.
* @tparam Type Reflected type to which the function is associated.
* @tparam Candidate The actual function to invoke.
* @tparam Policy Optional policy (no policy set by default).
* @param instance An opaque instance of the underlying type, if required.
* @param args Parameters to use to invoke the function.
* @return A meta any containing the returned value, if any.
*/
template<typename Type, auto Candidate, typename Policy = as_is_t>
[[nodiscard]] std::enable_if_t<is_meta_policy_v<Policy>, meta_any> meta_invoke(meta_handle instance, meta_any *const args) {
return meta_invoke<Type, Candidate, Policy>(locator<meta_ctx>::value_or(), std::move(instance), args);
}
/**
* @brief Tries to construct an instance given a list of erased parameters.
*
* @warning
* The context provided is used only for the return type.<br/>
* It's up to the caller to bind the arguments to the right context(s).
*
* @tparam Type Actual type of the instance to construct.
* @tparam Args Types of arguments expected.
* @param ctx The context from which to search for meta types.
* @param args Parameters to use to construct the instance.
* @return A meta any containing the new instance, if any.
*/
template<typename Type, typename... Args>
[[nodiscard]] meta_any meta_construct(const meta_ctx &ctx, meta_any *const args) {
return internal::meta_construct<Type, Args...>(ctx, args, std::index_sequence_for<Args...>{});
}
/**
* @brief Tries to construct an instance given a list of erased parameters.
* @tparam Type Actual type of the instance to construct.
* @tparam Args Types of arguments expected.
* @param args Parameters to use to construct the instance.
* @return A meta any containing the new instance, if any.
*/
template<typename Type, typename... Args>
[[nodiscard]] meta_any meta_construct(meta_any *const args) {
return meta_construct<Type, Args...>(locator<meta_ctx>::value_or(), args);
}
/**
* @brief Tries to construct an instance given a list of erased parameters.
*
* @warning
* The context provided is used only for the return type.<br/>
* It's up to the caller to bind the arguments to the right context(s).
*
* @tparam Type Reflected type to which the object to _invoke_ is associated.
* @tparam Policy Optional policy (no policy set by default).
* @tparam Candidate The type of the actual object to _invoke_.
* @param ctx The context from which to search for meta types.
* @param candidate The actual object to _invoke_.
* @param args Parameters to use to _invoke_ the object.
* @return A meta any containing the returned value, if any.
*/
template<typename Type, typename Policy = as_is_t, typename Candidate>
[[nodiscard]] meta_any meta_construct(const meta_ctx &ctx, Candidate &&candidate, meta_any *const args) {
if constexpr(meta_function_helper_t<Type, Candidate>::is_static || std::is_class_v<std::remove_cv_t<std::remove_reference_t<Candidate>>>) {
return internal::meta_invoke<Type, Policy>(ctx, {}, std::forward<Candidate>(candidate), args, std::make_index_sequence<meta_function_helper_t<Type, std::remove_reference_t<Candidate>>::args_type::size>{});
} else {
return internal::meta_invoke<Type, Policy>(ctx, *args, std::forward<Candidate>(candidate), args + 1u, std::make_index_sequence<meta_function_helper_t<Type, std::remove_reference_t<Candidate>>::args_type::size>{});
}
}
/**
* @brief Tries to construct an instance given a list of erased parameters.
* @tparam Type Reflected type to which the object to _invoke_ is associated.
* @tparam Policy Optional policy (no policy set by default).
* @tparam Candidate The type of the actual object to _invoke_.
* @param candidate The actual object to _invoke_.
* @param args Parameters to use to _invoke_ the object.
* @return A meta any containing the returned value, if any.
*/
template<typename Type, typename Policy = as_is_t, typename Candidate>
[[nodiscard]] std::enable_if_t<is_meta_policy_v<Policy>, meta_any> meta_construct(Candidate &&candidate, meta_any *const args) {
return meta_construct<Type, Policy>(locator<meta_ctx>::value_or(), std::forward<Candidate>(candidate), args);
}
/**
* @brief Tries to construct an instance given a list of erased parameters.
*
* @warning
* The context provided is used only for the return type.<br/>
* It's up to the caller to bind the arguments to the right context(s).
*
* @tparam Type Reflected type to which the function is associated.
* @tparam Candidate The actual function to invoke.
* @tparam Policy Optional policy (no policy set by default).
* @param ctx The context from which to search for meta types.
* @param args Parameters to use to invoke the function.
* @return A meta any containing the returned value, if any.
*/
template<typename Type, auto Candidate, typename Policy = as_is_t>
[[nodiscard]] std::enable_if_t<is_meta_policy_v<Policy>, meta_any> meta_construct(const meta_ctx &ctx, meta_any *const args) {
return meta_construct<Type, Policy>(ctx, Candidate, args);
}
/**
* @brief Tries to construct an instance given a list of erased parameters.
* @tparam Type Reflected type to which the function is associated.
* @tparam Candidate The actual function to invoke.
* @tparam Policy Optional policy (no policy set by default).
* @param args Parameters to use to invoke the function.
* @return A meta any containing the returned value, if any.
*/
template<typename Type, auto Candidate, typename Policy = as_is_t>
[[nodiscard]] std::enable_if_t<is_meta_policy_v<Policy>, meta_any> meta_construct(meta_any *const args) {
return meta_construct<Type, Candidate, Policy>(locator<meta_ctx>::value_or(), args);
}
} // namespace entt
#endif
namespace entt {
/**
* @cond TURN_OFF_DOXYGEN
* Internal details not to be documented.
*/
namespace internal {
inline decltype(auto) owner(meta_ctx &ctx, const type_info &info) {
auto &&context = internal::meta_context::from(ctx);
ENTT_ASSERT(context.value.contains(info.hash()), "Type not available");
return context.value[info.hash()];
}
inline meta_base_node &meta_extend(internal::meta_type_node &parent, const id_type id, meta_base_node node) {
return parent.details->base.insert_or_assign(id, std::move(node)).first->second;
}
inline meta_conv_node &meta_extend(internal::meta_type_node &parent, const id_type id, meta_conv_node node) {
return parent.details->conv.insert_or_assign(id, std::move(node)).first->second;
}
inline meta_ctor_node &meta_extend(internal::meta_type_node &parent, const id_type id, meta_ctor_node node) {
return parent.details->ctor.insert_or_assign(id, std::move(node)).first->second;
}
inline meta_dtor_node &meta_extend(internal::meta_type_node &parent, meta_dtor_node node) {
return (parent.dtor = std::move(node));
}
inline meta_data_node &meta_extend(internal::meta_type_node &parent, const id_type id, meta_data_node node) {
return parent.details->data.insert_or_assign(id, std::move(node)).first->second;
}
inline meta_func_node &meta_extend(internal::meta_type_node &parent, const id_type id, meta_func_node node) {
if(auto it = parent.details->func.find(id); it != parent.details->func.end()) {
for(auto *curr = &it->second; curr; curr = curr->next.get()) {
if(curr->invoke == node.invoke) {
node.next = std::move(curr->next);
*curr = std::move(node);
return *curr;
}
}
// locally overloaded function
node.next = std::make_shared<meta_func_node>(std::move(parent.details->func[id]));
}
return parent.details->func.insert_or_assign(id, std::move(node)).first->second;
}
inline meta_prop_node &meta_extend(dense_map<id_type, meta_prop_node, identity> &prop, const id_type id, meta_prop_node node) {
return (prop[id] = std::move(node));
}
} // namespace internal
/**
* Internal details not to be documented.
* @endcond
*/
/**
* @brief Basic meta factory to be used for reflection purposes.
* @tparam Type Reflected type for which the factory was created.
*/
template<typename Type>
class meta_factory {
template<typename Setter, auto Getter, typename Policy, std::size_t... Index>
void data(const id_type id, std::index_sequence<Index...>) noexcept {
using data_type = std::invoke_result_t<decltype(Getter), Type &>;
using args_type = type_list<typename meta_function_helper_t<Type, decltype(value_list_element_v<Index, Setter>)>::args_type...>;
static_assert(Policy::template value<data_type>, "Invalid return type for the given policy");
auto &&elem = internal::meta_extend(
internal::owner(*ctx, *info),
id,
internal::meta_data_node{
/* this is never static */
(std::is_member_object_pointer_v<decltype(value_list_element_v<Index, Setter>)> && ... && std::is_const_v<std::remove_reference_t<data_type>>) ? internal::meta_traits::is_const : internal::meta_traits::is_none,
Setter::size,
&internal::resolve<std::remove_cv_t<std::remove_reference_t<data_type>>>,
&meta_arg<type_list<type_list_element_t<type_list_element_t<Index, args_type>::size != 1u, type_list_element_t<Index, args_type>>...>>,
+[](meta_handle instance, meta_any value) { return (meta_setter<Type, value_list_element_v<Index, Setter>>(*instance.operator->(), value.as_ref()) || ...); },
&meta_getter<Type, Getter, Policy>});
bucket = &elem.prop;
}
public:
/*! @brief Default constructor. */
meta_factory() noexcept
: meta_factory{locator<meta_ctx>::value_or()} {}
/**
* @brief Context aware constructor.
* @param area The context into which to construct meta types.
*/
meta_factory(meta_ctx &area) noexcept
: ctx{&area},
bucket{},
info{&type_id<Type>()} {
auto &&elem = internal::owner(*ctx, *info);
if(!elem.details) {
elem.details = std::make_shared<internal::meta_type_descriptor>();
}
bucket = &elem.details->prop;
}
/**
* @brief Assigns a custom unique identifier to a meta type.
* @param id A custom unique identifier.
* @return An extended meta factory for the given type.
*/
auto type(const id_type id) noexcept {
auto &&elem = internal::owner(*ctx, *info);
ENTT_ASSERT(elem.id == id || !resolve(*ctx, id), "Duplicate identifier");
bucket = &elem.details->prop;
elem.id = id;
return *this;
}
/**
* @brief Assigns a meta base to a meta type.
*
* A reflected base class must be a real base class of the reflected type.
*
* @tparam Base Type of the base class to assign to the meta type.
* @return A meta factory for the parent type.
*/
template<typename Base>
auto base() noexcept {
static_assert(!std::is_same_v<Type, Base> && std::is_base_of_v<Base, Type>, "Invalid base type");
internal::meta_extend(
internal::owner(*ctx, *info),
type_id<Base>().hash(),
internal::meta_base_node{
&internal::resolve<Base>,
+[](const void *instance) noexcept {
return static_cast<const void *>(static_cast<const Base *>(static_cast<const Type *>(instance)));
}});
bucket = nullptr;
return *this;
}
/**
* @brief Assigns a meta conversion function to a meta type.
*
* Conversion functions can be either free functions or member
* functions.<br/>
* In case of free functions, they must accept a const reference to an
* instance of the parent type as an argument. In case of member functions,
* they should have no arguments at all.
*
* @tparam Candidate The actual function to use for the conversion.
* @return A meta factory for the parent type.
*/
template<auto Candidate>
auto conv() noexcept {
using conv_type = std::remove_cv_t<std::remove_reference_t<std::invoke_result_t<decltype(Candidate), Type &>>>;
internal::meta_extend(
internal::owner(*ctx, *info),
type_id<conv_type>().hash(),
internal::meta_conv_node{
+[](const meta_ctx &area, const void *instance) {
return forward_as_meta(area, std::invoke(Candidate, *static_cast<const Type *>(instance)));
}});
bucket = nullptr;
return *this;
}
/**
* @brief Assigns a meta conversion function to a meta type.
*
* The given type must be such that an instance of the reflected type can be
* converted to it.
*
* @tparam To Type of the conversion function to assign to the meta type.
* @return A meta factory for the parent type.
*/
template<typename To>
auto conv() noexcept {
using conv_type = std::remove_cv_t<std::remove_reference_t<To>>;
internal::meta_extend(
internal::owner(*ctx, *info),
type_id<conv_type>().hash(),
internal::meta_conv_node{
+[](const meta_ctx &area, const void *instance) {
return forward_as_meta(area, static_cast<To>(*static_cast<const Type *>(instance)));
}});
bucket = nullptr;
return *this;
}
/**
* @brief Assigns a meta constructor to a meta type.
*
* Both member functions and free function can be assigned to meta types in
* the role of constructors. All that is required is that they return an
* instance of the underlying type.<br/>
* From a client's point of view, nothing changes if a constructor of a meta
* type is a built-in one or not.
*
* @tparam Candidate The actual function to use as a constructor.
* @tparam Policy Optional policy (no policy set by default).
* @return An extended meta factory for the parent type.
*/
template<auto Candidate, typename Policy = as_is_t>
auto ctor() noexcept {
using descriptor = meta_function_helper_t<Type, decltype(Candidate)>;
static_assert(Policy::template value<typename descriptor::return_type>, "Invalid return type for the given policy");
static_assert(std::is_same_v<std::remove_cv_t<std::remove_reference_t<typename descriptor::return_type>>, Type>, "The function doesn't return an object of the required type");
internal::meta_extend(
internal::owner(*ctx, *info),
type_id<typename descriptor::args_type>().hash(),
internal::meta_ctor_node{
descriptor::args_type::size,
&meta_arg<typename descriptor::args_type>,
&meta_construct<Type, Candidate, Policy>});
bucket = nullptr;
return *this;
}
/**
* @brief Assigns a meta constructor to a meta type.
*
* A meta constructor is uniquely identified by the types of its arguments
* and is such that there exists an actual constructor of the underlying
* type that can be invoked with parameters whose types are those given.
*
* @tparam Args Types of arguments to use to construct an instance.
* @return An extended meta factory for the parent type.
*/
template<typename... Args>
auto ctor() noexcept {
// default constructor is already implicitly generated, no need for redundancy
if constexpr(sizeof...(Args) != 0u) {
using descriptor = meta_function_helper_t<Type, Type (*)(Args...)>;
internal::meta_extend(
internal::owner(*ctx, *info),
type_id<typename descriptor::args_type>().hash(),
internal::meta_ctor_node{
descriptor::args_type::size,
&meta_arg<typename descriptor::args_type>,
&meta_construct<Type, Args...>});
}
bucket = nullptr;
return *this;
}
/**
* @brief Assigns a meta destructor to a meta type.
*
* Both free functions and member functions can be assigned to meta types in
* the role of destructors.<br/>
* The signature of a free function should be identical to the following:
*
* @code{.cpp}
* void(Type &);
* @endcode
*
* Member functions should not take arguments instead.<br/>
* The purpose is to give users the ability to free up resources that
* require special treatment before an object is actually destroyed.
*
* @tparam Func The actual function to use as a destructor.
* @return A meta factory for the parent type.
*/
template<auto Func>
auto dtor() noexcept {
static_assert(std::is_invocable_v<decltype(Func), Type &>, "The function doesn't accept an object of the type provided");
internal::meta_extend(
internal::owner(*ctx, *info),
internal::meta_dtor_node{
+[](void *instance) { std::invoke(Func, *static_cast<Type *>(instance)); }});
bucket = nullptr;
return *this;
}
/**
* @brief Assigns a meta data to a meta type.
*
* Both data members and static and global variables, as well as constants
* of any kind, can be assigned to a meta type.<br/>
* From a client's point of view, all the variables associated with the
* reflected object will appear as if they were part of the type itself.
*
* @tparam Data The actual variable to attach to the meta type.
* @tparam Policy Optional policy (no policy set by default).
* @param id Unique identifier.
* @return An extended meta factory for the parent type.
*/
template<auto Data, typename Policy = as_is_t>
auto data(const id_type id) noexcept {
if constexpr(std::is_member_object_pointer_v<decltype(Data)>) {
using data_type = std::remove_reference_t<std::invoke_result_t<decltype(Data), Type &>>;
auto &&elem = internal::meta_extend(
internal::owner(*ctx, *info),
id,
internal::meta_data_node{
/* this is never static */
std::is_const_v<data_type> ? internal::meta_traits::is_const : internal::meta_traits::is_none,
1u,
&internal::resolve<std::remove_cv_t<data_type>>,
&meta_arg<type_list<std::remove_cv_t<data_type>>>,
&meta_setter<Type, Data>,
&meta_getter<Type, Data, Policy>});
bucket = &elem.prop;
} else {
using data_type = std::remove_reference_t<std::remove_pointer_t<decltype(Data)>>;
auto &&elem = internal::meta_extend(
internal::owner(*ctx, *info),
id,
internal::meta_data_node{
((std::is_same_v<Type, std::remove_cv_t<data_type>> || std::is_const_v<data_type>) ? internal::meta_traits::is_const : internal::meta_traits::is_none) | internal::meta_traits::is_static,
1u,
&internal::resolve<std::remove_cv_t<data_type>>,
&meta_arg<type_list<std::remove_cv_t<data_type>>>,
&meta_setter<Type, Data>,
&meta_getter<Type, Data, Policy>});
bucket = &elem.prop;
}
return *this;
}
/**
* @brief Assigns a meta data to a meta type by means of its setter and
* getter.
*
* Setters and getters can be either free functions, member functions or a
* mix of them.<br/>
* In case of free functions, setters and getters must accept a reference to
* an instance of the parent type as their first argument. A setter has then
* an extra argument of a type convertible to that of the parameter to
* set.<br/>
* In case of member functions, getters have no arguments at all, while
* setters has an argument of a type convertible to that of the parameter to
* set.
*
* @tparam Setter The actual function to use as a setter.
* @tparam Getter The actual function to use as a getter.
* @tparam Policy Optional policy (no policy set by default).
* @param id Unique identifier.
* @return An extended meta factory for the parent type.
*/
template<auto Setter, auto Getter, typename Policy = as_is_t>
auto data(const id_type id) noexcept {
using data_type = std::invoke_result_t<decltype(Getter), Type &>;
static_assert(Policy::template value<data_type>, "Invalid return type for the given policy");
if constexpr(std::is_same_v<decltype(Setter), std::nullptr_t>) {
auto &&elem = internal::meta_extend(
internal::owner(*ctx, *info),
id,
internal::meta_data_node{
/* this is never static */
internal::meta_traits::is_const,
0u,
&internal::resolve<std::remove_cv_t<std::remove_reference_t<data_type>>>,
&meta_arg<type_list<>>,
&meta_setter<Type, Setter>,
&meta_getter<Type, Getter, Policy>});
bucket = &elem.prop;
} else {
using args_type = typename meta_function_helper_t<Type, decltype(Setter)>::args_type;
auto &&elem = internal::meta_extend(
internal::owner(*ctx, *info),
id,
internal::meta_data_node{
/* this is never static nor const */
internal::meta_traits::is_none,
1u,
&internal::resolve<std::remove_cv_t<std::remove_reference_t<data_type>>>,
&meta_arg<type_list<type_list_element_t<args_type::size != 1u, args_type>>>,
&meta_setter<Type, Setter>,
&meta_getter<Type, Getter, Policy>});
bucket = &elem.prop;
}
return *this;
}
/**
* @brief Assigns a meta data to a meta type by means of its setters and
* getter.
*
* Multi-setter support for meta data members. All setters are tried in the
* order of definition before returning to the caller.<br/>
* Setters can be either free functions, member functions or a mix of them
* and are provided via a `value_list` type.
*
* @sa data
*
* @tparam Setter The actual functions to use as setters.
* @tparam Getter The actual getter function.
* @tparam Policy Optional policy (no policy set by default).
* @param id Unique identifier.
* @return An extended meta factory for the parent type.
*/
template<typename Setter, auto Getter, typename Policy = as_is_t>
auto data(const id_type id) noexcept {
data<Setter, Getter, Policy>(id, std::make_index_sequence<Setter::size>{});
return *this;
}
/**
* @brief Assigns a meta function to a meta type.
*
* Both member functions and free functions can be assigned to a meta
* type.<br/>
* From a client's point of view, all the functions associated with the
* reflected object will appear as if they were part of the type itself.
*
* @tparam Candidate The actual function to attach to the meta type.
* @tparam Policy Optional policy (no policy set by default).
* @param id Unique identifier.
* @return An extended meta factory for the parent type.
*/
template<auto Candidate, typename Policy = as_is_t>
auto func(const id_type id) noexcept {
using descriptor = meta_function_helper_t<Type, decltype(Candidate)>;
static_assert(Policy::template value<typename descriptor::return_type>, "Invalid return type for the given policy");
auto &&elem = internal::meta_extend(
internal::owner(*ctx, *info),
id,
internal::meta_func_node{
(descriptor::is_const ? internal::meta_traits::is_const : internal::meta_traits::is_none) | (descriptor::is_static ? internal::meta_traits::is_static : internal::meta_traits::is_none),
descriptor::args_type::size,
&internal::resolve<std::conditional_t<std::is_same_v<Policy, as_void_t>, void, std::remove_cv_t<std::remove_reference_t<typename descriptor::return_type>>>>,
&meta_arg<typename descriptor::args_type>,
&meta_invoke<Type, Candidate, Policy>});
bucket = &elem.prop;
return *this;
}
/**
* @brief Assigns a property to the last meta object created.
*
* Both the key and the value (if any) must be at least copy constructible.
*
* @tparam Value Optional type of the property value.
* @param id Property key.
* @param value Optional property value.
* @return An extended meta factory for the given type.
*/
template<typename... Value>
meta_factory prop(id_type id, [[maybe_unused]] Value &&...value) {
ENTT_ASSERT(bucket != nullptr, "Meta object does not support properties");
if constexpr(sizeof...(Value) == 0u) {
internal::meta_extend(
*bucket,
id,
internal::meta_prop_node{
&internal::resolve<void>});
} else {
internal::meta_extend(
*bucket,
id,
internal::meta_prop_node{
&internal::resolve<std::decay_t<Value>>...,
std::make_shared<std::decay_t<Value>>(std::forward<Value>(value))...});
}
return *this;
}
private:
meta_ctx *ctx;
dense_map<id_type, internal::meta_prop_node, identity> *bucket;
const type_info *info;
};
/**
* @brief Utility function to use for reflection.
*
* This is the point from which everything starts.<br/>
* By invoking this function with a type that is not yet reflected, a meta type
* is created to which it will be possible to attach meta objects through a
* dedicated factory.
*
* @tparam Type Type to reflect.
* @param ctx The context into which to construct meta types.
* @return A meta factory for the given type.
*/
template<typename Type>
[[nodiscard]] auto meta(meta_ctx &ctx) noexcept {
auto &&context = internal::meta_context::from(ctx);
// make sure the type exists in the context before returning a factory
context.value.try_emplace(type_id<Type>().hash(), internal::resolve<Type>(context));
return meta_factory<Type>{ctx};
}
/**
* @brief Utility function to use for reflection.
*
* This is the point from which everything starts.<br/>
* By invoking this function with a type that is not yet reflected, a meta type
* is created to which it will be possible to attach meta objects through a
* dedicated factory.
*
* @tparam Type Type to reflect.
* @return A meta factory for the given type.
*/
template<typename Type>
[[nodiscard]] auto meta() noexcept {
return meta<Type>(locator<meta_ctx>::value_or());
}
/**
* @brief Resets a type and all its parts.
*
* Resets a type and all its data members, member functions and properties, as
* well as its constructors, destructors and conversion functions if any.<br/>
* Base classes aren't reset but the link between the two types is removed.
*
* The type is also removed from the set of searchable types.
*
* @param id Unique identifier.
* @param ctx The context from which to reset meta types.
*/
inline void meta_reset(meta_ctx &ctx, const id_type id) noexcept {
auto &&context = internal::meta_context::from(ctx);
for(auto it = context.value.begin(); it != context.value.end();) {
if(it->second.id == id) {
it = context.value.erase(it);
} else {
++it;
}
}
}
/**
* @brief Resets a type and all its parts.
*
* Resets a type and all its data members, member functions and properties, as
* well as its constructors, destructors and conversion functions if any.<br/>
* Base classes aren't reset but the link between the two types is removed.
*
* The type is also removed from the set of searchable types.
*
* @param id Unique identifier.
*/
inline void meta_reset(const id_type id) noexcept {
meta_reset(locator<meta_ctx>::value_or(), id);
}
/**
* @brief Resets a type and all its parts.
*
* @sa meta_reset
*
* @tparam Type Type to reset.
* @param ctx The context from which to reset meta types.
*/
template<typename Type>
void meta_reset(meta_ctx &ctx) noexcept {
internal::meta_context::from(ctx).value.erase(type_id<Type>().hash());
}
/**
* @brief Resets a type and all its parts.
*
* @sa meta_reset
*
* @tparam Type Type to reset.
*/
template<typename Type>
void meta_reset() noexcept {
meta_reset<Type>(locator<meta_ctx>::value_or());
}
/**
* @brief Resets all meta types.
*
* @sa meta_reset
*
* @param ctx The context from which to reset meta types.
*/
inline void meta_reset(meta_ctx &ctx) noexcept {
internal::meta_context::from(ctx).value.clear();
}
/**
* @brief Resets all meta types.
*
* @sa meta_reset
*/
inline void meta_reset() noexcept {
meta_reset(locator<meta_ctx>::value_or());
}
} // namespace entt
#endif
// #include "meta/meta.hpp"
#ifndef ENTT_META_META_HPP
#define ENTT_META_META_HPP
#include <cstddef>
#include <iterator>
#include <memory>
#include <type_traits>
#include <utility>
// #include "../config/config.h"
// #include "../core/any.hpp"
// #include "../core/fwd.hpp"
// #include "../core/iterator.hpp"
// #include "../core/type_info.hpp"
// #include "../core/type_traits.hpp"
// #include "../core/utility.hpp"
// #include "../locator/locator.hpp"
// #include "adl_pointer.hpp"
// #include "context.hpp"
// #include "fwd.hpp"
// #include "node.hpp"
// #include "range.hpp"
// #include "type_traits.hpp"
namespace entt {
class meta_any;
class meta_type;
/*! @brief Proxy object for sequence containers. */
class meta_sequence_container {
class meta_iterator;
public:
/*! @brief Unsigned integer type. */
using size_type = std::size_t;
/*! @brief Meta iterator type. */
using iterator = meta_iterator;
/**
* @brief Context aware constructor.
* @param area The context from which to search for meta types.
*/
meta_sequence_container(const meta_ctx &area = locator<meta_ctx>::value_or()) noexcept
: ctx{&area} {}
/**
* @brief Rebinds a proxy object to a sequence container type.
* @tparam Type Type of container to wrap.
* @param instance The container to wrap.
*/
template<typename Type>
void rebind(any instance) noexcept {
value_type_node = &internal::resolve<typename Type::value_type>;
size_fn = &meta_sequence_container_traits<Type>::size;
resize_fn = &meta_sequence_container_traits<Type>::resize;
iter_fn = &meta_sequence_container_traits<Type>::iter;
insert_or_erase_fn = &meta_sequence_container_traits<Type>::insert_or_erase;
storage = std::move(instance);
}
[[nodiscard]] inline meta_type value_type() const noexcept;
[[nodiscard]] inline size_type size() const noexcept;
inline bool resize(const size_type);
inline bool clear();
[[nodiscard]] inline iterator begin();
[[nodiscard]] inline iterator end();
inline iterator insert(iterator, meta_any);
inline iterator erase(iterator);
[[nodiscard]] inline meta_any operator[](const size_type);
[[nodiscard]] inline explicit operator bool() const noexcept;
private:
const meta_ctx *ctx{};
internal::meta_type_node (*value_type_node)(const internal::meta_context &){};
size_type (*size_fn)(const any &) noexcept {};
bool (*resize_fn)(any &, size_type){};
iterator (*iter_fn)(const meta_ctx &, any &, const bool){};
iterator (*insert_or_erase_fn)(const meta_ctx &, any &, const any &, meta_any &){};
any storage{};
};
/*! @brief Proxy object for associative containers. */
class meta_associative_container {
class meta_iterator;
public:
/*! @brief Unsigned integer type. */
using size_type = std::size_t;
/*! @brief Meta iterator type. */
using iterator = meta_iterator;
/**
* @brief Context aware constructor.
* @param area The context from which to search for meta types.
*/
meta_associative_container(const meta_ctx &area = locator<meta_ctx>::value_or()) noexcept
: ctx{&area} {}
/**
* @brief Rebinds a proxy object to an associative container type.
* @tparam Type Type of container to wrap.
* @param instance The container to wrap.
*/
template<typename Type>
void rebind(any instance) noexcept {
if constexpr(!meta_associative_container_traits<Type>::key_only) {
mapped_type_node = &internal::resolve<typename Type::mapped_type>;
}
key_only_container = meta_associative_container_traits<Type>::key_only;
key_type_node = &internal::resolve<typename Type::key_type>;
value_type_node = &internal::resolve<typename Type::value_type>;
size_fn = &meta_associative_container_traits<Type>::size;
clear_fn = &meta_associative_container_traits<Type>::clear;
iter_fn = &meta_associative_container_traits<Type>::iter;
insert_or_erase_fn = &meta_associative_container_traits<Type>::insert_or_erase;
find_fn = &meta_associative_container_traits<Type>::find;
storage = std::move(instance);
}
[[nodiscard]] inline bool key_only() const noexcept;
[[nodiscard]] inline meta_type key_type() const noexcept;
[[nodiscard]] inline meta_type mapped_type() const noexcept;
[[nodiscard]] inline meta_type value_type() const noexcept;
[[nodiscard]] inline size_type size() const noexcept;
inline bool clear();
[[nodiscard]] inline iterator begin();
[[nodiscard]] inline iterator end();
inline bool insert(meta_any);
inline bool insert(meta_any, meta_any);
inline size_type erase(meta_any);
[[nodiscard]] inline iterator find(meta_any);
[[nodiscard]] inline explicit operator bool() const noexcept;
private:
const meta_ctx *ctx{};
bool key_only_container{};
internal::meta_type_node (*key_type_node)(const internal::meta_context &){};
internal::meta_type_node (*mapped_type_node)(const internal::meta_context &){};
internal::meta_type_node (*value_type_node)(const internal::meta_context &){};
size_type (*size_fn)(const any &) noexcept {};
bool (*clear_fn)(any &){};
iterator (*iter_fn)(const meta_ctx &, any &, const bool){};
size_type (*insert_or_erase_fn)(any &, meta_any &, meta_any &){};
iterator (*find_fn)(const meta_ctx &, any &, meta_any &){};
any storage{};
};
/*! @brief Opaque wrapper for values of any type. */
class meta_any {
enum class operation : std::uint8_t {
deref,
seq,
assoc
};
using vtable_type = void(const operation, const any &, void *);
template<typename Type>
static void basic_vtable([[maybe_unused]] const operation op, [[maybe_unused]] const any &value, [[maybe_unused]] void *other) {
static_assert(std::is_same_v<std::remove_cv_t<std::remove_reference_t<Type>>, Type>, "Invalid type");
if constexpr(!std::is_void_v<Type>) {
switch(op) {
case operation::deref:
if constexpr(is_meta_pointer_like_v<Type>) {
if constexpr(std::is_function_v<typename std::pointer_traits<Type>::element_type>) {
static_cast<meta_any *>(other)->emplace<Type>(any_cast<Type>(value));
} else if constexpr(!std::is_same_v<std::remove_const_t<typename std::pointer_traits<Type>::element_type>, void>) {
using in_place_type = decltype(adl_meta_pointer_like<Type>::dereference(any_cast<const Type &>(value)));
if constexpr(std::is_constructible_v<bool, Type>) {
if(const auto &pointer_like = any_cast<const Type &>(value); pointer_like) {
static_cast<meta_any *>(other)->emplace<in_place_type>(adl_meta_pointer_like<Type>::dereference(pointer_like));
}
} else {
static_cast<meta_any *>(other)->emplace<in_place_type>(adl_meta_pointer_like<Type>::dereference(any_cast<const Type &>(value)));
}
}
}
break;
case operation::seq:
if constexpr(is_complete_v<meta_sequence_container_traits<Type>>) {
static_cast<meta_sequence_container *>(other)->rebind<Type>(std::move(const_cast<any &>(value)));
}
break;
case operation::assoc:
if constexpr(is_complete_v<meta_associative_container_traits<Type>>) {
static_cast<meta_associative_container *>(other)->rebind<Type>(std::move(const_cast<any &>(value)));
}
break;
}
}
}
void release() {
if(node.dtor.dtor && owner()) {
node.dtor.dtor(storage.data());
}
}
meta_any(const meta_ctx &area, const meta_any &other, any ref) noexcept
: storage{std::move(ref)},
ctx{&area},
node{storage ? other.node : internal::meta_type_node{}},
vtable{storage ? other.vtable : &basic_vtable<void>} {}
public:
/*! Default constructor. */
meta_any() noexcept
: meta_any{meta_ctx_arg, locator<meta_ctx>::value_or()} {}
/**
* @brief Context aware constructor.
* @param area The context from which to search for meta types.
*/
meta_any(meta_ctx_arg_t, const meta_ctx &area) noexcept
: storage{},
ctx{&area},
node{},
vtable{&basic_vtable<void>} {}
/**
* @brief Constructs a wrapper by directly initializing the new object.
* @tparam Type Type of object to use to initialize the wrapper.
* @tparam Args Types of arguments to use to construct the new instance.
* @param args Parameters to use to construct the instance.
*/
template<typename Type, typename... Args>
explicit meta_any(std::in_place_type_t<Type>, Args &&...args)
: meta_any{locator<meta_ctx>::value_or(), std::in_place_type<Type>, std::forward<Args>(args)...} {}
/**
* @brief Constructs a wrapper by directly initializing the new object.
* @tparam Type Type of object to use to initialize the wrapper.
* @tparam Args Types of arguments to use to construct the new instance.
* @param area The context from which to search for meta types.
* @param args Parameters to use to construct the instance.
*/
template<typename Type, typename... Args>
explicit meta_any(const meta_ctx &area, std::in_place_type_t<Type>, Args &&...args)
: storage{std::in_place_type<Type>, std::forward<Args>(args)...},
ctx{&area},
node{internal::resolve<std::remove_cv_t<std::remove_reference_t<Type>>>(internal::meta_context::from(*ctx))},
vtable{&basic_vtable<std::remove_cv_t<std::remove_reference_t<Type>>>} {}
/**
* @brief Constructs a wrapper from a given value.
* @tparam Type Type of object to use to initialize the wrapper.
* @param value An instance of an object to use to initialize the wrapper.
*/
template<typename Type, typename = std::enable_if_t<!std::is_same_v<std::decay_t<Type>, meta_any>>>
meta_any(Type &&value)
: meta_any{locator<meta_ctx>::value_or(), std::forward<Type>(value)} {}
/**
* @brief Constructs a wrapper from a given value.
* @tparam Type Type of object to use to initialize the wrapper.
* @param area The context from which to search for meta types.
* @param value An instance of an object to use to initialize the wrapper.
*/
template<typename Type, typename = std::enable_if_t<!std::is_same_v<std::decay_t<Type>, meta_any>>>
meta_any(const meta_ctx &area, Type &&value)
: meta_any{area, std::in_place_type<std::decay_t<Type>>, std::forward<Type>(value)} {}
/**
* @brief Context aware copy constructor.
* @param area The context from which to search for meta types.
* @param other The instance to copy from.
*/
meta_any(const meta_ctx &area, const meta_any &other)
: meta_any{other} {
ctx = &area;
node = node.resolve ? node.resolve(internal::meta_context::from(*ctx)) : node;
}
/**
* @brief Context aware move constructor.
* @param area The context from which to search for meta types.
* @param other The instance to move from.
*/
meta_any(const meta_ctx &area, meta_any &&other)
: meta_any{std::move(other)} {
ctx = &area;
node = node.resolve ? node.resolve(internal::meta_context::from(*ctx)) : node;
}
/**
* @brief Copy constructor.
* @param other The instance to copy from.
*/
meta_any(const meta_any &other) = default;
/**
* @brief Move constructor.
* @param other The instance to move from.
*/
meta_any(meta_any &&other) noexcept
: storage{std::move(other.storage)},
ctx{other.ctx},
node{std::exchange(other.node, internal::meta_type_node{})},
vtable{std::exchange(other.vtable, &basic_vtable<void>)} {}
/*! @brief Frees the internal storage, whatever it means. */
~meta_any() {
release();
}
/**
* @brief Copy assignment operator.
* @param other The instance to copy from.
* @return This meta any object.
*/
meta_any &operator=(const meta_any &other) {
release();
storage = other.storage;
ctx = other.ctx;
node = other.node;
vtable = other.vtable;
return *this;
}
/**
* @brief Move assignment operator.
* @param other The instance to move from.
* @return This meta any object.
*/
meta_any &operator=(meta_any &&other) noexcept {
release();
storage = std::move(other.storage);
ctx = other.ctx;
node = std::exchange(other.node, internal::meta_type_node{});
vtable = std::exchange(other.vtable, &basic_vtable<void>);
return *this;
}
/**
* @brief Value assignment operator.
* @tparam Type Type of object to use to initialize the wrapper.
* @param value An instance of an object to use to initialize the wrapper.
* @return This meta any object.
*/
template<typename Type>
std::enable_if_t<!std::is_same_v<std::decay_t<Type>, meta_any>, meta_any &>
operator=(Type &&value) {
emplace<std::decay_t<Type>>(std::forward<Type>(value));
return *this;
}
/*! @copydoc any::type */
[[nodiscard]] inline meta_type type() const noexcept;
/*! @copydoc any::data */
[[nodiscard]] const void *data() const noexcept {
return storage.data();
}
/*! @copydoc any::data */
[[nodiscard]] void *data() noexcept {
return storage.data();
}
/**
* @brief Invokes the underlying function, if possible.
* @tparam Args Types of arguments to use to invoke the function.
* @param id Unique identifier.
* @param args Parameters to use to invoke the function.
* @return A wrapper containing the returned value, if any.
*/
template<typename... Args>
meta_any invoke(const id_type id, Args &&...args) const;
/*! @copydoc invoke */
template<typename... Args>
meta_any invoke(const id_type id, Args &&...args);
/**
* @brief Sets the value of a given variable.
* @tparam Type Type of value to assign.
* @param id Unique identifier.
* @param value Parameter to use to set the underlying variable.
* @return True in case of success, false otherwise.
*/
template<typename Type>
bool set(const id_type id, Type &&value);
/**
* @brief Gets the value of a given variable.
* @param id Unique identifier.
* @return A wrapper containing the value of the underlying variable.
*/
[[nodiscard]] meta_any get(const id_type id) const;
/*! @copydoc get */
[[nodiscard]] meta_any get(const id_type id);
/**
* @brief Tries to cast an instance to a given type.
* @tparam Type Type to which to cast the instance.
* @return A (possibly null) pointer to the contained instance.
*/
template<typename Type>
[[nodiscard]] const Type *try_cast() const {
const auto other = internal::resolve<std::remove_cv_t<Type>>(internal::meta_context::from(*ctx));
return static_cast<const Type *>(internal::try_cast(internal::meta_context::from(*ctx), node, other, data()));
}
/*! @copydoc try_cast */
template<typename Type>
[[nodiscard]] Type *try_cast() {
if constexpr(std::is_const_v<Type>) {
return std::as_const(*this).try_cast<std::remove_const_t<Type>>();
} else {
const auto other = internal::resolve<std::remove_cv_t<Type>>(internal::meta_context::from(*ctx));
return static_cast<Type *>(const_cast<void *>(internal::try_cast(internal::meta_context::from(*ctx), node, other, data())));
}
}
/**
* @brief Tries to cast an instance to a given type.
*
* @warning
* Attempting to perform an invalid cast results is undefined behavior.
*
* @tparam Type Type to which to cast the instance.
* @return A reference to the contained instance.
*/
template<typename Type>
[[nodiscard]] Type cast() const {
auto *const instance = try_cast<std::remove_reference_t<Type>>();
ENTT_ASSERT(instance, "Invalid instance");
return static_cast<Type>(*instance);
}
/*! @copydoc cast */
template<typename Type>
[[nodiscard]] Type cast() {
// forces const on non-reference types to make them work also with wrappers for const references
auto *const instance = try_cast<std::remove_reference_t<const Type>>();
ENTT_ASSERT(instance, "Invalid instance");
return static_cast<Type>(*instance);
}
/**
* @brief Converts an object in such a way that a given cast becomes viable.
* @param type Meta type to which the cast is requested.
* @return A valid meta any object if there exists a viable conversion, an
* invalid one otherwise.
*/
[[nodiscard]] meta_any allow_cast(const meta_type &type) const;
/**
* @brief Converts an object in such a way that a given cast becomes viable.
* @param type Meta type to which the cast is requested.
* @return True if there exists a viable conversion, false otherwise.
*/
[[nodiscard]] bool allow_cast(const meta_type &type) {
if(auto other = std::as_const(*this).allow_cast(type); other) {
if(other.owner()) {
std::swap(*this, other);
}
return true;
}
return false;
}
/**
* @brief Converts an object in such a way that a given cast becomes viable.
* @tparam Type Type to which the cast is requested.
* @return A valid meta any object if there exists a viable conversion, an
* invalid one otherwise.
*/
template<typename Type>
[[nodiscard]] meta_any allow_cast() const {
if constexpr(std::is_reference_v<Type> && !std::is_const_v<std::remove_reference_t<Type>>) {
return meta_any{meta_ctx_arg, *ctx};
} else {
auto other = internal::resolve<std::remove_cv_t<std::remove_reference_t<Type>>>(internal::meta_context::from(*ctx));
return allow_cast(meta_type{*ctx, other});
}
}
/**
* @brief Converts an object in such a way that a given cast becomes viable.
* @tparam Type Type to which the cast is requested.
* @return True if there exists a viable conversion, false otherwise.
*/
template<typename Type>
bool allow_cast() {
auto other = internal::resolve<std::remove_cv_t<std::remove_reference_t<Type>>>(internal::meta_context::from(*ctx));
return allow_cast(meta_type{*ctx, other}) && (!(std::is_reference_v<Type> && !std::is_const_v<std::remove_reference_t<Type>>) || storage.data() != nullptr);
}
/*! @copydoc any::emplace */
template<typename Type, typename... Args>
void emplace(Args &&...args) {
release();
storage.emplace<Type>(std::forward<Args>(args)...);
node = internal::resolve<std::remove_cv_t<std::remove_reference_t<Type>>>(internal::meta_context::from(*ctx));
vtable = &basic_vtable<std::remove_cv_t<std::remove_reference_t<Type>>>;
}
/*! @copydoc any::assign */
bool assign(const meta_any &other);
/*! @copydoc any::assign */
bool assign(meta_any &&other);
/*! @copydoc any::reset */
void reset() {
release();
storage.reset();
node = {};
vtable = &basic_vtable<void>;
}
/**
* @brief Returns a sequence container proxy.
* @return A sequence container proxy for the underlying object.
*/
[[nodiscard]] meta_sequence_container as_sequence_container() noexcept {
any detached = storage.as_ref();
meta_sequence_container proxy{*ctx};
vtable(operation::seq, detached, &proxy);
return proxy;
}
/*! @copydoc as_sequence_container */
[[nodiscard]] meta_sequence_container as_sequence_container() const noexcept {
any detached = storage.as_ref();
meta_sequence_container proxy{*ctx};
vtable(operation::seq, detached, &proxy);
return proxy;
}
/**
* @brief Returns an associative container proxy.
* @return An associative container proxy for the underlying object.
*/
[[nodiscard]] meta_associative_container as_associative_container() noexcept {
any detached = storage.as_ref();
meta_associative_container proxy{*ctx};
vtable(operation::assoc, detached, &proxy);
return proxy;
}
/*! @copydoc as_associative_container */
[[nodiscard]] meta_associative_container as_associative_container() const noexcept {
any detached = storage.as_ref();
meta_associative_container proxy{*ctx};
vtable(operation::assoc, detached, &proxy);
return proxy;
}
/**
* @brief Indirection operator for dereferencing opaque objects.
* @return A wrapper that shares a reference to an unmanaged object if the
* wrapped element is dereferenceable, an invalid meta any otherwise.
*/
[[nodiscard]] meta_any operator*() const noexcept {
meta_any ret{meta_ctx_arg, *ctx};
vtable(operation::deref, storage, &ret);
return ret;
}
/**
* @brief Returns false if a wrapper is invalid, true otherwise.
* @return False if the wrapper is invalid, true otherwise.
*/
[[nodiscard]] explicit operator bool() const noexcept {
return !(node.info == nullptr);
}
/*! @copydoc any::operator== */
[[nodiscard]] bool operator==(const meta_any &other) const noexcept {
return (ctx == other.ctx) && ((!node.info && !other.node.info) || (node.info && other.node.info && *node.info == *other.node.info && storage == other.storage));
}
/*! @copydoc any::operator!= */
[[nodiscard]] bool operator!=(const meta_any &other) const noexcept {
return !(*this == other);
}
/*! @copydoc any::as_ref */
[[nodiscard]] meta_any as_ref() noexcept {
return meta_any{*ctx, *this, storage.as_ref()};
}
/*! @copydoc any::as_ref */
[[nodiscard]] meta_any as_ref() const noexcept {
return meta_any{*ctx, *this, storage.as_ref()};
}
/*! @copydoc any::owner */
[[nodiscard]] bool owner() const noexcept {
return storage.owner();
}
private:
any storage;
const meta_ctx *ctx;
internal::meta_type_node node;
vtable_type *vtable;
};
/**
* @brief Forwards its argument and avoids copies for lvalue references.
* @tparam Type Type of argument to use to construct the new instance.
* @param value Parameter to use to construct the instance.
* @param ctx The context from which to search for meta types.
* @return A properly initialized and not necessarily owning wrapper.
*/
template<typename Type>
meta_any forward_as_meta(const meta_ctx &ctx, Type &&value) {
return meta_any{ctx, std::in_place_type<Type &&>, std::forward<Type>(value)};
}
/**
* @brief Forwards its argument and avoids copies for lvalue references.
* @tparam Type Type of argument to use to construct the new instance.
* @param value Parameter to use to construct the instance.
* @return A properly initialized and not necessarily owning wrapper.
*/
template<typename Type>
meta_any forward_as_meta(Type &&value) {
return forward_as_meta(locator<meta_ctx>::value_or(), std::forward<Type>(value));
}
/**
* @brief Opaque pointers to instances of any type.
*
* A handle doesn't perform copies and isn't responsible for the contained
* object. It doesn't prolong the lifetime of the pointed instance.<br/>
* Handles are used to generate references to actual objects when needed.
*/
struct meta_handle {
/*! Default constructor. */
meta_handle() noexcept
: meta_handle{meta_ctx_arg, locator<meta_ctx>::value_or()} {}
/**
* @brief Context aware constructor.
* @param area The context from which to search for meta types.
*/
meta_handle(meta_ctx_arg_t, const meta_ctx &area) noexcept
: any{meta_ctx_arg, area} {}
/**
* @brief Creates a handle that points to an unmanaged object.
* @param value An instance of an object to use to initialize the handle.
*/
meta_handle(meta_any &value) noexcept
: any{value.as_ref()} {}
/**
* @brief Creates a handle that points to an unmanaged object.
* @param value An instance of an object to use to initialize the handle.
*/
meta_handle(const meta_any &value) noexcept
: any{value.as_ref()} {}
/**
* @brief Creates a handle that points to an unmanaged object.
* @tparam Type Type of object to use to initialize the handle.
* @param ctx The context from which to search for meta types.
* @param value An instance of an object to use to initialize the handle.
*/
template<typename Type, typename = std::enable_if_t<!std::is_same_v<std::decay_t<Type>, meta_handle>>>
meta_handle(const meta_ctx &ctx, Type &value) noexcept
: any{ctx, std::in_place_type<Type &>, value} {}
/**
* @brief Creates a handle that points to an unmanaged object.
* @tparam Type Type of object to use to initialize the handle.
* @param value An instance of an object to use to initialize the handle.
*/
template<typename Type, typename = std::enable_if_t<!std::is_same_v<std::decay_t<Type>, meta_handle>>>
meta_handle(Type &value) noexcept
: meta_handle{locator<meta_ctx>::value_or(), value} {}
/**
* @brief Context aware copy constructor.
* @param area The context from which to search for meta types.
* @param other The instance to copy from.
*/
meta_handle(const meta_ctx &area, const meta_handle &other)
: any{area, other.any} {}
/**
* @brief Context aware move constructor.
* @param area The context from which to search for meta types.
* @param other The instance to move from.
*/
meta_handle(const meta_ctx &area, meta_handle &&other)
: any{area, std::move(other.any)} {}
/*! @brief Default copy constructor, deleted on purpose. */
meta_handle(const meta_handle &) = delete;
/*! @brief Default move constructor. */
meta_handle(meta_handle &&) = default;
/**
* @brief Default copy assignment operator, deleted on purpose.
* @return This meta handle.
*/
meta_handle &operator=(const meta_handle &) = delete;
/**
* @brief Default move assignment operator.
* @return This meta handle.
*/
meta_handle &operator=(meta_handle &&) = default;
/**
* @brief Returns false if a handle is invalid, true otherwise.
* @return False if the handle is invalid, true otherwise.
*/
[[nodiscard]] explicit operator bool() const noexcept {
return static_cast<bool>(any);
}
/**
* @brief Access operator for accessing the contained opaque object.
* @return A wrapper that shares a reference to an unmanaged object.
*/
[[nodiscard]] meta_any *operator->() {
return &any;
}
/*! @copydoc operator-> */
[[nodiscard]] const meta_any *operator->() const {
return &any;
}
private:
meta_any any;
};
/*! @brief Opaque wrapper for properties of any type. */
struct meta_prop {
/*! @brief Default constructor. */
meta_prop() noexcept
: node{},
ctx{} {}
/**
* @brief Context aware constructor for meta objects.
* @param area The context from which to search for meta types.
* @param curr The underlying node with which to construct the instance.
*/
meta_prop(const meta_ctx &area, const internal::meta_prop_node &curr) noexcept
: node{&curr},
ctx{&area} {}
/**
* @brief Returns the stored value by copy.
* @return A wrapper containing the value stored with the property.
*/
[[nodiscard]] meta_any value() const {
return node->value ? node->type(internal::meta_context::from(*ctx)).from_void(*ctx, nullptr, node->value.get()) : meta_any{meta_ctx_arg, *ctx};
}
/**
* @brief Returns true if an object is valid, false otherwise.
* @return True if the object is valid, false otherwise.
*/
[[nodiscard]] explicit operator bool() const noexcept {
return (node != nullptr);
}
private:
const internal::meta_prop_node *node;
const meta_ctx *ctx;
};
/*! @brief Opaque wrapper for data members. */
struct meta_data {
/*! @brief Unsigned integer type. */
using size_type = typename internal::meta_data_node::size_type;
/*! @brief Default constructor. */
meta_data() noexcept
: node{},
ctx{} {}
/**
* @brief Context aware constructor for meta objects.
* @param area The context from which to search for meta types.
* @param curr The underlying node with which to construct the instance.
*/
meta_data(const meta_ctx &area, const internal::meta_data_node &curr) noexcept
: node{&curr},
ctx{&area} {}
/**
* @brief Returns the number of setters available.
* @return The number of setters available.
*/
[[nodiscard]] size_type arity() const noexcept {
return node->arity;
}
/**
* @brief Indicates whether a data member is constant or not.
* @return True if the data member is constant, false otherwise.
*/
[[nodiscard]] bool is_const() const noexcept {
return static_cast<bool>(node->traits & internal::meta_traits::is_const);
}
/**
* @brief Indicates whether a data member is static or not.
* @return True if the data member is static, false otherwise.
*/
[[nodiscard]] bool is_static() const noexcept {
return static_cast<bool>(node->traits & internal::meta_traits::is_static);
}
/*! @copydoc meta_any::type */
[[nodiscard]] inline meta_type type() const noexcept;
/**
* @brief Sets the value of a given variable.
* @tparam Type Type of value to assign.
* @param instance An opaque instance of the underlying type.
* @param value Parameter to use to set the underlying variable.
* @return True in case of success, false otherwise.
*/
template<typename Type>
bool set(meta_handle instance, Type &&value) const {
return node->set && node->set(meta_handle{*ctx, std::move(instance)}, meta_any{*ctx, std::forward<Type>(value)});
}
/**
* @brief Gets the value of a given variable.
* @param instance An opaque instance of the underlying type.
* @return A wrapper containing the value of the underlying variable.
*/
[[nodiscard]] meta_any get(meta_handle instance) const {
return node->get(*ctx, meta_handle{*ctx, std::move(instance)});
}
/**
* @brief Returns the type accepted by the i-th setter.
* @param index Index of the setter of which to return the accepted type.
* @return The type accepted by the i-th setter.
*/
[[nodiscard]] inline meta_type arg(const size_type index) const noexcept;
/**
* @brief Returns a range to visit registered meta properties.
* @return An iterable range to visit registered meta properties.
*/
[[nodiscard]] meta_range<meta_prop, typename decltype(internal::meta_data_node::prop)::const_iterator> prop() const noexcept {
return {{*ctx, node->prop.cbegin()}, {*ctx, node->prop.cend()}};
}
/**
* @brief Lookup utility for meta properties.
* @param key The key to use to search for a property.
* @return The registered meta property for the given key, if any.
*/
[[nodiscard]] meta_prop prop(const id_type key) const {
const auto it = node->prop.find(key);
return it != node->prop.cend() ? meta_prop{*ctx, it->second} : meta_prop{};
}
/**
* @brief Returns true if an object is valid, false otherwise.
* @return True if the object is valid, false otherwise.
*/
[[nodiscard]] explicit operator bool() const noexcept {
return (node != nullptr);
}
private:
const internal::meta_data_node *node;
const meta_ctx *ctx;
};
/*! @brief Opaque wrapper for member functions. */
struct meta_func {
/*! @brief Unsigned integer type. */
using size_type = typename internal::meta_func_node::size_type;
/*! @brief Default constructor. */
meta_func() noexcept
: node{},
ctx{} {}
/**
* @brief Context aware constructor for meta objects.
* @param area The context from which to search for meta types.
* @param curr The underlying node with which to construct the instance.
*/
meta_func(const meta_ctx &area, const internal::meta_func_node &curr) noexcept
: node{&curr},
ctx{&area} {}
/**
* @brief Returns the number of arguments accepted by a member function.
* @return The number of arguments accepted by the member function.
*/
[[nodiscard]] size_type arity() const noexcept {
return node->arity;
}
/**
* @brief Indicates whether a member function is constant or not.
* @return True if the member function is constant, false otherwise.
*/
[[nodiscard]] bool is_const() const noexcept {
return static_cast<bool>(node->traits & internal::meta_traits::is_const);
}
/**
* @brief Indicates whether a member function is static or not.
* @return True if the member function is static, false otherwise.
*/
[[nodiscard]] bool is_static() const noexcept {
return static_cast<bool>(node->traits & internal::meta_traits::is_static);
}
/**
* @brief Returns the return type of a member function.
* @return The return type of the member function.
*/
[[nodiscard]] inline meta_type ret() const noexcept;
/**
* @brief Returns the type of the i-th argument of a member function.
* @param index Index of the argument of which to return the type.
* @return The type of the i-th argument of a member function.
*/
[[nodiscard]] inline meta_type arg(const size_type index) const noexcept;
/**
* @brief Invokes the underlying function, if possible.
*
* @warning
* The context of the arguments is **not** changed.<br/>
* It's up to the caller to bind them to the right context(s).
*
* @param instance An opaque instance of the underlying type.
* @param args Parameters to use to invoke the function.
* @param sz Number of parameters to use to invoke the function.
* @return A wrapper containing the returned value, if any.
*/
meta_any invoke(meta_handle instance, meta_any *const args, const size_type sz) const {
return sz == arity() ? node->invoke(*ctx, meta_handle{*ctx, std::move(instance)}, args) : meta_any{meta_ctx_arg, *ctx};
}
/**
* @copybrief invoke
* @tparam Args Types of arguments to use to invoke the function.
* @param instance An opaque instance of the underlying type.
* @param args Parameters to use to invoke the function.
* @return A wrapper containing the returned value, if any.
*/
template<typename... Args>
meta_any invoke(meta_handle instance, Args &&...args) const {
meta_any arguments[sizeof...(Args) + 1u]{{*ctx, std::forward<Args>(args)}...};
return invoke(meta_handle{*ctx, std::move(instance)}, arguments, sizeof...(Args));
}
/*! @copydoc meta_data::prop */
[[nodiscard]] meta_range<meta_prop, typename decltype(internal::meta_func_node::prop)::const_iterator> prop() const noexcept {
return {{*ctx, node->prop.cbegin()}, {*ctx, node->prop.cend()}};
}
/**
* @brief Lookup utility for meta properties.
* @param key The key to use to search for a property.
* @return The registered meta property for the given key, if any.
*/
[[nodiscard]] meta_prop prop(const id_type key) const {
const auto it = node->prop.find(key);
return it != node->prop.cend() ? meta_prop{*ctx, it->second} : meta_prop{};
}
/**
* @brief Returns the next overload of a given function, if any.
* @return The next overload of the given function, if any.
*/
[[nodiscard]] meta_func next() const {
return node->next ? meta_func{*ctx, *node->next} : meta_func{};
}
/**
* @brief Returns true if an object is valid, false otherwise.
* @return True if the object is valid, false otherwise.
*/
[[nodiscard]] explicit operator bool() const noexcept {
return (node != nullptr);
}
private:
const internal::meta_func_node *node;
const meta_ctx *ctx;
};
/*! @brief Opaque wrapper for types. */
class meta_type {
template<typename Func>
[[nodiscard]] auto lookup(meta_any *const args, const typename internal::meta_type_node::size_type sz, [[maybe_unused]] bool constness, Func next) const {
decltype(next()) candidate = nullptr;
size_type same{};
bool ambiguous{};
for(auto curr = next(); curr; curr = next()) {
if constexpr(std::is_same_v<std::decay_t<decltype(*curr)>, internal::meta_func_node>) {
if(constness && !static_cast<bool>(curr->traits & internal::meta_traits::is_const)) {
continue;
}
}
if(curr->arity == sz) {
size_type match{};
size_type pos{};
for(; pos < sz && args[pos]; ++pos) {
const auto other = curr->arg(*ctx, pos);
const auto type = args[pos].type();
if(const auto &info = other.info(); info == type.info()) {
++match;
} else if(!((type.node.details && (type.node.details->base.contains(info.hash()) || type.node.details->conv.contains(info.hash()))) || (type.node.conversion_helper && other.node.conversion_helper))) {
break;
}
}
if(pos == sz) {
if(!candidate || match > same) {
candidate = curr;
same = match;
ambiguous = false;
} else if(match == same) {
if constexpr(std::is_same_v<std::decay_t<decltype(*curr)>, internal::meta_func_node>) {
if(static_cast<bool>(curr->traits & internal::meta_traits::is_const) != static_cast<bool>(candidate->traits & internal::meta_traits::is_const)) {
candidate = static_cast<bool>(candidate->traits & internal::meta_traits::is_const) ? curr : candidate;
ambiguous = false;
continue;
}
}
ambiguous = true;
}
}
}
}
return ambiguous ? nullptr : candidate;
}
public:
/*! @brief Unsigned integer type. */
using size_type = typename internal::meta_type_node::size_type;
/*! @brief Default constructor. */
meta_type() noexcept
: node{},
ctx{} {}
/**
* @brief Context aware constructor for meta objects.
* @param area The context from which to search for meta types.
* @param curr The underlying node with which to construct the instance.
*/
meta_type(const meta_ctx &area, const internal::meta_type_node &curr) noexcept
: node{curr},
ctx{&area} {}
/**
* @brief Context aware constructor for meta objects.
* @param area The context from which to search for meta types.
* @param curr The underlying node with which to construct the instance.
*/
meta_type(const meta_ctx &area, const internal::meta_base_node &curr) noexcept
: meta_type{area, curr.type(internal::meta_context::from(area))} {}
/**
* @brief Returns the type info object of the underlying type.
* @return The type info object of the underlying type.
*/
[[nodiscard]] const type_info &info() const noexcept {
return *node.info;
}
/**
* @brief Returns the identifier assigned to a type.
* @return The identifier assigned to the type.
*/
[[nodiscard]] id_type id() const noexcept {
return node.id;
}
/**
* @brief Returns the size of the underlying type if known.
* @return The size of the underlying type if known, 0 otherwise.
*/
[[nodiscard]] size_type size_of() const noexcept {
return node.size_of;
}
/**
* @brief Checks whether a type refers to an arithmetic type or not.
* @return True if the underlying type is an arithmetic type, false
* otherwise.
*/
[[nodiscard]] bool is_arithmetic() const noexcept {
return static_cast<bool>(node.traits & internal::meta_traits::is_arithmetic);
}
/**
* @brief Checks whether a type refers to an integral type or not.
* @return True if the underlying type is an integral type, false otherwise.
*/
[[nodiscard]] bool is_integral() const noexcept {
return static_cast<bool>(node.traits & internal::meta_traits::is_integral);
}
/**
* @brief Checks whether a type refers to a signed type or not.
* @return True if the underlying type is a signed type, false otherwise.
*/
[[nodiscard]] bool is_signed() const noexcept {
return static_cast<bool>(node.traits & internal::meta_traits::is_signed);
}
/**
* @brief Checks whether a type refers to an array type or not.
* @return True if the underlying type is an array type, false otherwise.
*/
[[nodiscard]] bool is_array() const noexcept {
return static_cast<bool>(node.traits & internal::meta_traits::is_array);
}
/**
* @brief Checks whether a type refers to an enum or not.
* @return True if the underlying type is an enum, false otherwise.
*/
[[nodiscard]] bool is_enum() const noexcept {
return static_cast<bool>(node.traits & internal::meta_traits::is_enum);
}
/**
* @brief Checks whether a type refers to a class or not.
* @return True if the underlying type is a class, false otherwise.
*/
[[nodiscard]] bool is_class() const noexcept {
return static_cast<bool>(node.traits & internal::meta_traits::is_class);
}
/**
* @brief Checks whether a type refers to a pointer or not.
* @return True if the underlying type is a pointer, false otherwise.
*/
[[nodiscard]] bool is_pointer() const noexcept {
return node.info && (node.info->hash() != remove_pointer().info().hash());
}
/**
* @brief Provides the type for which the pointer is defined.
* @return The type for which the pointer is defined or this type if it
* doesn't refer to a pointer type.
*/
[[nodiscard]] meta_type remove_pointer() const noexcept {
return {*ctx, node.remove_pointer(internal::meta_context::from(*ctx))};
}
/**
* @brief Checks whether a type is a pointer-like type or not.
* @return True if the underlying type is a pointer-like one, false
* otherwise.
*/
[[nodiscard]] bool is_pointer_like() const noexcept {
return static_cast<bool>(node.traits & internal::meta_traits::is_meta_pointer_like);
}
/**
* @brief Checks whether a type refers to a sequence container or not.
* @return True if the type is a sequence container, false otherwise.
*/
[[nodiscard]] bool is_sequence_container() const noexcept {
return static_cast<bool>(node.traits & internal::meta_traits::is_meta_sequence_container);
}
/**
* @brief Checks whether a type refers to an associative container or not.
* @return True if the type is an associative container, false otherwise.
*/
[[nodiscard]] bool is_associative_container() const noexcept {
return static_cast<bool>(node.traits & internal::meta_traits::is_meta_associative_container);
}
/**
* @brief Checks whether a type refers to a recognized class template
* specialization or not.
* @return True if the type is a recognized class template specialization,
* false otherwise.
*/
[[nodiscard]] bool is_template_specialization() const noexcept {
return (node.templ.arity != 0u);
}
/**
* @brief Returns the number of template arguments.
* @return The number of template arguments.
*/
[[nodiscard]] size_type template_arity() const noexcept {
return node.templ.arity;
}
/**
* @brief Returns a tag for the class template of the underlying type.
* @return The tag for the class template of the underlying type.
*/
[[nodiscard]] inline meta_type template_type() const noexcept {
return node.templ.type ? meta_type{*ctx, node.templ.type(internal::meta_context::from(*ctx))} : meta_type{};
}
/**
* @brief Returns the type of the i-th template argument of a type.
* @param index Index of the template argument of which to return the type.
* @return The type of the i-th template argument of a type.
*/
[[nodiscard]] inline meta_type template_arg(const size_type index) const noexcept {
return index < template_arity() ? meta_type{*ctx, node.templ.arg(internal::meta_context::from(*ctx), index)} : meta_type{};
}
/**
* @brief Returns a range to visit registered top-level base meta types.
* @return An iterable range to visit registered top-level base meta types.
*/
[[nodiscard]] meta_range<meta_type, typename decltype(internal::meta_type_descriptor::base)::const_iterator> base() const noexcept {
using range_type = meta_range<meta_type, typename decltype(internal::meta_type_descriptor::base)::const_iterator>;
return node.details ? range_type{{*ctx, node.details->base.cbegin()}, {*ctx, node.details->base.cend()}} : range_type{};
}
/**
* @brief Returns a range to visit registered top-level meta data.
* @return An iterable range to visit registered top-level meta data.
*/
[[nodiscard]] meta_range<meta_data, typename decltype(internal::meta_type_descriptor::data)::const_iterator> data() const noexcept {
using range_type = meta_range<meta_data, typename decltype(internal::meta_type_descriptor::data)::const_iterator>;
return node.details ? range_type{{*ctx, node.details->data.cbegin()}, {*ctx, node.details->data.cend()}} : range_type{};
}
/**
* @brief Lookup utility for meta data (bases are also visited).
* @param id Unique identifier.
* @return The registered meta data for the given identifier, if any.
*/
[[nodiscard]] meta_data data(const id_type id) const {
if(node.details) {
if(const auto it = node.details->data.find(id); it != node.details->data.cend()) {
return meta_data{*ctx, it->second};
}
}
for(auto &&curr: base()) {
if(auto elem = curr.second.data(id); elem) {
return elem;
}
}
return meta_data{};
}
/**
* @brief Returns a range to visit registered top-level functions.
* @return An iterable range to visit registered top-level functions.
*/
[[nodiscard]] meta_range<meta_func, typename decltype(internal::meta_type_descriptor::func)::const_iterator> func() const noexcept {
using return_type = meta_range<meta_func, typename decltype(internal::meta_type_descriptor::func)::const_iterator>;
return node.details ? return_type{{*ctx, node.details->func.cbegin()}, {*ctx, node.details->func.cend()}} : return_type{};
}
/**
* @brief Lookup utility for meta functions (bases are also visited).
*
* In case of overloaded functions, the first one with the required
* identifier is returned.
*
* @param id Unique identifier.
* @return The registered meta function for the given identifier, if any.
*/
[[nodiscard]] meta_func func(const id_type id) const {
if(node.details) {
if(const auto it = node.details->func.find(id); it != node.details->func.cend()) {
return meta_func{*ctx, it->second};
}
}
for(auto &&curr: base()) {
if(auto elem = curr.second.func(id); elem) {
return elem;
}
}
return meta_func{};
}
/**
* @brief Creates an instance of the underlying type, if possible.
*
* If suitable, the implicitly generated default constructor is used.
*
* @warning
* The context of the arguments is **not** changed.<br/>
* It's up to the caller to bind them to the right context(s).
*
* @param args Parameters to use to construct the instance.
* @param sz Number of parameters to use to construct the instance.
* @return A wrapper containing the new instance, if any.
*/
[[nodiscard]] meta_any construct(meta_any *const args, const size_type sz) const {
if(node.details) {
if(const auto *candidate = lookup(args, sz, false, [first = node.details->ctor.cbegin(), last = node.details->ctor.cend()]() mutable { return first == last ? nullptr : &(first++)->second; }); candidate) {
return candidate->invoke(*ctx, args);
}
}
if(sz == 0u && node.default_constructor) {
return node.default_constructor(*ctx);
}
return meta_any{meta_ctx_arg, *ctx};
}
/**
* @copybrief construct
* @tparam Args Types of arguments to use to construct the instance.
* @param args Parameters to use to construct the instance.
* @return A wrapper containing the new instance, if any.
*/
template<typename... Args>
[[nodiscard]] meta_any construct(Args &&...args) const {
meta_any arguments[sizeof...(Args) + 1u]{{*ctx, std::forward<Args>(args)}...};
return construct(arguments, sizeof...(Args));
}
/**
* @brief Wraps an opaque element of the underlying type.
* @param element A valid pointer to an element of the underlying type.
* @return A wrapper that references the given instance.
*/
meta_any from_void(void *element) const {
return (element && node.from_void) ? node.from_void(*ctx, element, nullptr) : meta_any{meta_ctx_arg, *ctx};
}
/*! @copydoc from_void */
meta_any from_void(const void *element) const {
return (element && node.from_void) ? node.from_void(*ctx, nullptr, element) : meta_any{meta_ctx_arg, *ctx};
}
/**
* @brief Invokes a function given an identifier, if possible.
*
* @warning
* The context of the arguments is **not** changed.<br/>
* It's up to the caller to bind them to the right context(s).
*
* @param id Unique identifier.
* @param instance An opaque instance of the underlying type.
* @param args Parameters to use to invoke the function.
* @param sz Number of parameters to use to invoke the function.
* @return A wrapper containing the returned value, if any.
*/
meta_any invoke(const id_type id, meta_handle instance, meta_any *const args, const size_type sz) const {
if(node.details) {
if(auto it = node.details->func.find(id); it != node.details->func.cend()) {
if(const auto *candidate = lookup(args, sz, (instance->data() == nullptr), [curr = &it->second]() mutable { return curr ? std::exchange(curr, curr->next.get()) : nullptr; }); candidate) {
return candidate->invoke(*ctx, meta_handle{*ctx, std::move(instance)}, args);
}
}
}
for(auto &&curr: base()) {
if(auto elem = curr.second.invoke(id, *instance.operator->(), args, sz); elem) {
return elem;
}
}
return meta_any{meta_ctx_arg, *ctx};
}
/**
* @copybrief invoke
*
* @param id Unique identifier.
* @tparam Args Types of arguments to use to invoke the function.
* @param instance An opaque instance of the underlying type.
* @param args Parameters to use to invoke the function.
* @return A wrapper containing the returned value, if any.
*/
template<typename... Args>
meta_any invoke(const id_type id, meta_handle instance, Args &&...args) const {
meta_any arguments[sizeof...(Args) + 1u]{{*ctx, std::forward<Args>(args)}...};
return invoke(id, meta_handle{*ctx, std::move(instance)}, arguments, sizeof...(Args));
}
/**
* @brief Sets the value of a given variable.
* @tparam Type Type of value to assign.
* @param id Unique identifier.
* @param instance An opaque instance of the underlying type.
* @param value Parameter to use to set the underlying variable.
* @return True in case of success, false otherwise.
*/
template<typename Type>
bool set(const id_type id, meta_handle instance, Type &&value) const {
const auto candidate = data(id);
return candidate && candidate.set(std::move(instance), std::forward<Type>(value));
}
/**
* @brief Gets the value of a given variable.
* @param id Unique identifier.
* @param instance An opaque instance of the underlying type.
* @return A wrapper containing the value of the underlying variable.
*/
[[nodiscard]] meta_any get(const id_type id, meta_handle instance) const {
const auto candidate = data(id);
return candidate ? candidate.get(std::move(instance)) : meta_any{meta_ctx_arg, *ctx};
}
/**
* @brief Returns a range to visit registered top-level meta properties.
* @return An iterable range to visit registered top-level meta properties.
*/
[[nodiscard]] meta_range<meta_prop, typename decltype(internal::meta_type_descriptor::prop)::const_iterator> prop() const noexcept {
using range_type = meta_range<meta_prop, typename decltype(internal::meta_type_descriptor::prop)::const_iterator>;
return node.details ? range_type{{*ctx, node.details->prop.cbegin()}, {*ctx, node.details->prop.cend()}} : range_type{};
}
/**
* @brief Lookup utility for meta properties (bases are also visited).
* @param key The key to use to search for a property.
* @return The registered meta property for the given key, if any.
*/
[[nodiscard]] meta_prop prop(const id_type key) const {
if(node.details) {
if(const auto it = node.details->prop.find(key); it != node.details->prop.cend()) {
return meta_prop{*ctx, it->second};
}
}
for(auto &&curr: base()) {
if(auto elem = curr.second.prop(key); elem) {
return elem;
}
}
return meta_prop{};
}
/**
* @brief Returns true if an object is valid, false otherwise.
* @return True if the object is valid, false otherwise.
*/
[[nodiscard]] explicit operator bool() const noexcept {
return !(ctx == nullptr);
}
/**
* @brief Checks if two objects refer to the same type.
* @param other The object with which to compare.
* @return True if the objects refer to the same type, false otherwise.
*/
[[nodiscard]] bool operator==(const meta_type &other) const noexcept {
return (ctx == other.ctx) && ((!node.info && !other.node.info) || (node.info && other.node.info && *node.info == *other.node.info));
}
private:
internal::meta_type_node node;
const meta_ctx *ctx;
};
/**
* @brief Checks if two objects refer to the same type.
* @param lhs An object, either valid or not.
* @param rhs An object, either valid or not.
* @return False if the objects refer to the same node, true otherwise.
*/
[[nodiscard]] inline bool operator!=(const meta_type &lhs, const meta_type &rhs) noexcept {
return !(lhs == rhs);
}
[[nodiscard]] inline meta_type meta_any::type() const noexcept {
return node.info ? meta_type{*ctx, node} : meta_type{};
}
template<typename... Args>
meta_any meta_any::invoke(const id_type id, Args &&...args) const {
return type().invoke(id, *this, std::forward<Args>(args)...);
}
template<typename... Args>
meta_any meta_any::invoke(const id_type id, Args &&...args) {
return type().invoke(id, *this, std::forward<Args>(args)...);
}
template<typename Type>
bool meta_any::set(const id_type id, Type &&value) {
return type().set(id, *this, std::forward<Type>(value));
}
[[nodiscard]] inline meta_any meta_any::get(const id_type id) const {
return type().get(id, *this);
}
[[nodiscard]] inline meta_any meta_any::get(const id_type id) {
return type().get(id, *this);
}
[[nodiscard]] inline meta_any meta_any::allow_cast(const meta_type &type) const {
if(node.info && *node.info == type.info()) {
return as_ref();
}
if(const auto *value = data(); node.details) {
if(auto it = node.details->conv.find(type.info().hash()); it != node.details->conv.cend()) {
return it->second.conv(*ctx, data());
}
for(auto &&curr: node.details->base) {
const auto &as_const = curr.second.type(internal::meta_context::from(*ctx)).from_void(*ctx, nullptr, curr.second.cast(value));
if(auto other = as_const.allow_cast(type); other) {
return other;
}
}
}
if(node.conversion_helper && (type.is_arithmetic() || type.is_enum())) {
// exploits the fact that arithmetic types and enums are also default constructible
auto other = type.construct();
ENTT_ASSERT(other.node.conversion_helper, "Conversion helper not found");
const auto value = node.conversion_helper(nullptr, storage.data());
other.node.conversion_helper(other.storage.data(), &value);
return other;
}
return meta_any{meta_ctx_arg, *ctx};
}
inline bool meta_any::assign(const meta_any &other) {
auto value = other.allow_cast({*ctx, node});
return value && storage.assign(std::move(value.storage));
}
inline bool meta_any::assign(meta_any &&other) {
if(*node.info == *other.node.info) {
return storage.assign(std::move(other.storage));
}
return assign(std::as_const(other));
}
[[nodiscard]] inline meta_type meta_data::type() const noexcept {
return meta_type{*ctx, node->type(internal::meta_context::from(*ctx))};
}
[[nodiscard]] inline meta_type meta_data::arg(const size_type index) const noexcept {
return index < arity() ? node->arg(*ctx, index) : meta_type{};
}
[[nodiscard]] inline meta_type meta_func::ret() const noexcept {
return meta_type{*ctx, node->ret(internal::meta_context::from(*ctx))};
}
[[nodiscard]] inline meta_type meta_func::arg(const size_type index) const noexcept {
return index < arity() ? node->arg(*ctx, index) : meta_type{};
}
/**
* @cond TURN_OFF_DOXYGEN
* Internal details not to be documented.
*/
class meta_sequence_container::meta_iterator final {
friend class meta_sequence_container;
enum class operation : std::uint8_t {
incr,
deref
};
using vtable_type = void(const operation, const any &, const std::ptrdiff_t, meta_any *);
template<typename It>
static void basic_vtable(const operation op, const any &value, const std::ptrdiff_t offset, meta_any *other) {
switch(op) {
case operation::incr: {
auto &it = any_cast<It &>(const_cast<any &>(value));
it = std::next(it, offset);
} break;
case operation::deref: {
const auto &it = any_cast<const It &>(value);
other->emplace<decltype(*it)>(*it);
} break;
}
}
public:
using difference_type = std::ptrdiff_t;
using value_type = meta_any;
using pointer = input_iterator_pointer<value_type>;
using reference = value_type;
using iterator_category = std::input_iterator_tag;
constexpr meta_iterator() noexcept
: ctx{},
vtable{},
handle{} {}
template<typename It>
explicit meta_iterator(const meta_ctx &area, It iter) noexcept
: ctx{&area},
vtable{&basic_vtable<It>},
handle{std::move(iter)} {}
meta_iterator &operator++() noexcept {
vtable(operation::incr, handle, 1, nullptr);
return *this;
}
meta_iterator operator++(int value) noexcept {
meta_iterator orig = *this;
vtable(operation::incr, handle, ++value, nullptr);
return orig;
}
meta_iterator &operator--() noexcept {
vtable(operation::incr, handle, -1, nullptr);
return *this;
}
meta_iterator operator--(int value) noexcept {
meta_iterator orig = *this;
vtable(operation::incr, handle, --value, nullptr);
return orig;
}
[[nodiscard]] reference operator*() const {
reference other{meta_ctx_arg, *ctx};
vtable(operation::deref, handle, 0, &other);
return other;
}
[[nodiscard]] pointer operator->() const {
return operator*();
}
[[nodiscard]] explicit operator bool() const noexcept {
return static_cast<bool>(handle);
}
[[nodiscard]] bool operator==(const meta_iterator &other) const noexcept {
return handle == other.handle;
}
[[nodiscard]] bool operator!=(const meta_iterator &other) const noexcept {
return !(*this == other);
}
private:
const meta_ctx *ctx;
vtable_type *vtable;
any handle;
};
class meta_associative_container::meta_iterator final {
enum class operation : std::uint8_t {
incr,
deref
};
using vtable_type = void(const operation, const any &, std::pair<meta_any, meta_any> *);
template<bool KeyOnly, typename It>
static void basic_vtable(const operation op, const any &value, std::pair<meta_any, meta_any> *other) {
switch(op) {
case operation::incr:
++any_cast<It &>(const_cast<any &>(value));
break;
case operation::deref:
const auto &it = any_cast<const It &>(value);
if constexpr(KeyOnly) {
other->first.emplace<decltype(*it)>(*it);
} else {
other->first.emplace<decltype((it->first))>(it->first);
other->second.emplace<decltype((it->second))>(it->second);
}
break;
}
}
public:
using difference_type = std::ptrdiff_t;
using value_type = std::pair<meta_any, meta_any>;
using pointer = input_iterator_pointer<value_type>;
using reference = value_type;
using iterator_category = std::input_iterator_tag;
constexpr meta_iterator() noexcept
: ctx{},
vtable{},
handle{} {}
template<bool KeyOnly, typename It>
meta_iterator(const meta_ctx &area, std::integral_constant<bool, KeyOnly>, It iter) noexcept
: ctx{&area},
vtable{&basic_vtable<KeyOnly, It>},
handle{std::move(iter)} {}
meta_iterator &operator++() noexcept {
vtable(operation::incr, handle, nullptr);
return *this;
}
meta_iterator operator++(int) noexcept {
meta_iterator orig = *this;
return ++(*this), orig;
}
[[nodiscard]] reference operator*() const {
reference other{{meta_ctx_arg, *ctx}, {meta_ctx_arg, *ctx}};
vtable(operation::deref, handle, &other);
return other;
}
[[nodiscard]] pointer operator->() const {
return operator*();
}
[[nodiscard]] explicit operator bool() const noexcept {
return static_cast<bool>(handle);
}
[[nodiscard]] bool operator==(const meta_iterator &other) const noexcept {
return handle == other.handle;
}
[[nodiscard]] bool operator!=(const meta_iterator &other) const noexcept {
return !(*this == other);
}
private:
const meta_ctx *ctx;
vtable_type *vtable;
any handle;
};
/**
* Internal details not to be documented.
* @endcond
*/
/**
* @brief Returns the meta value type of a container.
* @return The meta value type of the container.
*/
[[nodiscard]] inline meta_type meta_sequence_container::value_type() const noexcept {
return value_type_node ? meta_type{*ctx, value_type_node(internal::meta_context::from(*ctx))} : meta_type{};
}
/**
* @brief Returns the size of a container.
* @return The size of the container.
*/
[[nodiscard]] inline meta_sequence_container::size_type meta_sequence_container::size() const noexcept {
return size_fn(storage);
}
/**
* @brief Resizes a container to contain a given number of elements.
* @param sz The new size of the container.
* @return True in case of success, false otherwise.
*/
inline bool meta_sequence_container::resize(const size_type sz) {
return resize_fn(storage, sz);
}
/**
* @brief Clears the content of a container.
* @return True in case of success, false otherwise.
*/
inline bool meta_sequence_container::clear() {
return resize_fn(storage, 0u);
}
/**
* @brief Returns an iterator to the first element of a container.
* @return An iterator to the first element of the container.
*/
[[nodiscard]] inline meta_sequence_container::iterator meta_sequence_container::begin() {
return iter_fn(*ctx, storage, false);
}
/**
* @brief Returns an iterator that is past the last element of a container.
* @return An iterator that is past the last element of the container.
*/
[[nodiscard]] inline meta_sequence_container::iterator meta_sequence_container::end() {
return iter_fn(*ctx, storage, true);
}
/**
* @brief Inserts an element at a specified location of a container.
* @param it Iterator before which the element will be inserted.
* @param value Element value to insert.
* @return A possibly invalid iterator to the inserted element.
*/
inline meta_sequence_container::iterator meta_sequence_container::insert(iterator it, meta_any value) {
return insert_or_erase_fn(*ctx, storage, it.handle, value);
}
/**
* @brief Removes a given element from a container.
* @param it Iterator to the element to remove.
* @return A possibly invalid iterator following the last removed element.
*/
inline meta_sequence_container::iterator meta_sequence_container::erase(iterator it) {
return insert(std::move(it), {});
}
/**
* @brief Returns a reference to the element at a given location of a container
* (no bounds checking is performed).
* @param pos The position of the element to return.
* @return A reference to the requested element properly wrapped.
*/
[[nodiscard]] inline meta_any meta_sequence_container::operator[](const size_type pos) {
auto it = begin();
it.operator++(static_cast<int>(pos) - 1);
return *it;
}
/**
* @brief Returns false if a proxy is invalid, true otherwise.
* @return False if the proxy is invalid, true otherwise.
*/
[[nodiscard]] inline meta_sequence_container::operator bool() const noexcept {
return static_cast<bool>(storage);
}
/**
* @brief Returns true if a container is also key-only, false otherwise.
* @return True if the associative container is also key-only, false otherwise.
*/
[[nodiscard]] inline bool meta_associative_container::key_only() const noexcept {
return key_only_container;
}
/**
* @brief Returns the meta key type of a container.
* @return The meta key type of the a container.
*/
[[nodiscard]] inline meta_type meta_associative_container::key_type() const noexcept {
return key_type_node ? meta_type{*ctx, key_type_node(internal::meta_context::from(*ctx))} : meta_type{};
}
/**
* @brief Returns the meta mapped type of a container.
* @return The meta mapped type of the a container.
*/
[[nodiscard]] inline meta_type meta_associative_container::mapped_type() const noexcept {
return mapped_type_node ? meta_type{*ctx, mapped_type_node(internal::meta_context::from(*ctx))} : meta_type{};
}
/*! @copydoc meta_sequence_container::value_type */
[[nodiscard]] inline meta_type meta_associative_container::value_type() const noexcept {
return value_type_node ? meta_type{*ctx, value_type_node(internal::meta_context::from(*ctx))} : meta_type{};
}
/*! @copydoc meta_sequence_container::size */
[[nodiscard]] inline meta_associative_container::size_type meta_associative_container::size() const noexcept {
return size_fn(storage);
}
/*! @copydoc meta_sequence_container::clear */
inline bool meta_associative_container::clear() {
return clear_fn(storage);
}
/*! @copydoc meta_sequence_container::begin */
[[nodiscard]] inline meta_associative_container::iterator meta_associative_container::begin() {
return iter_fn(*ctx, storage, false);
}
/*! @copydoc meta_sequence_container::end */
[[nodiscard]] inline meta_associative_container::iterator meta_associative_container::end() {
return iter_fn(*ctx, storage, true);
}
/**
* @brief Inserts a key only element into a container.
* @param key The key of the element to insert.
* @return A bool denoting whether the insertion took place.
*/
inline bool meta_associative_container::insert(meta_any key) {
meta_any value{*ctx, std::in_place_type<void>};
return (insert_or_erase_fn(storage, key, value) != 0u);
}
/**
* @brief Inserts a key/value element into a container.
* @param key The key of the element to insert.
* @param value The value of the element to insert.
* @return A bool denoting whether the insertion took place.
*/
inline bool meta_associative_container::insert(meta_any key, meta_any value) {
return (insert_or_erase_fn(storage, key, value) != 0u);
}
/**
* @brief Removes the specified element from a container.
* @param key The key of the element to remove.
* @return A bool denoting whether the removal took place.
*/
inline meta_associative_container::size_type meta_associative_container::erase(meta_any key) {
return insert(std::move(key), meta_any{meta_ctx_arg, *ctx});
}
/**
* @brief Returns an iterator to the element with a given key, if any.
* @param key The key of the element to search.
* @return An iterator to the element with the given key, if any.
*/
[[nodiscard]] inline meta_associative_container::iterator meta_associative_container::find(meta_any key) {
return find_fn(*ctx, storage, key);
}
/**
* @brief Returns false if a proxy is invalid, true otherwise.
* @return False if the proxy is invalid, true otherwise.
*/
[[nodiscard]] inline meta_associative_container::operator bool() const noexcept {
return static_cast<bool>(storage);
}
} // namespace entt
#endif
// #include "meta/node.hpp"
#ifndef ENTT_META_NODE_HPP
#define ENTT_META_NODE_HPP
#include <cstddef>
#include <memory>
#include <type_traits>
#include <utility>
// #include "../config/config.h"
// #include "../container/dense_map.hpp"
// #include "../core/attribute.h"
// #include "../core/enum.hpp"
// #include "../core/fwd.hpp"
// #include "../core/type_info.hpp"
// #include "../core/type_traits.hpp"
// #include "../core/utility.hpp"
// #include "context.hpp"
// #include "type_traits.hpp"
namespace entt {
class meta_any;
class meta_type;
struct meta_handle;
/**
* @cond TURN_OFF_DOXYGEN
* Internal details not to be documented.
*/
namespace internal {
enum class meta_traits : std::uint32_t {
is_none = 0x0000,
is_const = 0x0001,
is_static = 0x0002,
is_arithmetic = 0x0004,
is_integral = 0x0008,
is_signed = 0x0010,
is_array = 0x0020,
is_enum = 0x0040,
is_class = 0x0080,
is_meta_pointer_like = 0x0100,
is_meta_sequence_container = 0x0200,
is_meta_associative_container = 0x0400,
_entt_enum_as_bitmask
};
struct meta_type_node;
struct meta_prop_node {
meta_type_node (*type)(const meta_context &) noexcept {};
std::shared_ptr<void> value{};
};
struct meta_base_node {
meta_type_node (*type)(const meta_context &) noexcept {};
const void *(*cast)(const void *) noexcept {};
};
struct meta_conv_node {
meta_any (*conv)(const meta_ctx &, const void *){};
};
struct meta_ctor_node {
using size_type = std::size_t;
size_type arity{0u};
meta_type (*arg)(const meta_ctx &, const size_type) noexcept {};
meta_any (*invoke)(const meta_ctx &, meta_any *const){};
};
struct meta_dtor_node {
void (*dtor)(void *){};
};
struct meta_data_node {
using size_type = std::size_t;
meta_traits traits{meta_traits::is_none};
size_type arity{0u};
meta_type_node (*type)(const meta_context &) noexcept {};
meta_type (*arg)(const meta_ctx &, const size_type) noexcept {};
bool (*set)(meta_handle, meta_any){};
meta_any (*get)(const meta_ctx &, meta_handle){};
dense_map<id_type, meta_prop_node, identity> prop{};
};
struct meta_func_node {
using size_type = std::size_t;
meta_traits traits{meta_traits::is_none};
size_type arity{0u};
meta_type_node (*ret)(const meta_context &) noexcept {};
meta_type (*arg)(const meta_ctx &, const size_type) noexcept {};
meta_any (*invoke)(const meta_ctx &, meta_handle, meta_any *const){};
std::shared_ptr<meta_func_node> next{};
dense_map<id_type, meta_prop_node, identity> prop{};
};
struct meta_template_node {
using size_type = std::size_t;
size_type arity{0u};
meta_type_node (*type)(const meta_context &) noexcept {};
meta_type_node (*arg)(const meta_context &, const size_type) noexcept {};
};
struct meta_type_descriptor {
dense_map<id_type, meta_ctor_node, identity> ctor{};
dense_map<id_type, meta_base_node, identity> base{};
dense_map<id_type, meta_conv_node, identity> conv{};
dense_map<id_type, meta_data_node, identity> data{};
dense_map<id_type, meta_func_node, identity> func{};
dense_map<id_type, meta_prop_node, identity> prop{};
};
struct meta_type_node {
using size_type = std::size_t;
const type_info *info{};
id_type id{};
meta_traits traits{meta_traits::is_none};
size_type size_of{0u};
meta_type_node (*resolve)(const meta_context &) noexcept {};
meta_type_node (*remove_pointer)(const meta_context &) noexcept {};
meta_any (*default_constructor)(const meta_ctx &){};
double (*conversion_helper)(void *, const void *){};
meta_any (*from_void)(const meta_ctx &, void *, const void *){};
meta_template_node templ{};
meta_dtor_node dtor{};
std::shared_ptr<meta_type_descriptor> details{};
};
template<typename Type>
meta_type_node resolve(const meta_context &) noexcept;
template<typename... Args>
[[nodiscard]] auto meta_arg_node(const meta_context &context, type_list<Args...>, [[maybe_unused]] const std::size_t index) noexcept {
[[maybe_unused]] std::size_t pos{};
meta_type_node (*value)(const meta_context &) noexcept = nullptr;
((value = (pos++ == index ? &resolve<std::remove_cv_t<std::remove_reference_t<Args>>> : value)), ...);
ENTT_ASSERT(value != nullptr, "Out of bounds");
return value(context);
}
[[nodiscard]] inline const void *try_cast(const meta_context &context, const meta_type_node &from, const meta_type_node &to, const void *instance) noexcept {
if(from.info && to.info && *from.info == *to.info) {
return instance;
}
if(from.details) {
for(auto &&curr: from.details->base) {
if(const void *elem = try_cast(context, curr.second.type(context), to, curr.second.cast(instance)); elem) {
return elem;
}
}
}
return nullptr;
}
[[nodiscard]] inline const meta_type_node *try_resolve(const meta_context &context, const type_info &info) noexcept {
const auto it = context.value.find(info.hash());
return it != context.value.end() ? &it->second : nullptr;
}
template<typename Type>
[[nodiscard]] meta_type_node resolve(const meta_context &context) noexcept {
static_assert(std::is_same_v<Type, std::remove_const_t<std::remove_reference_t<Type>>>, "Invalid type");
if(auto *elem = try_resolve(context, type_id<Type>()); elem) {
return *elem;
}
meta_type_node node{
&type_id<Type>(),
type_id<Type>().hash(),
(std::is_arithmetic_v<Type> ? meta_traits::is_arithmetic : meta_traits::is_none)
| (std::is_integral_v<Type> ? meta_traits::is_integral : meta_traits::is_none)
| (std::is_signed_v<Type> ? meta_traits::is_signed : meta_traits::is_none)
| (std::is_array_v<Type> ? meta_traits::is_array : meta_traits::is_none)
| (std::is_enum_v<Type> ? meta_traits::is_enum : meta_traits::is_none)
| (std::is_class_v<Type> ? meta_traits::is_class : meta_traits::is_none)
| (is_meta_pointer_like_v<Type> ? meta_traits::is_meta_pointer_like : meta_traits::is_none)
| (is_complete_v<meta_sequence_container_traits<Type>> ? meta_traits::is_meta_sequence_container : meta_traits::is_none)
| (is_complete_v<meta_associative_container_traits<Type>> ? meta_traits::is_meta_associative_container : meta_traits::is_none),
size_of_v<Type>,
&resolve<Type>,
&resolve<std::remove_cv_t<std::remove_pointer_t<Type>>>};
if constexpr(std::is_default_constructible_v<Type>) {
node.default_constructor = +[](const meta_ctx &ctx) {
return meta_any{ctx, std::in_place_type<Type>};
};
}
if constexpr(std::is_arithmetic_v<Type>) {
node.conversion_helper = +[](void *bin, const void *value) {
return bin ? static_cast<double>(*static_cast<Type *>(bin) = static_cast<Type>(*static_cast<const double *>(value))) : static_cast<double>(*static_cast<const Type *>(value));
};
} else if constexpr(std::is_enum_v<Type>) {
node.conversion_helper = +[](void *bin, const void *value) {
return bin ? static_cast<double>(*static_cast<Type *>(bin) = static_cast<Type>(static_cast<std::underlying_type_t<Type>>(*static_cast<const double *>(value)))) : static_cast<double>(*static_cast<const Type *>(value));
};
}
if constexpr(!std::is_same_v<Type, void> && !std::is_function_v<Type>) {
node.from_void = +[](const meta_ctx &ctx, void *element, const void *as_const) {
if(element) {
return meta_any{ctx, std::in_place_type<std::decay_t<Type> &>, *static_cast<std::decay_t<Type> *>(element)};
}
return meta_any{ctx, std::in_place_type<const std::decay_t<Type> &>, *static_cast<const std::decay_t<Type> *>(as_const)};
};
}
if constexpr(is_complete_v<meta_template_traits<Type>>) {
node.templ = meta_template_node{
meta_template_traits<Type>::args_type::size,
&resolve<typename meta_template_traits<Type>::class_type>,
+[](const meta_context &area, const std::size_t index) noexcept { return meta_arg_node(area, typename meta_template_traits<Type>::args_type{}, index); }};
}
return node;
}
} // namespace internal
/**
* Internal details not to be documented.
* @endcond
*/
} // namespace entt
#endif
// #include "meta/pointer.hpp"
#ifndef ENTT_META_POINTER_HPP
#define ENTT_META_POINTER_HPP
#include <memory>
#include <type_traits>
// #include "type_traits.hpp"
namespace entt {
/**
* @brief Makes plain pointers pointer-like types for the meta system.
* @tparam Type Element type.
*/
template<typename Type>
struct is_meta_pointer_like<Type *>
: std::true_type {};
/**
* @brief Partial specialization used to reject pointers to arrays.
* @tparam Type Type of elements of the array.
* @tparam N Number of elements of the array.
*/
template<typename Type, std::size_t N>
struct is_meta_pointer_like<Type (*)[N]>
: std::false_type {};
/**
* @brief Makes `std::shared_ptr`s of any type pointer-like types for the meta
* system.
* @tparam Type Element type.
*/
template<typename Type>
struct is_meta_pointer_like<std::shared_ptr<Type>>
: std::true_type {};
/**
* @brief Makes `std::unique_ptr`s of any type pointer-like types for the meta
* system.
* @tparam Type Element type.
* @tparam Args Other arguments.
*/
template<typename Type, typename... Args>
struct is_meta_pointer_like<std::unique_ptr<Type, Args...>>
: std::true_type {};
} // namespace entt
#endif
// #include "meta/policy.hpp"
#ifndef ENTT_META_POLICY_HPP
#define ENTT_META_POLICY_HPP
#include <type_traits>
namespace entt {
/*! @brief Empty class type used to request the _as ref_ policy. */
struct as_ref_t final {
/**
* @cond TURN_OFF_DOXYGEN
* Internal details not to be documented.
*/
template<typename Type>
static constexpr bool value = std::is_reference_v<Type> && !std::is_const_v<std::remove_reference_t<Type>>;
/**
* Internal details not to be documented.
* @endcond
*/
};
/*! @brief Empty class type used to request the _as cref_ policy. */
struct as_cref_t final {
/**
* @cond TURN_OFF_DOXYGEN
* Internal details not to be documented.
*/
template<typename Type>
static constexpr bool value = std::is_reference_v<Type>;
/**
* Internal details not to be documented.
* @endcond
*/
};
/*! @brief Empty class type used to request the _as-is_ policy. */
struct as_is_t final {
/**
* @cond TURN_OFF_DOXYGEN
* Internal details not to be documented.
*/
template<typename>
static constexpr bool value = true;
/**
* Internal details not to be documented.
* @endcond
*/
};
/*! @brief Empty class type used to request the _as void_ policy. */
struct as_void_t final {
/**
* @cond TURN_OFF_DOXYGEN
* Internal details not to be documented.
*/
template<typename>
static constexpr bool value = true;
/**
* Internal details not to be documented.
* @endcond
*/
};
/**
* @brief Provides the member constant `value` to true if a type also is a meta
* policy, false otherwise.
* @tparam Type Type to check.
*/
template<typename Type>
struct is_meta_policy
: std::disjunction<
std::is_same<Type, as_ref_t>,
std::is_same<Type, as_cref_t>,
std::is_same<Type, as_is_t>,
std::is_same<Type, as_void_t>> {};
/**
* @brief Helper variable template.
* @tparam Type Type to check.
*/
template<typename Type>
inline constexpr bool is_meta_policy_v = is_meta_policy<Type>::value;
} // namespace entt
#endif
// #include "meta/range.hpp"
#ifndef ENTT_META_RANGE_HPP
#define ENTT_META_RANGE_HPP
#include <cstddef>
#include <iterator>
#include <utility>
// #include "../core/fwd.hpp"
// #include "../core/iterator.hpp"
// #include "context.hpp"
namespace entt {
/**
* @cond TURN_OFF_DOXYGEN
* Internal details not to be documented.
*/
namespace internal {
template<typename Type, typename It>
struct meta_range_iterator final {
using difference_type = std::ptrdiff_t;
using value_type = std::pair<id_type, Type>;
using pointer = input_iterator_pointer<value_type>;
using reference = value_type;
using iterator_category = std::input_iterator_tag;
meta_range_iterator() noexcept
: it{},
ctx{} {}
meta_range_iterator(const meta_ctx &area, const It iter) noexcept
: it{iter},
ctx{&area} {}
meta_range_iterator &operator++() noexcept {
return ++it, *this;
}
meta_range_iterator operator++(int) noexcept {
meta_range_iterator orig = *this;
return ++(*this), orig;
}
constexpr meta_range_iterator &operator--() noexcept {
return --it, *this;
}
constexpr meta_range_iterator operator--(int) noexcept {
meta_range_iterator orig = *this;
return operator--(), orig;
}
constexpr meta_range_iterator &operator+=(const difference_type value) noexcept {
it += value;
return *this;
}
constexpr meta_range_iterator operator+(const difference_type value) const noexcept {
meta_range_iterator copy = *this;
return (copy += value);
}
constexpr meta_range_iterator &operator-=(const difference_type value) noexcept {
return (*this += -value);
}
constexpr meta_range_iterator operator-(const difference_type value) const noexcept {
return (*this + -value);
}
[[nodiscard]] constexpr reference operator[](const difference_type value) const noexcept {
return {it[value].first, Type{*ctx, it[value].second}};
}
[[nodiscard]] constexpr pointer operator->() const noexcept {
return operator*();
}
[[nodiscard]] constexpr reference operator*() const noexcept {
return {it->first, Type{*ctx, it->second}};
}
template<typename... Args>
friend constexpr std::ptrdiff_t operator-(const meta_range_iterator<Args...> &, const meta_range_iterator<Args...> &) noexcept;
template<typename... Args>
friend constexpr bool operator==(const meta_range_iterator<Args...> &, const meta_range_iterator<Args...> &) noexcept;
template<typename... Args>
friend constexpr bool operator<(const meta_range_iterator<Args...> &, const meta_range_iterator<Args...> &) noexcept;
private:
It it;
const meta_ctx *ctx;
};
template<typename... Args>
[[nodiscard]] constexpr std::ptrdiff_t operator-(const meta_range_iterator<Args...> &lhs, const meta_range_iterator<Args...> &rhs) noexcept {
return lhs.it - rhs.it;
}
template<typename... Args>
[[nodiscard]] constexpr bool operator==(const meta_range_iterator<Args...> &lhs, const meta_range_iterator<Args...> &rhs) noexcept {
return lhs.it == rhs.it;
}
template<typename... Args>
[[nodiscard]] constexpr bool operator!=(const meta_range_iterator<Args...> &lhs, const meta_range_iterator<Args...> &rhs) noexcept {
return !(lhs == rhs);
}
template<typename... Args>
[[nodiscard]] constexpr bool operator<(const meta_range_iterator<Args...> &lhs, const meta_range_iterator<Args...> &rhs) noexcept {
return lhs.it < rhs.it;
}
template<typename... Args>
[[nodiscard]] constexpr bool operator>(const meta_range_iterator<Args...> &lhs, const meta_range_iterator<Args...> &rhs) noexcept {
return rhs < lhs;
}
template<typename... Args>
[[nodiscard]] constexpr bool operator<=(const meta_range_iterator<Args...> &lhs, const meta_range_iterator<Args...> &rhs) noexcept {
return !(lhs > rhs);
}
template<typename... Args>
[[nodiscard]] constexpr bool operator>=(const meta_range_iterator<Args...> &lhs, const meta_range_iterator<Args...> &rhs) noexcept {
return !(lhs < rhs);
}
} // namespace internal
/**
* Internal details not to be documented.
* @endcond
*/
/**
* @brief Iterable range to use to iterate all types of meta objects.
* @tparam Type Type of meta objects returned.
* @tparam It Type of forward iterator.
*/
template<typename Type, typename It>
using meta_range = iterable_adaptor<internal::meta_range_iterator<Type, It>>;
} // namespace entt
#endif
// #include "meta/resolve.hpp"
#ifndef ENTT_META_RESOLVE_HPP
#define ENTT_META_RESOLVE_HPP
#include <type_traits>
// #include "../core/type_info.hpp"
// #include "../locator/locator.hpp"
// #include "context.hpp"
// #include "meta.hpp"
// #include "node.hpp"
// #include "range.hpp"
namespace entt {
/**
* @brief Returns the meta type associated with a given type.
* @tparam Type Type to use to search for a meta type.
* @param ctx The context from which to search for meta types.
* @return The meta type associated with the given type, if any.
*/
template<typename Type>
[[nodiscard]] meta_type resolve(const meta_ctx &ctx) noexcept {
auto &&context = internal::meta_context::from(ctx);
return {ctx, internal::resolve<std::remove_cv_t<std::remove_reference_t<Type>>>(context)};
}
/**
* @brief Returns the meta type associated with a given type.
* @tparam Type Type to use to search for a meta type.
* @return The meta type associated with the given type, if any.
*/
template<typename Type>
[[nodiscard]] meta_type resolve() noexcept {
return resolve<Type>(locator<meta_ctx>::value_or());
}
/**
* @brief Returns a range to use to visit all meta types.
* @param ctx The context from which to search for meta types.
* @return An iterable range to use to visit all meta types.
*/
[[nodiscard]] inline meta_range<meta_type, typename decltype(internal::meta_context::value)::const_iterator> resolve(const meta_ctx &ctx) noexcept {
auto &&context = internal::meta_context::from(ctx);
return {{ctx, context.value.cbegin()}, {ctx, context.value.cend()}};
}
/**
* @brief Returns a range to use to visit all meta types.
* @return An iterable range to use to visit all meta types.
*/
[[nodiscard]] inline meta_range<meta_type, typename decltype(internal::meta_context::value)::const_iterator> resolve() noexcept {
return resolve(locator<meta_ctx>::value_or());
}
/**
* @brief Returns the meta type associated with a given identifier, if any.
* @param ctx The context from which to search for meta types.
* @param id Unique identifier.
* @return The meta type associated with the given identifier, if any.
*/
[[nodiscard]] inline meta_type resolve(const meta_ctx &ctx, const id_type id) noexcept {
for(auto &&curr: resolve(ctx)) {
if(curr.second.id() == id) {
return curr.second;
}
}
return meta_type{};
}
/**
* @brief Returns the meta type associated with a given identifier, if any.
* @param id Unique identifier.
* @return The meta type associated with the given identifier, if any.
*/
[[nodiscard]] inline meta_type resolve(const id_type id) noexcept {
return resolve(locator<meta_ctx>::value_or(), id);
}
/**
* @brief Returns the meta type associated with a given type info object.
* @param ctx The context from which to search for meta types.
* @param info The type info object of the requested type.
* @return The meta type associated with the given type info object, if any.
*/
[[nodiscard]] inline meta_type resolve(const meta_ctx &ctx, const type_info &info) noexcept {
auto &&context = internal::meta_context::from(ctx);
const auto *elem = internal::try_resolve(context, info);
return elem ? meta_type{ctx, *elem} : meta_type{};
}
/**
* @brief Returns the meta type associated with a given type info object.
* @param info The type info object of the requested type.
* @return The meta type associated with the given type info object, if any.
*/
[[nodiscard]] inline meta_type resolve(const type_info &info) noexcept {
return resolve(locator<meta_ctx>::value_or(), info);
}
} // namespace entt
#endif
// #include "meta/template.hpp"
#ifndef ENTT_META_TEMPLATE_HPP
#define ENTT_META_TEMPLATE_HPP
// #include "../core/type_traits.hpp"
namespace entt {
/*! @brief Utility class to disambiguate class templates. */
template<template<typename...> class>
struct meta_class_template_tag {};
/**
* @brief General purpose traits class for generating meta template information.
* @tparam Clazz Type of class template.
* @tparam Args Types of template arguments.
*/
template<template<typename...> class Clazz, typename... Args>
struct meta_template_traits<Clazz<Args...>> {
/*! @brief Wrapped class template. */
using class_type = meta_class_template_tag<Clazz>;
/*! @brief List of template arguments. */
using args_type = type_list<Args...>;
};
} // namespace entt
#endif
// #include "meta/type_traits.hpp"
#ifndef ENTT_META_TYPE_TRAITS_HPP
#define ENTT_META_TYPE_TRAITS_HPP
#include <type_traits>
#include <utility>
namespace entt {
/**
* @brief Traits class template to be specialized to enable support for meta
* template information.
*/
template<typename>
struct meta_template_traits;
/**
* @brief Traits class template to be specialized to enable support for meta
* sequence containers.
*/
template<typename>
struct meta_sequence_container_traits;
/**
* @brief Traits class template to be specialized to enable support for meta
* associative containers.
*/
template<typename>
struct meta_associative_container_traits;
/**
* @brief Provides the member constant `value` to true if a given type is a
* pointer-like type from the point of view of the meta system, false otherwise.
* @tparam Type Potentially pointer-like type.
*/
template<typename>
struct is_meta_pointer_like: std::false_type {};
/**
* @brief Partial specialization to ensure that const pointer-like types are
* also accepted.
* @tparam Type Potentially pointer-like type.
*/
template<typename Type>
struct is_meta_pointer_like<const Type>: is_meta_pointer_like<Type> {};
/**
* @brief Helper variable template.
* @tparam Type Potentially pointer-like type.
*/
template<typename Type>
inline constexpr auto is_meta_pointer_like_v = is_meta_pointer_like<Type>::value;
} // namespace entt
#endif
// #include "meta/utility.hpp"
#ifndef ENTT_META_UTILITY_HPP
#define ENTT_META_UTILITY_HPP
#include <cstddef>
#include <functional>
#include <type_traits>
#include <utility>
// #include "../core/type_traits.hpp"
// #include "../locator/locator.hpp"
// #include "meta.hpp"
// #include "node.hpp"
// #include "policy.hpp"
namespace entt {
/**
* @brief Meta function descriptor traits.
* @tparam Ret Function return type.
* @tparam Args Function arguments.
* @tparam Static Function staticness.
* @tparam Const Function constness.
*/
template<typename Ret, typename Args, bool Static, bool Const>
struct meta_function_descriptor_traits {
/*! @brief Meta function return type. */
using return_type = Ret;
/*! @brief Meta function arguments. */
using args_type = Args;
/*! @brief True if the meta function is static, false otherwise. */
static constexpr bool is_static = Static;
/*! @brief True if the meta function is const, false otherwise. */
static constexpr bool is_const = Const;
};
/*! @brief Primary template isn't defined on purpose. */
template<typename, typename>
struct meta_function_descriptor;
/**
* @brief Meta function descriptor.
* @tparam Type Reflected type to which the meta function is associated.
* @tparam Ret Function return type.
* @tparam Class Actual owner of the member function.
* @tparam Args Function arguments.
*/
template<typename Type, typename Ret, typename Class, typename... Args>
struct meta_function_descriptor<Type, Ret (Class::*)(Args...) const>
: meta_function_descriptor_traits<
Ret,
std::conditional_t<std::is_base_of_v<Class, Type>, type_list<Args...>, type_list<const Class &, Args...>>,
!std::is_base_of_v<Class, Type>,
true> {};
/**
* @brief Meta function descriptor.
* @tparam Type Reflected type to which the meta function is associated.
* @tparam Ret Function return type.
* @tparam Class Actual owner of the member function.
* @tparam Args Function arguments.
*/
template<typename Type, typename Ret, typename Class, typename... Args>
struct meta_function_descriptor<Type, Ret (Class::*)(Args...)>
: meta_function_descriptor_traits<
Ret,
std::conditional_t<std::is_base_of_v<Class, Type>, type_list<Args...>, type_list<Class &, Args...>>,
!std::is_base_of_v<Class, Type>,
false> {};
/**
* @brief Meta function descriptor.
* @tparam Type Reflected type to which the meta data is associated.
* @tparam Class Actual owner of the data member.
* @tparam Ret Data member type.
*/
template<typename Type, typename Ret, typename Class>
struct meta_function_descriptor<Type, Ret Class::*>
: meta_function_descriptor_traits<
Ret &,
std::conditional_t<std::is_base_of_v<Class, Type>, type_list<>, type_list<Class &>>,
!std::is_base_of_v<Class, Type>,
false> {};
/**
* @brief Meta function descriptor.
* @tparam Type Reflected type to which the meta function is associated.
* @tparam Ret Function return type.
* @tparam MaybeType First function argument.
* @tparam Args Other function arguments.
*/
template<typename Type, typename Ret, typename MaybeType, typename... Args>
struct meta_function_descriptor<Type, Ret (*)(MaybeType, Args...)>
: meta_function_descriptor_traits<
Ret,
std::conditional_t<std::is_base_of_v<std::remove_cv_t<std::remove_reference_t<MaybeType>>, Type>, type_list<Args...>, type_list<MaybeType, Args...>>,
!std::is_base_of_v<std::remove_cv_t<std::remove_reference_t<MaybeType>>, Type>,
std::is_base_of_v<std::remove_cv_t<std::remove_reference_t<MaybeType>>, Type> && std::is_const_v<std::remove_reference_t<MaybeType>>> {};
/**
* @brief Meta function descriptor.
* @tparam Type Reflected type to which the meta function is associated.
* @tparam Ret Function return type.
*/
template<typename Type, typename Ret>
struct meta_function_descriptor<Type, Ret (*)()>
: meta_function_descriptor_traits<
Ret,
type_list<>,
true,
false> {};
/**
* @brief Meta function helper.
*
* Converts a function type to be associated with a reflected type into its meta
* function descriptor.
*
* @tparam Type Reflected type to which the meta function is associated.
* @tparam Candidate The actual function to associate with the reflected type.
*/
template<typename Type, typename Candidate>
class meta_function_helper {
template<typename Ret, typename... Args, typename Class>
static constexpr meta_function_descriptor<Type, Ret (Class::*)(Args...) const> get_rid_of_noexcept(Ret (Class::*)(Args...) const);
template<typename Ret, typename... Args, typename Class>
static constexpr meta_function_descriptor<Type, Ret (Class::*)(Args...)> get_rid_of_noexcept(Ret (Class::*)(Args...));
template<typename Ret, typename Class>
static constexpr meta_function_descriptor<Type, Ret Class::*> get_rid_of_noexcept(Ret Class::*);
template<typename Ret, typename... Args>
static constexpr meta_function_descriptor<Type, Ret (*)(Args...)> get_rid_of_noexcept(Ret (*)(Args...));
template<typename Class>
static constexpr meta_function_descriptor<Class, decltype(&Class::operator())> get_rid_of_noexcept(Class);
public:
/*! @brief The meta function descriptor of the given function. */
using type = decltype(get_rid_of_noexcept(std::declval<Candidate>()));
};
/**
* @brief Helper type.
* @tparam Type Reflected type to which the meta function is associated.
* @tparam Candidate The actual function to associate with the reflected type.
*/
template<typename Type, typename Candidate>
using meta_function_helper_t = typename meta_function_helper<Type, Candidate>::type;
/**
* @brief Wraps a value depending on the given policy.
*
* This function always returns a wrapped value in the requested context.<br/>
* Therefore, if the passed value is itself a wrapped object with a different
* context, it undergoes a rebinding to the requested context.
*
* @tparam Policy Optional policy (no policy set by default).
* @tparam Type Type of value to wrap.
* @param ctx The context from which to search for meta types.
* @param value Value to wrap.
* @return A meta any containing the returned value, if any.
*/
template<typename Policy = as_is_t, typename Type>
std::enable_if_t<is_meta_policy_v<Policy>, meta_any> meta_dispatch(const meta_ctx &ctx, [[maybe_unused]] Type &&value) {
if constexpr(std::is_same_v<Policy, as_void_t>) {
return meta_any{ctx, std::in_place_type<void>};
} else if constexpr(std::is_same_v<Policy, as_ref_t>) {
return meta_any{ctx, std::in_place_type<Type>, value};
} else if constexpr(std::is_same_v<Policy, as_cref_t>) {
static_assert(std::is_lvalue_reference_v<Type>, "Invalid type");
return meta_any{ctx, std::in_place_type<const std::remove_reference_t<Type> &>, std::as_const(value)};
} else {
return meta_any{ctx, std::forward<Type>(value)};
}
}
/**
* @brief Wraps a value depending on the given policy.
* @tparam Policy Optional policy (no policy set by default).
* @tparam Type Type of value to wrap.
* @param value Value to wrap.
* @return A meta any containing the returned value, if any.
*/
template<typename Policy = as_is_t, typename Type>
std::enable_if_t<is_meta_policy_v<Policy>, meta_any> meta_dispatch(Type &&value) {
return meta_dispatch<Policy, Type>(locator<meta_ctx>::value_or(), std::forward<Type>(value));
}
/**
* @brief Returns the meta type of the i-th element of a list of arguments.
* @tparam Type Type list of the actual types of arguments.
* @param ctx The context from which to search for meta types.
* @param index The index of the element for which to return the meta type.
* @return The meta type of the i-th element of the list of arguments.
*/
template<typename Type>
[[nodiscard]] static meta_type meta_arg(const meta_ctx &ctx, const std::size_t index) noexcept {
auto &&context = internal::meta_context::from(ctx);
return {ctx, internal::meta_arg_node(context, Type{}, index)};
}
/**
* @brief Returns the meta type of the i-th element of a list of arguments.
* @tparam Type Type list of the actual types of arguments.
* @param index The index of the element for which to return the meta type.
* @return The meta type of the i-th element of the list of arguments.
*/
template<typename Type>
[[nodiscard]] static meta_type meta_arg(const std::size_t index) noexcept {
return meta_arg<Type>(locator<meta_ctx>::value_or(), index);
}
/**
* @brief Sets the value of a given variable.
* @tparam Type Reflected type to which the variable is associated.
* @tparam Data The actual variable to set.
* @param instance An opaque instance of the underlying type, if required.
* @param value Parameter to use to set the variable.
* @return True in case of success, false otherwise.
*/
template<typename Type, auto Data>
[[nodiscard]] bool meta_setter([[maybe_unused]] meta_handle instance, [[maybe_unused]] meta_any value) {
if constexpr(!std::is_same_v<decltype(Data), Type> && !std::is_same_v<decltype(Data), std::nullptr_t>) {
if constexpr(std::is_member_function_pointer_v<decltype(Data)> || std::is_function_v<std::remove_reference_t<std::remove_pointer_t<decltype(Data)>>>) {
using descriptor = meta_function_helper_t<Type, decltype(Data)>;
using data_type = type_list_element_t<descriptor::is_static, typename descriptor::args_type>;
if(auto *const clazz = instance->try_cast<Type>(); clazz && value.allow_cast<data_type>()) {
std::invoke(Data, *clazz, value.cast<data_type>());
return true;
}
} else if constexpr(std::is_member_object_pointer_v<decltype(Data)>) {
using data_type = std::remove_reference_t<typename meta_function_helper_t<Type, decltype(Data)>::return_type>;
if constexpr(!std::is_array_v<data_type> && !std::is_const_v<data_type>) {
if(auto *const clazz = instance->try_cast<Type>(); clazz && value.allow_cast<data_type>()) {
std::invoke(Data, *clazz) = value.cast<data_type>();
return true;
}
}
} else {
using data_type = std::remove_reference_t<decltype(*Data)>;
if constexpr(!std::is_array_v<data_type> && !std::is_const_v<data_type>) {
if(value.allow_cast<data_type>()) {
*Data = value.cast<data_type>();
return true;
}
}
}
}
return false;
}
/**
* @brief Gets the value of a given variable.
*
* @warning
* The context provided is used only for the return type.<br/>
* It's up to the caller to bind the arguments to the right context(s).
*
* @tparam Type Reflected type to which the variable is associated.
* @tparam Data The actual variable to get.
* @tparam Policy Optional policy (no policy set by default).
* @param ctx The context from which to search for meta types.
* @param instance An opaque instance of the underlying type, if required.
* @return A meta any containing the value of the underlying variable.
*/
template<typename Type, auto Data, typename Policy = as_is_t>
[[nodiscard]] std::enable_if_t<is_meta_policy_v<Policy>, meta_any> meta_getter(const meta_ctx &ctx, [[maybe_unused]] meta_handle instance) {
if constexpr(std::is_member_pointer_v<decltype(Data)> || std::is_function_v<std::remove_reference_t<std::remove_pointer_t<decltype(Data)>>>) {
if constexpr(!std::is_array_v<std::remove_cv_t<std::remove_reference_t<std::invoke_result_t<decltype(Data), Type &>>>>) {
if constexpr(std::is_invocable_v<decltype(Data), Type &>) {
if(auto *clazz = instance->try_cast<Type>(); clazz) {
return meta_dispatch<Policy>(ctx, std::invoke(Data, *clazz));
}
}
if constexpr(std::is_invocable_v<decltype(Data), const Type &>) {
if(auto *fallback = instance->try_cast<const Type>(); fallback) {
return meta_dispatch<Policy>(ctx, std::invoke(Data, *fallback));
}
}
}
return meta_any{meta_ctx_arg, ctx};
} else if constexpr(std::is_pointer_v<decltype(Data)>) {
if constexpr(std::is_array_v<std::remove_pointer_t<decltype(Data)>>) {
return meta_any{meta_ctx_arg, ctx};
} else {
return meta_dispatch<Policy>(ctx, *Data);
}
} else {
return meta_dispatch<Policy>(ctx, Data);
}
}
/**
* @brief Gets the value of a given variable.
* @tparam Type Reflected type to which the variable is associated.
* @tparam Data The actual variable to get.
* @tparam Policy Optional policy (no policy set by default).
* @param instance An opaque instance of the underlying type, if required.
* @return A meta any containing the value of the underlying variable.
*/
template<typename Type, auto Data, typename Policy = as_is_t>
[[nodiscard]] std::enable_if_t<is_meta_policy_v<Policy>, meta_any> meta_getter(meta_handle instance) {
return meta_getter<Type, Data, Policy>(locator<meta_ctx>::value_or(), std::move(instance));
}
/**
* @cond TURN_OFF_DOXYGEN
* Internal details not to be documented.
*/
namespace internal {
template<typename Policy, typename Candidate, typename... Args>
[[nodiscard]] meta_any meta_invoke_with_args(const meta_ctx &ctx, Candidate &&candidate, Args &&...args) {
if constexpr(std::is_same_v<decltype(std::invoke(std::forward<Candidate>(candidate), args...)), void>) {
std::invoke(std::forward<Candidate>(candidate), args...);
return meta_any{ctx, std::in_place_type<void>};
} else {
return meta_dispatch<Policy>(ctx, std::invoke(std::forward<Candidate>(candidate), args...));
}
}
template<typename Type, typename Policy, typename Candidate, std::size_t... Index>
[[nodiscard]] meta_any meta_invoke(const meta_ctx &ctx, [[maybe_unused]] meta_handle instance, Candidate &&candidate, [[maybe_unused]] meta_any *args, std::index_sequence<Index...>) {
using descriptor = meta_function_helper_t<Type, std::remove_reference_t<Candidate>>;
if constexpr(std::is_invocable_v<std::remove_reference_t<Candidate>, const Type &, type_list_element_t<Index, typename descriptor::args_type>...>) {
if(const auto *const clazz = instance->try_cast<const Type>(); clazz && ((args + Index)->allow_cast<type_list_element_t<Index, typename descriptor::args_type>>() && ...)) {
return meta_invoke_with_args<Policy>(ctx, std::forward<Candidate>(candidate), *clazz, (args + Index)->cast<type_list_element_t<Index, typename descriptor::args_type>>()...);
}
} else if constexpr(std::is_invocable_v<std::remove_reference_t<Candidate>, Type &, type_list_element_t<Index, typename descriptor::args_type>...>) {
if(auto *const clazz = instance->try_cast<Type>(); clazz && ((args + Index)->allow_cast<type_list_element_t<Index, typename descriptor::args_type>>() && ...)) {
return meta_invoke_with_args<Policy>(ctx, std::forward<Candidate>(candidate), *clazz, (args + Index)->cast<type_list_element_t<Index, typename descriptor::args_type>>()...);
}
} else {
if(((args + Index)->allow_cast<type_list_element_t<Index, typename descriptor::args_type>>() && ...)) {
return meta_invoke_with_args<Policy>(ctx, std::forward<Candidate>(candidate), (args + Index)->cast<type_list_element_t<Index, typename descriptor::args_type>>()...);
}
}
return meta_any{meta_ctx_arg, ctx};
}
template<typename Type, typename... Args, std::size_t... Index>
[[nodiscard]] meta_any meta_construct(const meta_ctx &ctx, meta_any *const args, std::index_sequence<Index...>) {
if(((args + Index)->allow_cast<Args>() && ...)) {
return meta_any{ctx, std::in_place_type<Type>, (args + Index)->cast<Args>()...};
}
return meta_any{meta_ctx_arg, ctx};
}
} // namespace internal
/**
* Internal details not to be documented.
* @endcond
*/
/**
* @brief Tries to _invoke_ an object given a list of erased parameters.
*
* @warning
* The context provided is used only for the return type.<br/>
* It's up to the caller to bind the arguments to the right context(s).
*
* @tparam Type Reflected type to which the object to _invoke_ is associated.
* @tparam Policy Optional policy (no policy set by default).
* @param ctx The context from which to search for meta types.
* @tparam Candidate The type of the actual object to _invoke_.
* @param instance An opaque instance of the underlying type, if required.
* @param candidate The actual object to _invoke_.
* @param args Parameters to use to _invoke_ the object.
* @return A meta any containing the returned value, if any.
*/
template<typename Type, typename Policy = as_is_t, typename Candidate>
[[nodiscard]] std::enable_if_t<is_meta_policy_v<Policy>, meta_any> meta_invoke(const meta_ctx &ctx, meta_handle instance, Candidate &&candidate, meta_any *const args) {
return internal::meta_invoke<Type, Policy>(ctx, std::move(instance), std::forward<Candidate>(candidate), args, std::make_index_sequence<meta_function_helper_t<Type, std::remove_reference_t<Candidate>>::args_type::size>{});
}
/**
* @brief Tries to _invoke_ an object given a list of erased parameters.
* @tparam Type Reflected type to which the object to _invoke_ is associated.
* @tparam Policy Optional policy (no policy set by default).
* @tparam Candidate The type of the actual object to _invoke_.
* @param instance An opaque instance of the underlying type, if required.
* @param candidate The actual object to _invoke_.
* @param args Parameters to use to _invoke_ the object.
* @return A meta any containing the returned value, if any.
*/
template<typename Type, typename Policy = as_is_t, typename Candidate>
[[nodiscard]] std::enable_if_t<is_meta_policy_v<Policy>, meta_any> meta_invoke(meta_handle instance, Candidate &&candidate, meta_any *const args) {
return meta_invoke<Type, Policy>(locator<meta_ctx>::value_or(), std::move(instance), std::forward<Candidate>(candidate), args);
}
/**
* @brief Tries to invoke a function given a list of erased parameters.
*
* @warning
* The context provided is used only for the return type.<br/>
* It's up to the caller to bind the arguments to the right context(s).
*
* @tparam Type Reflected type to which the function is associated.
* @tparam Candidate The actual function to invoke.
* @tparam Policy Optional policy (no policy set by default).
* @param ctx The context from which to search for meta types.
* @param instance An opaque instance of the underlying type, if required.
* @param args Parameters to use to invoke the function.
* @return A meta any containing the returned value, if any.
*/
template<typename Type, auto Candidate, typename Policy = as_is_t>
[[nodiscard]] std::enable_if_t<is_meta_policy_v<Policy>, meta_any> meta_invoke(const meta_ctx &ctx, meta_handle instance, meta_any *const args) {
return internal::meta_invoke<Type, Policy>(ctx, std::move(instance), Candidate, args, std::make_index_sequence<meta_function_helper_t<Type, std::remove_reference_t<decltype(Candidate)>>::args_type::size>{});
}
/**
* @brief Tries to invoke a function given a list of erased parameters.
* @tparam Type Reflected type to which the function is associated.
* @tparam Candidate The actual function to invoke.
* @tparam Policy Optional policy (no policy set by default).
* @param instance An opaque instance of the underlying type, if required.
* @param args Parameters to use to invoke the function.
* @return A meta any containing the returned value, if any.
*/
template<typename Type, auto Candidate, typename Policy = as_is_t>
[[nodiscard]] std::enable_if_t<is_meta_policy_v<Policy>, meta_any> meta_invoke(meta_handle instance, meta_any *const args) {
return meta_invoke<Type, Candidate, Policy>(locator<meta_ctx>::value_or(), std::move(instance), args);
}
/**
* @brief Tries to construct an instance given a list of erased parameters.
*
* @warning
* The context provided is used only for the return type.<br/>
* It's up to the caller to bind the arguments to the right context(s).
*
* @tparam Type Actual type of the instance to construct.
* @tparam Args Types of arguments expected.
* @param ctx The context from which to search for meta types.
* @param args Parameters to use to construct the instance.
* @return A meta any containing the new instance, if any.
*/
template<typename Type, typename... Args>
[[nodiscard]] meta_any meta_construct(const meta_ctx &ctx, meta_any *const args) {
return internal::meta_construct<Type, Args...>(ctx, args, std::index_sequence_for<Args...>{});
}
/**
* @brief Tries to construct an instance given a list of erased parameters.
* @tparam Type Actual type of the instance to construct.
* @tparam Args Types of arguments expected.
* @param args Parameters to use to construct the instance.
* @return A meta any containing the new instance, if any.
*/
template<typename Type, typename... Args>
[[nodiscard]] meta_any meta_construct(meta_any *const args) {
return meta_construct<Type, Args...>(locator<meta_ctx>::value_or(), args);
}
/**
* @brief Tries to construct an instance given a list of erased parameters.
*
* @warning
* The context provided is used only for the return type.<br/>
* It's up to the caller to bind the arguments to the right context(s).
*
* @tparam Type Reflected type to which the object to _invoke_ is associated.
* @tparam Policy Optional policy (no policy set by default).
* @tparam Candidate The type of the actual object to _invoke_.
* @param ctx The context from which to search for meta types.
* @param candidate The actual object to _invoke_.
* @param args Parameters to use to _invoke_ the object.
* @return A meta any containing the returned value, if any.
*/
template<typename Type, typename Policy = as_is_t, typename Candidate>
[[nodiscard]] meta_any meta_construct(const meta_ctx &ctx, Candidate &&candidate, meta_any *const args) {
if constexpr(meta_function_helper_t<Type, Candidate>::is_static || std::is_class_v<std::remove_cv_t<std::remove_reference_t<Candidate>>>) {
return internal::meta_invoke<Type, Policy>(ctx, {}, std::forward<Candidate>(candidate), args, std::make_index_sequence<meta_function_helper_t<Type, std::remove_reference_t<Candidate>>::args_type::size>{});
} else {
return internal::meta_invoke<Type, Policy>(ctx, *args, std::forward<Candidate>(candidate), args + 1u, std::make_index_sequence<meta_function_helper_t<Type, std::remove_reference_t<Candidate>>::args_type::size>{});
}
}
/**
* @brief Tries to construct an instance given a list of erased parameters.
* @tparam Type Reflected type to which the object to _invoke_ is associated.
* @tparam Policy Optional policy (no policy set by default).
* @tparam Candidate The type of the actual object to _invoke_.
* @param candidate The actual object to _invoke_.
* @param args Parameters to use to _invoke_ the object.
* @return A meta any containing the returned value, if any.
*/
template<typename Type, typename Policy = as_is_t, typename Candidate>
[[nodiscard]] std::enable_if_t<is_meta_policy_v<Policy>, meta_any> meta_construct(Candidate &&candidate, meta_any *const args) {
return meta_construct<Type, Policy>(locator<meta_ctx>::value_or(), std::forward<Candidate>(candidate), args);
}
/**
* @brief Tries to construct an instance given a list of erased parameters.
*
* @warning
* The context provided is used only for the return type.<br/>
* It's up to the caller to bind the arguments to the right context(s).
*
* @tparam Type Reflected type to which the function is associated.
* @tparam Candidate The actual function to invoke.
* @tparam Policy Optional policy (no policy set by default).
* @param ctx The context from which to search for meta types.
* @param args Parameters to use to invoke the function.
* @return A meta any containing the returned value, if any.
*/
template<typename Type, auto Candidate, typename Policy = as_is_t>
[[nodiscard]] std::enable_if_t<is_meta_policy_v<Policy>, meta_any> meta_construct(const meta_ctx &ctx, meta_any *const args) {
return meta_construct<Type, Policy>(ctx, Candidate, args);
}
/**
* @brief Tries to construct an instance given a list of erased parameters.
* @tparam Type Reflected type to which the function is associated.
* @tparam Candidate The actual function to invoke.
* @tparam Policy Optional policy (no policy set by default).
* @param args Parameters to use to invoke the function.
* @return A meta any containing the returned value, if any.
*/
template<typename Type, auto Candidate, typename Policy = as_is_t>
[[nodiscard]] std::enable_if_t<is_meta_policy_v<Policy>, meta_any> meta_construct(meta_any *const args) {
return meta_construct<Type, Candidate, Policy>(locator<meta_ctx>::value_or(), args);
}
} // namespace entt
#endif
// #include "platform/android-ndk-r17.hpp"
#ifndef ENTT_PLATFORM_ANDROID_NDK_R17_HPP
#define ENTT_PLATFORM_ANDROID_NDK_R17_HPP
/**
* @cond TURN_OFF_DOXYGEN
* Internal details not to be documented.
*/
#ifdef __ANDROID__
# include <android/ndk-version.h>
# if __NDK_MAJOR__ == 17
# include <functional>
# include <type_traits>
# include <utility>
namespace std {
namespace internal {
template<typename Func, typename... Args>
constexpr auto is_invocable(int) -> decltype(std::invoke(std::declval<Func>(), std::declval<Args>()...), std::true_type{});
template<typename, typename...>
constexpr std::false_type is_invocable(...);
template<typename Ret, typename Func, typename... Args>
constexpr auto is_invocable_r(int)
-> std::enable_if_t<decltype(std::is_convertible_v<decltype(std::invoke(std::declval<Func>(), std::declval<Args>()...)), Ret>, std::true_type>;
template<typename, typename, typename...>
constexpr std::false_type is_invocable_r(...);
} // namespace internal
template<typename Func, typename... Args>
struct is_invocable: decltype(internal::is_invocable<Func, Args...>(0)) {};
template<typename Func, typename... Argsv>
inline constexpr bool is_invocable_v = std::is_invocable<Func, Args...>::value;
template<typename Ret, typename Func, typename... Args>
struct is_invocable_r: decltype(internal::is_invocable_r<Ret, Func, Args...>(0)) {};
template<typename Ret, typename Func, typename... Args>
inline constexpr bool is_invocable_r_v = std::is_invocable_r<Ret, Func, Args...>::value;
template<typename Func, typename... Args>
struct invoke_result {
using type = decltype(std::invoke(std::declval<Func>(), std::declval<Args>()...));
};
template<typename Func, typename... Args>
using invoke_result_t = typename std::invoke_result<Func, Args...>::type;
} // namespace std
# endif
#endif
/**
* Internal details not to be documented.
* @endcond
*/
#endif
// #include "poly/poly.hpp"
#ifndef ENTT_POLY_POLY_HPP
#define ENTT_POLY_POLY_HPP
#include <cstddef>
#include <functional>
#include <tuple>
#include <type_traits>
#include <utility>
// #include "../core/any.hpp"
#ifndef ENTT_CORE_ANY_HPP
#define ENTT_CORE_ANY_HPP
#include <cstddef>
#include <memory>
#include <type_traits>
#include <utility>
// #include "../config/config.h"
#ifndef ENTT_CONFIG_CONFIG_H
#define ENTT_CONFIG_CONFIG_H
// #include "version.h"
#ifndef ENTT_CONFIG_VERSION_H
#define ENTT_CONFIG_VERSION_H
// #include "macro.h"
#ifndef ENTT_CONFIG_MACRO_H
#define ENTT_CONFIG_MACRO_H
#define ENTT_STR(arg) #arg
#define ENTT_XSTR(arg) ENTT_STR(arg)
#endif
#define ENTT_VERSION_MAJOR 3
#define ENTT_VERSION_MINOR 11
#define ENTT_VERSION_PATCH 1
#define ENTT_VERSION \
ENTT_XSTR(ENTT_VERSION_MAJOR) \
"." ENTT_XSTR(ENTT_VERSION_MINOR) "." ENTT_XSTR(ENTT_VERSION_PATCH)
#endif
#if defined(__cpp_exceptions) && !defined(ENTT_NOEXCEPTION)
# define ENTT_CONSTEXPR
# define ENTT_THROW throw
# define ENTT_TRY try
# define ENTT_CATCH catch(...)
#else
# define ENTT_CONSTEXPR constexpr // use only with throwing functions (waiting for C++20)
# define ENTT_THROW
# define ENTT_TRY if(true)
# define ENTT_CATCH if(false)
#endif
#ifdef ENTT_USE_ATOMIC
# include <atomic>
# define ENTT_MAYBE_ATOMIC(Type) std::atomic<Type>
#else
# define ENTT_MAYBE_ATOMIC(Type) Type
#endif
#ifndef ENTT_ID_TYPE
# include <cstdint>
# define ENTT_ID_TYPE std::uint32_t
#endif
#ifndef ENTT_SPARSE_PAGE
# define ENTT_SPARSE_PAGE 4096
#endif
#ifndef ENTT_PACKED_PAGE
# define ENTT_PACKED_PAGE 1024
#endif
#ifdef ENTT_DISABLE_ASSERT
# undef ENTT_ASSERT
# define ENTT_ASSERT(condition, msg) (void(0))
#elif !defined ENTT_ASSERT
# include <cassert>
# define ENTT_ASSERT(condition, msg) assert(condition)
#endif
#ifdef ENTT_DISABLE_ASSERT
# undef ENTT_ASSERT_CONSTEXPR
# define ENTT_ASSERT_CONSTEXPR(condition, msg) (void(0))
#elif !defined ENTT_ASSERT_CONSTEXPR
# define ENTT_ASSERT_CONSTEXPR(condition, msg) ENTT_ASSERT(condition, msg)
#endif
#ifdef ENTT_NO_ETO
# define ENTT_ETO_TYPE(Type) void
#else
# define ENTT_ETO_TYPE(Type) Type
#endif
#ifdef ENTT_STANDARD_CPP
# define ENTT_NONSTD false
#else
# define ENTT_NONSTD true
# if defined __clang__ || defined __GNUC__
# define ENTT_PRETTY_FUNCTION __PRETTY_FUNCTION__
# define ENTT_PRETTY_FUNCTION_PREFIX '='
# define ENTT_PRETTY_FUNCTION_SUFFIX ']'
# elif defined _MSC_VER
# define ENTT_PRETTY_FUNCTION __FUNCSIG__
# define ENTT_PRETTY_FUNCTION_PREFIX '<'
# define ENTT_PRETTY_FUNCTION_SUFFIX '>'
# endif
#endif
#if defined _MSC_VER
# pragma detect_mismatch("entt.version", ENTT_VERSION)
# pragma detect_mismatch("entt.noexcept", ENTT_XSTR(ENTT_TRY))
# pragma detect_mismatch("entt.id", ENTT_XSTR(ENTT_ID_TYPE))
# pragma detect_mismatch("entt.nonstd", ENTT_XSTR(ENTT_NONSTD))
#endif
#endif
// #include "../core/utility.hpp"
#ifndef ENTT_CORE_UTILITY_HPP
#define ENTT_CORE_UTILITY_HPP
#include <type_traits>
#include <utility>
namespace entt {
/*! @brief Identity function object (waiting for C++20). */
struct identity {
/*! @brief Indicates that this is a transparent function object. */
using is_transparent = void;
/**
* @brief Returns its argument unchanged.
* @tparam Type Type of the argument.
* @param value The actual argument.
* @return The submitted value as-is.
*/
template<class Type>
[[nodiscard]] constexpr Type &&operator()(Type &&value) const noexcept {
return std::forward<Type>(value);
}
};
/**
* @brief Constant utility to disambiguate overloaded members of a class.
* @tparam Type Type of the desired overload.
* @tparam Class Type of class to which the member belongs.
* @param member A valid pointer to a member.
* @return Pointer to the member.
*/
template<typename Type, typename Class>
[[nodiscard]] constexpr auto overload(Type Class::*member) noexcept {
return member;
}
/**
* @brief Constant utility to disambiguate overloaded functions.
* @tparam Func Function type of the desired overload.
* @param func A valid pointer to a function.
* @return Pointer to the function.
*/
template<typename Func>
[[nodiscard]] constexpr auto overload(Func *func) noexcept {
return func;
}
/**
* @brief Helper type for visitors.
* @tparam Func Types of function objects.
*/
template<class... Func>
struct overloaded: Func... {
using Func::operator()...;
};
/**
* @brief Deduction guide.
* @tparam Func Types of function objects.
*/
template<class... Func>
overloaded(Func...) -> overloaded<Func...>;
/**
* @brief Basic implementation of a y-combinator.
* @tparam Func Type of a potentially recursive function.
*/
template<class Func>
struct y_combinator {
/**
* @brief Constructs a y-combinator from a given function.
* @param recursive A potentially recursive function.
*/
constexpr y_combinator(Func recursive) noexcept(std::is_nothrow_move_constructible_v<Func>)
: func{std::move(recursive)} {}
/**
* @brief Invokes a y-combinator and therefore its underlying function.
* @tparam Args Types of arguments to use to invoke the underlying function.
* @param args Parameters to use to invoke the underlying function.
* @return Return value of the underlying function, if any.
*/
template<class... Args>
constexpr decltype(auto) operator()(Args &&...args) const noexcept(std::is_nothrow_invocable_v<Func, const y_combinator &, Args...>) {
return func(*this, std::forward<Args>(args)...);
}
/*! @copydoc operator()() */
template<class... Args>
constexpr decltype(auto) operator()(Args &&...args) noexcept(std::is_nothrow_invocable_v<Func, y_combinator &, Args...>) {
return func(*this, std::forward<Args>(args)...);
}
private:
Func func;
};
} // namespace entt
#endif
// #include "fwd.hpp"
#ifndef ENTT_CORE_FWD_HPP
#define ENTT_CORE_FWD_HPP
#include <cstddef>
// #include "../config/config.h"
namespace entt {
template<std::size_t Len = sizeof(double[2]), std::size_t = alignof(double[2])>
class basic_any;
/*! @brief Alias declaration for type identifiers. */
using id_type = ENTT_ID_TYPE;
/*! @brief Alias declaration for the most common use case. */
using any = basic_any<>;
} // namespace entt
#endif
// #include "type_info.hpp"
#ifndef ENTT_CORE_TYPE_INFO_HPP
#define ENTT_CORE_TYPE_INFO_HPP
#include <string_view>
#include <type_traits>
#include <utility>
// #include "../config/config.h"
// #include "../core/attribute.h"
#ifndef ENTT_CORE_ATTRIBUTE_H
#define ENTT_CORE_ATTRIBUTE_H
#ifndef ENTT_EXPORT
# if defined _WIN32 || defined __CYGWIN__ || defined _MSC_VER
# define ENTT_EXPORT __declspec(dllexport)
# define ENTT_IMPORT __declspec(dllimport)
# define ENTT_HIDDEN
# elif defined __GNUC__ && __GNUC__ >= 4
# define ENTT_EXPORT __attribute__((visibility("default")))
# define ENTT_IMPORT __attribute__((visibility("default")))
# define ENTT_HIDDEN __attribute__((visibility("hidden")))
# else /* Unsupported compiler */
# define ENTT_EXPORT
# define ENTT_IMPORT
# define ENTT_HIDDEN
# endif
#endif
#ifndef ENTT_API
# if defined ENTT_API_EXPORT
# define ENTT_API ENTT_EXPORT
# elif defined ENTT_API_IMPORT
# define ENTT_API ENTT_IMPORT
# else /* No API */
# define ENTT_API
# endif
#endif
#endif
// #include "fwd.hpp"
// #include "hashed_string.hpp"
#ifndef ENTT_CORE_HASHED_STRING_HPP
#define ENTT_CORE_HASHED_STRING_HPP
#include <cstddef>
#include <cstdint>
// #include "fwd.hpp"
namespace entt {
/**
* @cond TURN_OFF_DOXYGEN
* Internal details not to be documented.
*/
namespace internal {
template<typename>
struct fnv1a_traits;
template<>
struct fnv1a_traits<std::uint32_t> {
using type = std::uint32_t;
static constexpr std::uint32_t offset = 2166136261;
static constexpr std::uint32_t prime = 16777619;
};
template<>
struct fnv1a_traits<std::uint64_t> {
using type = std::uint64_t;
static constexpr std::uint64_t offset = 14695981039346656037ull;
static constexpr std::uint64_t prime = 1099511628211ull;
};
template<typename Char>
struct basic_hashed_string {
using value_type = Char;
using size_type = std::size_t;
using hash_type = id_type;
const value_type *repr;
size_type length;
hash_type hash;
};
} // namespace internal
/**
* Internal details not to be documented.
* @endcond
*/
/**
* @brief Zero overhead unique identifier.
*
* A hashed string is a compile-time tool that allows users to use
* human-readable identifiers in the codebase while using their numeric
* counterparts at runtime.<br/>
* Because of that, a hashed string can also be used in constant expressions if
* required.
*
* @warning
* This class doesn't take ownership of user-supplied strings nor does it make a
* copy of them.
*
* @tparam Char Character type.
*/
template<typename Char>
class basic_hashed_string: internal::basic_hashed_string<Char> {
using base_type = internal::basic_hashed_string<Char>;
using hs_traits = internal::fnv1a_traits<id_type>;
struct const_wrapper {
// non-explicit constructor on purpose
constexpr const_wrapper(const Char *str) noexcept
: repr{str} {}
const Char *repr;
};
// FowlerNollVo hash function v. 1a - the good
[[nodiscard]] static constexpr auto helper(const Char *str) noexcept {
base_type base{str, 0u, hs_traits::offset};
for(; str[base.length]; ++base.length) {
base.hash = (base.hash ^ static_cast<hs_traits::type>(str[base.length])) * hs_traits::prime;
}
return base;
}
// FowlerNollVo hash function v. 1a - the good
[[nodiscard]] static constexpr auto helper(const Char *str, const std::size_t len) noexcept {
base_type base{str, len, hs_traits::offset};
for(size_type pos{}; pos < len; ++pos) {
base.hash = (base.hash ^ static_cast<hs_traits::type>(str[pos])) * hs_traits::prime;
}
return base;
}
public:
/*! @brief Character type. */
using value_type = typename base_type::value_type;
/*! @brief Unsigned integer type. */
using size_type = typename base_type::size_type;
/*! @brief Unsigned integer type. */
using hash_type = typename base_type::hash_type;
/**
* @brief Returns directly the numeric representation of a string view.
* @param str Human-readable identifier.
* @param len Length of the string to hash.
* @return The numeric representation of the string.
*/
[[nodiscard]] static constexpr hash_type value(const value_type *str, const size_type len) noexcept {
return basic_hashed_string{str, len};
}
/**
* @brief Returns directly the numeric representation of a string.
* @tparam N Number of characters of the identifier.
* @param str Human-readable identifier.
* @return The numeric representation of the string.
*/
template<std::size_t N>
[[nodiscard]] static constexpr hash_type value(const value_type (&str)[N]) noexcept {
return basic_hashed_string{str};
}
/**
* @brief Returns directly the numeric representation of a string.
* @param wrapper Helps achieving the purpose by relying on overloading.
* @return The numeric representation of the string.
*/
[[nodiscard]] static constexpr hash_type value(const_wrapper wrapper) noexcept {
return basic_hashed_string{wrapper};
}
/*! @brief Constructs an empty hashed string. */
constexpr basic_hashed_string() noexcept
: base_type{} {}
/**
* @brief Constructs a hashed string from a string view.
* @param str Human-readable identifier.
* @param len Length of the string to hash.
*/
constexpr basic_hashed_string(const value_type *str, const size_type len) noexcept
: base_type{helper(str, len)} {}
/**
* @brief Constructs a hashed string from an array of const characters.
* @tparam N Number of characters of the identifier.
* @param str Human-readable identifier.
*/
template<std::size_t N>
constexpr basic_hashed_string(const value_type (&str)[N]) noexcept
: base_type{helper(str)} {}
/**
* @brief Explicit constructor on purpose to avoid constructing a hashed
* string directly from a `const value_type *`.
*
* @warning
* The lifetime of the string is not extended nor is it copied.
*
* @param wrapper Helps achieving the purpose by relying on overloading.
*/
explicit constexpr basic_hashed_string(const_wrapper wrapper) noexcept
: base_type{helper(wrapper.repr)} {}
/**
* @brief Returns the size a hashed string.
* @return The size of the hashed string.
*/
[[nodiscard]] constexpr size_type size() const noexcept {
return base_type::length;
}
/**
* @brief Returns the human-readable representation of a hashed string.
* @return The string used to initialize the hashed string.
*/
[[nodiscard]] constexpr const value_type *data() const noexcept {
return base_type::repr;
}
/**
* @brief Returns the numeric representation of a hashed string.
* @return The numeric representation of the hashed string.
*/
[[nodiscard]] constexpr hash_type value() const noexcept {
return base_type::hash;
}
/*! @copydoc data */
[[nodiscard]] constexpr operator const value_type *() const noexcept {
return data();
}
/**
* @brief Returns the numeric representation of a hashed string.
* @return The numeric representation of the hashed string.
*/
[[nodiscard]] constexpr operator hash_type() const noexcept {
return value();
}
};
/**
* @brief Deduction guide.
* @tparam Char Character type.
* @param str Human-readable identifier.
* @param len Length of the string to hash.
*/
template<typename Char>
basic_hashed_string(const Char *str, const std::size_t len) -> basic_hashed_string<Char>;
/**
* @brief Deduction guide.
* @tparam Char Character type.
* @tparam N Number of characters of the identifier.
* @param str Human-readable identifier.
*/
template<typename Char, std::size_t N>
basic_hashed_string(const Char (&str)[N]) -> basic_hashed_string<Char>;
/**
* @brief Compares two hashed strings.
* @tparam Char Character type.
* @param lhs A valid hashed string.
* @param rhs A valid hashed string.
* @return True if the two hashed strings are identical, false otherwise.
*/
template<typename Char>
[[nodiscard]] constexpr bool operator==(const basic_hashed_string<Char> &lhs, const basic_hashed_string<Char> &rhs) noexcept {
return lhs.value() == rhs.value();
}
/**
* @brief Compares two hashed strings.
* @tparam Char Character type.
* @param lhs A valid hashed string.
* @param rhs A valid hashed string.
* @return True if the two hashed strings differ, false otherwise.
*/
template<typename Char>
[[nodiscard]] constexpr bool operator!=(const basic_hashed_string<Char> &lhs, const basic_hashed_string<Char> &rhs) noexcept {
return !(lhs == rhs);
}
/**
* @brief Compares two hashed strings.
* @tparam Char Character type.
* @param lhs A valid hashed string.
* @param rhs A valid hashed string.
* @return True if the first element is less than the second, false otherwise.
*/
template<typename Char>
[[nodiscard]] constexpr bool operator<(const basic_hashed_string<Char> &lhs, const basic_hashed_string<Char> &rhs) noexcept {
return lhs.value() < rhs.value();
}
/**
* @brief Compares two hashed strings.
* @tparam Char Character type.
* @param lhs A valid hashed string.
* @param rhs A valid hashed string.
* @return True if the first element is less than or equal to the second, false
* otherwise.
*/
template<typename Char>
[[nodiscard]] constexpr bool operator<=(const basic_hashed_string<Char> &lhs, const basic_hashed_string<Char> &rhs) noexcept {
return !(rhs < lhs);
}
/**
* @brief Compares two hashed strings.
* @tparam Char Character type.
* @param lhs A valid hashed string.
* @param rhs A valid hashed string.
* @return True if the first element is greater than the second, false
* otherwise.
*/
template<typename Char>
[[nodiscard]] constexpr bool operator>(const basic_hashed_string<Char> &lhs, const basic_hashed_string<Char> &rhs) noexcept {
return rhs < lhs;
}
/**
* @brief Compares two hashed strings.
* @tparam Char Character type.
* @param lhs A valid hashed string.
* @param rhs A valid hashed string.
* @return True if the first element is greater than or equal to the second,
* false otherwise.
*/
template<typename Char>
[[nodiscard]] constexpr bool operator>=(const basic_hashed_string<Char> &lhs, const basic_hashed_string<Char> &rhs) noexcept {
return !(lhs < rhs);
}
/*! @brief Aliases for common character types. */
using hashed_string = basic_hashed_string<char>;
/*! @brief Aliases for common character types. */
using hashed_wstring = basic_hashed_string<wchar_t>;
inline namespace literals {
/**
* @brief User defined literal for hashed strings.
* @param str The literal without its suffix.
* @return A properly initialized hashed string.
*/
[[nodiscard]] constexpr hashed_string operator"" _hs(const char *str, std::size_t) noexcept {
return hashed_string{str};
}
/**
* @brief User defined literal for hashed wstrings.
* @param str The literal without its suffix.
* @return A properly initialized hashed wstring.
*/
[[nodiscard]] constexpr hashed_wstring operator"" _hws(const wchar_t *str, std::size_t) noexcept {
return hashed_wstring{str};
}
} // namespace literals
} // namespace entt
#endif
namespace entt {
/**
* @cond TURN_OFF_DOXYGEN
* Internal details not to be documented.
*/
namespace internal {
struct ENTT_API type_index final {
[[nodiscard]] static id_type next() noexcept {
static ENTT_MAYBE_ATOMIC(id_type) value{};
return value++;
}
};
template<typename Type>
[[nodiscard]] constexpr auto stripped_type_name() noexcept {
#if defined ENTT_PRETTY_FUNCTION
std::string_view pretty_function{ENTT_PRETTY_FUNCTION};
auto first = pretty_function.find_first_not_of(' ', pretty_function.find_first_of(ENTT_PRETTY_FUNCTION_PREFIX) + 1);
auto value = pretty_function.substr(first, pretty_function.find_last_of(ENTT_PRETTY_FUNCTION_SUFFIX) - first);
return value;
#else
return std::string_view{""};
#endif
}
template<typename Type, auto = stripped_type_name<Type>().find_first_of('.')>
[[nodiscard]] static constexpr std::string_view type_name(int) noexcept {
constexpr auto value = stripped_type_name<Type>();
return value;
}
template<typename Type>
[[nodiscard]] static std::string_view type_name(char) noexcept {
static const auto value = stripped_type_name<Type>();
return value;
}
template<typename Type, auto = stripped_type_name<Type>().find_first_of('.')>
[[nodiscard]] static constexpr id_type type_hash(int) noexcept {
constexpr auto stripped = stripped_type_name<Type>();
constexpr auto value = hashed_string::value(stripped.data(), stripped.size());
return value;
}
template<typename Type>
[[nodiscard]] static id_type type_hash(char) noexcept {
static const auto value = [](const auto stripped) {
return hashed_string::value(stripped.data(), stripped.size());
}(stripped_type_name<Type>());
return value;
}
} // namespace internal
/**
* Internal details not to be documented.
* @endcond
*/
/**
* @brief Type sequential identifier.
* @tparam Type Type for which to generate a sequential identifier.
*/
template<typename Type, typename = void>
struct ENTT_API type_index final {
/**
* @brief Returns the sequential identifier of a given type.
* @return The sequential identifier of a given type.
*/
[[nodiscard]] static id_type value() noexcept {
static const id_type value = internal::type_index::next();
return value;
}
/*! @copydoc value */
[[nodiscard]] constexpr operator id_type() const noexcept {
return value();
}
};
/**
* @brief Type hash.
* @tparam Type Type for which to generate a hash value.
*/
template<typename Type, typename = void>
struct type_hash final {
/**
* @brief Returns the numeric representation of a given type.
* @return The numeric representation of the given type.
*/
#if defined ENTT_PRETTY_FUNCTION
[[nodiscard]] static constexpr id_type value() noexcept {
return internal::type_hash<Type>(0);
#else
[[nodiscard]] static constexpr id_type value() noexcept {
return type_index<Type>::value();
#endif
}
/*! @copydoc value */
[[nodiscard]] constexpr operator id_type() const noexcept {
return value();
}
};
/**
* @brief Type name.
* @tparam Type Type for which to generate a name.
*/
template<typename Type, typename = void>
struct type_name final {
/**
* @brief Returns the name of a given type.
* @return The name of the given type.
*/
[[nodiscard]] static constexpr std::string_view value() noexcept {
return internal::type_name<Type>(0);
}
/*! @copydoc value */
[[nodiscard]] constexpr operator std::string_view() const noexcept {
return value();
}
};
/*! @brief Implementation specific information about a type. */
struct type_info final {
/**
* @brief Constructs a type info object for a given type.
* @tparam Type Type for which to construct a type info object.
*/
template<typename Type>
constexpr type_info(std::in_place_type_t<Type>) noexcept
: seq{type_index<std::remove_cv_t<std::remove_reference_t<Type>>>::value()},
identifier{type_hash<std::remove_cv_t<std::remove_reference_t<Type>>>::value()},
alias{type_name<std::remove_cv_t<std::remove_reference_t<Type>>>::value()} {}
/**
* @brief Type index.
* @return Type index.
*/
[[nodiscard]] constexpr id_type index() const noexcept {
return seq;
}
/**
* @brief Type hash.
* @return Type hash.
*/
[[nodiscard]] constexpr id_type hash() const noexcept {
return identifier;
}
/**
* @brief Type name.
* @return Type name.
*/
[[nodiscard]] constexpr std::string_view name() const noexcept {
return alias;
}
private:
id_type seq;
id_type identifier;
std::string_view alias;
};
/**
* @brief Compares the contents of two type info objects.
* @param lhs A type info object.
* @param rhs A type info object.
* @return True if the two type info objects are identical, false otherwise.
*/
[[nodiscard]] inline constexpr bool operator==(const type_info &lhs, const type_info &rhs) noexcept {
return lhs.hash() == rhs.hash();
}
/**
* @brief Compares the contents of two type info objects.
* @param lhs A type info object.
* @param rhs A type info object.
* @return True if the two type info objects differ, false otherwise.
*/
[[nodiscard]] inline constexpr bool operator!=(const type_info &lhs, const type_info &rhs) noexcept {
return !(lhs == rhs);
}
/**
* @brief Compares two type info objects.
* @param lhs A valid type info object.
* @param rhs A valid type info object.
* @return True if the first element is less than the second, false otherwise.
*/
[[nodiscard]] constexpr bool operator<(const type_info &lhs, const type_info &rhs) noexcept {
return lhs.index() < rhs.index();
}
/**
* @brief Compares two type info objects.
* @param lhs A valid type info object.
* @param rhs A valid type info object.
* @return True if the first element is less than or equal to the second, false
* otherwise.
*/
[[nodiscard]] constexpr bool operator<=(const type_info &lhs, const type_info &rhs) noexcept {
return !(rhs < lhs);
}
/**
* @brief Compares two type info objects.
* @param lhs A valid type info object.
* @param rhs A valid type info object.
* @return True if the first element is greater than the second, false
* otherwise.
*/
[[nodiscard]] constexpr bool operator>(const type_info &lhs, const type_info &rhs) noexcept {
return rhs < lhs;
}
/**
* @brief Compares two type info objects.
* @param lhs A valid type info object.
* @param rhs A valid type info object.
* @return True if the first element is greater than or equal to the second,
* false otherwise.
*/
[[nodiscard]] constexpr bool operator>=(const type_info &lhs, const type_info &rhs) noexcept {
return !(lhs < rhs);
}
/**
* @brief Returns the type info object associated to a given type.
*
* The returned element refers to an object with static storage duration.<br/>
* The type doesn't need to be a complete type. If the type is a reference, the
* result refers to the referenced type. In all cases, top-level cv-qualifiers
* are ignored.
*
* @tparam Type Type for which to generate a type info object.
* @return A reference to a properly initialized type info object.
*/
template<typename Type>
[[nodiscard]] const type_info &type_id() noexcept {
if constexpr(std::is_same_v<Type, std::remove_cv_t<std::remove_reference_t<Type>>>) {
static type_info instance{std::in_place_type<Type>};
return instance;
} else {
return type_id<std::remove_cv_t<std::remove_reference_t<Type>>>();
}
}
/*! @copydoc type_id */
template<typename Type>
[[nodiscard]] const type_info &type_id(Type &&) noexcept {
return type_id<std::remove_cv_t<std::remove_reference_t<Type>>>();
}
} // namespace entt
#endif
// #include "type_traits.hpp"
#ifndef ENTT_CORE_TYPE_TRAITS_HPP
#define ENTT_CORE_TYPE_TRAITS_HPP
#include <cstddef>
#include <iterator>
#include <type_traits>
#include <utility>
// #include "../config/config.h"
// #include "fwd.hpp"
namespace entt {
/**
* @brief Utility class to disambiguate overloaded functions.
* @tparam N Number of choices available.
*/
template<std::size_t N>
struct choice_t
// Unfortunately, doxygen cannot parse such a construct.
: /*! @cond TURN_OFF_DOXYGEN */ choice_t<N - 1> /*! @endcond */
{};
/*! @copybrief choice_t */
template<>
struct choice_t<0> {};
/**
* @brief Variable template for the choice trick.
* @tparam N Number of choices available.
*/
template<std::size_t N>
inline constexpr choice_t<N> choice{};
/**
* @brief Identity type trait.
*
* Useful to establish non-deduced contexts in template argument deduction
* (waiting for C++20) or to provide types through function arguments.
*
* @tparam Type A type.
*/
template<typename Type>
struct type_identity {
/*! @brief Identity type. */
using type = Type;
};
/**
* @brief Helper type.
* @tparam Type A type.
*/
template<typename Type>
using type_identity_t = typename type_identity<Type>::type;
/**
* @brief A type-only `sizeof` wrapper that returns 0 where `sizeof` complains.
* @tparam Type The type of which to return the size.
* @tparam The size of the type if `sizeof` accepts it, 0 otherwise.
*/
template<typename Type, typename = void>
struct size_of: std::integral_constant<std::size_t, 0u> {};
/*! @copydoc size_of */
template<typename Type>
struct size_of<Type, std::void_t<decltype(sizeof(Type))>>
: std::integral_constant<std::size_t, sizeof(Type)> {};
/**
* @brief Helper variable template.
* @tparam Type The type of which to return the size.
*/
template<typename Type>
inline constexpr std::size_t size_of_v = size_of<Type>::value;
/**
* @brief Using declaration to be used to _repeat_ the same type a number of
* times equal to the size of a given parameter pack.
* @tparam Type A type to repeat.
*/
template<typename Type, typename>
using unpack_as_type = Type;
/**
* @brief Helper variable template to be used to _repeat_ the same value a
* number of times equal to the size of a given parameter pack.
* @tparam Value A value to repeat.
*/
template<auto Value, typename>
inline constexpr auto unpack_as_value = Value;
/**
* @brief Wraps a static constant.
* @tparam Value A static constant.
*/
template<auto Value>
using integral_constant = std::integral_constant<decltype(Value), Value>;
/**
* @brief Alias template to facilitate the creation of named values.
* @tparam Value A constant value at least convertible to `id_type`.
*/
template<id_type Value>
using tag = integral_constant<Value>;
/**
* @brief A class to use to push around lists of types, nothing more.
* @tparam Type Types provided by the type list.
*/
template<typename... Type>
struct type_list {
/*! @brief Type list type. */
using type = type_list;
/*! @brief Compile-time number of elements in the type list. */
static constexpr auto size = sizeof...(Type);
};
/*! @brief Primary template isn't defined on purpose. */
template<std::size_t, typename>
struct type_list_element;
/**
* @brief Provides compile-time indexed access to the types of a type list.
* @tparam Index Index of the type to return.
* @tparam First First type provided by the type list.
* @tparam Other Other types provided by the type list.
*/
template<std::size_t Index, typename First, typename... Other>
struct type_list_element<Index, type_list<First, Other...>>
: type_list_element<Index - 1u, type_list<Other...>> {};
/**
* @brief Provides compile-time indexed access to the types of a type list.
* @tparam First First type provided by the type list.
* @tparam Other Other types provided by the type list.
*/
template<typename First, typename... Other>
struct type_list_element<0u, type_list<First, Other...>> {
/*! @brief Searched type. */
using type = First;
};
/**
* @brief Helper type.
* @tparam Index Index of the type to return.
* @tparam List Type list to search into.
*/
template<std::size_t Index, typename List>
using type_list_element_t = typename type_list_element<Index, List>::type;
/*! @brief Primary template isn't defined on purpose. */
template<typename, typename>
struct type_list_index;
/**
* @brief Provides compile-time type access to the types of a type list.
* @tparam Type Type to look for and for which to return the index.
* @tparam First First type provided by the type list.
* @tparam Other Other types provided by the type list.
*/
template<typename Type, typename First, typename... Other>
struct type_list_index<Type, type_list<First, Other...>> {
/*! @brief Unsigned integer type. */
using value_type = std::size_t;
/*! @brief Compile-time position of the given type in the sublist. */
static constexpr value_type value = 1u + type_list_index<Type, type_list<Other...>>::value;
};
/**
* @brief Provides compile-time type access to the types of a type list.
* @tparam Type Type to look for and for which to return the index.
* @tparam Other Other types provided by the type list.
*/
template<typename Type, typename... Other>
struct type_list_index<Type, type_list<Type, Other...>> {
static_assert(type_list_index<Type, type_list<Other...>>::value == sizeof...(Other), "Non-unique type");
/*! @brief Unsigned integer type. */
using value_type = std::size_t;
/*! @brief Compile-time position of the given type in the sublist. */
static constexpr value_type value = 0u;
};
/**
* @brief Provides compile-time type access to the types of a type list.
* @tparam Type Type to look for and for which to return the index.
*/
template<typename Type>
struct type_list_index<Type, type_list<>> {
/*! @brief Unsigned integer type. */
using value_type = std::size_t;
/*! @brief Compile-time position of the given type in the sublist. */
static constexpr value_type value = 0u;
};
/**
* @brief Helper variable template.
* @tparam List Type list.
* @tparam Type Type to look for and for which to return the index.
*/
template<typename Type, typename List>
inline constexpr std::size_t type_list_index_v = type_list_index<Type, List>::value;
/**
* @brief Concatenates multiple type lists.
* @tparam Type Types provided by the first type list.
* @tparam Other Types provided by the second type list.
* @return A type list composed by the types of both the type lists.
*/
template<typename... Type, typename... Other>
constexpr type_list<Type..., Other...> operator+(type_list<Type...>, type_list<Other...>) {
return {};
}
/*! @brief Primary template isn't defined on purpose. */
template<typename...>
struct type_list_cat;
/*! @brief Concatenates multiple type lists. */
template<>
struct type_list_cat<> {
/*! @brief A type list composed by the types of all the type lists. */
using type = type_list<>;
};
/**
* @brief Concatenates multiple type lists.
* @tparam Type Types provided by the first type list.
* @tparam Other Types provided by the second type list.
* @tparam List Other type lists, if any.
*/
template<typename... Type, typename... Other, typename... List>
struct type_list_cat<type_list<Type...>, type_list<Other...>, List...> {
/*! @brief A type list composed by the types of all the type lists. */
using type = typename type_list_cat<type_list<Type..., Other...>, List...>::type;
};
/**
* @brief Concatenates multiple type lists.
* @tparam Type Types provided by the type list.
*/
template<typename... Type>
struct type_list_cat<type_list<Type...>> {
/*! @brief A type list composed by the types of all the type lists. */
using type = type_list<Type...>;
};
/**
* @brief Helper type.
* @tparam List Type lists to concatenate.
*/
template<typename... List>
using type_list_cat_t = typename type_list_cat<List...>::type;
/*! @brief Primary template isn't defined on purpose. */
template<typename>
struct type_list_unique;
/**
* @brief Removes duplicates types from a type list.
* @tparam Type One of the types provided by the given type list.
* @tparam Other The other types provided by the given type list.
*/
template<typename Type, typename... Other>
struct type_list_unique<type_list<Type, Other...>> {
/*! @brief A type list without duplicate types. */
using type = std::conditional_t<
(std::is_same_v<Type, Other> || ...),
typename type_list_unique<type_list<Other...>>::type,
type_list_cat_t<type_list<Type>, typename type_list_unique<type_list<Other...>>::type>>;
};
/*! @brief Removes duplicates types from a type list. */
template<>
struct type_list_unique<type_list<>> {
/*! @brief A type list without duplicate types. */
using type = type_list<>;
};
/**
* @brief Helper type.
* @tparam Type A type list.
*/
template<typename Type>
using type_list_unique_t = typename type_list_unique<Type>::type;
/**
* @brief Provides the member constant `value` to true if a type list contains a
* given type, false otherwise.
* @tparam List Type list.
* @tparam Type Type to look for.
*/
template<typename List, typename Type>
struct type_list_contains;
/**
* @copybrief type_list_contains
* @tparam Type Types provided by the type list.
* @tparam Other Type to look for.
*/
template<typename... Type, typename Other>
struct type_list_contains<type_list<Type...>, Other>: std::disjunction<std::is_same<Type, Other>...> {};
/**
* @brief Helper variable template.
* @tparam List Type list.
* @tparam Type Type to look for.
*/
template<typename List, typename Type>
inline constexpr bool type_list_contains_v = type_list_contains<List, Type>::value;
/*! @brief Primary template isn't defined on purpose. */
template<typename...>
struct type_list_diff;
/**
* @brief Computes the difference between two type lists.
* @tparam Type Types provided by the first type list.
* @tparam Other Types provided by the second type list.
*/
template<typename... Type, typename... Other>
struct type_list_diff<type_list<Type...>, type_list<Other...>> {
/*! @brief A type list that is the difference between the two type lists. */
using type = type_list_cat_t<std::conditional_t<type_list_contains_v<type_list<Other...>, Type>, type_list<>, type_list<Type>>...>;
};
/**
* @brief Helper type.
* @tparam List Type lists between which to compute the difference.
*/
template<typename... List>
using type_list_diff_t = typename type_list_diff<List...>::type;
/*! @brief Primary template isn't defined on purpose. */
template<typename, template<typename...> class>
struct type_list_transform;
/**
* @brief Applies a given _function_ to a type list and generate a new list.
* @tparam Type Types provided by the type list.
* @tparam Op Unary operation as template class with a type member named `type`.
*/
template<typename... Type, template<typename...> class Op>
struct type_list_transform<type_list<Type...>, Op> {
/*! @brief Resulting type list after applying the transform function. */
using type = type_list<typename Op<Type>::type...>;
};
/**
* @brief Helper type.
* @tparam List Type list.
* @tparam Op Unary operation as template class with a type member named `type`.
*/
template<typename List, template<typename...> class Op>
using type_list_transform_t = typename type_list_transform<List, Op>::type;
/**
* @brief A class to use to push around lists of constant values, nothing more.
* @tparam Value Values provided by the value list.
*/
template<auto... Value>
struct value_list {
/*! @brief Value list type. */
using type = value_list;
/*! @brief Compile-time number of elements in the value list. */
static constexpr auto size = sizeof...(Value);
};
/*! @brief Primary template isn't defined on purpose. */
template<std::size_t, typename>
struct value_list_element;
/**
* @brief Provides compile-time indexed access to the values of a value list.
* @tparam Index Index of the value to return.
* @tparam Value First value provided by the value list.
* @tparam Other Other values provided by the value list.
*/
template<std::size_t Index, auto Value, auto... Other>
struct value_list_element<Index, value_list<Value, Other...>>
: value_list_element<Index - 1u, value_list<Other...>> {};
/**
* @brief Provides compile-time indexed access to the types of a type list.
* @tparam Value First value provided by the value list.
* @tparam Other Other values provided by the value list.
*/
template<auto Value, auto... Other>
struct value_list_element<0u, value_list<Value, Other...>> {
/*! @brief Searched value. */
static constexpr auto value = Value;
};
/**
* @brief Helper type.
* @tparam Index Index of the value to return.
* @tparam List Value list to search into.
*/
template<std::size_t Index, typename List>
inline constexpr auto value_list_element_v = value_list_element<Index, List>::value;
/**
* @brief Concatenates multiple value lists.
* @tparam Value Values provided by the first value list.
* @tparam Other Values provided by the second value list.
* @return A value list composed by the values of both the value lists.
*/
template<auto... Value, auto... Other>
constexpr value_list<Value..., Other...> operator+(value_list<Value...>, value_list<Other...>) {
return {};
}
/*! @brief Primary template isn't defined on purpose. */
template<typename...>
struct value_list_cat;
/*! @brief Concatenates multiple value lists. */
template<>
struct value_list_cat<> {
/*! @brief A value list composed by the values of all the value lists. */
using type = value_list<>;
};
/**
* @brief Concatenates multiple value lists.
* @tparam Value Values provided by the first value list.
* @tparam Other Values provided by the second value list.
* @tparam List Other value lists, if any.
*/
template<auto... Value, auto... Other, typename... List>
struct value_list_cat<value_list<Value...>, value_list<Other...>, List...> {
/*! @brief A value list composed by the values of all the value lists. */
using type = typename value_list_cat<value_list<Value..., Other...>, List...>::type;
};
/**
* @brief Concatenates multiple value lists.
* @tparam Value Values provided by the value list.
*/
template<auto... Value>
struct value_list_cat<value_list<Value...>> {
/*! @brief A value list composed by the values of all the value lists. */
using type = value_list<Value...>;
};
/**
* @brief Helper type.
* @tparam List Value lists to concatenate.
*/
template<typename... List>
using value_list_cat_t = typename value_list_cat<List...>::type;
/*! @brief Same as std::is_invocable, but with tuples. */
template<typename, typename>
struct is_applicable: std::false_type {};
/**
* @copybrief is_applicable
* @tparam Func A valid function type.
* @tparam Tuple Tuple-like type.
* @tparam Args The list of arguments to use to probe the function type.
*/
template<typename Func, template<typename...> class Tuple, typename... Args>
struct is_applicable<Func, Tuple<Args...>>: std::is_invocable<Func, Args...> {};
/**
* @copybrief is_applicable
* @tparam Func A valid function type.
* @tparam Tuple Tuple-like type.
* @tparam Args The list of arguments to use to probe the function type.
*/
template<typename Func, template<typename...> class Tuple, typename... Args>
struct is_applicable<Func, const Tuple<Args...>>: std::is_invocable<Func, Args...> {};
/**
* @brief Helper variable template.
* @tparam Func A valid function type.
* @tparam Args The list of arguments to use to probe the function type.
*/
template<typename Func, typename Args>
inline constexpr bool is_applicable_v = is_applicable<Func, Args>::value;
/*! @brief Same as std::is_invocable_r, but with tuples for arguments. */
template<typename, typename, typename>
struct is_applicable_r: std::false_type {};
/**
* @copybrief is_applicable_r
* @tparam Ret The type to which the return type of the function should be
* convertible.
* @tparam Func A valid function type.
* @tparam Args The list of arguments to use to probe the function type.
*/
template<typename Ret, typename Func, typename... Args>
struct is_applicable_r<Ret, Func, std::tuple<Args...>>: std::is_invocable_r<Ret, Func, Args...> {};
/**
* @brief Helper variable template.
* @tparam Ret The type to which the return type of the function should be
* convertible.
* @tparam Func A valid function type.
* @tparam Args The list of arguments to use to probe the function type.
*/
template<typename Ret, typename Func, typename Args>
inline constexpr bool is_applicable_r_v = is_applicable_r<Ret, Func, Args>::value;
/**
* @brief Provides the member constant `value` to true if a given type is
* complete, false otherwise.
* @tparam Type The type to test.
*/
template<typename Type, typename = void>
struct is_complete: std::false_type {};
/*! @copydoc is_complete */
template<typename Type>
struct is_complete<Type, std::void_t<decltype(sizeof(Type))>>: std::true_type {};
/**
* @brief Helper variable template.
* @tparam Type The type to test.
*/
template<typename Type>
inline constexpr bool is_complete_v = is_complete<Type>::value;
/**
* @brief Provides the member constant `value` to true if a given type is an
* iterator, false otherwise.
* @tparam Type The type to test.
*/
template<typename Type, typename = void>
struct is_iterator: std::false_type {};
/**
* @cond TURN_OFF_DOXYGEN
* Internal details not to be documented.
*/
namespace internal {
template<typename, typename = void>
struct has_iterator_category: std::false_type {};
template<typename Type>
struct has_iterator_category<Type, std::void_t<typename std::iterator_traits<Type>::iterator_category>>: std::true_type {};
} // namespace internal
/**
* Internal details not to be documented.
* @endcond
*/
/*! @copydoc is_iterator */
template<typename Type>
struct is_iterator<Type, std::enable_if_t<!std::is_same_v<std::remove_cv_t<std::remove_pointer_t<Type>>, void>>>
: internal::has_iterator_category<Type> {};
/**
* @brief Helper variable template.
* @tparam Type The type to test.
*/
template<typename Type>
inline constexpr bool is_iterator_v = is_iterator<Type>::value;
/**
* @brief Provides the member constant `value` to true if a given type is both
* an empty and non-final class, false otherwise.
* @tparam Type The type to test
*/
template<typename Type>
struct is_ebco_eligible
: std::conjunction<std::is_empty<Type>, std::negation<std::is_final<Type>>> {};
/**
* @brief Helper variable template.
* @tparam Type The type to test.
*/
template<typename Type>
inline constexpr bool is_ebco_eligible_v = is_ebco_eligible<Type>::value;
/**
* @brief Provides the member constant `value` to true if `Type::is_transparent`
* is valid and denotes a type, false otherwise.
* @tparam Type The type to test.
*/
template<typename Type, typename = void>
struct is_transparent: std::false_type {};
/*! @copydoc is_transparent */
template<typename Type>
struct is_transparent<Type, std::void_t<typename Type::is_transparent>>: std::true_type {};
/**
* @brief Helper variable template.
* @tparam Type The type to test.
*/
template<typename Type>
inline constexpr bool is_transparent_v = is_transparent<Type>::value;
/**
* @brief Provides the member constant `value` to true if a given type is
* equality comparable, false otherwise.
* @tparam Type The type to test.
*/
template<typename Type, typename = void>
struct is_equality_comparable: std::false_type {};
/**
* @cond TURN_OFF_DOXYGEN
* Internal details not to be documented.
*/
namespace internal {
template<typename, typename = void>
struct has_tuple_size_value: std::false_type {};
template<typename Type>
struct has_tuple_size_value<Type, std::void_t<decltype(std::tuple_size<const Type>::value)>>: std::true_type {};
template<typename Type, std::size_t... Index>
[[nodiscard]] constexpr bool unpack_maybe_equality_comparable(std::index_sequence<Index...>) {
return (is_equality_comparable<std::tuple_element_t<Index, Type>>::value && ...);
}
template<typename>
[[nodiscard]] constexpr bool maybe_equality_comparable(choice_t<0>) {
return true;
}
template<typename Type>
[[nodiscard]] constexpr auto maybe_equality_comparable(choice_t<1>) -> decltype(std::declval<typename Type::value_type>(), bool{}) {
if constexpr(is_iterator_v<Type>) {
return true;
} else if constexpr(std::is_same_v<typename Type::value_type, Type>) {
return maybe_equality_comparable<Type>(choice<0>);
} else {
return is_equality_comparable<typename Type::value_type>::value;
}
}
template<typename Type>
[[nodiscard]] constexpr std::enable_if_t<is_complete_v<std::tuple_size<std::remove_cv_t<Type>>>, bool> maybe_equality_comparable(choice_t<2>) {
if constexpr(has_tuple_size_value<Type>::value) {
return unpack_maybe_equality_comparable<Type>(std::make_index_sequence<std::tuple_size<Type>::value>{});
} else {
return maybe_equality_comparable<Type>(choice<1>);
}
}
} // namespace internal
/**
* Internal details not to be documented.
* @endcond
*/
/*! @copydoc is_equality_comparable */
template<typename Type>
struct is_equality_comparable<Type, std::void_t<decltype(std::declval<Type>() == std::declval<Type>())>>
: std::bool_constant<internal::maybe_equality_comparable<Type>(choice<2>)> {};
/**
* @brief Helper variable template.
* @tparam Type The type to test.
*/
template<typename Type>
inline constexpr bool is_equality_comparable_v = is_equality_comparable<Type>::value;
/**
* @brief Transcribes the constness of a type to another type.
* @tparam To The type to which to transcribe the constness.
* @tparam From The type from which to transcribe the constness.
*/
template<typename To, typename From>
struct constness_as {
/*! @brief The type resulting from the transcription of the constness. */
using type = std::remove_const_t<To>;
};
/*! @copydoc constness_as */
template<typename To, typename From>
struct constness_as<To, const From> {
/*! @brief The type resulting from the transcription of the constness. */
using type = const To;
};
/**
* @brief Alias template to facilitate the transcription of the constness.
* @tparam To The type to which to transcribe the constness.
* @tparam From The type from which to transcribe the constness.
*/
template<typename To, typename From>
using constness_as_t = typename constness_as<To, From>::type;
/**
* @brief Extracts the class of a non-static member object or function.
* @tparam Member A pointer to a non-static member object or function.
*/
template<typename Member>
class member_class {
static_assert(std::is_member_pointer_v<Member>, "Invalid pointer type to non-static member object or function");
template<typename Class, typename Ret, typename... Args>
static Class *clazz(Ret (Class::*)(Args...));
template<typename Class, typename Ret, typename... Args>
static Class *clazz(Ret (Class::*)(Args...) const);
template<typename Class, typename Type>
static Class *clazz(Type Class::*);
public:
/*! @brief The class of the given non-static member object or function. */
using type = std::remove_pointer_t<decltype(clazz(std::declval<Member>()))>;
};
/**
* @brief Helper type.
* @tparam Member A pointer to a non-static member object or function.
*/
template<typename Member>
using member_class_t = typename member_class<Member>::type;
/**
* @brief Extracts the n-th argument of a given function or member function.
* @tparam Index The index of the argument to extract.
* @tparam Candidate A valid function, member function or data member.
*/
template<std::size_t Index, auto Candidate>
class nth_argument {
template<typename Ret, typename... Args>
static constexpr type_list<Args...> pick_up(Ret (*)(Args...));
template<typename Ret, typename Class, typename... Args>
static constexpr type_list<Args...> pick_up(Ret (Class ::*)(Args...));
template<typename Ret, typename Class, typename... Args>
static constexpr type_list<Args...> pick_up(Ret (Class ::*)(Args...) const);
template<typename Type, typename Class>
static constexpr type_list<Type> pick_up(Type Class ::*);
public:
/*! @brief N-th argument of the given function or member function. */
using type = type_list_element_t<Index, decltype(pick_up(Candidate))>;
};
/**
* @brief Helper type.
* @tparam Index The index of the argument to extract.
* @tparam Candidate A valid function, member function or data member.
*/
template<std::size_t Index, auto Candidate>
using nth_argument_t = typename nth_argument<Index, Candidate>::type;
} // namespace entt
#endif
namespace entt {
/**
* @cond TURN_OFF_DOXYGEN
* Internal details not to be documented.
*/
namespace internal {
enum class any_operation : std::uint8_t {
copy,
move,
transfer,
assign,
destroy,
compare,
get
};
enum class any_policy : std::uint8_t {
owner,
ref,
cref
};
} // namespace internal
/**
* Internal details not to be documented.
* @endcond
*/
/**
* @brief A SBO friendly, type-safe container for single values of any type.
* @tparam Len Size of the storage reserved for the small buffer optimization.
* @tparam Align Optional alignment requirement.
*/
template<std::size_t Len, std::size_t Align>
class basic_any {
using operation = internal::any_operation;
using policy = internal::any_policy;
using vtable_type = const void *(const operation, const basic_any &, const void *);
struct storage_type {
alignas(Align) std::byte data[Len + !Len];
};
template<typename Type>
static constexpr bool in_situ = Len && alignof(Type) <= Align && sizeof(Type) <= Len &&std::is_nothrow_move_constructible_v<Type>;
template<typename Type>
static const void *basic_vtable(const operation op, const basic_any &value, const void *other) {
static_assert(!std::is_same_v<Type, void> && std::is_same_v<std::remove_cv_t<std::remove_reference_t<Type>>, Type>, "Invalid type");
const Type *element = nullptr;
if constexpr(in_situ<Type>) {
element = value.owner() ? reinterpret_cast<const Type *>(&value.storage) : static_cast<const Type *>(value.instance);
} else {
element = static_cast<const Type *>(value.instance);
}
switch(op) {
case operation::copy:
if constexpr(std::is_copy_constructible_v<Type>) {
static_cast<basic_any *>(const_cast<void *>(other))->initialize<Type>(*element);
}
break;
case operation::move:
if constexpr(in_situ<Type>) {
if(value.owner()) {
return new(&static_cast<basic_any *>(const_cast<void *>(other))->storage) Type{std::move(*const_cast<Type *>(element))};
}
}
return (static_cast<basic_any *>(const_cast<void *>(other))->instance = std::exchange(const_cast<basic_any &>(value).instance, nullptr));
case operation::transfer:
if constexpr(std::is_move_assignable_v<Type>) {
*const_cast<Type *>(element) = std::move(*static_cast<Type *>(const_cast<void *>(other)));
return other;
}
[[fallthrough]];
case operation::assign:
if constexpr(std::is_copy_assignable_v<Type>) {
*const_cast<Type *>(element) = *static_cast<const Type *>(other);
return other;
}
break;
case operation::destroy:
if constexpr(in_situ<Type>) {
element->~Type();
} else if constexpr(std::is_array_v<Type>) {
delete[] element;
} else {
delete element;
}
break;
case operation::compare:
if constexpr(!std::is_function_v<Type> && !std::is_array_v<Type> && is_equality_comparable_v<Type>) {
return *element == *static_cast<const Type *>(other) ? other : nullptr;
} else {
return (element == other) ? other : nullptr;
}
case operation::get:
return element;
}
return nullptr;
}
template<typename Type, typename... Args>
void initialize([[maybe_unused]] Args &&...args) {
info = &type_id<std::remove_cv_t<std::remove_reference_t<Type>>>();
if constexpr(!std::is_void_v<Type>) {
vtable = basic_vtable<std::remove_cv_t<std::remove_reference_t<Type>>>;
if constexpr(std::is_lvalue_reference_v<Type>) {
static_assert(sizeof...(Args) == 1u && (std::is_lvalue_reference_v<Args> && ...), "Invalid arguments");
mode = std::is_const_v<std::remove_reference_t<Type>> ? policy::cref : policy::ref;
instance = (std::addressof(args), ...);
} else if constexpr(in_situ<std::remove_cv_t<std::remove_reference_t<Type>>>) {
if constexpr(sizeof...(Args) != 0u && std::is_aggregate_v<std::remove_cv_t<std::remove_reference_t<Type>>>) {
new(&storage) std::remove_cv_t<std::remove_reference_t<Type>>{std::forward<Args>(args)...};
} else {
new(&storage) std::remove_cv_t<std::remove_reference_t<Type>>(std::forward<Args>(args)...);
}
} else {
if constexpr(sizeof...(Args) != 0u && std::is_aggregate_v<std::remove_cv_t<std::remove_reference_t<Type>>>) {
instance = new std::remove_cv_t<std::remove_reference_t<Type>>{std::forward<Args>(args)...};
} else {
instance = new std::remove_cv_t<std::remove_reference_t<Type>>(std::forward<Args>(args)...);
}
}
}
}
basic_any(const basic_any &other, const policy pol) noexcept
: instance{other.data()},
info{other.info},
vtable{other.vtable},
mode{pol} {}
public:
/*! @brief Size of the internal storage. */
static constexpr auto length = Len;
/*! @brief Alignment requirement. */
static constexpr auto alignment = Align;
/*! @brief Default constructor. */
constexpr basic_any() noexcept
: basic_any{std::in_place_type<void>} {}
/**
* @brief Constructs a wrapper by directly initializing the new object.
* @tparam Type Type of object to use to initialize the wrapper.
* @tparam Args Types of arguments to use to construct the new instance.
* @param args Parameters to use to construct the instance.
*/
template<typename Type, typename... Args>
explicit basic_any(std::in_place_type_t<Type>, Args &&...args)
: instance{},
info{},
vtable{},
mode{policy::owner} {
initialize<Type>(std::forward<Args>(args)...);
}
/**
* @brief Constructs a wrapper from a given value.
* @tparam Type Type of object to use to initialize the wrapper.
* @param value An instance of an object to use to initialize the wrapper.
*/
template<typename Type, typename = std::enable_if_t<!std::is_same_v<std::decay_t<Type>, basic_any>>>
basic_any(Type &&value)
: basic_any{std::in_place_type<std::decay_t<Type>>, std::forward<Type>(value)} {}
/**
* @brief Copy constructor.
* @param other The instance to copy from.
*/
basic_any(const basic_any &other)
: basic_any{} {
if(other.vtable) {
other.vtable(operation::copy, other, this);
}
}
/**
* @brief Move constructor.
* @param other The instance to move from.
*/
basic_any(basic_any &&other) noexcept
: instance{},
info{other.info},
vtable{other.vtable},
mode{other.mode} {
if(other.vtable) {
other.vtable(operation::move, other, this);
}
}
/*! @brief Frees the internal storage, whatever it means. */
~basic_any() {
if(vtable && owner()) {
vtable(operation::destroy, *this, nullptr);
}
}
/**
* @brief Copy assignment operator.
* @param other The instance to copy from.
* @return This any object.
*/
basic_any &operator=(const basic_any &other) {
reset();
if(other.vtable) {
other.vtable(operation::copy, other, this);
}
return *this;
}
/**
* @brief Move assignment operator.
* @param other The instance to move from.
* @return This any object.
*/
basic_any &operator=(basic_any &&other) noexcept {
reset();
if(other.vtable) {
other.vtable(operation::move, other, this);
info = other.info;
vtable = other.vtable;
mode = other.mode;
}
return *this;
}
/**
* @brief Value assignment operator.
* @tparam Type Type of object to use to initialize the wrapper.
* @param value An instance of an object to use to initialize the wrapper.
* @return This any object.
*/
template<typename Type>
std::enable_if_t<!std::is_same_v<std::decay_t<Type>, basic_any>, basic_any &>
operator=(Type &&value) {
emplace<std::decay_t<Type>>(std::forward<Type>(value));
return *this;
}
/**
* @brief Returns the object type if any, `type_id<void>()` otherwise.
* @return The object type if any, `type_id<void>()` otherwise.
*/
[[nodiscard]] const type_info &type() const noexcept {
return *info;
}
/**
* @brief Returns an opaque pointer to the contained instance.
* @return An opaque pointer the contained instance, if any.
*/
[[nodiscard]] const void *data() const noexcept {
return vtable ? vtable(operation::get, *this, nullptr) : nullptr;
}
/**
* @brief Returns an opaque pointer to the contained instance.
* @param req Expected type.
* @return An opaque pointer the contained instance, if any.
*/
[[nodiscard]] const void *data(const type_info &req) const noexcept {
return *info == req ? data() : nullptr;
}
/**
* @brief Returns an opaque pointer to the contained instance.
* @return An opaque pointer the contained instance, if any.
*/
[[nodiscard]] void *data() noexcept {
return mode == policy::cref ? nullptr : const_cast<void *>(std::as_const(*this).data());
}
/**
* @brief Returns an opaque pointer to the contained instance.
* @param req Expected type.
* @return An opaque pointer the contained instance, if any.
*/
[[nodiscard]] void *data(const type_info &req) noexcept {
return mode == policy::cref ? nullptr : const_cast<void *>(std::as_const(*this).data(req));
}
/**
* @brief Replaces the contained object by creating a new instance directly.
* @tparam Type Type of object to use to initialize the wrapper.
* @tparam Args Types of arguments to use to construct the new instance.
* @param args Parameters to use to construct the instance.
*/
template<typename Type, typename... Args>
void emplace(Args &&...args) {
reset();
initialize<Type>(std::forward<Args>(args)...);
}
/**
* @brief Assigns a value to the contained object without replacing it.
* @param other The value to assign to the contained object.
* @return True in case of success, false otherwise.
*/
bool assign(const basic_any &other) {
if(vtable && mode != policy::cref && *info == *other.info) {
return (vtable(operation::assign, *this, other.data()) != nullptr);
}
return false;
}
/*! @copydoc assign */
bool assign(basic_any &&other) {
if(vtable && mode != policy::cref && *info == *other.info) {
if(auto *val = other.data(); val) {
return (vtable(operation::transfer, *this, val) != nullptr);
} else {
return (vtable(operation::assign, *this, std::as_const(other).data()) != nullptr);
}
}
return false;
}
/*! @brief Destroys contained object */
void reset() {
if(vtable && owner()) {
vtable(operation::destroy, *this, nullptr);
}
// unnecessary but it helps to detect nasty bugs
ENTT_ASSERT((instance = nullptr) == nullptr, "");
info = &type_id<void>();
vtable = nullptr;
mode = policy::owner;
}
/**
* @brief Returns false if a wrapper is empty, true otherwise.
* @return False if the wrapper is empty, true otherwise.
*/
[[nodiscard]] explicit operator bool() const noexcept {
return vtable != nullptr;
}
/**
* @brief Checks if two wrappers differ in their content.
* @param other Wrapper with which to compare.
* @return False if the two objects differ in their content, true otherwise.
*/
[[nodiscard]] bool operator==(const basic_any &other) const noexcept {
if(vtable && *info == *other.info) {
return (vtable(operation::compare, *this, other.data()) != nullptr);
}
return (!vtable && !other.vtable);
}
/**
* @brief Checks if two wrappers differ in their content.
* @param other Wrapper with which to compare.
* @return True if the two objects differ in their content, false otherwise.
*/
[[nodiscard]] bool operator!=(const basic_any &other) const noexcept {
return !(*this == other);
}
/**
* @brief Aliasing constructor.
* @return A wrapper that shares a reference to an unmanaged object.
*/
[[nodiscard]] basic_any as_ref() noexcept {
return basic_any{*this, (mode == policy::cref ? policy::cref : policy::ref)};
}
/*! @copydoc as_ref */
[[nodiscard]] basic_any as_ref() const noexcept {
return basic_any{*this, policy::cref};
}
/**
* @brief Returns true if a wrapper owns its object, false otherwise.
* @return True if the wrapper owns its object, false otherwise.
*/
[[nodiscard]] bool owner() const noexcept {
return (mode == policy::owner);
}
private:
union {
const void *instance;
storage_type storage;
};
const type_info *info;
vtable_type *vtable;
policy mode;
};
/**
* @brief Performs type-safe access to the contained object.
* @tparam Type Type to which conversion is required.
* @tparam Len Size of the storage reserved for the small buffer optimization.
* @tparam Align Alignment requirement.
* @param data Target any object.
* @return The element converted to the requested type.
*/
template<typename Type, std::size_t Len, std::size_t Align>
Type any_cast(const basic_any<Len, Align> &data) noexcept {
const auto *const instance = any_cast<std::remove_reference_t<Type>>(&data);
ENTT_ASSERT(instance, "Invalid instance");
return static_cast<Type>(*instance);
}
/*! @copydoc any_cast */
template<typename Type, std::size_t Len, std::size_t Align>
Type any_cast(basic_any<Len, Align> &data) noexcept {
// forces const on non-reference types to make them work also with wrappers for const references
auto *const instance = any_cast<std::remove_reference_t<const Type>>(&data);
ENTT_ASSERT(instance, "Invalid instance");
return static_cast<Type>(*instance);
}
/*! @copydoc any_cast */
template<typename Type, std::size_t Len, std::size_t Align>
Type any_cast(basic_any<Len, Align> &&data) noexcept {
if constexpr(std::is_copy_constructible_v<std::remove_cv_t<std::remove_reference_t<Type>>>) {
if(auto *const instance = any_cast<std::remove_reference_t<Type>>(&data); instance) {
return static_cast<Type>(std::move(*instance));
} else {
return any_cast<Type>(data);
}
} else {
auto *const instance = any_cast<std::remove_reference_t<Type>>(&data);
ENTT_ASSERT(instance, "Invalid instance");
return static_cast<Type>(std::move(*instance));
}
}
/*! @copydoc any_cast */
template<typename Type, std::size_t Len, std::size_t Align>
const Type *any_cast(const basic_any<Len, Align> *data) noexcept {
const auto &info = type_id<std::remove_cv_t<Type>>();
return static_cast<const Type *>(data->data(info));
}
/*! @copydoc any_cast */
template<typename Type, std::size_t Len, std::size_t Align>
Type *any_cast(basic_any<Len, Align> *data) noexcept {
if constexpr(std::is_const_v<Type>) {
// last attempt to make wrappers for const references return their values
return any_cast<Type>(&std::as_const(*data));
} else {
const auto &info = type_id<std::remove_cv_t<Type>>();
return static_cast<Type *>(data->data(info));
}
}
/**
* @brief Constructs a wrapper from a given type, passing it all arguments.
* @tparam Type Type of object to use to initialize the wrapper.
* @tparam Len Size of the storage reserved for the small buffer optimization.
* @tparam Align Optional alignment requirement.
* @tparam Args Types of arguments to use to construct the new instance.
* @param args Parameters to use to construct the instance.
* @return A properly initialized wrapper for an object of the given type.
*/
template<typename Type, std::size_t Len = basic_any<>::length, std::size_t Align = basic_any<Len>::alignment, typename... Args>
basic_any<Len, Align> make_any(Args &&...args) {
return basic_any<Len, Align>{std::in_place_type<Type>, std::forward<Args>(args)...};
}
/**
* @brief Forwards its argument and avoids copies for lvalue references.
* @tparam Len Size of the storage reserved for the small buffer optimization.
* @tparam Align Optional alignment requirement.
* @tparam Type Type of argument to use to construct the new instance.
* @param value Parameter to use to construct the instance.
* @return A properly initialized and not necessarily owning wrapper.
*/
template<std::size_t Len = basic_any<>::length, std::size_t Align = basic_any<Len>::alignment, typename Type>
basic_any<Len, Align> forward_as_any(Type &&value) {
return basic_any<Len, Align>{std::in_place_type<Type &&>, std::forward<Type>(value)};
}
} // namespace entt
#endif
// #include "../core/type_info.hpp"
#ifndef ENTT_CORE_TYPE_INFO_HPP
#define ENTT_CORE_TYPE_INFO_HPP
#include <string_view>
#include <type_traits>
#include <utility>
// #include "../config/config.h"
// #include "../core/attribute.h"
// #include "fwd.hpp"
// #include "hashed_string.hpp"
namespace entt {
/**
* @cond TURN_OFF_DOXYGEN
* Internal details not to be documented.
*/
namespace internal {
struct ENTT_API type_index final {
[[nodiscard]] static id_type next() noexcept {
static ENTT_MAYBE_ATOMIC(id_type) value{};
return value++;
}
};
template<typename Type>
[[nodiscard]] constexpr auto stripped_type_name() noexcept {
#if defined ENTT_PRETTY_FUNCTION
std::string_view pretty_function{ENTT_PRETTY_FUNCTION};
auto first = pretty_function.find_first_not_of(' ', pretty_function.find_first_of(ENTT_PRETTY_FUNCTION_PREFIX) + 1);
auto value = pretty_function.substr(first, pretty_function.find_last_of(ENTT_PRETTY_FUNCTION_SUFFIX) - first);
return value;
#else
return std::string_view{""};
#endif
}
template<typename Type, auto = stripped_type_name<Type>().find_first_of('.')>
[[nodiscard]] static constexpr std::string_view type_name(int) noexcept {
constexpr auto value = stripped_type_name<Type>();
return value;
}
template<typename Type>
[[nodiscard]] static std::string_view type_name(char) noexcept {
static const auto value = stripped_type_name<Type>();
return value;
}
template<typename Type, auto = stripped_type_name<Type>().find_first_of('.')>
[[nodiscard]] static constexpr id_type type_hash(int) noexcept {
constexpr auto stripped = stripped_type_name<Type>();
constexpr auto value = hashed_string::value(stripped.data(), stripped.size());
return value;
}
template<typename Type>
[[nodiscard]] static id_type type_hash(char) noexcept {
static const auto value = [](const auto stripped) {
return hashed_string::value(stripped.data(), stripped.size());
}(stripped_type_name<Type>());
return value;
}
} // namespace internal
/**
* Internal details not to be documented.
* @endcond
*/
/**
* @brief Type sequential identifier.
* @tparam Type Type for which to generate a sequential identifier.
*/
template<typename Type, typename = void>
struct ENTT_API type_index final {
/**
* @brief Returns the sequential identifier of a given type.
* @return The sequential identifier of a given type.
*/
[[nodiscard]] static id_type value() noexcept {
static const id_type value = internal::type_index::next();
return value;
}
/*! @copydoc value */
[[nodiscard]] constexpr operator id_type() const noexcept {
return value();
}
};
/**
* @brief Type hash.
* @tparam Type Type for which to generate a hash value.
*/
template<typename Type, typename = void>
struct type_hash final {
/**
* @brief Returns the numeric representation of a given type.
* @return The numeric representation of the given type.
*/
#if defined ENTT_PRETTY_FUNCTION
[[nodiscard]] static constexpr id_type value() noexcept {
return internal::type_hash<Type>(0);
#else
[[nodiscard]] static constexpr id_type value() noexcept {
return type_index<Type>::value();
#endif
}
/*! @copydoc value */
[[nodiscard]] constexpr operator id_type() const noexcept {
return value();
}
};
/**
* @brief Type name.
* @tparam Type Type for which to generate a name.
*/
template<typename Type, typename = void>
struct type_name final {
/**
* @brief Returns the name of a given type.
* @return The name of the given type.
*/
[[nodiscard]] static constexpr std::string_view value() noexcept {
return internal::type_name<Type>(0);
}
/*! @copydoc value */
[[nodiscard]] constexpr operator std::string_view() const noexcept {
return value();
}
};
/*! @brief Implementation specific information about a type. */
struct type_info final {
/**
* @brief Constructs a type info object for a given type.
* @tparam Type Type for which to construct a type info object.
*/
template<typename Type>
constexpr type_info(std::in_place_type_t<Type>) noexcept
: seq{type_index<std::remove_cv_t<std::remove_reference_t<Type>>>::value()},
identifier{type_hash<std::remove_cv_t<std::remove_reference_t<Type>>>::value()},
alias{type_name<std::remove_cv_t<std::remove_reference_t<Type>>>::value()} {}
/**
* @brief Type index.
* @return Type index.
*/
[[nodiscard]] constexpr id_type index() const noexcept {
return seq;
}
/**
* @brief Type hash.
* @return Type hash.
*/
[[nodiscard]] constexpr id_type hash() const noexcept {
return identifier;
}
/**
* @brief Type name.
* @return Type name.
*/
[[nodiscard]] constexpr std::string_view name() const noexcept {
return alias;
}
private:
id_type seq;
id_type identifier;
std::string_view alias;
};
/**
* @brief Compares the contents of two type info objects.
* @param lhs A type info object.
* @param rhs A type info object.
* @return True if the two type info objects are identical, false otherwise.
*/
[[nodiscard]] inline constexpr bool operator==(const type_info &lhs, const type_info &rhs) noexcept {
return lhs.hash() == rhs.hash();
}
/**
* @brief Compares the contents of two type info objects.
* @param lhs A type info object.
* @param rhs A type info object.
* @return True if the two type info objects differ, false otherwise.
*/
[[nodiscard]] inline constexpr bool operator!=(const type_info &lhs, const type_info &rhs) noexcept {
return !(lhs == rhs);
}
/**
* @brief Compares two type info objects.
* @param lhs A valid type info object.
* @param rhs A valid type info object.
* @return True if the first element is less than the second, false otherwise.
*/
[[nodiscard]] constexpr bool operator<(const type_info &lhs, const type_info &rhs) noexcept {
return lhs.index() < rhs.index();
}
/**
* @brief Compares two type info objects.
* @param lhs A valid type info object.
* @param rhs A valid type info object.
* @return True if the first element is less than or equal to the second, false
* otherwise.
*/
[[nodiscard]] constexpr bool operator<=(const type_info &lhs, const type_info &rhs) noexcept {
return !(rhs < lhs);
}
/**
* @brief Compares two type info objects.
* @param lhs A valid type info object.
* @param rhs A valid type info object.
* @return True if the first element is greater than the second, false
* otherwise.
*/
[[nodiscard]] constexpr bool operator>(const type_info &lhs, const type_info &rhs) noexcept {
return rhs < lhs;
}
/**
* @brief Compares two type info objects.
* @param lhs A valid type info object.
* @param rhs A valid type info object.
* @return True if the first element is greater than or equal to the second,
* false otherwise.
*/
[[nodiscard]] constexpr bool operator>=(const type_info &lhs, const type_info &rhs) noexcept {
return !(lhs < rhs);
}
/**
* @brief Returns the type info object associated to a given type.
*
* The returned element refers to an object with static storage duration.<br/>
* The type doesn't need to be a complete type. If the type is a reference, the
* result refers to the referenced type. In all cases, top-level cv-qualifiers
* are ignored.
*
* @tparam Type Type for which to generate a type info object.
* @return A reference to a properly initialized type info object.
*/
template<typename Type>
[[nodiscard]] const type_info &type_id() noexcept {
if constexpr(std::is_same_v<Type, std::remove_cv_t<std::remove_reference_t<Type>>>) {
static type_info instance{std::in_place_type<Type>};
return instance;
} else {
return type_id<std::remove_cv_t<std::remove_reference_t<Type>>>();
}
}
/*! @copydoc type_id */
template<typename Type>
[[nodiscard]] const type_info &type_id(Type &&) noexcept {
return type_id<std::remove_cv_t<std::remove_reference_t<Type>>>();
}
} // namespace entt
#endif
// #include "../core/type_traits.hpp"
#ifndef ENTT_CORE_TYPE_TRAITS_HPP
#define ENTT_CORE_TYPE_TRAITS_HPP
#include <cstddef>
#include <iterator>
#include <type_traits>
#include <utility>
// #include "../config/config.h"
// #include "fwd.hpp"
namespace entt {
/**
* @brief Utility class to disambiguate overloaded functions.
* @tparam N Number of choices available.
*/
template<std::size_t N>
struct choice_t
// Unfortunately, doxygen cannot parse such a construct.
: /*! @cond TURN_OFF_DOXYGEN */ choice_t<N - 1> /*! @endcond */
{};
/*! @copybrief choice_t */
template<>
struct choice_t<0> {};
/**
* @brief Variable template for the choice trick.
* @tparam N Number of choices available.
*/
template<std::size_t N>
inline constexpr choice_t<N> choice{};
/**
* @brief Identity type trait.
*
* Useful to establish non-deduced contexts in template argument deduction
* (waiting for C++20) or to provide types through function arguments.
*
* @tparam Type A type.
*/
template<typename Type>
struct type_identity {
/*! @brief Identity type. */
using type = Type;
};
/**
* @brief Helper type.
* @tparam Type A type.
*/
template<typename Type>
using type_identity_t = typename type_identity<Type>::type;
/**
* @brief A type-only `sizeof` wrapper that returns 0 where `sizeof` complains.
* @tparam Type The type of which to return the size.
* @tparam The size of the type if `sizeof` accepts it, 0 otherwise.
*/
template<typename Type, typename = void>
struct size_of: std::integral_constant<std::size_t, 0u> {};
/*! @copydoc size_of */
template<typename Type>
struct size_of<Type, std::void_t<decltype(sizeof(Type))>>
: std::integral_constant<std::size_t, sizeof(Type)> {};
/**
* @brief Helper variable template.
* @tparam Type The type of which to return the size.
*/
template<typename Type>
inline constexpr std::size_t size_of_v = size_of<Type>::value;
/**
* @brief Using declaration to be used to _repeat_ the same type a number of
* times equal to the size of a given parameter pack.
* @tparam Type A type to repeat.
*/
template<typename Type, typename>
using unpack_as_type = Type;
/**
* @brief Helper variable template to be used to _repeat_ the same value a
* number of times equal to the size of a given parameter pack.
* @tparam Value A value to repeat.
*/
template<auto Value, typename>
inline constexpr auto unpack_as_value = Value;
/**
* @brief Wraps a static constant.
* @tparam Value A static constant.
*/
template<auto Value>
using integral_constant = std::integral_constant<decltype(Value), Value>;
/**
* @brief Alias template to facilitate the creation of named values.
* @tparam Value A constant value at least convertible to `id_type`.
*/
template<id_type Value>
using tag = integral_constant<Value>;
/**
* @brief A class to use to push around lists of types, nothing more.
* @tparam Type Types provided by the type list.
*/
template<typename... Type>
struct type_list {
/*! @brief Type list type. */
using type = type_list;
/*! @brief Compile-time number of elements in the type list. */
static constexpr auto size = sizeof...(Type);
};
/*! @brief Primary template isn't defined on purpose. */
template<std::size_t, typename>
struct type_list_element;
/**
* @brief Provides compile-time indexed access to the types of a type list.
* @tparam Index Index of the type to return.
* @tparam First First type provided by the type list.
* @tparam Other Other types provided by the type list.
*/
template<std::size_t Index, typename First, typename... Other>
struct type_list_element<Index, type_list<First, Other...>>
: type_list_element<Index - 1u, type_list<Other...>> {};
/**
* @brief Provides compile-time indexed access to the types of a type list.
* @tparam First First type provided by the type list.
* @tparam Other Other types provided by the type list.
*/
template<typename First, typename... Other>
struct type_list_element<0u, type_list<First, Other...>> {
/*! @brief Searched type. */
using type = First;
};
/**
* @brief Helper type.
* @tparam Index Index of the type to return.
* @tparam List Type list to search into.
*/
template<std::size_t Index, typename List>
using type_list_element_t = typename type_list_element<Index, List>::type;
/*! @brief Primary template isn't defined on purpose. */
template<typename, typename>
struct type_list_index;
/**
* @brief Provides compile-time type access to the types of a type list.
* @tparam Type Type to look for and for which to return the index.
* @tparam First First type provided by the type list.
* @tparam Other Other types provided by the type list.
*/
template<typename Type, typename First, typename... Other>
struct type_list_index<Type, type_list<First, Other...>> {
/*! @brief Unsigned integer type. */
using value_type = std::size_t;
/*! @brief Compile-time position of the given type in the sublist. */
static constexpr value_type value = 1u + type_list_index<Type, type_list<Other...>>::value;
};
/**
* @brief Provides compile-time type access to the types of a type list.
* @tparam Type Type to look for and for which to return the index.
* @tparam Other Other types provided by the type list.
*/
template<typename Type, typename... Other>
struct type_list_index<Type, type_list<Type, Other...>> {
static_assert(type_list_index<Type, type_list<Other...>>::value == sizeof...(Other), "Non-unique type");
/*! @brief Unsigned integer type. */
using value_type = std::size_t;
/*! @brief Compile-time position of the given type in the sublist. */
static constexpr value_type value = 0u;
};
/**
* @brief Provides compile-time type access to the types of a type list.
* @tparam Type Type to look for and for which to return the index.
*/
template<typename Type>
struct type_list_index<Type, type_list<>> {
/*! @brief Unsigned integer type. */
using value_type = std::size_t;
/*! @brief Compile-time position of the given type in the sublist. */
static constexpr value_type value = 0u;
};
/**
* @brief Helper variable template.
* @tparam List Type list.
* @tparam Type Type to look for and for which to return the index.
*/
template<typename Type, typename List>
inline constexpr std::size_t type_list_index_v = type_list_index<Type, List>::value;
/**
* @brief Concatenates multiple type lists.
* @tparam Type Types provided by the first type list.
* @tparam Other Types provided by the second type list.
* @return A type list composed by the types of both the type lists.
*/
template<typename... Type, typename... Other>
constexpr type_list<Type..., Other...> operator+(type_list<Type...>, type_list<Other...>) {
return {};
}
/*! @brief Primary template isn't defined on purpose. */
template<typename...>
struct type_list_cat;
/*! @brief Concatenates multiple type lists. */
template<>
struct type_list_cat<> {
/*! @brief A type list composed by the types of all the type lists. */
using type = type_list<>;
};
/**
* @brief Concatenates multiple type lists.
* @tparam Type Types provided by the first type list.
* @tparam Other Types provided by the second type list.
* @tparam List Other type lists, if any.
*/
template<typename... Type, typename... Other, typename... List>
struct type_list_cat<type_list<Type...>, type_list<Other...>, List...> {
/*! @brief A type list composed by the types of all the type lists. */
using type = typename type_list_cat<type_list<Type..., Other...>, List...>::type;
};
/**
* @brief Concatenates multiple type lists.
* @tparam Type Types provided by the type list.
*/
template<typename... Type>
struct type_list_cat<type_list<Type...>> {
/*! @brief A type list composed by the types of all the type lists. */
using type = type_list<Type...>;
};
/**
* @brief Helper type.
* @tparam List Type lists to concatenate.
*/
template<typename... List>
using type_list_cat_t = typename type_list_cat<List...>::type;
/*! @brief Primary template isn't defined on purpose. */
template<typename>
struct type_list_unique;
/**
* @brief Removes duplicates types from a type list.
* @tparam Type One of the types provided by the given type list.
* @tparam Other The other types provided by the given type list.
*/
template<typename Type, typename... Other>
struct type_list_unique<type_list<Type, Other...>> {
/*! @brief A type list without duplicate types. */
using type = std::conditional_t<
(std::is_same_v<Type, Other> || ...),
typename type_list_unique<type_list<Other...>>::type,
type_list_cat_t<type_list<Type>, typename type_list_unique<type_list<Other...>>::type>>;
};
/*! @brief Removes duplicates types from a type list. */
template<>
struct type_list_unique<type_list<>> {
/*! @brief A type list without duplicate types. */
using type = type_list<>;
};
/**
* @brief Helper type.
* @tparam Type A type list.
*/
template<typename Type>
using type_list_unique_t = typename type_list_unique<Type>::type;
/**
* @brief Provides the member constant `value` to true if a type list contains a
* given type, false otherwise.
* @tparam List Type list.
* @tparam Type Type to look for.
*/
template<typename List, typename Type>
struct type_list_contains;
/**
* @copybrief type_list_contains
* @tparam Type Types provided by the type list.
* @tparam Other Type to look for.
*/
template<typename... Type, typename Other>
struct type_list_contains<type_list<Type...>, Other>: std::disjunction<std::is_same<Type, Other>...> {};
/**
* @brief Helper variable template.
* @tparam List Type list.
* @tparam Type Type to look for.
*/
template<typename List, typename Type>
inline constexpr bool type_list_contains_v = type_list_contains<List, Type>::value;
/*! @brief Primary template isn't defined on purpose. */
template<typename...>
struct type_list_diff;
/**
* @brief Computes the difference between two type lists.
* @tparam Type Types provided by the first type list.
* @tparam Other Types provided by the second type list.
*/
template<typename... Type, typename... Other>
struct type_list_diff<type_list<Type...>, type_list<Other...>> {
/*! @brief A type list that is the difference between the two type lists. */
using type = type_list_cat_t<std::conditional_t<type_list_contains_v<type_list<Other...>, Type>, type_list<>, type_list<Type>>...>;
};
/**
* @brief Helper type.
* @tparam List Type lists between which to compute the difference.
*/
template<typename... List>
using type_list_diff_t = typename type_list_diff<List...>::type;
/*! @brief Primary template isn't defined on purpose. */
template<typename, template<typename...> class>
struct type_list_transform;
/**
* @brief Applies a given _function_ to a type list and generate a new list.
* @tparam Type Types provided by the type list.
* @tparam Op Unary operation as template class with a type member named `type`.
*/
template<typename... Type, template<typename...> class Op>
struct type_list_transform<type_list<Type...>, Op> {
/*! @brief Resulting type list after applying the transform function. */
using type = type_list<typename Op<Type>::type...>;
};
/**
* @brief Helper type.
* @tparam List Type list.
* @tparam Op Unary operation as template class with a type member named `type`.
*/
template<typename List, template<typename...> class Op>
using type_list_transform_t = typename type_list_transform<List, Op>::type;
/**
* @brief A class to use to push around lists of constant values, nothing more.
* @tparam Value Values provided by the value list.
*/
template<auto... Value>
struct value_list {
/*! @brief Value list type. */
using type = value_list;
/*! @brief Compile-time number of elements in the value list. */
static constexpr auto size = sizeof...(Value);
};
/*! @brief Primary template isn't defined on purpose. */
template<std::size_t, typename>
struct value_list_element;
/**
* @brief Provides compile-time indexed access to the values of a value list.
* @tparam Index Index of the value to return.
* @tparam Value First value provided by the value list.
* @tparam Other Other values provided by the value list.
*/
template<std::size_t Index, auto Value, auto... Other>
struct value_list_element<Index, value_list<Value, Other...>>
: value_list_element<Index - 1u, value_list<Other...>> {};
/**
* @brief Provides compile-time indexed access to the types of a type list.
* @tparam Value First value provided by the value list.
* @tparam Other Other values provided by the value list.
*/
template<auto Value, auto... Other>
struct value_list_element<0u, value_list<Value, Other...>> {
/*! @brief Searched value. */
static constexpr auto value = Value;
};
/**
* @brief Helper type.
* @tparam Index Index of the value to return.
* @tparam List Value list to search into.
*/
template<std::size_t Index, typename List>
inline constexpr auto value_list_element_v = value_list_element<Index, List>::value;
/**
* @brief Concatenates multiple value lists.
* @tparam Value Values provided by the first value list.
* @tparam Other Values provided by the second value list.
* @return A value list composed by the values of both the value lists.
*/
template<auto... Value, auto... Other>
constexpr value_list<Value..., Other...> operator+(value_list<Value...>, value_list<Other...>) {
return {};
}
/*! @brief Primary template isn't defined on purpose. */
template<typename...>
struct value_list_cat;
/*! @brief Concatenates multiple value lists. */
template<>
struct value_list_cat<> {
/*! @brief A value list composed by the values of all the value lists. */
using type = value_list<>;
};
/**
* @brief Concatenates multiple value lists.
* @tparam Value Values provided by the first value list.
* @tparam Other Values provided by the second value list.
* @tparam List Other value lists, if any.
*/
template<auto... Value, auto... Other, typename... List>
struct value_list_cat<value_list<Value...>, value_list<Other...>, List...> {
/*! @brief A value list composed by the values of all the value lists. */
using type = typename value_list_cat<value_list<Value..., Other...>, List...>::type;
};
/**
* @brief Concatenates multiple value lists.
* @tparam Value Values provided by the value list.
*/
template<auto... Value>
struct value_list_cat<value_list<Value...>> {
/*! @brief A value list composed by the values of all the value lists. */
using type = value_list<Value...>;
};
/**
* @brief Helper type.
* @tparam List Value lists to concatenate.
*/
template<typename... List>
using value_list_cat_t = typename value_list_cat<List...>::type;
/*! @brief Same as std::is_invocable, but with tuples. */
template<typename, typename>
struct is_applicable: std::false_type {};
/**
* @copybrief is_applicable
* @tparam Func A valid function type.
* @tparam Tuple Tuple-like type.
* @tparam Args The list of arguments to use to probe the function type.
*/
template<typename Func, template<typename...> class Tuple, typename... Args>
struct is_applicable<Func, Tuple<Args...>>: std::is_invocable<Func, Args...> {};
/**
* @copybrief is_applicable
* @tparam Func A valid function type.
* @tparam Tuple Tuple-like type.
* @tparam Args The list of arguments to use to probe the function type.
*/
template<typename Func, template<typename...> class Tuple, typename... Args>
struct is_applicable<Func, const Tuple<Args...>>: std::is_invocable<Func, Args...> {};
/**
* @brief Helper variable template.
* @tparam Func A valid function type.
* @tparam Args The list of arguments to use to probe the function type.
*/
template<typename Func, typename Args>
inline constexpr bool is_applicable_v = is_applicable<Func, Args>::value;
/*! @brief Same as std::is_invocable_r, but with tuples for arguments. */
template<typename, typename, typename>
struct is_applicable_r: std::false_type {};
/**
* @copybrief is_applicable_r
* @tparam Ret The type to which the return type of the function should be
* convertible.
* @tparam Func A valid function type.
* @tparam Args The list of arguments to use to probe the function type.
*/
template<typename Ret, typename Func, typename... Args>
struct is_applicable_r<Ret, Func, std::tuple<Args...>>: std::is_invocable_r<Ret, Func, Args...> {};
/**
* @brief Helper variable template.
* @tparam Ret The type to which the return type of the function should be
* convertible.
* @tparam Func A valid function type.
* @tparam Args The list of arguments to use to probe the function type.
*/
template<typename Ret, typename Func, typename Args>
inline constexpr bool is_applicable_r_v = is_applicable_r<Ret, Func, Args>::value;
/**
* @brief Provides the member constant `value` to true if a given type is
* complete, false otherwise.
* @tparam Type The type to test.
*/
template<typename Type, typename = void>
struct is_complete: std::false_type {};
/*! @copydoc is_complete */
template<typename Type>
struct is_complete<Type, std::void_t<decltype(sizeof(Type))>>: std::true_type {};
/**
* @brief Helper variable template.
* @tparam Type The type to test.
*/
template<typename Type>
inline constexpr bool is_complete_v = is_complete<Type>::value;
/**
* @brief Provides the member constant `value` to true if a given type is an
* iterator, false otherwise.
* @tparam Type The type to test.
*/
template<typename Type, typename = void>
struct is_iterator: std::false_type {};
/**
* @cond TURN_OFF_DOXYGEN
* Internal details not to be documented.
*/
namespace internal {
template<typename, typename = void>
struct has_iterator_category: std::false_type {};
template<typename Type>
struct has_iterator_category<Type, std::void_t<typename std::iterator_traits<Type>::iterator_category>>: std::true_type {};
} // namespace internal
/**
* Internal details not to be documented.
* @endcond
*/
/*! @copydoc is_iterator */
template<typename Type>
struct is_iterator<Type, std::enable_if_t<!std::is_same_v<std::remove_cv_t<std::remove_pointer_t<Type>>, void>>>
: internal::has_iterator_category<Type> {};
/**
* @brief Helper variable template.
* @tparam Type The type to test.
*/
template<typename Type>
inline constexpr bool is_iterator_v = is_iterator<Type>::value;
/**
* @brief Provides the member constant `value` to true if a given type is both
* an empty and non-final class, false otherwise.
* @tparam Type The type to test
*/
template<typename Type>
struct is_ebco_eligible
: std::conjunction<std::is_empty<Type>, std::negation<std::is_final<Type>>> {};
/**
* @brief Helper variable template.
* @tparam Type The type to test.
*/
template<typename Type>
inline constexpr bool is_ebco_eligible_v = is_ebco_eligible<Type>::value;
/**
* @brief Provides the member constant `value` to true if `Type::is_transparent`
* is valid and denotes a type, false otherwise.
* @tparam Type The type to test.
*/
template<typename Type, typename = void>
struct is_transparent: std::false_type {};
/*! @copydoc is_transparent */
template<typename Type>
struct is_transparent<Type, std::void_t<typename Type::is_transparent>>: std::true_type {};
/**
* @brief Helper variable template.
* @tparam Type The type to test.
*/
template<typename Type>
inline constexpr bool is_transparent_v = is_transparent<Type>::value;
/**
* @brief Provides the member constant `value` to true if a given type is
* equality comparable, false otherwise.
* @tparam Type The type to test.
*/
template<typename Type, typename = void>
struct is_equality_comparable: std::false_type {};
/**
* @cond TURN_OFF_DOXYGEN
* Internal details not to be documented.
*/
namespace internal {
template<typename, typename = void>
struct has_tuple_size_value: std::false_type {};
template<typename Type>
struct has_tuple_size_value<Type, std::void_t<decltype(std::tuple_size<const Type>::value)>>: std::true_type {};
template<typename Type, std::size_t... Index>
[[nodiscard]] constexpr bool unpack_maybe_equality_comparable(std::index_sequence<Index...>) {
return (is_equality_comparable<std::tuple_element_t<Index, Type>>::value && ...);
}
template<typename>
[[nodiscard]] constexpr bool maybe_equality_comparable(choice_t<0>) {
return true;
}
template<typename Type>
[[nodiscard]] constexpr auto maybe_equality_comparable(choice_t<1>) -> decltype(std::declval<typename Type::value_type>(), bool{}) {
if constexpr(is_iterator_v<Type>) {
return true;
} else if constexpr(std::is_same_v<typename Type::value_type, Type>) {
return maybe_equality_comparable<Type>(choice<0>);
} else {
return is_equality_comparable<typename Type::value_type>::value;
}
}
template<typename Type>
[[nodiscard]] constexpr std::enable_if_t<is_complete_v<std::tuple_size<std::remove_cv_t<Type>>>, bool> maybe_equality_comparable(choice_t<2>) {
if constexpr(has_tuple_size_value<Type>::value) {
return unpack_maybe_equality_comparable<Type>(std::make_index_sequence<std::tuple_size<Type>::value>{});
} else {
return maybe_equality_comparable<Type>(choice<1>);
}
}
} // namespace internal
/**
* Internal details not to be documented.
* @endcond
*/
/*! @copydoc is_equality_comparable */
template<typename Type>
struct is_equality_comparable<Type, std::void_t<decltype(std::declval<Type>() == std::declval<Type>())>>
: std::bool_constant<internal::maybe_equality_comparable<Type>(choice<2>)> {};
/**
* @brief Helper variable template.
* @tparam Type The type to test.
*/
template<typename Type>
inline constexpr bool is_equality_comparable_v = is_equality_comparable<Type>::value;
/**
* @brief Transcribes the constness of a type to another type.
* @tparam To The type to which to transcribe the constness.
* @tparam From The type from which to transcribe the constness.
*/
template<typename To, typename From>
struct constness_as {
/*! @brief The type resulting from the transcription of the constness. */
using type = std::remove_const_t<To>;
};
/*! @copydoc constness_as */
template<typename To, typename From>
struct constness_as<To, const From> {
/*! @brief The type resulting from the transcription of the constness. */
using type = const To;
};
/**
* @brief Alias template to facilitate the transcription of the constness.
* @tparam To The type to which to transcribe the constness.
* @tparam From The type from which to transcribe the constness.
*/
template<typename To, typename From>
using constness_as_t = typename constness_as<To, From>::type;
/**
* @brief Extracts the class of a non-static member object or function.
* @tparam Member A pointer to a non-static member object or function.
*/
template<typename Member>
class member_class {
static_assert(std::is_member_pointer_v<Member>, "Invalid pointer type to non-static member object or function");
template<typename Class, typename Ret, typename... Args>
static Class *clazz(Ret (Class::*)(Args...));
template<typename Class, typename Ret, typename... Args>
static Class *clazz(Ret (Class::*)(Args...) const);
template<typename Class, typename Type>
static Class *clazz(Type Class::*);
public:
/*! @brief The class of the given non-static member object or function. */
using type = std::remove_pointer_t<decltype(clazz(std::declval<Member>()))>;
};
/**
* @brief Helper type.
* @tparam Member A pointer to a non-static member object or function.
*/
template<typename Member>
using member_class_t = typename member_class<Member>::type;
/**
* @brief Extracts the n-th argument of a given function or member function.
* @tparam Index The index of the argument to extract.
* @tparam Candidate A valid function, member function or data member.
*/
template<std::size_t Index, auto Candidate>
class nth_argument {
template<typename Ret, typename... Args>
static constexpr type_list<Args...> pick_up(Ret (*)(Args...));
template<typename Ret, typename Class, typename... Args>
static constexpr type_list<Args...> pick_up(Ret (Class ::*)(Args...));
template<typename Ret, typename Class, typename... Args>
static constexpr type_list<Args...> pick_up(Ret (Class ::*)(Args...) const);
template<typename Type, typename Class>
static constexpr type_list<Type> pick_up(Type Class ::*);
public:
/*! @brief N-th argument of the given function or member function. */
using type = type_list_element_t<Index, decltype(pick_up(Candidate))>;
};
/**
* @brief Helper type.
* @tparam Index The index of the argument to extract.
* @tparam Candidate A valid function, member function or data member.
*/
template<std::size_t Index, auto Candidate>
using nth_argument_t = typename nth_argument<Index, Candidate>::type;
} // namespace entt
#endif
// #include "fwd.hpp"
#ifndef ENTT_POLY_FWD_HPP
#define ENTT_POLY_FWD_HPP
#include <cstddef>
namespace entt {
template<typename, std::size_t Len = sizeof(double[2]), std::size_t = alignof(double[2])>
class basic_poly;
/**
* @brief Alias declaration for the most common use case.
* @tparam Concept Concept descriptor.
*/
template<typename Concept>
using poly = basic_poly<Concept>;
} // namespace entt
#endif
namespace entt {
/*! @brief Inspector class used to infer the type of the virtual table. */
struct poly_inspector {
/**
* @brief Generic conversion operator (definition only).
* @tparam Type Type to which conversion is requested.
*/
template<class Type>
operator Type &&() const;
/**
* @brief Dummy invocation function (definition only).
* @tparam Member Index of the function to invoke.
* @tparam Args Types of arguments to pass to the function.
* @param args The arguments to pass to the function.
* @return A poly inspector convertible to any type.
*/
template<std::size_t Member, typename... Args>
poly_inspector invoke(Args &&...args) const;
/*! @copydoc invoke */
template<std::size_t Member, typename... Args>
poly_inspector invoke(Args &&...args);
};
/**
* @brief Static virtual table factory.
* @tparam Concept Concept descriptor.
* @tparam Len Size of the storage reserved for the small buffer optimization.
* @tparam Align Alignment requirement.
*/
template<typename Concept, std::size_t Len, std::size_t Align>
class poly_vtable {
using inspector = typename Concept::template type<poly_inspector>;
template<typename Ret, typename... Args>
static auto vtable_entry(Ret (*)(inspector &, Args...)) -> Ret (*)(basic_any<Len, Align> &, Args...);
template<typename Ret, typename... Args>
static auto vtable_entry(Ret (*)(const inspector &, Args...)) -> Ret (*)(const basic_any<Len, Align> &, Args...);
template<typename Ret, typename... Args>
static auto vtable_entry(Ret (*)(Args...)) -> Ret (*)(const basic_any<Len, Align> &, Args...);
template<typename Ret, typename... Args>
static auto vtable_entry(Ret (inspector::*)(Args...)) -> Ret (*)(basic_any<Len, Align> &, Args...);
template<typename Ret, typename... Args>
static auto vtable_entry(Ret (inspector::*)(Args...) const) -> Ret (*)(const basic_any<Len, Align> &, Args...);
template<auto... Candidate>
static auto make_vtable(value_list<Candidate...>) noexcept
-> decltype(std::make_tuple(vtable_entry(Candidate)...));
template<typename... Func>
[[nodiscard]] static constexpr auto make_vtable(type_list<Func...>) noexcept {
if constexpr(sizeof...(Func) == 0u) {
return decltype(make_vtable(typename Concept::template impl<inspector>{})){};
} else if constexpr((std::is_function_v<Func> && ...)) {
return decltype(std::make_tuple(vtable_entry(std::declval<Func inspector::*>())...)){};
}
}
template<typename Type, auto Candidate, typename Ret, typename Any, typename... Args>
static void fill_vtable_entry(Ret (*&entry)(Any &, Args...)) noexcept {
if constexpr(std::is_invocable_r_v<Ret, decltype(Candidate), Args...>) {
entry = +[](Any &, Args... args) -> Ret {
return std::invoke(Candidate, std::forward<Args>(args)...);
};
} else {
entry = +[](Any &instance, Args... args) -> Ret {
return static_cast<Ret>(std::invoke(Candidate, any_cast<constness_as_t<Type, Any> &>(instance), std::forward<Args>(args)...));
};
}
}
template<typename Type, auto... Index>
[[nodiscard]] static auto fill_vtable(std::index_sequence<Index...>) noexcept {
vtable_type impl{};
(fill_vtable_entry<Type, value_list_element_v<Index, typename Concept::template impl<Type>>>(std::get<Index>(impl)), ...);
return impl;
}
using vtable_type = decltype(make_vtable(Concept{}));
static constexpr bool is_mono_v = std::tuple_size_v<vtable_type> == 1u;
public:
/*! @brief Virtual table type. */
using type = std::conditional_t<is_mono_v, std::tuple_element_t<0u, vtable_type>, const vtable_type *>;
/**
* @brief Returns a static virtual table for a specific concept and type.
* @tparam Type The type for which to generate the virtual table.
* @return A static virtual table for the given concept and type.
*/
template<typename Type>
[[nodiscard]] static type instance() noexcept {
static_assert(std::is_same_v<Type, std::decay_t<Type>>, "Type differs from its decayed form");
static const vtable_type vtable = fill_vtable<Type>(std::make_index_sequence<Concept::template impl<Type>::size>{});
if constexpr(is_mono_v) {
return std::get<0>(vtable);
} else {
return &vtable;
}
}
};
/**
* @brief Poly base class used to inject functionalities into concepts.
* @tparam Poly The outermost poly class.
*/
template<typename Poly>
struct poly_base {
/**
* @brief Invokes a function from the static virtual table.
* @tparam Member Index of the function to invoke.
* @tparam Args Types of arguments to pass to the function.
* @param self A reference to the poly object that made the call.
* @param args The arguments to pass to the function.
* @return The return value of the invoked function, if any.
*/
template<std::size_t Member, typename... Args>
[[nodiscard]] decltype(auto) invoke(const poly_base &self, Args &&...args) const {
const auto &poly = static_cast<const Poly &>(self);
if constexpr(std::is_function_v<std::remove_pointer_t<decltype(poly.vtable)>>) {
return poly.vtable(poly.storage, std::forward<Args>(args)...);
} else {
return std::get<Member>(*poly.vtable)(poly.storage, std::forward<Args>(args)...);
}
}
/*! @copydoc invoke */
template<std::size_t Member, typename... Args>
[[nodiscard]] decltype(auto) invoke(poly_base &self, Args &&...args) {
auto &poly = static_cast<Poly &>(self);
if constexpr(std::is_function_v<std::remove_pointer_t<decltype(poly.vtable)>>) {
static_assert(Member == 0u, "Unknown member");
return poly.vtable(poly.storage, std::forward<Args>(args)...);
} else {
return std::get<Member>(*poly.vtable)(poly.storage, std::forward<Args>(args)...);
}
}
};
/**
* @brief Shortcut for calling `poly_base<Type>::invoke`.
* @tparam Member Index of the function to invoke.
* @tparam Poly A fully defined poly object.
* @tparam Args Types of arguments to pass to the function.
* @param self A reference to the poly object that made the call.
* @param args The arguments to pass to the function.
* @return The return value of the invoked function, if any.
*/
template<std::size_t Member, typename Poly, typename... Args>
decltype(auto) poly_call(Poly &&self, Args &&...args) {
return std::forward<Poly>(self).template invoke<Member>(self, std::forward<Args>(args)...);
}
/**
* @brief Static polymorphism made simple and within everyone's reach.
*
* Static polymorphism is a very powerful tool in C++, albeit sometimes
* cumbersome to obtain.<br/>
* This class aims to make it simple and easy to use.
*
* @note
* Both deduced and defined static virtual tables are supported.<br/>
* Moreover, the `poly` class template also works with unmanaged objects.
*
* @tparam Concept Concept descriptor.
* @tparam Len Size of the storage reserved for the small buffer optimization.
* @tparam Align Optional alignment requirement.
*/
template<typename Concept, std::size_t Len, std::size_t Align>
class basic_poly: private Concept::template type<poly_base<basic_poly<Concept, Len, Align>>> {
/*! @brief A poly base is allowed to snoop into a poly object. */
friend struct poly_base<basic_poly>;
public:
/*! @brief Concept type. */
using concept_type = typename Concept::template type<poly_base<basic_poly>>;
/*! @brief Virtual table type. */
using vtable_type = typename poly_vtable<Concept, Len, Align>::type;
/*! @brief Default constructor. */
basic_poly() noexcept
: storage{},
vtable{} {}
/**
* @brief Constructs a poly by directly initializing the new object.
* @tparam Type Type of object to use to initialize the poly.
* @tparam Args Types of arguments to use to construct the new instance.
* @param args Parameters to use to construct the instance.
*/
template<typename Type, typename... Args>
explicit basic_poly(std::in_place_type_t<Type>, Args &&...args)
: storage{std::in_place_type<Type>, std::forward<Args>(args)...},
vtable{poly_vtable<Concept, Len, Align>::template instance<std::remove_cv_t<std::remove_reference_t<Type>>>()} {}
/**
* @brief Constructs a poly from a given value.
* @tparam Type Type of object to use to initialize the poly.
* @param value An instance of an object to use to initialize the poly.
*/
template<typename Type, typename = std::enable_if_t<!std::is_same_v<std::remove_cv_t<std::remove_reference_t<Type>>, basic_poly>>>
basic_poly(Type &&value) noexcept
: basic_poly{std::in_place_type<std::remove_cv_t<std::remove_reference_t<Type>>>, std::forward<Type>(value)} {}
/**
* @brief Returns the object type if any, `type_id<void>()` otherwise.
* @return The object type if any, `type_id<void>()` otherwise.
*/
[[nodiscard]] const type_info &type() const noexcept {
return storage.type();
}
/**
* @brief Returns an opaque pointer to the contained instance.
* @return An opaque pointer the contained instance, if any.
*/
[[nodiscard]] const void *data() const noexcept {
return storage.data();
}
/*! @copydoc data */
[[nodiscard]] void *data() noexcept {
return storage.data();
}
/**
* @brief Replaces the contained object by creating a new instance directly.
* @tparam Type Type of object to use to initialize the poly.
* @tparam Args Types of arguments to use to construct the new instance.
* @param args Parameters to use to construct the instance.
*/
template<typename Type, typename... Args>
void emplace(Args &&...args) {
storage.template emplace<Type>(std::forward<Args>(args)...);
vtable = poly_vtable<Concept, Len, Align>::template instance<std::remove_cv_t<std::remove_reference_t<Type>>>();
}
/*! @brief Destroys contained object */
void reset() {
storage.reset();
vtable = {};
}
/**
* @brief Returns false if a poly is empty, true otherwise.
* @return False if the poly is empty, true otherwise.
*/
[[nodiscard]] explicit operator bool() const noexcept {
return static_cast<bool>(storage);
}
/**
* @brief Returns a pointer to the underlying concept.
* @return A pointer to the underlying concept.
*/
[[nodiscard]] concept_type *operator->() noexcept {
return this;
}
/*! @copydoc operator-> */
[[nodiscard]] const concept_type *operator->() const noexcept {
return this;
}
/**
* @brief Aliasing constructor.
* @return A poly that shares a reference to an unmanaged object.
*/
[[nodiscard]] basic_poly as_ref() noexcept {
basic_poly ref{};
ref.storage = storage.as_ref();
ref.vtable = vtable;
return ref;
}
/*! @copydoc as_ref */
[[nodiscard]] basic_poly as_ref() const noexcept {
basic_poly ref{};
ref.storage = storage.as_ref();
ref.vtable = vtable;
return ref;
}
private:
basic_any<Len, Align> storage;
vtable_type vtable;
};
} // namespace entt
#endif
// #include "process/process.hpp"
#ifndef ENTT_PROCESS_PROCESS_HPP
#define ENTT_PROCESS_PROCESS_HPP
#include <cstdint>
#include <type_traits>
#include <utility>
namespace entt {
/**
* @brief Base class for processes.
*
* This class stays true to the CRTP idiom. Derived classes must specify what's
* the intended type for elapsed times.<br/>
* A process should expose publicly the following member functions whether
* required:
*
* * @code{.cpp}
* void update(Delta, void *);
* @endcode
*
* It's invoked once per tick until a process is explicitly aborted or it
* terminates either with or without errors. Even though it's not mandatory to
* declare this member function, as a rule of thumb each process should at
* least define it to work properly. The `void *` parameter is an opaque
* pointer to user data (if any) forwarded directly to the process during an
* update.
*
* * @code{.cpp}
* void init();
* @endcode
*
* It's invoked when the process joins the running queue of a scheduler. This
* happens as soon as it's attached to the scheduler if the process is a top
* level one, otherwise when it replaces its parent if the process is a
* continuation.
*
* * @code{.cpp}
* void succeeded();
* @endcode
*
* It's invoked in case of success, immediately after an update and during the
* same tick.
*
* * @code{.cpp}
* void failed();
* @endcode
*
* It's invoked in case of errors, immediately after an update and during the
* same tick.
*
* * @code{.cpp}
* void aborted();
* @endcode
*
* It's invoked only if a process is explicitly aborted. There is no guarantee
* that it executes in the same tick, this depends solely on whether the
* process is aborted immediately or not.
*
* Derived classes can change the internal state of a process by invoking the
* `succeed` and `fail` protected member functions and even pause or unpause the
* process itself.
*
* @sa scheduler
*
* @tparam Derived Actual type of process that extends the class template.
* @tparam Delta Type to use to provide elapsed time.
*/
template<typename Derived, typename Delta>
class process {
enum class state : std::uint8_t {
uninitialized = 0,
running,
paused,
succeeded,
failed,
aborted,
finished,
rejected
};
template<typename Target = Derived>
auto next(std::integral_constant<state, state::uninitialized>)
-> decltype(std::declval<Target>().init(), void()) {
static_cast<Target *>(this)->init();
}
template<typename Target = Derived>
auto next(std::integral_constant<state, state::running>, Delta delta, void *data)
-> decltype(std::declval<Target>().update(delta, data), void()) {
static_cast<Target *>(this)->update(delta, data);
}
template<typename Target = Derived>
auto next(std::integral_constant<state, state::succeeded>)
-> decltype(std::declval<Target>().succeeded(), void()) {
static_cast<Target *>(this)->succeeded();
}
template<typename Target = Derived>
auto next(std::integral_constant<state, state::failed>)
-> decltype(std::declval<Target>().failed(), void()) {
static_cast<Target *>(this)->failed();
}
template<typename Target = Derived>
auto next(std::integral_constant<state, state::aborted>)
-> decltype(std::declval<Target>().aborted(), void()) {
static_cast<Target *>(this)->aborted();
}
void next(...) const noexcept {}
protected:
/**
* @brief Terminates a process with success if it's still alive.
*
* The function is idempotent and it does nothing if the process isn't
* alive.
*/
void succeed() noexcept {
if(alive()) {
current = state::succeeded;
}
}
/**
* @brief Terminates a process with errors if it's still alive.
*
* The function is idempotent and it does nothing if the process isn't
* alive.
*/
void fail() noexcept {
if(alive()) {
current = state::failed;
}
}
/**
* @brief Stops a process if it's in a running state.
*
* The function is idempotent and it does nothing if the process isn't
* running.
*/
void pause() noexcept {
if(current == state::running) {
current = state::paused;
}
}
/**
* @brief Restarts a process if it's paused.
*
* The function is idempotent and it does nothing if the process isn't
* paused.
*/
void unpause() noexcept {
if(current == state::paused) {
current = state::running;
}
}
public:
/*! @brief Type used to provide elapsed time. */
using delta_type = Delta;
/*! @brief Default destructor. */
virtual ~process() noexcept {
static_assert(std::is_base_of_v<process, Derived>, "Incorrect use of the class template");
}
/**
* @brief Aborts a process if it's still alive.
*
* The function is idempotent and it does nothing if the process isn't
* alive.
*
* @param immediately Requests an immediate operation.
*/
void abort(const bool immediately = false) {
if(alive()) {
current = state::aborted;
if(immediately) {
tick({});
}
}
}
/**
* @brief Returns true if a process is either running or paused.
* @return True if the process is still alive, false otherwise.
*/
[[nodiscard]] bool alive() const noexcept {
return current == state::running || current == state::paused;
}
/**
* @brief Returns true if a process is already terminated.
* @return True if the process is terminated, false otherwise.
*/
[[nodiscard]] bool finished() const noexcept {
return current == state::finished;
}
/**
* @brief Returns true if a process is currently paused.
* @return True if the process is paused, false otherwise.
*/
[[nodiscard]] bool paused() const noexcept {
return current == state::paused;
}
/**
* @brief Returns true if a process terminated with errors.
* @return True if the process terminated with errors, false otherwise.
*/
[[nodiscard]] bool rejected() const noexcept {
return current == state::rejected;
}
/**
* @brief Updates a process and its internal state if required.
* @param delta Elapsed time.
* @param data Optional data.
*/
void tick(const Delta delta, void *data = nullptr) {
switch(current) {
case state::uninitialized:
next(std::integral_constant<state, state::uninitialized>{});
current = state::running;
break;
case state::running:
next(std::integral_constant<state, state::running>{}, delta, data);
break;
default:
// suppress warnings
break;
}
// if it's dead, it must be notified and removed immediately
switch(current) {
case state::succeeded:
next(std::integral_constant<state, state::succeeded>{});
current = state::finished;
break;
case state::failed:
next(std::integral_constant<state, state::failed>{});
current = state::rejected;
break;
case state::aborted:
next(std::integral_constant<state, state::aborted>{});
current = state::rejected;
break;
default:
// suppress warnings
break;
}
}
private:
state current{state::uninitialized};
};
/**
* @brief Adaptor for lambdas and functors to turn them into processes.
*
* Lambdas and functors can't be used directly with a scheduler for they are not
* properly defined processes with managed life cycles.<br/>
* This class helps in filling the gap and turning lambdas and functors into
* full featured processes usable by a scheduler.
*
* The signature of the function call operator should be equivalent to the
* following:
*
* @code{.cpp}
* void(Delta delta, void *data, auto succeed, auto fail);
* @endcode
*
* Where:
*
* * `delta` is the elapsed time.
* * `data` is an opaque pointer to user data if any, `nullptr` otherwise.
* * `succeed` is a function to call when a process terminates with success.
* * `fail` is a function to call when a process terminates with errors.
*
* The signature of the function call operator of both `succeed` and `fail`
* is equivalent to the following:
*
* @code{.cpp}
* void();
* @endcode
*
* Usually users shouldn't worry about creating adaptors. A scheduler will
* create them internally each and avery time a lambda or a functor is used as
* a process.
*
* @sa process
* @sa scheduler
*
* @tparam Func Actual type of process.
* @tparam Delta Type to use to provide elapsed time.
*/
template<typename Func, typename Delta>
struct process_adaptor: process<process_adaptor<Func, Delta>, Delta>, private Func {
/**
* @brief Constructs a process adaptor from a lambda or a functor.
* @tparam Args Types of arguments to use to initialize the actual process.
* @param args Parameters to use to initialize the actual process.
*/
template<typename... Args>
process_adaptor(Args &&...args)
: Func{std::forward<Args>(args)...} {}
/**
* @brief Updates a process and its internal state if required.
* @param delta Elapsed time.
* @param data Optional data.
*/
void update(const Delta delta, void *data) {
Func::operator()(
delta,
data,
[this]() { this->succeed(); },
[this]() { this->fail(); });
}
};
} // namespace entt
#endif
// #include "process/scheduler.hpp"
#ifndef ENTT_PROCESS_SCHEDULER_HPP
#define ENTT_PROCESS_SCHEDULER_HPP
#include <algorithm>
#include <iterator>
#include <memory>
#include <type_traits>
#include <utility>
#include <vector>
// #include "process.hpp"
#ifndef ENTT_PROCESS_PROCESS_HPP
#define ENTT_PROCESS_PROCESS_HPP
#include <cstdint>
#include <type_traits>
#include <utility>
namespace entt {
/**
* @brief Base class for processes.
*
* This class stays true to the CRTP idiom. Derived classes must specify what's
* the intended type for elapsed times.<br/>
* A process should expose publicly the following member functions whether
* required:
*
* * @code{.cpp}
* void update(Delta, void *);
* @endcode
*
* It's invoked once per tick until a process is explicitly aborted or it
* terminates either with or without errors. Even though it's not mandatory to
* declare this member function, as a rule of thumb each process should at
* least define it to work properly. The `void *` parameter is an opaque
* pointer to user data (if any) forwarded directly to the process during an
* update.
*
* * @code{.cpp}
* void init();
* @endcode
*
* It's invoked when the process joins the running queue of a scheduler. This
* happens as soon as it's attached to the scheduler if the process is a top
* level one, otherwise when it replaces its parent if the process is a
* continuation.
*
* * @code{.cpp}
* void succeeded();
* @endcode
*
* It's invoked in case of success, immediately after an update and during the
* same tick.
*
* * @code{.cpp}
* void failed();
* @endcode
*
* It's invoked in case of errors, immediately after an update and during the
* same tick.
*
* * @code{.cpp}
* void aborted();
* @endcode
*
* It's invoked only if a process is explicitly aborted. There is no guarantee
* that it executes in the same tick, this depends solely on whether the
* process is aborted immediately or not.
*
* Derived classes can change the internal state of a process by invoking the
* `succeed` and `fail` protected member functions and even pause or unpause the
* process itself.
*
* @sa scheduler
*
* @tparam Derived Actual type of process that extends the class template.
* @tparam Delta Type to use to provide elapsed time.
*/
template<typename Derived, typename Delta>
class process {
enum class state : std::uint8_t {
uninitialized = 0,
running,
paused,
succeeded,
failed,
aborted,
finished,
rejected
};
template<typename Target = Derived>
auto next(std::integral_constant<state, state::uninitialized>)
-> decltype(std::declval<Target>().init(), void()) {
static_cast<Target *>(this)->init();
}
template<typename Target = Derived>
auto next(std::integral_constant<state, state::running>, Delta delta, void *data)
-> decltype(std::declval<Target>().update(delta, data), void()) {
static_cast<Target *>(this)->update(delta, data);
}
template<typename Target = Derived>
auto next(std::integral_constant<state, state::succeeded>)
-> decltype(std::declval<Target>().succeeded(), void()) {
static_cast<Target *>(this)->succeeded();
}
template<typename Target = Derived>
auto next(std::integral_constant<state, state::failed>)
-> decltype(std::declval<Target>().failed(), void()) {
static_cast<Target *>(this)->failed();
}
template<typename Target = Derived>
auto next(std::integral_constant<state, state::aborted>)
-> decltype(std::declval<Target>().aborted(), void()) {
static_cast<Target *>(this)->aborted();
}
void next(...) const noexcept {}
protected:
/**
* @brief Terminates a process with success if it's still alive.
*
* The function is idempotent and it does nothing if the process isn't
* alive.
*/
void succeed() noexcept {
if(alive()) {
current = state::succeeded;
}
}
/**
* @brief Terminates a process with errors if it's still alive.
*
* The function is idempotent and it does nothing if the process isn't
* alive.
*/
void fail() noexcept {
if(alive()) {
current = state::failed;
}
}
/**
* @brief Stops a process if it's in a running state.
*
* The function is idempotent and it does nothing if the process isn't
* running.
*/
void pause() noexcept {
if(current == state::running) {
current = state::paused;
}
}
/**
* @brief Restarts a process if it's paused.
*
* The function is idempotent and it does nothing if the process isn't
* paused.
*/
void unpause() noexcept {
if(current == state::paused) {
current = state::running;
}
}
public:
/*! @brief Type used to provide elapsed time. */
using delta_type = Delta;
/*! @brief Default destructor. */
virtual ~process() noexcept {
static_assert(std::is_base_of_v<process, Derived>, "Incorrect use of the class template");
}
/**
* @brief Aborts a process if it's still alive.
*
* The function is idempotent and it does nothing if the process isn't
* alive.
*
* @param immediately Requests an immediate operation.
*/
void abort(const bool immediately = false) {
if(alive()) {
current = state::aborted;
if(immediately) {
tick({});
}
}
}
/**
* @brief Returns true if a process is either running or paused.
* @return True if the process is still alive, false otherwise.
*/
[[nodiscard]] bool alive() const noexcept {
return current == state::running || current == state::paused;
}
/**
* @brief Returns true if a process is already terminated.
* @return True if the process is terminated, false otherwise.
*/
[[nodiscard]] bool finished() const noexcept {
return current == state::finished;
}
/**
* @brief Returns true if a process is currently paused.
* @return True if the process is paused, false otherwise.
*/
[[nodiscard]] bool paused() const noexcept {
return current == state::paused;
}
/**
* @brief Returns true if a process terminated with errors.
* @return True if the process terminated with errors, false otherwise.
*/
[[nodiscard]] bool rejected() const noexcept {
return current == state::rejected;
}
/**
* @brief Updates a process and its internal state if required.
* @param delta Elapsed time.
* @param data Optional data.
*/
void tick(const Delta delta, void *data = nullptr) {
switch(current) {
case state::uninitialized:
next(std::integral_constant<state, state::uninitialized>{});
current = state::running;
break;
case state::running:
next(std::integral_constant<state, state::running>{}, delta, data);
break;
default:
// suppress warnings
break;
}
// if it's dead, it must be notified and removed immediately
switch(current) {
case state::succeeded:
next(std::integral_constant<state, state::succeeded>{});
current = state::finished;
break;
case state::failed:
next(std::integral_constant<state, state::failed>{});
current = state::rejected;
break;
case state::aborted:
next(std::integral_constant<state, state::aborted>{});
current = state::rejected;
break;
default:
// suppress warnings
break;
}
}
private:
state current{state::uninitialized};
};
/**
* @brief Adaptor for lambdas and functors to turn them into processes.
*
* Lambdas and functors can't be used directly with a scheduler for they are not
* properly defined processes with managed life cycles.<br/>
* This class helps in filling the gap and turning lambdas and functors into
* full featured processes usable by a scheduler.
*
* The signature of the function call operator should be equivalent to the
* following:
*
* @code{.cpp}
* void(Delta delta, void *data, auto succeed, auto fail);
* @endcode
*
* Where:
*
* * `delta` is the elapsed time.
* * `data` is an opaque pointer to user data if any, `nullptr` otherwise.
* * `succeed` is a function to call when a process terminates with success.
* * `fail` is a function to call when a process terminates with errors.
*
* The signature of the function call operator of both `succeed` and `fail`
* is equivalent to the following:
*
* @code{.cpp}
* void();
* @endcode
*
* Usually users shouldn't worry about creating adaptors. A scheduler will
* create them internally each and avery time a lambda or a functor is used as
* a process.
*
* @sa process
* @sa scheduler
*
* @tparam Func Actual type of process.
* @tparam Delta Type to use to provide elapsed time.
*/
template<typename Func, typename Delta>
struct process_adaptor: process<process_adaptor<Func, Delta>, Delta>, private Func {
/**
* @brief Constructs a process adaptor from a lambda or a functor.
* @tparam Args Types of arguments to use to initialize the actual process.
* @param args Parameters to use to initialize the actual process.
*/
template<typename... Args>
process_adaptor(Args &&...args)
: Func{std::forward<Args>(args)...} {}
/**
* @brief Updates a process and its internal state if required.
* @param delta Elapsed time.
* @param data Optional data.
*/
void update(const Delta delta, void *data) {
Func::operator()(
delta,
data,
[this]() { this->succeed(); },
[this]() { this->fail(); });
}
};
} // namespace entt
#endif
namespace entt {
/**
* @brief Cooperative scheduler for processes.
*
* A cooperative scheduler runs processes and helps managing their life cycles.
*
* Each process is invoked once per tick. If a process terminates, it's
* removed automatically from the scheduler and it's never invoked again.<br/>
* A process can also have a child. In this case, the process is replaced with
* its child when it terminates if it returns with success. In case of errors,
* both the process and its child are discarded.
*
* Example of use (pseudocode):
*
* @code{.cpp}
* scheduler.attach([](auto delta, void *, auto succeed, auto fail) {
* // code
* }).then<my_process>(arguments...);
* @endcode
*
* In order to invoke all scheduled processes, call the `update` member function
* passing it the elapsed time to forward to the tasks.
*
* @sa process
*
* @tparam Delta Type to use to provide elapsed time.
*/
template<typename Delta>
class scheduler {
struct process_handler {
using instance_type = std::unique_ptr<void, void (*)(void *)>;
using update_fn_type = bool(scheduler &, std::size_t, Delta, void *);
using abort_fn_type = void(scheduler &, std::size_t, bool);
using next_type = std::unique_ptr<process_handler>;
instance_type instance;
update_fn_type *update;
abort_fn_type *abort;
next_type next;
};
struct continuation {
continuation(process_handler *ref) noexcept
: handler{ref} {}
template<typename Proc, typename... Args>
continuation then(Args &&...args) {
static_assert(std::is_base_of_v<process<Proc, Delta>, Proc>, "Invalid process type");
auto proc = typename process_handler::instance_type{new Proc{std::forward<Args>(args)...}, &scheduler::deleter<Proc>};
handler->next.reset(new process_handler{std::move(proc), &scheduler::update<Proc>, &scheduler::abort<Proc>, nullptr});
handler = handler->next.get();
return *this;
}
template<typename Func>
continuation then(Func &&func) {
return then<process_adaptor<std::decay_t<Func>, Delta>>(std::forward<Func>(func));
}
private:
process_handler *handler;
};
template<typename Proc>
[[nodiscard]] static bool update(scheduler &owner, std::size_t pos, const Delta delta, void *data) {
auto *process = static_cast<Proc *>(owner.handlers[pos].instance.get());
process->tick(delta, data);
if(process->rejected()) {
return true;
} else if(process->finished()) {
if(auto &&handler = owner.handlers[pos]; handler.next) {
handler = std::move(*handler.next);
// forces the process to exit the uninitialized state
return handler.update(owner, pos, {}, nullptr);
}
return true;
}
return false;
}
template<typename Proc>
static void abort(scheduler &owner, std::size_t pos, const bool immediately) {
static_cast<Proc *>(owner.handlers[pos].instance.get())->abort(immediately);
}
template<typename Proc>
static void deleter(void *proc) {
delete static_cast<Proc *>(proc);
}
public:
/*! @brief Unsigned integer type. */
using size_type = std::size_t;
/*! @brief Default constructor. */
scheduler()
: handlers{} {}
/*! @brief Default move constructor. */
scheduler(scheduler &&) = default;
/*! @brief Default move assignment operator. @return This scheduler. */
scheduler &operator=(scheduler &&) = default;
/**
* @brief Number of processes currently scheduled.
* @return Number of processes currently scheduled.
*/
[[nodiscard]] size_type size() const noexcept {
return handlers.size();
}
/**
* @brief Returns true if at least a process is currently scheduled.
* @return True if there are scheduled processes, false otherwise.
*/
[[nodiscard]] bool empty() const noexcept {
return handlers.empty();
}
/**
* @brief Discards all scheduled processes.
*
* Processes aren't aborted. They are discarded along with their children
* and never executed again.
*/
void clear() {
handlers.clear();
}
/**
* @brief Schedules a process for the next tick.
*
* Returned value is an opaque object that can be used to attach a child to
* the given process. The child is automatically scheduled when the process
* terminates and only if the process returns with success.
*
* Example of use (pseudocode):
*
* @code{.cpp}
* // schedules a task in the form of a process class
* scheduler.attach<my_process>(arguments...)
* // appends a child in the form of a lambda function
* .then([](auto delta, void *, auto succeed, auto fail) {
* // code
* })
* // appends a child in the form of another process class
* .then<my_other_process>();
* @endcode
*
* @tparam Proc Type of process to schedule.
* @tparam Args Types of arguments to use to initialize the process.
* @param args Parameters to use to initialize the process.
* @return An opaque object to use to concatenate processes.
*/
template<typename Proc, typename... Args>
auto attach(Args &&...args) {
static_assert(std::is_base_of_v<process<Proc, Delta>, Proc>, "Invalid process type");
auto proc = typename process_handler::instance_type{new Proc{std::forward<Args>(args)...}, &scheduler::deleter<Proc>};
auto &&ref = handlers.emplace_back(process_handler{std::move(proc), &scheduler::update<Proc>, &scheduler::abort<Proc>, nullptr});
// forces the process to exit the uninitialized state
ref.update(*this, handlers.size() - 1u, {}, nullptr);
return continuation{&handlers.back()};
}
/**
* @brief Schedules a process for the next tick.
*
* A process can be either a lambda or a functor. The scheduler wraps both
* of them in a process adaptor internally.<br/>
* The signature of the function call operator should be equivalent to the
* following:
*
* @code{.cpp}
* void(Delta delta, void *data, auto succeed, auto fail);
* @endcode
*
* Where:
*
* * `delta` is the elapsed time.
* * `data` is an opaque pointer to user data if any, `nullptr` otherwise.
* * `succeed` is a function to call when a process terminates with success.
* * `fail` is a function to call when a process terminates with errors.
*
* The signature of the function call operator of both `succeed` and `fail`
* is equivalent to the following:
*
* @code{.cpp}
* void();
* @endcode
*
* Returned value is an opaque object that can be used to attach a child to
* the given process. The child is automatically scheduled when the process
* terminates and only if the process returns with success.
*
* Example of use (pseudocode):
*
* @code{.cpp}
* // schedules a task in the form of a lambda function
* scheduler.attach([](auto delta, void *, auto succeed, auto fail) {
* // code
* })
* // appends a child in the form of another lambda function
* .then([](auto delta, void *, auto succeed, auto fail) {
* // code
* })
* // appends a child in the form of a process class
* .then<my_process>(arguments...);
* @endcode
*
* @sa process_adaptor
*
* @tparam Func Type of process to schedule.
* @param func Either a lambda or a functor to use as a process.
* @return An opaque object to use to concatenate processes.
*/
template<typename Func>
auto attach(Func &&func) {
using Proc = process_adaptor<std::decay_t<Func>, Delta>;
return attach<Proc>(std::forward<Func>(func));
}
/**
* @brief Updates all scheduled processes.
*
* All scheduled processes are executed in no specific order.<br/>
* If a process terminates with success, it's replaced with its child, if
* any. Otherwise, if a process terminates with an error, it's removed along
* with its child.
*
* @param delta Elapsed time.
* @param data Optional data.
*/
void update(const Delta delta, void *data = nullptr) {
for(auto pos = handlers.size(); pos; --pos) {
const auto curr = pos - 1u;
if(const auto dead = handlers[curr].update(*this, curr, delta, data); dead) {
std::swap(handlers[curr], handlers.back());
handlers.pop_back();
}
}
}
/**
* @brief Aborts all scheduled processes.
*
* Unless an immediate operation is requested, the abort is scheduled for
* the next tick. Processes won't be executed anymore in any case.<br/>
* Once a process is fully aborted and thus finished, it's discarded along
* with its child, if any.
*
* @param immediately Requests an immediate operation.
*/
void abort(const bool immediately = false) {
for(auto pos = handlers.size(); pos; --pos) {
const auto curr = pos - 1u;
handlers[curr].abort(*this, curr, immediately);
}
}
private:
std::vector<process_handler> handlers{};
};
} // namespace entt
#endif
// #include "resource/cache.hpp"
#ifndef ENTT_RESOURCE_RESOURCE_CACHE_HPP
#define ENTT_RESOURCE_RESOURCE_CACHE_HPP
#include <cstddef>
#include <functional>
#include <iterator>
#include <memory>
#include <tuple>
#include <type_traits>
#include <utility>
// #include "../container/dense_map.hpp"
#ifndef ENTT_CONTAINER_DENSE_MAP_HPP
#define ENTT_CONTAINER_DENSE_MAP_HPP
#include <cmath>
#include <cstddef>
#include <functional>
#include <iterator>
#include <limits>
#include <memory>
#include <tuple>
#include <type_traits>
#include <utility>
#include <vector>
// #include "../config/config.h"
#ifndef ENTT_CONFIG_CONFIG_H
#define ENTT_CONFIG_CONFIG_H
// #include "version.h"
#ifndef ENTT_CONFIG_VERSION_H
#define ENTT_CONFIG_VERSION_H
// #include "macro.h"
#ifndef ENTT_CONFIG_MACRO_H
#define ENTT_CONFIG_MACRO_H
#define ENTT_STR(arg) #arg
#define ENTT_XSTR(arg) ENTT_STR(arg)
#endif
#define ENTT_VERSION_MAJOR 3
#define ENTT_VERSION_MINOR 11
#define ENTT_VERSION_PATCH 1
#define ENTT_VERSION \
ENTT_XSTR(ENTT_VERSION_MAJOR) \
"." ENTT_XSTR(ENTT_VERSION_MINOR) "." ENTT_XSTR(ENTT_VERSION_PATCH)
#endif
#if defined(__cpp_exceptions) && !defined(ENTT_NOEXCEPTION)
# define ENTT_CONSTEXPR
# define ENTT_THROW throw
# define ENTT_TRY try
# define ENTT_CATCH catch(...)
#else
# define ENTT_CONSTEXPR constexpr // use only with throwing functions (waiting for C++20)
# define ENTT_THROW
# define ENTT_TRY if(true)
# define ENTT_CATCH if(false)
#endif
#ifdef ENTT_USE_ATOMIC
# include <atomic>
# define ENTT_MAYBE_ATOMIC(Type) std::atomic<Type>
#else
# define ENTT_MAYBE_ATOMIC(Type) Type
#endif
#ifndef ENTT_ID_TYPE
# include <cstdint>
# define ENTT_ID_TYPE std::uint32_t
#endif
#ifndef ENTT_SPARSE_PAGE
# define ENTT_SPARSE_PAGE 4096
#endif
#ifndef ENTT_PACKED_PAGE
# define ENTT_PACKED_PAGE 1024
#endif
#ifdef ENTT_DISABLE_ASSERT
# undef ENTT_ASSERT
# define ENTT_ASSERT(condition, msg) (void(0))
#elif !defined ENTT_ASSERT
# include <cassert>
# define ENTT_ASSERT(condition, msg) assert(condition)
#endif
#ifdef ENTT_DISABLE_ASSERT
# undef ENTT_ASSERT_CONSTEXPR
# define ENTT_ASSERT_CONSTEXPR(condition, msg) (void(0))
#elif !defined ENTT_ASSERT_CONSTEXPR
# define ENTT_ASSERT_CONSTEXPR(condition, msg) ENTT_ASSERT(condition, msg)
#endif
#ifdef ENTT_NO_ETO
# define ENTT_ETO_TYPE(Type) void
#else
# define ENTT_ETO_TYPE(Type) Type
#endif
#ifdef ENTT_STANDARD_CPP
# define ENTT_NONSTD false
#else
# define ENTT_NONSTD true
# if defined __clang__ || defined __GNUC__
# define ENTT_PRETTY_FUNCTION __PRETTY_FUNCTION__
# define ENTT_PRETTY_FUNCTION_PREFIX '='
# define ENTT_PRETTY_FUNCTION_SUFFIX ']'
# elif defined _MSC_VER
# define ENTT_PRETTY_FUNCTION __FUNCSIG__
# define ENTT_PRETTY_FUNCTION_PREFIX '<'
# define ENTT_PRETTY_FUNCTION_SUFFIX '>'
# endif
#endif
#if defined _MSC_VER
# pragma detect_mismatch("entt.version", ENTT_VERSION)
# pragma detect_mismatch("entt.noexcept", ENTT_XSTR(ENTT_TRY))
# pragma detect_mismatch("entt.id", ENTT_XSTR(ENTT_ID_TYPE))
# pragma detect_mismatch("entt.nonstd", ENTT_XSTR(ENTT_NONSTD))
#endif
#endif
// #include "../core/compressed_pair.hpp"
#ifndef ENTT_CORE_COMPRESSED_PAIR_HPP
#define ENTT_CORE_COMPRESSED_PAIR_HPP
#include <cstddef>
#include <tuple>
#include <type_traits>
#include <utility>
// #include "type_traits.hpp"
#ifndef ENTT_CORE_TYPE_TRAITS_HPP
#define ENTT_CORE_TYPE_TRAITS_HPP
#include <cstddef>
#include <iterator>
#include <type_traits>
#include <utility>
// #include "../config/config.h"
#ifndef ENTT_CONFIG_CONFIG_H
#define ENTT_CONFIG_CONFIG_H
// #include "version.h"
#ifndef ENTT_CONFIG_VERSION_H
#define ENTT_CONFIG_VERSION_H
// #include "macro.h"
#ifndef ENTT_CONFIG_MACRO_H
#define ENTT_CONFIG_MACRO_H
#define ENTT_STR(arg) #arg
#define ENTT_XSTR(arg) ENTT_STR(arg)
#endif
#define ENTT_VERSION_MAJOR 3
#define ENTT_VERSION_MINOR 11
#define ENTT_VERSION_PATCH 1
#define ENTT_VERSION \
ENTT_XSTR(ENTT_VERSION_MAJOR) \
"." ENTT_XSTR(ENTT_VERSION_MINOR) "." ENTT_XSTR(ENTT_VERSION_PATCH)
#endif
#if defined(__cpp_exceptions) && !defined(ENTT_NOEXCEPTION)
# define ENTT_CONSTEXPR
# define ENTT_THROW throw
# define ENTT_TRY try
# define ENTT_CATCH catch(...)
#else
# define ENTT_CONSTEXPR constexpr // use only with throwing functions (waiting for C++20)
# define ENTT_THROW
# define ENTT_TRY if(true)
# define ENTT_CATCH if(false)
#endif
#ifdef ENTT_USE_ATOMIC
# include <atomic>
# define ENTT_MAYBE_ATOMIC(Type) std::atomic<Type>
#else
# define ENTT_MAYBE_ATOMIC(Type) Type
#endif
#ifndef ENTT_ID_TYPE
# include <cstdint>
# define ENTT_ID_TYPE std::uint32_t
#endif
#ifndef ENTT_SPARSE_PAGE
# define ENTT_SPARSE_PAGE 4096
#endif
#ifndef ENTT_PACKED_PAGE
# define ENTT_PACKED_PAGE 1024
#endif
#ifdef ENTT_DISABLE_ASSERT
# undef ENTT_ASSERT
# define ENTT_ASSERT(condition, msg) (void(0))
#elif !defined ENTT_ASSERT
# include <cassert>
# define ENTT_ASSERT(condition, msg) assert(condition)
#endif
#ifdef ENTT_DISABLE_ASSERT
# undef ENTT_ASSERT_CONSTEXPR
# define ENTT_ASSERT_CONSTEXPR(condition, msg) (void(0))
#elif !defined ENTT_ASSERT_CONSTEXPR
# define ENTT_ASSERT_CONSTEXPR(condition, msg) ENTT_ASSERT(condition, msg)
#endif
#ifdef ENTT_NO_ETO
# define ENTT_ETO_TYPE(Type) void
#else
# define ENTT_ETO_TYPE(Type) Type
#endif
#ifdef ENTT_STANDARD_CPP
# define ENTT_NONSTD false
#else
# define ENTT_NONSTD true
# if defined __clang__ || defined __GNUC__
# define ENTT_PRETTY_FUNCTION __PRETTY_FUNCTION__
# define ENTT_PRETTY_FUNCTION_PREFIX '='
# define ENTT_PRETTY_FUNCTION_SUFFIX ']'
# elif defined _MSC_VER
# define ENTT_PRETTY_FUNCTION __FUNCSIG__
# define ENTT_PRETTY_FUNCTION_PREFIX '<'
# define ENTT_PRETTY_FUNCTION_SUFFIX '>'
# endif
#endif
#if defined _MSC_VER
# pragma detect_mismatch("entt.version", ENTT_VERSION)
# pragma detect_mismatch("entt.noexcept", ENTT_XSTR(ENTT_TRY))
# pragma detect_mismatch("entt.id", ENTT_XSTR(ENTT_ID_TYPE))
# pragma detect_mismatch("entt.nonstd", ENTT_XSTR(ENTT_NONSTD))
#endif
#endif
// #include "fwd.hpp"
#ifndef ENTT_CORE_FWD_HPP
#define ENTT_CORE_FWD_HPP
#include <cstddef>
// #include "../config/config.h"
namespace entt {
template<std::size_t Len = sizeof(double[2]), std::size_t = alignof(double[2])>
class basic_any;
/*! @brief Alias declaration for type identifiers. */
using id_type = ENTT_ID_TYPE;
/*! @brief Alias declaration for the most common use case. */
using any = basic_any<>;
} // namespace entt
#endif
namespace entt {
/**
* @brief Utility class to disambiguate overloaded functions.
* @tparam N Number of choices available.
*/
template<std::size_t N>
struct choice_t
// Unfortunately, doxygen cannot parse such a construct.
: /*! @cond TURN_OFF_DOXYGEN */ choice_t<N - 1> /*! @endcond */
{};
/*! @copybrief choice_t */
template<>
struct choice_t<0> {};
/**
* @brief Variable template for the choice trick.
* @tparam N Number of choices available.
*/
template<std::size_t N>
inline constexpr choice_t<N> choice{};
/**
* @brief Identity type trait.
*
* Useful to establish non-deduced contexts in template argument deduction
* (waiting for C++20) or to provide types through function arguments.
*
* @tparam Type A type.
*/
template<typename Type>
struct type_identity {
/*! @brief Identity type. */
using type = Type;
};
/**
* @brief Helper type.
* @tparam Type A type.
*/
template<typename Type>
using type_identity_t = typename type_identity<Type>::type;
/**
* @brief A type-only `sizeof` wrapper that returns 0 where `sizeof` complains.
* @tparam Type The type of which to return the size.
* @tparam The size of the type if `sizeof` accepts it, 0 otherwise.
*/
template<typename Type, typename = void>
struct size_of: std::integral_constant<std::size_t, 0u> {};
/*! @copydoc size_of */
template<typename Type>
struct size_of<Type, std::void_t<decltype(sizeof(Type))>>
: std::integral_constant<std::size_t, sizeof(Type)> {};
/**
* @brief Helper variable template.
* @tparam Type The type of which to return the size.
*/
template<typename Type>
inline constexpr std::size_t size_of_v = size_of<Type>::value;
/**
* @brief Using declaration to be used to _repeat_ the same type a number of
* times equal to the size of a given parameter pack.
* @tparam Type A type to repeat.
*/
template<typename Type, typename>
using unpack_as_type = Type;
/**
* @brief Helper variable template to be used to _repeat_ the same value a
* number of times equal to the size of a given parameter pack.
* @tparam Value A value to repeat.
*/
template<auto Value, typename>
inline constexpr auto unpack_as_value = Value;
/**
* @brief Wraps a static constant.
* @tparam Value A static constant.
*/
template<auto Value>
using integral_constant = std::integral_constant<decltype(Value), Value>;
/**
* @brief Alias template to facilitate the creation of named values.
* @tparam Value A constant value at least convertible to `id_type`.
*/
template<id_type Value>
using tag = integral_constant<Value>;
/**
* @brief A class to use to push around lists of types, nothing more.
* @tparam Type Types provided by the type list.
*/
template<typename... Type>
struct type_list {
/*! @brief Type list type. */
using type = type_list;
/*! @brief Compile-time number of elements in the type list. */
static constexpr auto size = sizeof...(Type);
};
/*! @brief Primary template isn't defined on purpose. */
template<std::size_t, typename>
struct type_list_element;
/**
* @brief Provides compile-time indexed access to the types of a type list.
* @tparam Index Index of the type to return.
* @tparam First First type provided by the type list.
* @tparam Other Other types provided by the type list.
*/
template<std::size_t Index, typename First, typename... Other>
struct type_list_element<Index, type_list<First, Other...>>
: type_list_element<Index - 1u, type_list<Other...>> {};
/**
* @brief Provides compile-time indexed access to the types of a type list.
* @tparam First First type provided by the type list.
* @tparam Other Other types provided by the type list.
*/
template<typename First, typename... Other>
struct type_list_element<0u, type_list<First, Other...>> {
/*! @brief Searched type. */
using type = First;
};
/**
* @brief Helper type.
* @tparam Index Index of the type to return.
* @tparam List Type list to search into.
*/
template<std::size_t Index, typename List>
using type_list_element_t = typename type_list_element<Index, List>::type;
/*! @brief Primary template isn't defined on purpose. */
template<typename, typename>
struct type_list_index;
/**
* @brief Provides compile-time type access to the types of a type list.
* @tparam Type Type to look for and for which to return the index.
* @tparam First First type provided by the type list.
* @tparam Other Other types provided by the type list.
*/
template<typename Type, typename First, typename... Other>
struct type_list_index<Type, type_list<First, Other...>> {
/*! @brief Unsigned integer type. */
using value_type = std::size_t;
/*! @brief Compile-time position of the given type in the sublist. */
static constexpr value_type value = 1u + type_list_index<Type, type_list<Other...>>::value;
};
/**
* @brief Provides compile-time type access to the types of a type list.
* @tparam Type Type to look for and for which to return the index.
* @tparam Other Other types provided by the type list.
*/
template<typename Type, typename... Other>
struct type_list_index<Type, type_list<Type, Other...>> {
static_assert(type_list_index<Type, type_list<Other...>>::value == sizeof...(Other), "Non-unique type");
/*! @brief Unsigned integer type. */
using value_type = std::size_t;
/*! @brief Compile-time position of the given type in the sublist. */
static constexpr value_type value = 0u;
};
/**
* @brief Provides compile-time type access to the types of a type list.
* @tparam Type Type to look for and for which to return the index.
*/
template<typename Type>
struct type_list_index<Type, type_list<>> {
/*! @brief Unsigned integer type. */
using value_type = std::size_t;
/*! @brief Compile-time position of the given type in the sublist. */
static constexpr value_type value = 0u;
};
/**
* @brief Helper variable template.
* @tparam List Type list.
* @tparam Type Type to look for and for which to return the index.
*/
template<typename Type, typename List>
inline constexpr std::size_t type_list_index_v = type_list_index<Type, List>::value;
/**
* @brief Concatenates multiple type lists.
* @tparam Type Types provided by the first type list.
* @tparam Other Types provided by the second type list.
* @return A type list composed by the types of both the type lists.
*/
template<typename... Type, typename... Other>
constexpr type_list<Type..., Other...> operator+(type_list<Type...>, type_list<Other...>) {
return {};
}
/*! @brief Primary template isn't defined on purpose. */
template<typename...>
struct type_list_cat;
/*! @brief Concatenates multiple type lists. */
template<>
struct type_list_cat<> {
/*! @brief A type list composed by the types of all the type lists. */
using type = type_list<>;
};
/**
* @brief Concatenates multiple type lists.
* @tparam Type Types provided by the first type list.
* @tparam Other Types provided by the second type list.
* @tparam List Other type lists, if any.
*/
template<typename... Type, typename... Other, typename... List>
struct type_list_cat<type_list<Type...>, type_list<Other...>, List...> {
/*! @brief A type list composed by the types of all the type lists. */
using type = typename type_list_cat<type_list<Type..., Other...>, List...>::type;
};
/**
* @brief Concatenates multiple type lists.
* @tparam Type Types provided by the type list.
*/
template<typename... Type>
struct type_list_cat<type_list<Type...>> {
/*! @brief A type list composed by the types of all the type lists. */
using type = type_list<Type...>;
};
/**
* @brief Helper type.
* @tparam List Type lists to concatenate.
*/
template<typename... List>
using type_list_cat_t = typename type_list_cat<List...>::type;
/*! @brief Primary template isn't defined on purpose. */
template<typename>
struct type_list_unique;
/**
* @brief Removes duplicates types from a type list.
* @tparam Type One of the types provided by the given type list.
* @tparam Other The other types provided by the given type list.
*/
template<typename Type, typename... Other>
struct type_list_unique<type_list<Type, Other...>> {
/*! @brief A type list without duplicate types. */
using type = std::conditional_t<
(std::is_same_v<Type, Other> || ...),
typename type_list_unique<type_list<Other...>>::type,
type_list_cat_t<type_list<Type>, typename type_list_unique<type_list<Other...>>::type>>;
};
/*! @brief Removes duplicates types from a type list. */
template<>
struct type_list_unique<type_list<>> {
/*! @brief A type list without duplicate types. */
using type = type_list<>;
};
/**
* @brief Helper type.
* @tparam Type A type list.
*/
template<typename Type>
using type_list_unique_t = typename type_list_unique<Type>::type;
/**
* @brief Provides the member constant `value` to true if a type list contains a
* given type, false otherwise.
* @tparam List Type list.
* @tparam Type Type to look for.
*/
template<typename List, typename Type>
struct type_list_contains;
/**
* @copybrief type_list_contains
* @tparam Type Types provided by the type list.
* @tparam Other Type to look for.
*/
template<typename... Type, typename Other>
struct type_list_contains<type_list<Type...>, Other>: std::disjunction<std::is_same<Type, Other>...> {};
/**
* @brief Helper variable template.
* @tparam List Type list.
* @tparam Type Type to look for.
*/
template<typename List, typename Type>
inline constexpr bool type_list_contains_v = type_list_contains<List, Type>::value;
/*! @brief Primary template isn't defined on purpose. */
template<typename...>
struct type_list_diff;
/**
* @brief Computes the difference between two type lists.
* @tparam Type Types provided by the first type list.
* @tparam Other Types provided by the second type list.
*/
template<typename... Type, typename... Other>
struct type_list_diff<type_list<Type...>, type_list<Other...>> {
/*! @brief A type list that is the difference between the two type lists. */
using type = type_list_cat_t<std::conditional_t<type_list_contains_v<type_list<Other...>, Type>, type_list<>, type_list<Type>>...>;
};
/**
* @brief Helper type.
* @tparam List Type lists between which to compute the difference.
*/
template<typename... List>
using type_list_diff_t = typename type_list_diff<List...>::type;
/*! @brief Primary template isn't defined on purpose. */
template<typename, template<typename...> class>
struct type_list_transform;
/**
* @brief Applies a given _function_ to a type list and generate a new list.
* @tparam Type Types provided by the type list.
* @tparam Op Unary operation as template class with a type member named `type`.
*/
template<typename... Type, template<typename...> class Op>
struct type_list_transform<type_list<Type...>, Op> {
/*! @brief Resulting type list after applying the transform function. */
using type = type_list<typename Op<Type>::type...>;
};
/**
* @brief Helper type.
* @tparam List Type list.
* @tparam Op Unary operation as template class with a type member named `type`.
*/
template<typename List, template<typename...> class Op>
using type_list_transform_t = typename type_list_transform<List, Op>::type;
/**
* @brief A class to use to push around lists of constant values, nothing more.
* @tparam Value Values provided by the value list.
*/
template<auto... Value>
struct value_list {
/*! @brief Value list type. */
using type = value_list;
/*! @brief Compile-time number of elements in the value list. */
static constexpr auto size = sizeof...(Value);
};
/*! @brief Primary template isn't defined on purpose. */
template<std::size_t, typename>
struct value_list_element;
/**
* @brief Provides compile-time indexed access to the values of a value list.
* @tparam Index Index of the value to return.
* @tparam Value First value provided by the value list.
* @tparam Other Other values provided by the value list.
*/
template<std::size_t Index, auto Value, auto... Other>
struct value_list_element<Index, value_list<Value, Other...>>
: value_list_element<Index - 1u, value_list<Other...>> {};
/**
* @brief Provides compile-time indexed access to the types of a type list.
* @tparam Value First value provided by the value list.
* @tparam Other Other values provided by the value list.
*/
template<auto Value, auto... Other>
struct value_list_element<0u, value_list<Value, Other...>> {
/*! @brief Searched value. */
static constexpr auto value = Value;
};
/**
* @brief Helper type.
* @tparam Index Index of the value to return.
* @tparam List Value list to search into.
*/
template<std::size_t Index, typename List>
inline constexpr auto value_list_element_v = value_list_element<Index, List>::value;
/**
* @brief Concatenates multiple value lists.
* @tparam Value Values provided by the first value list.
* @tparam Other Values provided by the second value list.
* @return A value list composed by the values of both the value lists.
*/
template<auto... Value, auto... Other>
constexpr value_list<Value..., Other...> operator+(value_list<Value...>, value_list<Other...>) {
return {};
}
/*! @brief Primary template isn't defined on purpose. */
template<typename...>
struct value_list_cat;
/*! @brief Concatenates multiple value lists. */
template<>
struct value_list_cat<> {
/*! @brief A value list composed by the values of all the value lists. */
using type = value_list<>;
};
/**
* @brief Concatenates multiple value lists.
* @tparam Value Values provided by the first value list.
* @tparam Other Values provided by the second value list.
* @tparam List Other value lists, if any.
*/
template<auto... Value, auto... Other, typename... List>
struct value_list_cat<value_list<Value...>, value_list<Other...>, List...> {
/*! @brief A value list composed by the values of all the value lists. */
using type = typename value_list_cat<value_list<Value..., Other...>, List...>::type;
};
/**
* @brief Concatenates multiple value lists.
* @tparam Value Values provided by the value list.
*/
template<auto... Value>
struct value_list_cat<value_list<Value...>> {
/*! @brief A value list composed by the values of all the value lists. */
using type = value_list<Value...>;
};
/**
* @brief Helper type.
* @tparam List Value lists to concatenate.
*/
template<typename... List>
using value_list_cat_t = typename value_list_cat<List...>::type;
/*! @brief Same as std::is_invocable, but with tuples. */
template<typename, typename>
struct is_applicable: std::false_type {};
/**
* @copybrief is_applicable
* @tparam Func A valid function type.
* @tparam Tuple Tuple-like type.
* @tparam Args The list of arguments to use to probe the function type.
*/
template<typename Func, template<typename...> class Tuple, typename... Args>
struct is_applicable<Func, Tuple<Args...>>: std::is_invocable<Func, Args...> {};
/**
* @copybrief is_applicable
* @tparam Func A valid function type.
* @tparam Tuple Tuple-like type.
* @tparam Args The list of arguments to use to probe the function type.
*/
template<typename Func, template<typename...> class Tuple, typename... Args>
struct is_applicable<Func, const Tuple<Args...>>: std::is_invocable<Func, Args...> {};
/**
* @brief Helper variable template.
* @tparam Func A valid function type.
* @tparam Args The list of arguments to use to probe the function type.
*/
template<typename Func, typename Args>
inline constexpr bool is_applicable_v = is_applicable<Func, Args>::value;
/*! @brief Same as std::is_invocable_r, but with tuples for arguments. */
template<typename, typename, typename>
struct is_applicable_r: std::false_type {};
/**
* @copybrief is_applicable_r
* @tparam Ret The type to which the return type of the function should be
* convertible.
* @tparam Func A valid function type.
* @tparam Args The list of arguments to use to probe the function type.
*/
template<typename Ret, typename Func, typename... Args>
struct is_applicable_r<Ret, Func, std::tuple<Args...>>: std::is_invocable_r<Ret, Func, Args...> {};
/**
* @brief Helper variable template.
* @tparam Ret The type to which the return type of the function should be
* convertible.
* @tparam Func A valid function type.
* @tparam Args The list of arguments to use to probe the function type.
*/
template<typename Ret, typename Func, typename Args>
inline constexpr bool is_applicable_r_v = is_applicable_r<Ret, Func, Args>::value;
/**
* @brief Provides the member constant `value` to true if a given type is
* complete, false otherwise.
* @tparam Type The type to test.
*/
template<typename Type, typename = void>
struct is_complete: std::false_type {};
/*! @copydoc is_complete */
template<typename Type>
struct is_complete<Type, std::void_t<decltype(sizeof(Type))>>: std::true_type {};
/**
* @brief Helper variable template.
* @tparam Type The type to test.
*/
template<typename Type>
inline constexpr bool is_complete_v = is_complete<Type>::value;
/**
* @brief Provides the member constant `value` to true if a given type is an
* iterator, false otherwise.
* @tparam Type The type to test.
*/
template<typename Type, typename = void>
struct is_iterator: std::false_type {};
/**
* @cond TURN_OFF_DOXYGEN
* Internal details not to be documented.
*/
namespace internal {
template<typename, typename = void>
struct has_iterator_category: std::false_type {};
template<typename Type>
struct has_iterator_category<Type, std::void_t<typename std::iterator_traits<Type>::iterator_category>>: std::true_type {};
} // namespace internal
/**
* Internal details not to be documented.
* @endcond
*/
/*! @copydoc is_iterator */
template<typename Type>
struct is_iterator<Type, std::enable_if_t<!std::is_same_v<std::remove_cv_t<std::remove_pointer_t<Type>>, void>>>
: internal::has_iterator_category<Type> {};
/**
* @brief Helper variable template.
* @tparam Type The type to test.
*/
template<typename Type>
inline constexpr bool is_iterator_v = is_iterator<Type>::value;
/**
* @brief Provides the member constant `value` to true if a given type is both
* an empty and non-final class, false otherwise.
* @tparam Type The type to test
*/
template<typename Type>
struct is_ebco_eligible
: std::conjunction<std::is_empty<Type>, std::negation<std::is_final<Type>>> {};
/**
* @brief Helper variable template.
* @tparam Type The type to test.
*/
template<typename Type>
inline constexpr bool is_ebco_eligible_v = is_ebco_eligible<Type>::value;
/**
* @brief Provides the member constant `value` to true if `Type::is_transparent`
* is valid and denotes a type, false otherwise.
* @tparam Type The type to test.
*/
template<typename Type, typename = void>
struct is_transparent: std::false_type {};
/*! @copydoc is_transparent */
template<typename Type>
struct is_transparent<Type, std::void_t<typename Type::is_transparent>>: std::true_type {};
/**
* @brief Helper variable template.
* @tparam Type The type to test.
*/
template<typename Type>
inline constexpr bool is_transparent_v = is_transparent<Type>::value;
/**
* @brief Provides the member constant `value` to true if a given type is
* equality comparable, false otherwise.
* @tparam Type The type to test.
*/
template<typename Type, typename = void>
struct is_equality_comparable: std::false_type {};
/**
* @cond TURN_OFF_DOXYGEN
* Internal details not to be documented.
*/
namespace internal {
template<typename, typename = void>
struct has_tuple_size_value: std::false_type {};
template<typename Type>
struct has_tuple_size_value<Type, std::void_t<decltype(std::tuple_size<const Type>::value)>>: std::true_type {};
template<typename Type, std::size_t... Index>
[[nodiscard]] constexpr bool unpack_maybe_equality_comparable(std::index_sequence<Index...>) {
return (is_equality_comparable<std::tuple_element_t<Index, Type>>::value && ...);
}
template<typename>
[[nodiscard]] constexpr bool maybe_equality_comparable(choice_t<0>) {
return true;
}
template<typename Type>
[[nodiscard]] constexpr auto maybe_equality_comparable(choice_t<1>) -> decltype(std::declval<typename Type::value_type>(), bool{}) {
if constexpr(is_iterator_v<Type>) {
return true;
} else if constexpr(std::is_same_v<typename Type::value_type, Type>) {
return maybe_equality_comparable<Type>(choice<0>);
} else {
return is_equality_comparable<typename Type::value_type>::value;
}
}
template<typename Type>
[[nodiscard]] constexpr std::enable_if_t<is_complete_v<std::tuple_size<std::remove_cv_t<Type>>>, bool> maybe_equality_comparable(choice_t<2>) {
if constexpr(has_tuple_size_value<Type>::value) {
return unpack_maybe_equality_comparable<Type>(std::make_index_sequence<std::tuple_size<Type>::value>{});
} else {
return maybe_equality_comparable<Type>(choice<1>);
}
}
} // namespace internal
/**
* Internal details not to be documented.
* @endcond
*/
/*! @copydoc is_equality_comparable */
template<typename Type>
struct is_equality_comparable<Type, std::void_t<decltype(std::declval<Type>() == std::declval<Type>())>>
: std::bool_constant<internal::maybe_equality_comparable<Type>(choice<2>)> {};
/**
* @brief Helper variable template.
* @tparam Type The type to test.
*/
template<typename Type>
inline constexpr bool is_equality_comparable_v = is_equality_comparable<Type>::value;
/**
* @brief Transcribes the constness of a type to another type.
* @tparam To The type to which to transcribe the constness.
* @tparam From The type from which to transcribe the constness.
*/
template<typename To, typename From>
struct constness_as {
/*! @brief The type resulting from the transcription of the constness. */
using type = std::remove_const_t<To>;
};
/*! @copydoc constness_as */
template<typename To, typename From>
struct constness_as<To, const From> {
/*! @brief The type resulting from the transcription of the constness. */
using type = const To;
};
/**
* @brief Alias template to facilitate the transcription of the constness.
* @tparam To The type to which to transcribe the constness.
* @tparam From The type from which to transcribe the constness.
*/
template<typename To, typename From>
using constness_as_t = typename constness_as<To, From>::type;
/**
* @brief Extracts the class of a non-static member object or function.
* @tparam Member A pointer to a non-static member object or function.
*/
template<typename Member>
class member_class {
static_assert(std::is_member_pointer_v<Member>, "Invalid pointer type to non-static member object or function");
template<typename Class, typename Ret, typename... Args>
static Class *clazz(Ret (Class::*)(Args...));
template<typename Class, typename Ret, typename... Args>
static Class *clazz(Ret (Class::*)(Args...) const);
template<typename Class, typename Type>
static Class *clazz(Type Class::*);
public:
/*! @brief The class of the given non-static member object or function. */
using type = std::remove_pointer_t<decltype(clazz(std::declval<Member>()))>;
};
/**
* @brief Helper type.
* @tparam Member A pointer to a non-static member object or function.
*/
template<typename Member>
using member_class_t = typename member_class<Member>::type;
/**
* @brief Extracts the n-th argument of a given function or member function.
* @tparam Index The index of the argument to extract.
* @tparam Candidate A valid function, member function or data member.
*/
template<std::size_t Index, auto Candidate>
class nth_argument {
template<typename Ret, typename... Args>
static constexpr type_list<Args...> pick_up(Ret (*)(Args...));
template<typename Ret, typename Class, typename... Args>
static constexpr type_list<Args...> pick_up(Ret (Class ::*)(Args...));
template<typename Ret, typename Class, typename... Args>
static constexpr type_list<Args...> pick_up(Ret (Class ::*)(Args...) const);
template<typename Type, typename Class>
static constexpr type_list<Type> pick_up(Type Class ::*);
public:
/*! @brief N-th argument of the given function or member function. */
using type = type_list_element_t<Index, decltype(pick_up(Candidate))>;
};
/**
* @brief Helper type.
* @tparam Index The index of the argument to extract.
* @tparam Candidate A valid function, member function or data member.
*/
template<std::size_t Index, auto Candidate>
using nth_argument_t = typename nth_argument<Index, Candidate>::type;
} // namespace entt
#endif
namespace entt {
/**
* @cond TURN_OFF_DOXYGEN
* Internal details not to be documented.
*/
namespace internal {
template<typename Type, std::size_t, typename = void>
struct compressed_pair_element {
using reference = Type &;
using const_reference = const Type &;
template<bool Dummy = true, typename = std::enable_if_t<Dummy && std::is_default_constructible_v<Type>>>
constexpr compressed_pair_element() noexcept(std::is_nothrow_default_constructible_v<Type>)
: value{} {}
template<typename Arg, typename = std::enable_if_t<!std::is_same_v<std::remove_cv_t<std::remove_reference_t<Arg>>, compressed_pair_element>>>
constexpr compressed_pair_element(Arg &&arg) noexcept(std::is_nothrow_constructible_v<Type, Arg>)
: value{std::forward<Arg>(arg)} {}
template<typename... Args, std::size_t... Index>
constexpr compressed_pair_element(std::tuple<Args...> args, std::index_sequence<Index...>) noexcept(std::is_nothrow_constructible_v<Type, Args...>)
: value{std::forward<Args>(std::get<Index>(args))...} {}
[[nodiscard]] constexpr reference get() noexcept {
return value;
}
[[nodiscard]] constexpr const_reference get() const noexcept {
return value;
}
private:
Type value;
};
template<typename Type, std::size_t Tag>
struct compressed_pair_element<Type, Tag, std::enable_if_t<is_ebco_eligible_v<Type>>>: Type {
using reference = Type &;
using const_reference = const Type &;
using base_type = Type;
template<bool Dummy = true, typename = std::enable_if_t<Dummy && std::is_default_constructible_v<base_type>>>
constexpr compressed_pair_element() noexcept(std::is_nothrow_default_constructible_v<base_type>)
: base_type{} {}
template<typename Arg, typename = std::enable_if_t<!std::is_same_v<std::remove_cv_t<std::remove_reference_t<Arg>>, compressed_pair_element>>>
constexpr compressed_pair_element(Arg &&arg) noexcept(std::is_nothrow_constructible_v<base_type, Arg>)
: base_type{std::forward<Arg>(arg)} {}
template<typename... Args, std::size_t... Index>
constexpr compressed_pair_element(std::tuple<Args...> args, std::index_sequence<Index...>) noexcept(std::is_nothrow_constructible_v<base_type, Args...>)
: base_type{std::forward<Args>(std::get<Index>(args))...} {}
[[nodiscard]] constexpr reference get() noexcept {
return *this;
}
[[nodiscard]] constexpr const_reference get() const noexcept {
return *this;
}
};
} // namespace internal
/**
* Internal details not to be documented.
* @endcond
*/
/**
* @brief A compressed pair.
*
* A pair that exploits the _Empty Base Class Optimization_ (or _EBCO_) to
* reduce its final size to a minimum.
*
* @tparam First The type of the first element that the pair stores.
* @tparam Second The type of the second element that the pair stores.
*/
template<typename First, typename Second>
class compressed_pair final
: internal::compressed_pair_element<First, 0u>,
internal::compressed_pair_element<Second, 1u> {
using first_base = internal::compressed_pair_element<First, 0u>;
using second_base = internal::compressed_pair_element<Second, 1u>;
public:
/*! @brief The type of the first element that the pair stores. */
using first_type = First;
/*! @brief The type of the second element that the pair stores. */
using second_type = Second;
/**
* @brief Default constructor, conditionally enabled.
*
* This constructor is only available when the types that the pair stores
* are both at least default constructible.
*
* @tparam Dummy Dummy template parameter used for internal purposes.
*/
template<bool Dummy = true, typename = std::enable_if_t<Dummy && std::is_default_constructible_v<first_type> && std::is_default_constructible_v<second_type>>>
constexpr compressed_pair() noexcept(std::is_nothrow_default_constructible_v<first_base> &&std::is_nothrow_default_constructible_v<second_base>)
: first_base{},
second_base{} {}
/**
* @brief Copy constructor.
* @param other The instance to copy from.
*/
constexpr compressed_pair(const compressed_pair &other) noexcept(std::is_nothrow_copy_constructible_v<first_base> &&std::is_nothrow_copy_constructible_v<second_base>) = default;
/**
* @brief Move constructor.
* @param other The instance to move from.
*/
constexpr compressed_pair(compressed_pair &&other) noexcept(std::is_nothrow_move_constructible_v<first_base> &&std::is_nothrow_move_constructible_v<second_base>) = default;
/**
* @brief Constructs a pair from its values.
* @tparam Arg Type of value to use to initialize the first element.
* @tparam Other Type of value to use to initialize the second element.
* @param arg Value to use to initialize the first element.
* @param other Value to use to initialize the second element.
*/
template<typename Arg, typename Other>
constexpr compressed_pair(Arg &&arg, Other &&other) noexcept(std::is_nothrow_constructible_v<first_base, Arg> &&std::is_nothrow_constructible_v<second_base, Other>)
: first_base{std::forward<Arg>(arg)},
second_base{std::forward<Other>(other)} {}
/**
* @brief Constructs a pair by forwarding the arguments to its parts.
* @tparam Args Types of arguments to use to initialize the first element.
* @tparam Other Types of arguments to use to initialize the second element.
* @param args Arguments to use to initialize the first element.
* @param other Arguments to use to initialize the second element.
*/
template<typename... Args, typename... Other>
constexpr compressed_pair(std::piecewise_construct_t, std::tuple<Args...> args, std::tuple<Other...> other) noexcept(std::is_nothrow_constructible_v<first_base, Args...> &&std::is_nothrow_constructible_v<second_base, Other...>)
: first_base{std::move(args), std::index_sequence_for<Args...>{}},
second_base{std::move(other), std::index_sequence_for<Other...>{}} {}
/**
* @brief Copy assignment operator.
* @param other The instance to copy from.
* @return This compressed pair object.
*/
constexpr compressed_pair &operator=(const compressed_pair &other) noexcept(std::is_nothrow_copy_assignable_v<first_base> &&std::is_nothrow_copy_assignable_v<second_base>) = default;
/**
* @brief Move assignment operator.
* @param other The instance to move from.
* @return This compressed pair object.
*/
constexpr compressed_pair &operator=(compressed_pair &&other) noexcept(std::is_nothrow_move_assignable_v<first_base> &&std::is_nothrow_move_assignable_v<second_base>) = default;
/**
* @brief Returns the first element that a pair stores.
* @return The first element that a pair stores.
*/
[[nodiscard]] constexpr first_type &first() noexcept {
return static_cast<first_base &>(*this).get();
}
/*! @copydoc first */
[[nodiscard]] constexpr const first_type &first() const noexcept {
return static_cast<const first_base &>(*this).get();
}
/**
* @brief Returns the second element that a pair stores.
* @return The second element that a pair stores.
*/
[[nodiscard]] constexpr second_type &second() noexcept {
return static_cast<second_base &>(*this).get();
}
/*! @copydoc second */
[[nodiscard]] constexpr const second_type &second() const noexcept {
return static_cast<const second_base &>(*this).get();
}
/**
* @brief Swaps two compressed pair objects.
* @param other The compressed pair to swap with.
*/
constexpr void swap(compressed_pair &other) noexcept(std::is_nothrow_swappable_v<first_type> &&std::is_nothrow_swappable_v<second_type>) {
using std::swap;
swap(first(), other.first());
swap(second(), other.second());
}
/**
* @brief Extracts an element from the compressed pair.
* @tparam Index An integer value that is either 0 or 1.
* @return Returns a reference to the first element if `Index` is 0 and a
* reference to the second element if `Index` is 1.
*/
template<std::size_t Index>
constexpr decltype(auto) get() noexcept {
if constexpr(Index == 0u) {
return first();
} else {
static_assert(Index == 1u, "Index out of bounds");
return second();
}
}
/*! @copydoc get */
template<std::size_t Index>
constexpr decltype(auto) get() const noexcept {
if constexpr(Index == 0u) {
return first();
} else {
static_assert(Index == 1u, "Index out of bounds");
return second();
}
}
};
/**
* @brief Deduction guide.
* @tparam Type Type of value to use to initialize the first element.
* @tparam Other Type of value to use to initialize the second element.
*/
template<typename Type, typename Other>
compressed_pair(Type &&, Other &&) -> compressed_pair<std::decay_t<Type>, std::decay_t<Other>>;
/**
* @brief Swaps two compressed pair objects.
* @tparam First The type of the first element that the pairs store.
* @tparam Second The type of the second element that the pairs store.
* @param lhs A valid compressed pair object.
* @param rhs A valid compressed pair object.
*/
template<typename First, typename Second>
inline constexpr void swap(compressed_pair<First, Second> &lhs, compressed_pair<First, Second> &rhs) {
lhs.swap(rhs);
}
} // namespace entt
// disable structured binding support for clang 6, it messes when specializing tuple_size
#if !defined __clang_major__ || __clang_major__ > 6
namespace std {
/**
* @brief `std::tuple_size` specialization for `compressed_pair`s.
* @tparam First The type of the first element that the pair stores.
* @tparam Second The type of the second element that the pair stores.
*/
template<typename First, typename Second>
struct tuple_size<entt::compressed_pair<First, Second>>: integral_constant<size_t, 2u> {};
/**
* @brief `std::tuple_element` specialization for `compressed_pair`s.
* @tparam Index The index of the type to return.
* @tparam First The type of the first element that the pair stores.
* @tparam Second The type of the second element that the pair stores.
*/
template<size_t Index, typename First, typename Second>
struct tuple_element<Index, entt::compressed_pair<First, Second>>: conditional<Index == 0u, First, Second> {
static_assert(Index < 2u, "Index out of bounds");
};
} // namespace std
#endif
#endif
// #include "../core/iterator.hpp"
#ifndef ENTT_CORE_ITERATOR_HPP
#define ENTT_CORE_ITERATOR_HPP
#include <iterator>
#include <memory>
#include <type_traits>
#include <utility>
namespace entt {
/**
* @brief Helper type to use as pointer with input iterators.
* @tparam Type of wrapped value.
*/
template<typename Type>
struct input_iterator_pointer final {
/*! @brief Value type. */
using value_type = Type;
/*! @brief Pointer type. */
using pointer = Type *;
/*! @brief Reference type. */
using reference = Type &;
/**
* @brief Constructs a proxy object by move.
* @param val Value to use to initialize the proxy object.
*/
constexpr input_iterator_pointer(value_type &&val) noexcept(std::is_nothrow_move_constructible_v<value_type>)
: value{std::move(val)} {}
/**
* @brief Access operator for accessing wrapped values.
* @return A pointer to the wrapped value.
*/
[[nodiscard]] constexpr pointer operator->() noexcept {
return std::addressof(value);
}
/**
* @brief Dereference operator for accessing wrapped values.
* @return A reference to the wrapped value.
*/
[[nodiscard]] constexpr reference operator*() noexcept {
return value;
}
private:
Type value;
};
/**
* @brief Plain iota iterator (waiting for C++20).
* @tparam Type Value type.
*/
template<typename Type>
class iota_iterator final {
static_assert(std::is_integral_v<Type>, "Not an integral type");
public:
/*! @brief Value type, likely an integral one. */
using value_type = Type;
/*! @brief Invalid pointer type. */
using pointer = void;
/*! @brief Non-reference type, same as value type. */
using reference = value_type;
/*! @brief Difference type. */
using difference_type = std::ptrdiff_t;
/*! @brief Iterator category. */
using iterator_category = std::input_iterator_tag;
/*! @brief Default constructor. */
constexpr iota_iterator() noexcept
: current{} {}
/**
* @brief Constructs an iota iterator from a given value.
* @param init The initial value assigned to the iota iterator.
*/
constexpr iota_iterator(const value_type init) noexcept
: current{init} {}
/**
* @brief Pre-increment operator.
* @return This iota iterator.
*/
constexpr iota_iterator &operator++() noexcept {
return ++current, *this;
}
/**
* @brief Post-increment operator.
* @return This iota iterator.
*/
constexpr iota_iterator operator++(int) noexcept {
iota_iterator orig = *this;
return ++(*this), orig;
}
/**
* @brief Dereference operator.
* @return The underlying value.
*/
[[nodiscard]] constexpr reference operator*() const noexcept {
return current;
}
private:
value_type current;
};
/**
* @brief Comparison operator.
* @tparam Type Value type of the iota iterator.
* @param lhs A properly initialized iota iterator.
* @param rhs A properly initialized iota iterator.
* @return True if the two iterators are identical, false otherwise.
*/
template<typename Type>
[[nodiscard]] constexpr bool operator==(const iota_iterator<Type> &lhs, const iota_iterator<Type> &rhs) noexcept {
return *lhs == *rhs;
}
/**
* @brief Comparison operator.
* @tparam Type Value type of the iota iterator.
* @param lhs A properly initialized iota iterator.
* @param rhs A properly initialized iota iterator.
* @return True if the two iterators differ, false otherwise.
*/
template<typename Type>
[[nodiscard]] constexpr bool operator!=(const iota_iterator<Type> &lhs, const iota_iterator<Type> &rhs) noexcept {
return !(lhs == rhs);
}
/**
* @brief Utility class to create an iterable object from a pair of iterators.
* @tparam It Type of iterator.
* @tparam Sentinel Type of sentinel.
*/
template<typename It, typename Sentinel = It>
struct iterable_adaptor final {
/*! @brief Value type. */
using value_type = typename std::iterator_traits<It>::value_type;
/*! @brief Iterator type. */
using iterator = It;
/*! @brief Sentinel type. */
using sentinel = Sentinel;
/*! @brief Default constructor. */
constexpr iterable_adaptor() noexcept(std::is_nothrow_default_constructible_v<iterator> &&std::is_nothrow_default_constructible_v<sentinel>)
: first{},
last{} {}
/**
* @brief Creates an iterable object from a pair of iterators.
* @param from Begin iterator.
* @param to End iterator.
*/
constexpr iterable_adaptor(iterator from, sentinel to) noexcept(std::is_nothrow_move_constructible_v<iterator> &&std::is_nothrow_move_constructible_v<sentinel>)
: first{std::move(from)},
last{std::move(to)} {}
/**
* @brief Returns an iterator to the beginning.
* @return An iterator to the first element of the range.
*/
[[nodiscard]] constexpr iterator begin() const noexcept {
return first;
}
/**
* @brief Returns an iterator to the end.
* @return An iterator to the element following the last element of the
* range.
*/
[[nodiscard]] constexpr sentinel end() const noexcept {
return last;
}
/*! @copydoc begin */
[[nodiscard]] constexpr iterator cbegin() const noexcept {
return begin();
}
/*! @copydoc end */
[[nodiscard]] constexpr sentinel cend() const noexcept {
return end();
}
private:
It first;
Sentinel last;
};
} // namespace entt
#endif
// #include "../core/memory.hpp"
#ifndef ENTT_CORE_MEMORY_HPP
#define ENTT_CORE_MEMORY_HPP
#include <cstddef>
#include <limits>
#include <memory>
#include <tuple>
#include <type_traits>
#include <utility>
// #include "../config/config.h"
namespace entt {
/**
* @brief Checks whether a value is a power of two or not.
* @param value A value that may or may not be a power of two.
* @return True if the value is a power of two, false otherwise.
*/
[[nodiscard]] inline constexpr bool is_power_of_two(const std::size_t value) noexcept {
return value && ((value & (value - 1)) == 0);
}
/**
* @brief Computes the smallest power of two greater than or equal to a value.
* @param value The value to use.
* @return The smallest power of two greater than or equal to the given value.
*/
[[nodiscard]] inline constexpr std::size_t next_power_of_two(const std::size_t value) noexcept {
ENTT_ASSERT_CONSTEXPR(value < (std::size_t{1u} << (std::numeric_limits<std::size_t>::digits - 1)), "Numeric limits exceeded");
std::size_t curr = value - (value != 0u);
for(int next = 1; next < std::numeric_limits<std::size_t>::digits; next = next * 2) {
curr |= curr >> next;
}
return ++curr;
}
/**
* @brief Fast module utility function (powers of two only).
* @param value A value for which to calculate the modulus.
* @param mod _Modulus_, it must be a power of two.
* @return The common remainder.
*/
[[nodiscard]] inline constexpr std::size_t fast_mod(const std::size_t value, const std::size_t mod) noexcept {
ENTT_ASSERT_CONSTEXPR(is_power_of_two(mod), "Value must be a power of two");
return value & (mod - 1u);
}
/**
* @brief Unwraps fancy pointers, does nothing otherwise (waiting for C++20).
* @tparam Type Pointer type.
* @param ptr Fancy or raw pointer.
* @return A raw pointer that represents the address of the original pointer.
*/
template<typename Type>
[[nodiscard]] constexpr auto to_address(Type &&ptr) noexcept {
if constexpr(std::is_pointer_v<std::decay_t<Type>>) {
return ptr;
} else {
return to_address(std::forward<Type>(ptr).operator->());
}
}
/**
* @brief Utility function to design allocation-aware containers.
* @tparam Allocator Type of allocator.
* @param lhs A valid allocator.
* @param rhs Another valid allocator.
*/
template<typename Allocator>
constexpr void propagate_on_container_copy_assignment([[maybe_unused]] Allocator &lhs, [[maybe_unused]] Allocator &rhs) noexcept {
if constexpr(std::allocator_traits<Allocator>::propagate_on_container_copy_assignment::value) {
lhs = rhs;
}
}
/**
* @brief Utility function to design allocation-aware containers.
* @tparam Allocator Type of allocator.
* @param lhs A valid allocator.
* @param rhs Another valid allocator.
*/
template<typename Allocator>
constexpr void propagate_on_container_move_assignment([[maybe_unused]] Allocator &lhs, [[maybe_unused]] Allocator &rhs) noexcept {
if constexpr(std::allocator_traits<Allocator>::propagate_on_container_move_assignment::value) {
lhs = std::move(rhs);
}
}
/**
* @brief Utility function to design allocation-aware containers.
* @tparam Allocator Type of allocator.
* @param lhs A valid allocator.
* @param rhs Another valid allocator.
*/
template<typename Allocator>
constexpr void propagate_on_container_swap([[maybe_unused]] Allocator &lhs, [[maybe_unused]] Allocator &rhs) noexcept {
if constexpr(std::allocator_traits<Allocator>::propagate_on_container_swap::value) {
using std::swap;
swap(lhs, rhs);
} else {
ENTT_ASSERT_CONSTEXPR(lhs == rhs, "Cannot swap the containers");
}
}
/**
* @brief Deleter for allocator-aware unique pointers (waiting for C++20).
* @tparam Args Types of arguments to use to construct the object.
*/
template<typename Allocator>
struct allocation_deleter: private Allocator {
/*! @brief Allocator type. */
using allocator_type = Allocator;
/*! @brief Pointer type. */
using pointer = typename std::allocator_traits<Allocator>::pointer;
/**
* @brief Inherited constructors.
* @param alloc The allocator to use.
*/
constexpr allocation_deleter(const allocator_type &alloc) noexcept(std::is_nothrow_copy_constructible_v<allocator_type>)
: Allocator{alloc} {}
/**
* @brief Destroys the pointed object and deallocates its memory.
* @param ptr A valid pointer to an object of the given type.
*/
constexpr void operator()(pointer ptr) noexcept(std::is_nothrow_destructible_v<typename allocator_type::value_type>) {
using alloc_traits = typename std::allocator_traits<Allocator>;
alloc_traits::destroy(*this, to_address(ptr));
alloc_traits::deallocate(*this, ptr, 1u);
}
};
/**
* @brief Allows `std::unique_ptr` to use allocators (waiting for C++20).
* @tparam Type Type of object to allocate for and to construct.
* @tparam Allocator Type of allocator used to manage memory and elements.
* @tparam Args Types of arguments to use to construct the object.
* @param allocator The allocator to use.
* @param args Parameters to use to construct the object.
* @return A properly initialized unique pointer with a custom deleter.
*/
template<typename Type, typename Allocator, typename... Args>
ENTT_CONSTEXPR auto allocate_unique(Allocator &allocator, Args &&...args) {
static_assert(!std::is_array_v<Type>, "Array types are not supported");
using alloc_traits = typename std::allocator_traits<Allocator>::template rebind_traits<Type>;
using allocator_type = typename alloc_traits::allocator_type;
allocator_type alloc{allocator};
auto ptr = alloc_traits::allocate(alloc, 1u);
ENTT_TRY {
alloc_traits::construct(alloc, to_address(ptr), std::forward<Args>(args)...);
}
ENTT_CATCH {
alloc_traits::deallocate(alloc, ptr, 1u);
ENTT_THROW;
}
return std::unique_ptr<Type, allocation_deleter<allocator_type>>{ptr, alloc};
}
/**
* @cond TURN_OFF_DOXYGEN
* Internal details not to be documented.
*/
namespace internal {
template<typename Type>
struct uses_allocator_construction {
template<typename Allocator, typename... Params>
static constexpr auto args([[maybe_unused]] const Allocator &allocator, Params &&...params) noexcept {
if constexpr(!std::uses_allocator_v<Type, Allocator> && std::is_constructible_v<Type, Params...>) {
return std::forward_as_tuple(std::forward<Params>(params)...);
} else {
static_assert(std::uses_allocator_v<Type, Allocator>, "Ill-formed request");
if constexpr(std::is_constructible_v<Type, std::allocator_arg_t, const Allocator &, Params...>) {
return std::tuple<std::allocator_arg_t, const Allocator &, Params &&...>{std::allocator_arg, allocator, std::forward<Params>(params)...};
} else {
static_assert(std::is_constructible_v<Type, Params..., const Allocator &>, "Ill-formed request");
return std::forward_as_tuple(std::forward<Params>(params)..., allocator);
}
}
}
};
template<typename Type, typename Other>
struct uses_allocator_construction<std::pair<Type, Other>> {
using type = std::pair<Type, Other>;
template<typename Allocator, typename First, typename Second>
static constexpr auto args(const Allocator &allocator, std::piecewise_construct_t, First &&first, Second &&second) noexcept {
return std::make_tuple(
std::piecewise_construct,
std::apply([&allocator](auto &&...curr) { return uses_allocator_construction<Type>::args(allocator, std::forward<decltype(curr)>(curr)...); }, std::forward<First>(first)),
std::apply([&allocator](auto &&...curr) { return uses_allocator_construction<Other>::args(allocator, std::forward<decltype(curr)>(curr)...); }, std::forward<Second>(second)));
}
template<typename Allocator>
static constexpr auto args(const Allocator &allocator) noexcept {
return uses_allocator_construction<type>::args(allocator, std::piecewise_construct, std::tuple<>{}, std::tuple<>{});
}
template<typename Allocator, typename First, typename Second>
static constexpr auto args(const Allocator &allocator, First &&first, Second &&second) noexcept {
return uses_allocator_construction<type>::args(allocator, std::piecewise_construct, std::forward_as_tuple(std::forward<First>(first)), std::forward_as_tuple(std::forward<Second>(second)));
}
template<typename Allocator, typename First, typename Second>
static constexpr auto args(const Allocator &allocator, const std::pair<First, Second> &value) noexcept {
return uses_allocator_construction<type>::args(allocator, std::piecewise_construct, std::forward_as_tuple(value.first), std::forward_as_tuple(value.second));
}
template<typename Allocator, typename First, typename Second>
static constexpr auto args(const Allocator &allocator, std::pair<First, Second> &&value) noexcept {
return uses_allocator_construction<type>::args(allocator, std::piecewise_construct, std::forward_as_tuple(std::move(value.first)), std::forward_as_tuple(std::move(value.second)));
}
};
} // namespace internal
/**
* Internal details not to be documented.
* @endcond
*/
/**
* @brief Uses-allocator construction utility (waiting for C++20).
*
* Primarily intended for internal use. Prepares the argument list needed to
* create an object of a given type by means of uses-allocator construction.
*
* @tparam Type Type to return arguments for.
* @tparam Allocator Type of allocator used to manage memory and elements.
* @tparam Args Types of arguments to use to construct the object.
* @param allocator The allocator to use.
* @param args Parameters to use to construct the object.
* @return The arguments needed to create an object of the given type.
*/
template<typename Type, typename Allocator, typename... Args>
constexpr auto uses_allocator_construction_args(const Allocator &allocator, Args &&...args) noexcept {
return internal::uses_allocator_construction<Type>::args(allocator, std::forward<Args>(args)...);
}
/**
* @brief Uses-allocator construction utility (waiting for C++20).
*
* Primarily intended for internal use. Creates an object of a given type by
* means of uses-allocator construction.
*
* @tparam Type Type of object to create.
* @tparam Allocator Type of allocator used to manage memory and elements.
* @tparam Args Types of arguments to use to construct the object.
* @param allocator The allocator to use.
* @param args Parameters to use to construct the object.
* @return A newly created object of the given type.
*/
template<typename Type, typename Allocator, typename... Args>
constexpr Type make_obj_using_allocator(const Allocator &allocator, Args &&...args) {
return std::make_from_tuple<Type>(internal::uses_allocator_construction<Type>::args(allocator, std::forward<Args>(args)...));
}
/**
* @brief Uses-allocator construction utility (waiting for C++20).
*
* Primarily intended for internal use. Creates an object of a given type by
* means of uses-allocator construction at an uninitialized memory location.
*
* @tparam Type Type of object to create.
* @tparam Allocator Type of allocator used to manage memory and elements.
* @tparam Args Types of arguments to use to construct the object.
* @param value Memory location in which to place the object.
* @param allocator The allocator to use.
* @param args Parameters to use to construct the object.
* @return A pointer to the newly created object of the given type.
*/
template<typename Type, typename Allocator, typename... Args>
constexpr Type *uninitialized_construct_using_allocator(Type *value, const Allocator &allocator, Args &&...args) {
return std::apply([value](auto &&...curr) { return new(value) Type(std::forward<decltype(curr)>(curr)...); }, internal::uses_allocator_construction<Type>::args(allocator, std::forward<Args>(args)...));
}
} // namespace entt
#endif
// #include "../core/type_traits.hpp"
#ifndef ENTT_CORE_TYPE_TRAITS_HPP
#define ENTT_CORE_TYPE_TRAITS_HPP
#include <cstddef>
#include <iterator>
#include <type_traits>
#include <utility>
// #include "../config/config.h"
// #include "fwd.hpp"
namespace entt {
/**
* @brief Utility class to disambiguate overloaded functions.
* @tparam N Number of choices available.
*/
template<std::size_t N>
struct choice_t
// Unfortunately, doxygen cannot parse such a construct.
: /*! @cond TURN_OFF_DOXYGEN */ choice_t<N - 1> /*! @endcond */
{};
/*! @copybrief choice_t */
template<>
struct choice_t<0> {};
/**
* @brief Variable template for the choice trick.
* @tparam N Number of choices available.
*/
template<std::size_t N>
inline constexpr choice_t<N> choice{};
/**
* @brief Identity type trait.
*
* Useful to establish non-deduced contexts in template argument deduction
* (waiting for C++20) or to provide types through function arguments.
*
* @tparam Type A type.
*/
template<typename Type>
struct type_identity {
/*! @brief Identity type. */
using type = Type;
};
/**
* @brief Helper type.
* @tparam Type A type.
*/
template<typename Type>
using type_identity_t = typename type_identity<Type>::type;
/**
* @brief A type-only `sizeof` wrapper that returns 0 where `sizeof` complains.
* @tparam Type The type of which to return the size.
* @tparam The size of the type if `sizeof` accepts it, 0 otherwise.
*/
template<typename Type, typename = void>
struct size_of: std::integral_constant<std::size_t, 0u> {};
/*! @copydoc size_of */
template<typename Type>
struct size_of<Type, std::void_t<decltype(sizeof(Type))>>
: std::integral_constant<std::size_t, sizeof(Type)> {};
/**
* @brief Helper variable template.
* @tparam Type The type of which to return the size.
*/
template<typename Type>
inline constexpr std::size_t size_of_v = size_of<Type>::value;
/**
* @brief Using declaration to be used to _repeat_ the same type a number of
* times equal to the size of a given parameter pack.
* @tparam Type A type to repeat.
*/
template<typename Type, typename>
using unpack_as_type = Type;
/**
* @brief Helper variable template to be used to _repeat_ the same value a
* number of times equal to the size of a given parameter pack.
* @tparam Value A value to repeat.
*/
template<auto Value, typename>
inline constexpr auto unpack_as_value = Value;
/**
* @brief Wraps a static constant.
* @tparam Value A static constant.
*/
template<auto Value>
using integral_constant = std::integral_constant<decltype(Value), Value>;
/**
* @brief Alias template to facilitate the creation of named values.
* @tparam Value A constant value at least convertible to `id_type`.
*/
template<id_type Value>
using tag = integral_constant<Value>;
/**
* @brief A class to use to push around lists of types, nothing more.
* @tparam Type Types provided by the type list.
*/
template<typename... Type>
struct type_list {
/*! @brief Type list type. */
using type = type_list;
/*! @brief Compile-time number of elements in the type list. */
static constexpr auto size = sizeof...(Type);
};
/*! @brief Primary template isn't defined on purpose. */
template<std::size_t, typename>
struct type_list_element;
/**
* @brief Provides compile-time indexed access to the types of a type list.
* @tparam Index Index of the type to return.
* @tparam First First type provided by the type list.
* @tparam Other Other types provided by the type list.
*/
template<std::size_t Index, typename First, typename... Other>
struct type_list_element<Index, type_list<First, Other...>>
: type_list_element<Index - 1u, type_list<Other...>> {};
/**
* @brief Provides compile-time indexed access to the types of a type list.
* @tparam First First type provided by the type list.
* @tparam Other Other types provided by the type list.
*/
template<typename First, typename... Other>
struct type_list_element<0u, type_list<First, Other...>> {
/*! @brief Searched type. */
using type = First;
};
/**
* @brief Helper type.
* @tparam Index Index of the type to return.
* @tparam List Type list to search into.
*/
template<std::size_t Index, typename List>
using type_list_element_t = typename type_list_element<Index, List>::type;
/*! @brief Primary template isn't defined on purpose. */
template<typename, typename>
struct type_list_index;
/**
* @brief Provides compile-time type access to the types of a type list.
* @tparam Type Type to look for and for which to return the index.
* @tparam First First type provided by the type list.
* @tparam Other Other types provided by the type list.
*/
template<typename Type, typename First, typename... Other>
struct type_list_index<Type, type_list<First, Other...>> {
/*! @brief Unsigned integer type. */
using value_type = std::size_t;
/*! @brief Compile-time position of the given type in the sublist. */
static constexpr value_type value = 1u + type_list_index<Type, type_list<Other...>>::value;
};
/**
* @brief Provides compile-time type access to the types of a type list.
* @tparam Type Type to look for and for which to return the index.
* @tparam Other Other types provided by the type list.
*/
template<typename Type, typename... Other>
struct type_list_index<Type, type_list<Type, Other...>> {
static_assert(type_list_index<Type, type_list<Other...>>::value == sizeof...(Other), "Non-unique type");
/*! @brief Unsigned integer type. */
using value_type = std::size_t;
/*! @brief Compile-time position of the given type in the sublist. */
static constexpr value_type value = 0u;
};
/**
* @brief Provides compile-time type access to the types of a type list.
* @tparam Type Type to look for and for which to return the index.
*/
template<typename Type>
struct type_list_index<Type, type_list<>> {
/*! @brief Unsigned integer type. */
using value_type = std::size_t;
/*! @brief Compile-time position of the given type in the sublist. */
static constexpr value_type value = 0u;
};
/**
* @brief Helper variable template.
* @tparam List Type list.
* @tparam Type Type to look for and for which to return the index.
*/
template<typename Type, typename List>
inline constexpr std::size_t type_list_index_v = type_list_index<Type, List>::value;
/**
* @brief Concatenates multiple type lists.
* @tparam Type Types provided by the first type list.
* @tparam Other Types provided by the second type list.
* @return A type list composed by the types of both the type lists.
*/
template<typename... Type, typename... Other>
constexpr type_list<Type..., Other...> operator+(type_list<Type...>, type_list<Other...>) {
return {};
}
/*! @brief Primary template isn't defined on purpose. */
template<typename...>
struct type_list_cat;
/*! @brief Concatenates multiple type lists. */
template<>
struct type_list_cat<> {
/*! @brief A type list composed by the types of all the type lists. */
using type = type_list<>;
};
/**
* @brief Concatenates multiple type lists.
* @tparam Type Types provided by the first type list.
* @tparam Other Types provided by the second type list.
* @tparam List Other type lists, if any.
*/
template<typename... Type, typename... Other, typename... List>
struct type_list_cat<type_list<Type...>, type_list<Other...>, List...> {
/*! @brief A type list composed by the types of all the type lists. */
using type = typename type_list_cat<type_list<Type..., Other...>, List...>::type;
};
/**
* @brief Concatenates multiple type lists.
* @tparam Type Types provided by the type list.
*/
template<typename... Type>
struct type_list_cat<type_list<Type...>> {
/*! @brief A type list composed by the types of all the type lists. */
using type = type_list<Type...>;
};
/**
* @brief Helper type.
* @tparam List Type lists to concatenate.
*/
template<typename... List>
using type_list_cat_t = typename type_list_cat<List...>::type;
/*! @brief Primary template isn't defined on purpose. */
template<typename>
struct type_list_unique;
/**
* @brief Removes duplicates types from a type list.
* @tparam Type One of the types provided by the given type list.
* @tparam Other The other types provided by the given type list.
*/
template<typename Type, typename... Other>
struct type_list_unique<type_list<Type, Other...>> {
/*! @brief A type list without duplicate types. */
using type = std::conditional_t<
(std::is_same_v<Type, Other> || ...),
typename type_list_unique<type_list<Other...>>::type,
type_list_cat_t<type_list<Type>, typename type_list_unique<type_list<Other...>>::type>>;
};
/*! @brief Removes duplicates types from a type list. */
template<>
struct type_list_unique<type_list<>> {
/*! @brief A type list without duplicate types. */
using type = type_list<>;
};
/**
* @brief Helper type.
* @tparam Type A type list.
*/
template<typename Type>
using type_list_unique_t = typename type_list_unique<Type>::type;
/**
* @brief Provides the member constant `value` to true if a type list contains a
* given type, false otherwise.
* @tparam List Type list.
* @tparam Type Type to look for.
*/
template<typename List, typename Type>
struct type_list_contains;
/**
* @copybrief type_list_contains
* @tparam Type Types provided by the type list.
* @tparam Other Type to look for.
*/
template<typename... Type, typename Other>
struct type_list_contains<type_list<Type...>, Other>: std::disjunction<std::is_same<Type, Other>...> {};
/**
* @brief Helper variable template.
* @tparam List Type list.
* @tparam Type Type to look for.
*/
template<typename List, typename Type>
inline constexpr bool type_list_contains_v = type_list_contains<List, Type>::value;
/*! @brief Primary template isn't defined on purpose. */
template<typename...>
struct type_list_diff;
/**
* @brief Computes the difference between two type lists.
* @tparam Type Types provided by the first type list.
* @tparam Other Types provided by the second type list.
*/
template<typename... Type, typename... Other>
struct type_list_diff<type_list<Type...>, type_list<Other...>> {
/*! @brief A type list that is the difference between the two type lists. */
using type = type_list_cat_t<std::conditional_t<type_list_contains_v<type_list<Other...>, Type>, type_list<>, type_list<Type>>...>;
};
/**
* @brief Helper type.
* @tparam List Type lists between which to compute the difference.
*/
template<typename... List>
using type_list_diff_t = typename type_list_diff<List...>::type;
/*! @brief Primary template isn't defined on purpose. */
template<typename, template<typename...> class>
struct type_list_transform;
/**
* @brief Applies a given _function_ to a type list and generate a new list.
* @tparam Type Types provided by the type list.
* @tparam Op Unary operation as template class with a type member named `type`.
*/
template<typename... Type, template<typename...> class Op>
struct type_list_transform<type_list<Type...>, Op> {
/*! @brief Resulting type list after applying the transform function. */
using type = type_list<typename Op<Type>::type...>;
};
/**
* @brief Helper type.
* @tparam List Type list.
* @tparam Op Unary operation as template class with a type member named `type`.
*/
template<typename List, template<typename...> class Op>
using type_list_transform_t = typename type_list_transform<List, Op>::type;
/**
* @brief A class to use to push around lists of constant values, nothing more.
* @tparam Value Values provided by the value list.
*/
template<auto... Value>
struct value_list {
/*! @brief Value list type. */
using type = value_list;
/*! @brief Compile-time number of elements in the value list. */
static constexpr auto size = sizeof...(Value);
};
/*! @brief Primary template isn't defined on purpose. */
template<std::size_t, typename>
struct value_list_element;
/**
* @brief Provides compile-time indexed access to the values of a value list.
* @tparam Index Index of the value to return.
* @tparam Value First value provided by the value list.
* @tparam Other Other values provided by the value list.
*/
template<std::size_t Index, auto Value, auto... Other>
struct value_list_element<Index, value_list<Value, Other...>>
: value_list_element<Index - 1u, value_list<Other...>> {};
/**
* @brief Provides compile-time indexed access to the types of a type list.
* @tparam Value First value provided by the value list.
* @tparam Other Other values provided by the value list.
*/
template<auto Value, auto... Other>
struct value_list_element<0u, value_list<Value, Other...>> {
/*! @brief Searched value. */
static constexpr auto value = Value;
};
/**
* @brief Helper type.
* @tparam Index Index of the value to return.
* @tparam List Value list to search into.
*/
template<std::size_t Index, typename List>
inline constexpr auto value_list_element_v = value_list_element<Index, List>::value;
/**
* @brief Concatenates multiple value lists.
* @tparam Value Values provided by the first value list.
* @tparam Other Values provided by the second value list.
* @return A value list composed by the values of both the value lists.
*/
template<auto... Value, auto... Other>
constexpr value_list<Value..., Other...> operator+(value_list<Value...>, value_list<Other...>) {
return {};
}
/*! @brief Primary template isn't defined on purpose. */
template<typename...>
struct value_list_cat;
/*! @brief Concatenates multiple value lists. */
template<>
struct value_list_cat<> {
/*! @brief A value list composed by the values of all the value lists. */
using type = value_list<>;
};
/**
* @brief Concatenates multiple value lists.
* @tparam Value Values provided by the first value list.
* @tparam Other Values provided by the second value list.
* @tparam List Other value lists, if any.
*/
template<auto... Value, auto... Other, typename... List>
struct value_list_cat<value_list<Value...>, value_list<Other...>, List...> {
/*! @brief A value list composed by the values of all the value lists. */
using type = typename value_list_cat<value_list<Value..., Other...>, List...>::type;
};
/**
* @brief Concatenates multiple value lists.
* @tparam Value Values provided by the value list.
*/
template<auto... Value>
struct value_list_cat<value_list<Value...>> {
/*! @brief A value list composed by the values of all the value lists. */
using type = value_list<Value...>;
};
/**
* @brief Helper type.
* @tparam List Value lists to concatenate.
*/
template<typename... List>
using value_list_cat_t = typename value_list_cat<List...>::type;
/*! @brief Same as std::is_invocable, but with tuples. */
template<typename, typename>
struct is_applicable: std::false_type {};
/**
* @copybrief is_applicable
* @tparam Func A valid function type.
* @tparam Tuple Tuple-like type.
* @tparam Args The list of arguments to use to probe the function type.
*/
template<typename Func, template<typename...> class Tuple, typename... Args>
struct is_applicable<Func, Tuple<Args...>>: std::is_invocable<Func, Args...> {};
/**
* @copybrief is_applicable
* @tparam Func A valid function type.
* @tparam Tuple Tuple-like type.
* @tparam Args The list of arguments to use to probe the function type.
*/
template<typename Func, template<typename...> class Tuple, typename... Args>
struct is_applicable<Func, const Tuple<Args...>>: std::is_invocable<Func, Args...> {};
/**
* @brief Helper variable template.
* @tparam Func A valid function type.
* @tparam Args The list of arguments to use to probe the function type.
*/
template<typename Func, typename Args>
inline constexpr bool is_applicable_v = is_applicable<Func, Args>::value;
/*! @brief Same as std::is_invocable_r, but with tuples for arguments. */
template<typename, typename, typename>
struct is_applicable_r: std::false_type {};
/**
* @copybrief is_applicable_r
* @tparam Ret The type to which the return type of the function should be
* convertible.
* @tparam Func A valid function type.
* @tparam Args The list of arguments to use to probe the function type.
*/
template<typename Ret, typename Func, typename... Args>
struct is_applicable_r<Ret, Func, std::tuple<Args...>>: std::is_invocable_r<Ret, Func, Args...> {};
/**
* @brief Helper variable template.
* @tparam Ret The type to which the return type of the function should be
* convertible.
* @tparam Func A valid function type.
* @tparam Args The list of arguments to use to probe the function type.
*/
template<typename Ret, typename Func, typename Args>
inline constexpr bool is_applicable_r_v = is_applicable_r<Ret, Func, Args>::value;
/**
* @brief Provides the member constant `value` to true if a given type is
* complete, false otherwise.
* @tparam Type The type to test.
*/
template<typename Type, typename = void>
struct is_complete: std::false_type {};
/*! @copydoc is_complete */
template<typename Type>
struct is_complete<Type, std::void_t<decltype(sizeof(Type))>>: std::true_type {};
/**
* @brief Helper variable template.
* @tparam Type The type to test.
*/
template<typename Type>
inline constexpr bool is_complete_v = is_complete<Type>::value;
/**
* @brief Provides the member constant `value` to true if a given type is an
* iterator, false otherwise.
* @tparam Type The type to test.
*/
template<typename Type, typename = void>
struct is_iterator: std::false_type {};
/**
* @cond TURN_OFF_DOXYGEN
* Internal details not to be documented.
*/
namespace internal {
template<typename, typename = void>
struct has_iterator_category: std::false_type {};
template<typename Type>
struct has_iterator_category<Type, std::void_t<typename std::iterator_traits<Type>::iterator_category>>: std::true_type {};
} // namespace internal
/**
* Internal details not to be documented.
* @endcond
*/
/*! @copydoc is_iterator */
template<typename Type>
struct is_iterator<Type, std::enable_if_t<!std::is_same_v<std::remove_cv_t<std::remove_pointer_t<Type>>, void>>>
: internal::has_iterator_category<Type> {};
/**
* @brief Helper variable template.
* @tparam Type The type to test.
*/
template<typename Type>
inline constexpr bool is_iterator_v = is_iterator<Type>::value;
/**
* @brief Provides the member constant `value` to true if a given type is both
* an empty and non-final class, false otherwise.
* @tparam Type The type to test
*/
template<typename Type>
struct is_ebco_eligible
: std::conjunction<std::is_empty<Type>, std::negation<std::is_final<Type>>> {};
/**
* @brief Helper variable template.
* @tparam Type The type to test.
*/
template<typename Type>
inline constexpr bool is_ebco_eligible_v = is_ebco_eligible<Type>::value;
/**
* @brief Provides the member constant `value` to true if `Type::is_transparent`
* is valid and denotes a type, false otherwise.
* @tparam Type The type to test.
*/
template<typename Type, typename = void>
struct is_transparent: std::false_type {};
/*! @copydoc is_transparent */
template<typename Type>
struct is_transparent<Type, std::void_t<typename Type::is_transparent>>: std::true_type {};
/**
* @brief Helper variable template.
* @tparam Type The type to test.
*/
template<typename Type>
inline constexpr bool is_transparent_v = is_transparent<Type>::value;
/**
* @brief Provides the member constant `value` to true if a given type is
* equality comparable, false otherwise.
* @tparam Type The type to test.
*/
template<typename Type, typename = void>
struct is_equality_comparable: std::false_type {};
/**
* @cond TURN_OFF_DOXYGEN
* Internal details not to be documented.
*/
namespace internal {
template<typename, typename = void>
struct has_tuple_size_value: std::false_type {};
template<typename Type>
struct has_tuple_size_value<Type, std::void_t<decltype(std::tuple_size<const Type>::value)>>: std::true_type {};
template<typename Type, std::size_t... Index>
[[nodiscard]] constexpr bool unpack_maybe_equality_comparable(std::index_sequence<Index...>) {
return (is_equality_comparable<std::tuple_element_t<Index, Type>>::value && ...);
}
template<typename>
[[nodiscard]] constexpr bool maybe_equality_comparable(choice_t<0>) {
return true;
}
template<typename Type>
[[nodiscard]] constexpr auto maybe_equality_comparable(choice_t<1>) -> decltype(std::declval<typename Type::value_type>(), bool{}) {
if constexpr(is_iterator_v<Type>) {
return true;
} else if constexpr(std::is_same_v<typename Type::value_type, Type>) {
return maybe_equality_comparable<Type>(choice<0>);
} else {
return is_equality_comparable<typename Type::value_type>::value;
}
}
template<typename Type>
[[nodiscard]] constexpr std::enable_if_t<is_complete_v<std::tuple_size<std::remove_cv_t<Type>>>, bool> maybe_equality_comparable(choice_t<2>) {
if constexpr(has_tuple_size_value<Type>::value) {
return unpack_maybe_equality_comparable<Type>(std::make_index_sequence<std::tuple_size<Type>::value>{});
} else {
return maybe_equality_comparable<Type>(choice<1>);
}
}
} // namespace internal
/**
* Internal details not to be documented.
* @endcond
*/
/*! @copydoc is_equality_comparable */
template<typename Type>
struct is_equality_comparable<Type, std::void_t<decltype(std::declval<Type>() == std::declval<Type>())>>
: std::bool_constant<internal::maybe_equality_comparable<Type>(choice<2>)> {};
/**
* @brief Helper variable template.
* @tparam Type The type to test.
*/
template<typename Type>
inline constexpr bool is_equality_comparable_v = is_equality_comparable<Type>::value;
/**
* @brief Transcribes the constness of a type to another type.
* @tparam To The type to which to transcribe the constness.
* @tparam From The type from which to transcribe the constness.
*/
template<typename To, typename From>
struct constness_as {
/*! @brief The type resulting from the transcription of the constness. */
using type = std::remove_const_t<To>;
};
/*! @copydoc constness_as */
template<typename To, typename From>
struct constness_as<To, const From> {
/*! @brief The type resulting from the transcription of the constness. */
using type = const To;
};
/**
* @brief Alias template to facilitate the transcription of the constness.
* @tparam To The type to which to transcribe the constness.
* @tparam From The type from which to transcribe the constness.
*/
template<typename To, typename From>
using constness_as_t = typename constness_as<To, From>::type;
/**
* @brief Extracts the class of a non-static member object or function.
* @tparam Member A pointer to a non-static member object or function.
*/
template<typename Member>
class member_class {
static_assert(std::is_member_pointer_v<Member>, "Invalid pointer type to non-static member object or function");
template<typename Class, typename Ret, typename... Args>
static Class *clazz(Ret (Class::*)(Args...));
template<typename Class, typename Ret, typename... Args>
static Class *clazz(Ret (Class::*)(Args...) const);
template<typename Class, typename Type>
static Class *clazz(Type Class::*);
public:
/*! @brief The class of the given non-static member object or function. */
using type = std::remove_pointer_t<decltype(clazz(std::declval<Member>()))>;
};
/**
* @brief Helper type.
* @tparam Member A pointer to a non-static member object or function.
*/
template<typename Member>
using member_class_t = typename member_class<Member>::type;
/**
* @brief Extracts the n-th argument of a given function or member function.
* @tparam Index The index of the argument to extract.
* @tparam Candidate A valid function, member function or data member.
*/
template<std::size_t Index, auto Candidate>
class nth_argument {
template<typename Ret, typename... Args>
static constexpr type_list<Args...> pick_up(Ret (*)(Args...));
template<typename Ret, typename Class, typename... Args>
static constexpr type_list<Args...> pick_up(Ret (Class ::*)(Args...));
template<typename Ret, typename Class, typename... Args>
static constexpr type_list<Args...> pick_up(Ret (Class ::*)(Args...) const);
template<typename Type, typename Class>
static constexpr type_list<Type> pick_up(Type Class ::*);
public:
/*! @brief N-th argument of the given function or member function. */
using type = type_list_element_t<Index, decltype(pick_up(Candidate))>;
};
/**
* @brief Helper type.
* @tparam Index The index of the argument to extract.
* @tparam Candidate A valid function, member function or data member.
*/
template<std::size_t Index, auto Candidate>
using nth_argument_t = typename nth_argument<Index, Candidate>::type;
} // namespace entt
#endif
// #include "fwd.hpp"
#ifndef ENTT_CONTAINER_FWD_HPP
#define ENTT_CONTAINER_FWD_HPP
#include <functional>
#include <memory>
namespace entt {
template<
typename Key,
typename Type,
typename = std::hash<Key>,
typename = std::equal_to<Key>,
typename = std::allocator<std::pair<const Key, Type>>>
class dense_map;
template<
typename Type,
typename = std::hash<Type>,
typename = std::equal_to<Type>,
typename = std::allocator<Type>>
class dense_set;
} // namespace entt
#endif
namespace entt {
/**
* @cond TURN_OFF_DOXYGEN
* Internal details not to be documented.
*/
namespace internal {
template<typename Key, typename Type>
struct dense_map_node final {
using value_type = std::pair<Key, Type>;
template<typename... Args>
dense_map_node(const std::size_t pos, Args &&...args)
: next{pos},
element{std::forward<Args>(args)...} {}
template<typename Allocator, typename... Args>
dense_map_node(std::allocator_arg_t, const Allocator &allocator, const std::size_t pos, Args &&...args)
: next{pos},
element{entt::make_obj_using_allocator<value_type>(allocator, std::forward<Args>(args)...)} {}
template<typename Allocator>
dense_map_node(std::allocator_arg_t, const Allocator &allocator, const dense_map_node &other)
: next{other.next},
element{entt::make_obj_using_allocator<value_type>(allocator, other.element)} {}
template<typename Allocator>
dense_map_node(std::allocator_arg_t, const Allocator &allocator, dense_map_node &&other)
: next{other.next},
element{entt::make_obj_using_allocator<value_type>(allocator, std::move(other.element))} {}
std::size_t next;
value_type element;
};
template<typename It>
class dense_map_iterator final {
template<typename>
friend class dense_map_iterator;
using first_type = decltype(std::as_const(std::declval<It>()->element.first));
using second_type = decltype((std::declval<It>()->element.second));
public:
using value_type = std::pair<first_type, second_type>;
using pointer = input_iterator_pointer<value_type>;
using reference = value_type;
using difference_type = std::ptrdiff_t;
using iterator_category = std::input_iterator_tag;
constexpr dense_map_iterator() noexcept
: it{} {}
constexpr dense_map_iterator(const It iter) noexcept
: it{iter} {}
template<typename Other, typename = std::enable_if_t<!std::is_same_v<It, Other> && std::is_constructible_v<It, Other>>>
constexpr dense_map_iterator(const dense_map_iterator<Other> &other) noexcept
: it{other.it} {}
constexpr dense_map_iterator &operator++() noexcept {
return ++it, *this;
}
constexpr dense_map_iterator operator++(int) noexcept {
dense_map_iterator orig = *this;
return ++(*this), orig;
}
constexpr dense_map_iterator &operator--() noexcept {
return --it, *this;
}
constexpr dense_map_iterator operator--(int) noexcept {
dense_map_iterator orig = *this;
return operator--(), orig;
}
constexpr dense_map_iterator &operator+=(const difference_type value) noexcept {
it += value;
return *this;
}
constexpr dense_map_iterator operator+(const difference_type value) const noexcept {
dense_map_iterator copy = *this;
return (copy += value);
}
constexpr dense_map_iterator &operator-=(const difference_type value) noexcept {
return (*this += -value);
}
constexpr dense_map_iterator operator-(const difference_type value) const noexcept {
return (*this + -value);
}
[[nodiscard]] constexpr reference operator[](const difference_type value) const noexcept {
return {it[value].element.first, it[value].element.second};
}
[[nodiscard]] constexpr pointer operator->() const noexcept {
return operator*();
}
[[nodiscard]] constexpr reference operator*() const noexcept {
return {it->element.first, it->element.second};
}
template<typename ILhs, typename IRhs>
friend constexpr std::ptrdiff_t operator-(const dense_map_iterator<ILhs> &, const dense_map_iterator<IRhs> &) noexcept;
template<typename ILhs, typename IRhs>
friend constexpr bool operator==(const dense_map_iterator<ILhs> &, const dense_map_iterator<IRhs> &) noexcept;
template<typename ILhs, typename IRhs>
friend constexpr bool operator<(const dense_map_iterator<ILhs> &, const dense_map_iterator<IRhs> &) noexcept;
private:
It it;
};
template<typename ILhs, typename IRhs>
[[nodiscard]] constexpr std::ptrdiff_t operator-(const dense_map_iterator<ILhs> &lhs, const dense_map_iterator<IRhs> &rhs) noexcept {
return lhs.it - rhs.it;
}
template<typename ILhs, typename IRhs>
[[nodiscard]] constexpr bool operator==(const dense_map_iterator<ILhs> &lhs, const dense_map_iterator<IRhs> &rhs) noexcept {
return lhs.it == rhs.it;
}
template<typename ILhs, typename IRhs>
[[nodiscard]] constexpr bool operator!=(const dense_map_iterator<ILhs> &lhs, const dense_map_iterator<IRhs> &rhs) noexcept {
return !(lhs == rhs);
}
template<typename ILhs, typename IRhs>
[[nodiscard]] constexpr bool operator<(const dense_map_iterator<ILhs> &lhs, const dense_map_iterator<IRhs> &rhs) noexcept {
return lhs.it < rhs.it;
}
template<typename ILhs, typename IRhs>
[[nodiscard]] constexpr bool operator>(const dense_map_iterator<ILhs> &lhs, const dense_map_iterator<IRhs> &rhs) noexcept {
return rhs < lhs;
}
template<typename ILhs, typename IRhs>
[[nodiscard]] constexpr bool operator<=(const dense_map_iterator<ILhs> &lhs, const dense_map_iterator<IRhs> &rhs) noexcept {
return !(lhs > rhs);
}
template<typename ILhs, typename IRhs>
[[nodiscard]] constexpr bool operator>=(const dense_map_iterator<ILhs> &lhs, const dense_map_iterator<IRhs> &rhs) noexcept {
return !(lhs < rhs);
}
template<typename It>
class dense_map_local_iterator final {
template<typename>
friend class dense_map_local_iterator;
using first_type = decltype(std::as_const(std::declval<It>()->element.first));
using second_type = decltype((std::declval<It>()->element.second));
public:
using value_type = std::pair<first_type, second_type>;
using pointer = input_iterator_pointer<value_type>;
using reference = value_type;
using difference_type = std::ptrdiff_t;
using iterator_category = std::input_iterator_tag;
constexpr dense_map_local_iterator() noexcept
: it{},
offset{} {}
constexpr dense_map_local_iterator(It iter, const std::size_t pos) noexcept
: it{iter},
offset{pos} {}
template<typename Other, typename = std::enable_if_t<!std::is_same_v<It, Other> && std::is_constructible_v<It, Other>>>
constexpr dense_map_local_iterator(const dense_map_local_iterator<Other> &other) noexcept
: it{other.it},
offset{other.offset} {}
constexpr dense_map_local_iterator &operator++() noexcept {
return offset = it[offset].next, *this;
}
constexpr dense_map_local_iterator operator++(int) noexcept {
dense_map_local_iterator orig = *this;
return ++(*this), orig;
}
[[nodiscard]] constexpr pointer operator->() const noexcept {
return operator*();
}
[[nodiscard]] constexpr reference operator*() const noexcept {
return {it[offset].element.first, it[offset].element.second};
}
[[nodiscard]] constexpr std::size_t index() const noexcept {
return offset;
}
private:
It it;
std::size_t offset;
};
template<typename ILhs, typename IRhs>
[[nodiscard]] constexpr bool operator==(const dense_map_local_iterator<ILhs> &lhs, const dense_map_local_iterator<IRhs> &rhs) noexcept {
return lhs.index() == rhs.index();
}
template<typename ILhs, typename IRhs>
[[nodiscard]] constexpr bool operator!=(const dense_map_local_iterator<ILhs> &lhs, const dense_map_local_iterator<IRhs> &rhs) noexcept {
return !(lhs == rhs);
}
} // namespace internal
/**
* Internal details not to be documented.
* @endcond
*/
/**
* @brief Associative container for key-value pairs with unique keys.
*
* Internally, elements are organized into buckets. Which bucket an element is
* placed into depends entirely on the hash of its key. Keys with the same hash
* code appear in the same bucket.
*
* @tparam Key Key type of the associative container.
* @tparam Type Mapped type of the associative container.
* @tparam Hash Type of function to use to hash the keys.
* @tparam KeyEqual Type of function to use to compare the keys for equality.
* @tparam Allocator Type of allocator used to manage memory and elements.
*/
template<typename Key, typename Type, typename Hash, typename KeyEqual, typename Allocator>
class dense_map {
static constexpr float default_threshold = 0.875f;
static constexpr std::size_t minimum_capacity = 8u;
using node_type = internal::dense_map_node<Key, Type>;
using alloc_traits = typename std::allocator_traits<Allocator>;
static_assert(std::is_same_v<typename alloc_traits::value_type, std::pair<const Key, Type>>, "Invalid value type");
using sparse_container_type = std::vector<std::size_t, typename alloc_traits::template rebind_alloc<std::size_t>>;
using packed_container_type = std::vector<node_type, typename alloc_traits::template rebind_alloc<node_type>>;
template<typename Other>
[[nodiscard]] std::size_t key_to_bucket(const Other &key) const noexcept {
return fast_mod(static_cast<size_type>(sparse.second()(key)), bucket_count());
}
template<typename Other>
[[nodiscard]] auto constrained_find(const Other &key, std::size_t bucket) {
for(auto it = begin(bucket), last = end(bucket); it != last; ++it) {
if(packed.second()(it->first, key)) {
return begin() + static_cast<typename iterator::difference_type>(it.index());
}
}
return end();
}
template<typename Other>
[[nodiscard]] auto constrained_find(const Other &key, std::size_t bucket) const {
for(auto it = cbegin(bucket), last = cend(bucket); it != last; ++it) {
if(packed.second()(it->first, key)) {
return cbegin() + static_cast<typename iterator::difference_type>(it.index());
}
}
return cend();
}
template<typename Other, typename... Args>
[[nodiscard]] auto insert_or_do_nothing(Other &&key, Args &&...args) {
const auto index = key_to_bucket(key);
if(auto it = constrained_find(key, index); it != end()) {
return std::make_pair(it, false);
}
packed.first().emplace_back(sparse.first()[index], std::piecewise_construct, std::forward_as_tuple(std::forward<Other>(key)), std::forward_as_tuple(std::forward<Args>(args)...));
sparse.first()[index] = packed.first().size() - 1u;
rehash_if_required();
return std::make_pair(--end(), true);
}
template<typename Other, typename Arg>
[[nodiscard]] auto insert_or_overwrite(Other &&key, Arg &&value) {
const auto index = key_to_bucket(key);
if(auto it = constrained_find(key, index); it != end()) {
it->second = std::forward<Arg>(value);
return std::make_pair(it, false);
}
packed.first().emplace_back(sparse.first()[index], std::forward<Other>(key), std::forward<Arg>(value));
sparse.first()[index] = packed.first().size() - 1u;
rehash_if_required();
return std::make_pair(--end(), true);
}
void move_and_pop(const std::size_t pos) {
if(const auto last = size() - 1u; pos != last) {
size_type *curr = sparse.first().data() + key_to_bucket(packed.first().back().element.first);
packed.first()[pos] = std::move(packed.first().back());
for(; *curr != last; curr = &packed.first()[*curr].next) {}
*curr = pos;
}
packed.first().pop_back();
}
void rehash_if_required() {
if(size() > (bucket_count() * max_load_factor())) {
rehash(bucket_count() * 2u);
}
}
public:
/*! @brief Key type of the container. */
using key_type = Key;
/*! @brief Mapped type of the container. */
using mapped_type = Type;
/*! @brief Key-value type of the container. */
using value_type = std::pair<const Key, Type>;
/*! @brief Unsigned integer type. */
using size_type = std::size_t;
/*! @brief Type of function to use to hash the keys. */
using hasher = Hash;
/*! @brief Type of function to use to compare the keys for equality. */
using key_equal = KeyEqual;
/*! @brief Allocator type. */
using allocator_type = Allocator;
/*! @brief Input iterator type. */
using iterator = internal::dense_map_iterator<typename packed_container_type::iterator>;
/*! @brief Constant input iterator type. */
using const_iterator = internal::dense_map_iterator<typename packed_container_type::const_iterator>;
/*! @brief Input iterator type. */
using local_iterator = internal::dense_map_local_iterator<typename packed_container_type::iterator>;
/*! @brief Constant input iterator type. */
using const_local_iterator = internal::dense_map_local_iterator<typename packed_container_type::const_iterator>;
/*! @brief Default constructor. */
dense_map()
: dense_map{minimum_capacity} {}
/**
* @brief Constructs an empty container with a given allocator.
* @param allocator The allocator to use.
*/
explicit dense_map(const allocator_type &allocator)
: dense_map{minimum_capacity, hasher{}, key_equal{}, allocator} {}
/**
* @brief Constructs an empty container with a given allocator and user
* supplied minimal number of buckets.
* @param cnt Minimal number of buckets.
* @param allocator The allocator to use.
*/
dense_map(const size_type cnt, const allocator_type &allocator)
: dense_map{cnt, hasher{}, key_equal{}, allocator} {}
/**
* @brief Constructs an empty container with a given allocator, hash
* function and user supplied minimal number of buckets.
* @param cnt Minimal number of buckets.
* @param hash Hash function to use.
* @param allocator The allocator to use.
*/
dense_map(const size_type cnt, const hasher &hash, const allocator_type &allocator)
: dense_map{cnt, hash, key_equal{}, allocator} {}
/**
* @brief Constructs an empty container with a given allocator, hash
* function, compare function and user supplied minimal number of buckets.
* @param cnt Minimal number of buckets.
* @param hash Hash function to use.
* @param equal Compare function to use.
* @param allocator The allocator to use.
*/
explicit dense_map(const size_type cnt, const hasher &hash = hasher{}, const key_equal &equal = key_equal{}, const allocator_type &allocator = allocator_type{})
: sparse{allocator, hash},
packed{allocator, equal},
threshold{default_threshold} {
rehash(cnt);
}
/*! @brief Default copy constructor. */
dense_map(const dense_map &) = default;
/**
* @brief Allocator-extended copy constructor.
* @param other The instance to copy from.
* @param allocator The allocator to use.
*/
dense_map(const dense_map &other, const allocator_type &allocator)
: sparse{std::piecewise_construct, std::forward_as_tuple(other.sparse.first(), allocator), std::forward_as_tuple(other.sparse.second())},
packed{std::piecewise_construct, std::forward_as_tuple(other.packed.first(), allocator), std::forward_as_tuple(other.packed.second())},
threshold{other.threshold} {}
/*! @brief Default move constructor. */
dense_map(dense_map &&) noexcept(std::is_nothrow_move_constructible_v<compressed_pair<sparse_container_type, hasher>> &&std::is_nothrow_move_constructible_v<compressed_pair<packed_container_type, key_equal>>) = default;
/**
* @brief Allocator-extended move constructor.
* @param other The instance to move from.
* @param allocator The allocator to use.
*/
dense_map(dense_map &&other, const allocator_type &allocator)
: sparse{std::piecewise_construct, std::forward_as_tuple(std::move(other.sparse.first()), allocator), std::forward_as_tuple(std::move(other.sparse.second()))},
packed{std::piecewise_construct, std::forward_as_tuple(std::move(other.packed.first()), allocator), std::forward_as_tuple(std::move(other.packed.second()))},
threshold{other.threshold} {}
/**
* @brief Default copy assignment operator.
* @return This container.
*/
dense_map &operator=(const dense_map &) = default;
/**
* @brief Default move assignment operator.
* @return This container.
*/
dense_map &operator=(dense_map &&) noexcept(std::is_nothrow_move_assignable_v<compressed_pair<sparse_container_type, hasher>> &&std::is_nothrow_move_assignable_v<compressed_pair<packed_container_type, key_equal>>) = default;
/**
* @brief Returns the associated allocator.
* @return The associated allocator.
*/
[[nodiscard]] constexpr allocator_type get_allocator() const noexcept {
return sparse.first().get_allocator();
}
/**
* @brief Returns an iterator to the beginning.
*
* The returned iterator points to the first instance of the internal array.
* If the array is empty, the returned iterator will be equal to `end()`.
*
* @return An iterator to the first instance of the internal array.
*/
[[nodiscard]] const_iterator cbegin() const noexcept {
return packed.first().begin();
}
/*! @copydoc cbegin */
[[nodiscard]] const_iterator begin() const noexcept {
return cbegin();
}
/*! @copydoc begin */
[[nodiscard]] iterator begin() noexcept {
return packed.first().begin();
}
/**
* @brief Returns an iterator to the end.
*
* The returned iterator points to the element following the last instance
* of the internal array. Attempting to dereference the returned iterator
* results in undefined behavior.
*
* @return An iterator to the element following the last instance of the
* internal array.
*/
[[nodiscard]] const_iterator cend() const noexcept {
return packed.first().end();
}
/*! @copydoc cend */
[[nodiscard]] const_iterator end() const noexcept {
return cend();
}
/*! @copydoc end */
[[nodiscard]] iterator end() noexcept {
return packed.first().end();
}
/**
* @brief Checks whether a container is empty.
* @return True if the container is empty, false otherwise.
*/
[[nodiscard]] bool empty() const noexcept {
return packed.first().empty();
}
/**
* @brief Returns the number of elements in a container.
* @return Number of elements in a container.
*/
[[nodiscard]] size_type size() const noexcept {
return packed.first().size();
}
/**
* @brief Returns the maximum possible number of elements.
* @return Maximum possible number of elements.
*/
[[nodiscard]] size_type max_size() const noexcept {
return packed.first().max_size();
}
/*! @brief Clears the container. */
void clear() noexcept {
sparse.first().clear();
packed.first().clear();
rehash(0u);
}
/**
* @brief Inserts an element into the container, if the key does not exist.
* @param value A key-value pair eventually convertible to the value type.
* @return A pair consisting of an iterator to the inserted element (or to
* the element that prevented the insertion) and a bool denoting whether the
* insertion took place.
*/
std::pair<iterator, bool> insert(const value_type &value) {
return insert_or_do_nothing(value.first, value.second);
}
/*! @copydoc insert */
std::pair<iterator, bool> insert(value_type &&value) {
return insert_or_do_nothing(std::move(value.first), std::move(value.second));
}
/**
* @copydoc insert
* @tparam Arg Type of the key-value pair to insert into the container.
*/
template<typename Arg>
std::enable_if_t<std::is_constructible_v<value_type, Arg &&>, std::pair<iterator, bool>>
insert(Arg &&value) {
return insert_or_do_nothing(std::forward<Arg>(value).first, std::forward<Arg>(value).second);
}
/**
* @brief Inserts elements into the container, if their keys do not exist.
* @tparam It Type of input iterator.
* @param first An iterator to the first element of the range of elements.
* @param last An iterator past the last element of the range of elements.
*/
template<typename It>
void insert(It first, It last) {
for(; first != last; ++first) {
insert(*first);
}
}
/**
* @brief Inserts an element into the container or assigns to the current
* element if the key already exists.
* @tparam Arg Type of the value to insert or assign.
* @param key A key used both to look up and to insert if not found.
* @param value A value to insert or assign.
* @return A pair consisting of an iterator to the element and a bool
* denoting whether the insertion took place.
*/
template<typename Arg>
std::pair<iterator, bool> insert_or_assign(const key_type &key, Arg &&value) {
return insert_or_overwrite(key, std::forward<Arg>(value));
}
/*! @copydoc insert_or_assign */
template<typename Arg>
std::pair<iterator, bool> insert_or_assign(key_type &&key, Arg &&value) {
return insert_or_overwrite(std::move(key), std::forward<Arg>(value));
}
/**
* @brief Constructs an element in-place, if the key does not exist.
*
* The element is also constructed when the container already has the key,
* in which case the newly constructed object is destroyed immediately.
*
* @tparam Args Types of arguments to forward to the constructor of the
* element.
* @param args Arguments to forward to the constructor of the element.
* @return A pair consisting of an iterator to the inserted element (or to
* the element that prevented the insertion) and a bool denoting whether the
* insertion took place.
*/
template<typename... Args>
std::pair<iterator, bool> emplace([[maybe_unused]] Args &&...args) {
if constexpr(sizeof...(Args) == 0u) {
return insert_or_do_nothing(key_type{});
} else if constexpr(sizeof...(Args) == 1u) {
return insert_or_do_nothing(std::forward<Args>(args).first..., std::forward<Args>(args).second...);
} else if constexpr(sizeof...(Args) == 2u) {
return insert_or_do_nothing(std::forward<Args>(args)...);
} else {
auto &node = packed.first().emplace_back(packed.first().size(), std::forward<Args>(args)...);
const auto index = key_to_bucket(node.element.first);
if(auto it = constrained_find(node.element.first, index); it != end()) {
packed.first().pop_back();
return std::make_pair(it, false);
}
std::swap(node.next, sparse.first()[index]);
rehash_if_required();
return std::make_pair(--end(), true);
}
}
/**
* @brief Inserts in-place if the key does not exist, does nothing if the
* key exists.
* @tparam Args Types of arguments to forward to the constructor of the
* element.
* @param key A key used both to look up and to insert if not found.
* @param args Arguments to forward to the constructor of the element.
* @return A pair consisting of an iterator to the inserted element (or to
* the element that prevented the insertion) and a bool denoting whether the
* insertion took place.
*/
template<typename... Args>
std::pair<iterator, bool> try_emplace(const key_type &key, Args &&...args) {
return insert_or_do_nothing(key, std::forward<Args>(args)...);
}
/*! @copydoc try_emplace */
template<typename... Args>
std::pair<iterator, bool> try_emplace(key_type &&key, Args &&...args) {
return insert_or_do_nothing(std::move(key), std::forward<Args>(args)...);
}
/**
* @brief Removes an element from a given position.
* @param pos An iterator to the element to remove.
* @return An iterator following the removed element.
*/
iterator erase(const_iterator pos) {
const auto diff = pos - cbegin();
erase(pos->first);
return begin() + diff;
}
/**
* @brief Removes the given elements from a container.
* @param first An iterator to the first element of the range of elements.
* @param last An iterator past the last element of the range of elements.
* @return An iterator following the last removed element.
*/
iterator erase(const_iterator first, const_iterator last) {
const auto dist = first - cbegin();
for(auto from = last - cbegin(); from != dist; --from) {
erase(packed.first()[from - 1u].element.first);
}
return (begin() + dist);
}
/**
* @brief Removes the element associated with a given key.
* @param key A key value of an element to remove.
* @return Number of elements removed (either 0 or 1).
*/
size_type erase(const key_type &key) {
for(size_type *curr = sparse.first().data() + key_to_bucket(key); *curr != (std::numeric_limits<size_type>::max)(); curr = &packed.first()[*curr].next) {
if(packed.second()(packed.first()[*curr].element.first, key)) {
const auto index = *curr;
*curr = packed.first()[*curr].next;
move_and_pop(index);
return 1u;
}
}
return 0u;
}
/**
* @brief Exchanges the contents with those of a given container.
* @param other Container to exchange the content with.
*/
void swap(dense_map &other) {
using std::swap;
swap(sparse, other.sparse);
swap(packed, other.packed);
swap(threshold, other.threshold);
}
/**
* @brief Accesses a given element with bounds checking.
* @param key A key of an element to find.
* @return A reference to the mapped value of the requested element.
*/
[[nodiscard]] mapped_type &at(const key_type &key) {
auto it = find(key);
ENTT_ASSERT(it != end(), "Invalid key");
return it->second;
}
/*! @copydoc at */
[[nodiscard]] const mapped_type &at(const key_type &key) const {
auto it = find(key);
ENTT_ASSERT(it != cend(), "Invalid key");
return it->second;
}
/**
* @brief Accesses or inserts a given element.
* @param key A key of an element to find or insert.
* @return A reference to the mapped value of the requested element.
*/
[[nodiscard]] mapped_type &operator[](const key_type &key) {
return insert_or_do_nothing(key).first->second;
}
/**
* @brief Accesses or inserts a given element.
* @param key A key of an element to find or insert.
* @return A reference to the mapped value of the requested element.
*/
[[nodiscard]] mapped_type &operator[](key_type &&key) {
return insert_or_do_nothing(std::move(key)).first->second;
}
/**
* @brief Returns the number of elements matching a key (either 1 or 0).
* @param key Key value of an element to search for.
* @return Number of elements matching the key (either 1 or 0).
*/
[[nodiscard]] size_type count(const key_type &key) const {
return find(key) != end();
}
/**
* @brief Returns the number of elements matching a key (either 1 or 0).
* @tparam Other Type of the key value of an element to search for.
* @param key Key value of an element to search for.
* @return Number of elements matching the key (either 1 or 0).
*/
template<typename Other>
[[nodiscard]] std::enable_if_t<is_transparent_v<hasher> && is_transparent_v<key_equal>, std::conditional_t<false, Other, size_type>>
count(const Other &key) const {
return find(key) != end();
}
/**
* @brief Finds an element with a given key.
* @param key Key value of an element to search for.
* @return An iterator to an element with the given key. If no such element
* is found, a past-the-end iterator is returned.
*/
[[nodiscard]] iterator find(const key_type &key) {
return constrained_find(key, key_to_bucket(key));
}
/*! @copydoc find */
[[nodiscard]] const_iterator find(const key_type &key) const {
return constrained_find(key, key_to_bucket(key));
}
/**
* @brief Finds an element with a key that compares _equivalent_ to a given
* key.
* @tparam Other Type of the key value of an element to search for.
* @param key Key value of an element to search for.
* @return An iterator to an element with the given key. If no such element
* is found, a past-the-end iterator is returned.
*/
template<typename Other>
[[nodiscard]] std::enable_if_t<is_transparent_v<hasher> && is_transparent_v<key_equal>, std::conditional_t<false, Other, iterator>>
find(const Other &key) {
return constrained_find(key, key_to_bucket(key));
}
/*! @copydoc find */
template<typename Other>
[[nodiscard]] std::enable_if_t<is_transparent_v<hasher> && is_transparent_v<key_equal>, std::conditional_t<false, Other, const_iterator>>
find(const Other &key) const {
return constrained_find(key, key_to_bucket(key));
}
/**
* @brief Returns a range containing all elements with a given key.
* @param key Key value of an element to search for.
* @return A pair of iterators pointing to the first element and past the
* last element of the range.
*/
[[nodiscard]] std::pair<iterator, iterator> equal_range(const key_type &key) {
const auto it = find(key);
return {it, it + !(it == end())};
}
/*! @copydoc equal_range */
[[nodiscard]] std::pair<const_iterator, const_iterator> equal_range(const key_type &key) const {
const auto it = find(key);
return {it, it + !(it == cend())};
}
/**
* @brief Returns a range containing all elements that compare _equivalent_
* to a given key.
* @tparam Other Type of an element to search for.
* @param key Key value of an element to search for.
* @return A pair of iterators pointing to the first element and past the
* last element of the range.
*/
template<typename Other>
[[nodiscard]] std::enable_if_t<is_transparent_v<hasher> && is_transparent_v<key_equal>, std::conditional_t<false, Other, std::pair<iterator, iterator>>>
equal_range(const Other &key) {
const auto it = find(key);
return {it, it + !(it == end())};
}
/*! @copydoc equal_range */
template<class Other>
[[nodiscard]] std::enable_if_t<is_transparent_v<hasher> && is_transparent_v<key_equal>, std::conditional_t<false, Other, std::pair<const_iterator, const_iterator>>>
equal_range(const Other &key) const {
const auto it = find(key);
return {it, it + !(it == cend())};
}
/**
* @brief Checks if the container contains an element with a given key.
* @param key Key value of an element to search for.
* @return True if there is such an element, false otherwise.
*/
[[nodiscard]] bool contains(const key_type &key) const {
return (find(key) != cend());
}
/**
* @brief Checks if the container contains an element with a key that
* compares _equivalent_ to a given value.
* @tparam Other Type of the key value of an element to search for.
* @param key Key value of an element to search for.
* @return True if there is such an element, false otherwise.
*/
template<typename Other>
[[nodiscard]] std::enable_if_t<is_transparent_v<hasher> && is_transparent_v<key_equal>, std::conditional_t<false, Other, bool>>
contains(const Other &key) const {
return (find(key) != cend());
}
/**
* @brief Returns an iterator to the beginning of a given bucket.
* @param index An index of a bucket to access.
* @return An iterator to the beginning of the given bucket.
*/
[[nodiscard]] const_local_iterator cbegin(const size_type index) const {
return {packed.first().begin(), sparse.first()[index]};
}
/**
* @brief Returns an iterator to the beginning of a given bucket.
* @param index An index of a bucket to access.
* @return An iterator to the beginning of the given bucket.
*/
[[nodiscard]] const_local_iterator begin(const size_type index) const {
return cbegin(index);
}
/**
* @brief Returns an iterator to the beginning of a given bucket.
* @param index An index of a bucket to access.
* @return An iterator to the beginning of the given bucket.
*/
[[nodiscard]] local_iterator begin(const size_type index) {
return {packed.first().begin(), sparse.first()[index]};
}
/**
* @brief Returns an iterator to the end of a given bucket.
* @param index An index of a bucket to access.
* @return An iterator to the end of the given bucket.
*/
[[nodiscard]] const_local_iterator cend([[maybe_unused]] const size_type index) const {
return {packed.first().begin(), (std::numeric_limits<size_type>::max)()};
}
/**
* @brief Returns an iterator to the end of a given bucket.
* @param index An index of a bucket to access.
* @return An iterator to the end of the given bucket.
*/
[[nodiscard]] const_local_iterator end(const size_type index) const {
return cend(index);
}
/**
* @brief Returns an iterator to the end of a given bucket.
* @param index An index of a bucket to access.
* @return An iterator to the end of the given bucket.
*/
[[nodiscard]] local_iterator end([[maybe_unused]] const size_type index) {
return {packed.first().begin(), (std::numeric_limits<size_type>::max)()};
}
/**
* @brief Returns the number of buckets.
* @return The number of buckets.
*/
[[nodiscard]] size_type bucket_count() const {
return sparse.first().size();
}
/**
* @brief Returns the maximum number of buckets.
* @return The maximum number of buckets.
*/
[[nodiscard]] size_type max_bucket_count() const {
return sparse.first().max_size();
}
/**
* @brief Returns the number of elements in a given bucket.
* @param index The index of the bucket to examine.
* @return The number of elements in the given bucket.
*/
[[nodiscard]] size_type bucket_size(const size_type index) const {
return static_cast<size_type>(std::distance(begin(index), end(index)));
}
/**
* @brief Returns the bucket for a given key.
* @param key The value of the key to examine.
* @return The bucket for the given key.
*/
[[nodiscard]] size_type bucket(const key_type &key) const {
return key_to_bucket(key);
}
/**
* @brief Returns the average number of elements per bucket.
* @return The average number of elements per bucket.
*/
[[nodiscard]] float load_factor() const {
return size() / static_cast<float>(bucket_count());
}
/**
* @brief Returns the maximum average number of elements per bucket.
* @return The maximum average number of elements per bucket.
*/
[[nodiscard]] float max_load_factor() const {
return threshold;
}
/**
* @brief Sets the desired maximum average number of elements per bucket.
* @param value A desired maximum average number of elements per bucket.
*/
void max_load_factor(const float value) {
ENTT_ASSERT(value > 0.f, "Invalid load factor");
threshold = value;
rehash(0u);
}
/**
* @brief Reserves at least the specified number of buckets and regenerates
* the hash table.
* @param cnt New number of buckets.
*/
void rehash(const size_type cnt) {
auto value = cnt > minimum_capacity ? cnt : minimum_capacity;
const auto cap = static_cast<size_type>(size() / max_load_factor());
value = value > cap ? value : cap;
if(const auto sz = next_power_of_two(value); sz != bucket_count()) {
sparse.first().resize(sz);
for(auto &&elem: sparse.first()) {
elem = std::numeric_limits<size_type>::max();
}
for(size_type pos{}, last = size(); pos < last; ++pos) {
const auto index = key_to_bucket(packed.first()[pos].element.first);
packed.first()[pos].next = std::exchange(sparse.first()[index], pos);
}
}
}
/**
* @brief Reserves space for at least the specified number of elements and
* regenerates the hash table.
* @param cnt New number of elements.
*/
void reserve(const size_type cnt) {
packed.first().reserve(cnt);
rehash(static_cast<size_type>(std::ceil(cnt / max_load_factor())));
}
/**
* @brief Returns the function used to hash the keys.
* @return The function used to hash the keys.
*/
[[nodiscard]] hasher hash_function() const {
return sparse.second();
}
/**
* @brief Returns the function used to compare keys for equality.
* @return The function used to compare keys for equality.
*/
[[nodiscard]] key_equal key_eq() const {
return packed.second();
}
private:
compressed_pair<sparse_container_type, hasher> sparse;
compressed_pair<packed_container_type, key_equal> packed;
float threshold;
};
} // namespace entt
/**
* @cond TURN_OFF_DOXYGEN
* Internal details not to be documented.
*/
namespace std {
template<typename Key, typename Value, typename Allocator>
struct uses_allocator<entt::internal::dense_map_node<Key, Value>, Allocator>
: std::true_type {};
} // namespace std
/**
* Internal details not to be documented.
* @endcond
*/
#endif
// #include "../core/compressed_pair.hpp"
#ifndef ENTT_CORE_COMPRESSED_PAIR_HPP
#define ENTT_CORE_COMPRESSED_PAIR_HPP
#include <cstddef>
#include <tuple>
#include <type_traits>
#include <utility>
// #include "type_traits.hpp"
#ifndef ENTT_CORE_TYPE_TRAITS_HPP
#define ENTT_CORE_TYPE_TRAITS_HPP
#include <cstddef>
#include <iterator>
#include <type_traits>
#include <utility>
// #include "../config/config.h"
#ifndef ENTT_CONFIG_CONFIG_H
#define ENTT_CONFIG_CONFIG_H
// #include "version.h"
#ifndef ENTT_CONFIG_VERSION_H
#define ENTT_CONFIG_VERSION_H
// #include "macro.h"
#ifndef ENTT_CONFIG_MACRO_H
#define ENTT_CONFIG_MACRO_H
#define ENTT_STR(arg) #arg
#define ENTT_XSTR(arg) ENTT_STR(arg)
#endif
#define ENTT_VERSION_MAJOR 3
#define ENTT_VERSION_MINOR 11
#define ENTT_VERSION_PATCH 1
#define ENTT_VERSION \
ENTT_XSTR(ENTT_VERSION_MAJOR) \
"." ENTT_XSTR(ENTT_VERSION_MINOR) "." ENTT_XSTR(ENTT_VERSION_PATCH)
#endif
#if defined(__cpp_exceptions) && !defined(ENTT_NOEXCEPTION)
# define ENTT_CONSTEXPR
# define ENTT_THROW throw
# define ENTT_TRY try
# define ENTT_CATCH catch(...)
#else
# define ENTT_CONSTEXPR constexpr // use only with throwing functions (waiting for C++20)
# define ENTT_THROW
# define ENTT_TRY if(true)
# define ENTT_CATCH if(false)
#endif
#ifdef ENTT_USE_ATOMIC
# include <atomic>
# define ENTT_MAYBE_ATOMIC(Type) std::atomic<Type>
#else
# define ENTT_MAYBE_ATOMIC(Type) Type
#endif
#ifndef ENTT_ID_TYPE
# include <cstdint>
# define ENTT_ID_TYPE std::uint32_t
#endif
#ifndef ENTT_SPARSE_PAGE
# define ENTT_SPARSE_PAGE 4096
#endif
#ifndef ENTT_PACKED_PAGE
# define ENTT_PACKED_PAGE 1024
#endif
#ifdef ENTT_DISABLE_ASSERT
# undef ENTT_ASSERT
# define ENTT_ASSERT(condition, msg) (void(0))
#elif !defined ENTT_ASSERT
# include <cassert>
# define ENTT_ASSERT(condition, msg) assert(condition)
#endif
#ifdef ENTT_DISABLE_ASSERT
# undef ENTT_ASSERT_CONSTEXPR
# define ENTT_ASSERT_CONSTEXPR(condition, msg) (void(0))
#elif !defined ENTT_ASSERT_CONSTEXPR
# define ENTT_ASSERT_CONSTEXPR(condition, msg) ENTT_ASSERT(condition, msg)
#endif
#ifdef ENTT_NO_ETO
# define ENTT_ETO_TYPE(Type) void
#else
# define ENTT_ETO_TYPE(Type) Type
#endif
#ifdef ENTT_STANDARD_CPP
# define ENTT_NONSTD false
#else
# define ENTT_NONSTD true
# if defined __clang__ || defined __GNUC__
# define ENTT_PRETTY_FUNCTION __PRETTY_FUNCTION__
# define ENTT_PRETTY_FUNCTION_PREFIX '='
# define ENTT_PRETTY_FUNCTION_SUFFIX ']'
# elif defined _MSC_VER
# define ENTT_PRETTY_FUNCTION __FUNCSIG__
# define ENTT_PRETTY_FUNCTION_PREFIX '<'
# define ENTT_PRETTY_FUNCTION_SUFFIX '>'
# endif
#endif
#if defined _MSC_VER
# pragma detect_mismatch("entt.version", ENTT_VERSION)
# pragma detect_mismatch("entt.noexcept", ENTT_XSTR(ENTT_TRY))
# pragma detect_mismatch("entt.id", ENTT_XSTR(ENTT_ID_TYPE))
# pragma detect_mismatch("entt.nonstd", ENTT_XSTR(ENTT_NONSTD))
#endif
#endif
// #include "fwd.hpp"
#ifndef ENTT_CORE_FWD_HPP
#define ENTT_CORE_FWD_HPP
#include <cstddef>
// #include "../config/config.h"
namespace entt {
template<std::size_t Len = sizeof(double[2]), std::size_t = alignof(double[2])>
class basic_any;
/*! @brief Alias declaration for type identifiers. */
using id_type = ENTT_ID_TYPE;
/*! @brief Alias declaration for the most common use case. */
using any = basic_any<>;
} // namespace entt
#endif
namespace entt {
/**
* @brief Utility class to disambiguate overloaded functions.
* @tparam N Number of choices available.
*/
template<std::size_t N>
struct choice_t
// Unfortunately, doxygen cannot parse such a construct.
: /*! @cond TURN_OFF_DOXYGEN */ choice_t<N - 1> /*! @endcond */
{};
/*! @copybrief choice_t */
template<>
struct choice_t<0> {};
/**
* @brief Variable template for the choice trick.
* @tparam N Number of choices available.
*/
template<std::size_t N>
inline constexpr choice_t<N> choice{};
/**
* @brief Identity type trait.
*
* Useful to establish non-deduced contexts in template argument deduction
* (waiting for C++20) or to provide types through function arguments.
*
* @tparam Type A type.
*/
template<typename Type>
struct type_identity {
/*! @brief Identity type. */
using type = Type;
};
/**
* @brief Helper type.
* @tparam Type A type.
*/
template<typename Type>
using type_identity_t = typename type_identity<Type>::type;
/**
* @brief A type-only `sizeof` wrapper that returns 0 where `sizeof` complains.
* @tparam Type The type of which to return the size.
* @tparam The size of the type if `sizeof` accepts it, 0 otherwise.
*/
template<typename Type, typename = void>
struct size_of: std::integral_constant<std::size_t, 0u> {};
/*! @copydoc size_of */
template<typename Type>
struct size_of<Type, std::void_t<decltype(sizeof(Type))>>
: std::integral_constant<std::size_t, sizeof(Type)> {};
/**
* @brief Helper variable template.
* @tparam Type The type of which to return the size.
*/
template<typename Type>
inline constexpr std::size_t size_of_v = size_of<Type>::value;
/**
* @brief Using declaration to be used to _repeat_ the same type a number of
* times equal to the size of a given parameter pack.
* @tparam Type A type to repeat.
*/
template<typename Type, typename>
using unpack_as_type = Type;
/**
* @brief Helper variable template to be used to _repeat_ the same value a
* number of times equal to the size of a given parameter pack.
* @tparam Value A value to repeat.
*/
template<auto Value, typename>
inline constexpr auto unpack_as_value = Value;
/**
* @brief Wraps a static constant.
* @tparam Value A static constant.
*/
template<auto Value>
using integral_constant = std::integral_constant<decltype(Value), Value>;
/**
* @brief Alias template to facilitate the creation of named values.
* @tparam Value A constant value at least convertible to `id_type`.
*/
template<id_type Value>
using tag = integral_constant<Value>;
/**
* @brief A class to use to push around lists of types, nothing more.
* @tparam Type Types provided by the type list.
*/
template<typename... Type>
struct type_list {
/*! @brief Type list type. */
using type = type_list;
/*! @brief Compile-time number of elements in the type list. */
static constexpr auto size = sizeof...(Type);
};
/*! @brief Primary template isn't defined on purpose. */
template<std::size_t, typename>
struct type_list_element;
/**
* @brief Provides compile-time indexed access to the types of a type list.
* @tparam Index Index of the type to return.
* @tparam First First type provided by the type list.
* @tparam Other Other types provided by the type list.
*/
template<std::size_t Index, typename First, typename... Other>
struct type_list_element<Index, type_list<First, Other...>>
: type_list_element<Index - 1u, type_list<Other...>> {};
/**
* @brief Provides compile-time indexed access to the types of a type list.
* @tparam First First type provided by the type list.
* @tparam Other Other types provided by the type list.
*/
template<typename First, typename... Other>
struct type_list_element<0u, type_list<First, Other...>> {
/*! @brief Searched type. */
using type = First;
};
/**
* @brief Helper type.
* @tparam Index Index of the type to return.
* @tparam List Type list to search into.
*/
template<std::size_t Index, typename List>
using type_list_element_t = typename type_list_element<Index, List>::type;
/*! @brief Primary template isn't defined on purpose. */
template<typename, typename>
struct type_list_index;
/**
* @brief Provides compile-time type access to the types of a type list.
* @tparam Type Type to look for and for which to return the index.
* @tparam First First type provided by the type list.
* @tparam Other Other types provided by the type list.
*/
template<typename Type, typename First, typename... Other>
struct type_list_index<Type, type_list<First, Other...>> {
/*! @brief Unsigned integer type. */
using value_type = std::size_t;
/*! @brief Compile-time position of the given type in the sublist. */
static constexpr value_type value = 1u + type_list_index<Type, type_list<Other...>>::value;
};
/**
* @brief Provides compile-time type access to the types of a type list.
* @tparam Type Type to look for and for which to return the index.
* @tparam Other Other types provided by the type list.
*/
template<typename Type, typename... Other>
struct type_list_index<Type, type_list<Type, Other...>> {
static_assert(type_list_index<Type, type_list<Other...>>::value == sizeof...(Other), "Non-unique type");
/*! @brief Unsigned integer type. */
using value_type = std::size_t;
/*! @brief Compile-time position of the given type in the sublist. */
static constexpr value_type value = 0u;
};
/**
* @brief Provides compile-time type access to the types of a type list.
* @tparam Type Type to look for and for which to return the index.
*/
template<typename Type>
struct type_list_index<Type, type_list<>> {
/*! @brief Unsigned integer type. */
using value_type = std::size_t;
/*! @brief Compile-time position of the given type in the sublist. */
static constexpr value_type value = 0u;
};
/**
* @brief Helper variable template.
* @tparam List Type list.
* @tparam Type Type to look for and for which to return the index.
*/
template<typename Type, typename List>
inline constexpr std::size_t type_list_index_v = type_list_index<Type, List>::value;
/**
* @brief Concatenates multiple type lists.
* @tparam Type Types provided by the first type list.
* @tparam Other Types provided by the second type list.
* @return A type list composed by the types of both the type lists.
*/
template<typename... Type, typename... Other>
constexpr type_list<Type..., Other...> operator+(type_list<Type...>, type_list<Other...>) {
return {};
}
/*! @brief Primary template isn't defined on purpose. */
template<typename...>
struct type_list_cat;
/*! @brief Concatenates multiple type lists. */
template<>
struct type_list_cat<> {
/*! @brief A type list composed by the types of all the type lists. */
using type = type_list<>;
};
/**
* @brief Concatenates multiple type lists.
* @tparam Type Types provided by the first type list.
* @tparam Other Types provided by the second type list.
* @tparam List Other type lists, if any.
*/
template<typename... Type, typename... Other, typename... List>
struct type_list_cat<type_list<Type...>, type_list<Other...>, List...> {
/*! @brief A type list composed by the types of all the type lists. */
using type = typename type_list_cat<type_list<Type..., Other...>, List...>::type;
};
/**
* @brief Concatenates multiple type lists.
* @tparam Type Types provided by the type list.
*/
template<typename... Type>
struct type_list_cat<type_list<Type...>> {
/*! @brief A type list composed by the types of all the type lists. */
using type = type_list<Type...>;
};
/**
* @brief Helper type.
* @tparam List Type lists to concatenate.
*/
template<typename... List>
using type_list_cat_t = typename type_list_cat<List...>::type;
/*! @brief Primary template isn't defined on purpose. */
template<typename>
struct type_list_unique;
/**
* @brief Removes duplicates types from a type list.
* @tparam Type One of the types provided by the given type list.
* @tparam Other The other types provided by the given type list.
*/
template<typename Type, typename... Other>
struct type_list_unique<type_list<Type, Other...>> {
/*! @brief A type list without duplicate types. */
using type = std::conditional_t<
(std::is_same_v<Type, Other> || ...),
typename type_list_unique<type_list<Other...>>::type,
type_list_cat_t<type_list<Type>, typename type_list_unique<type_list<Other...>>::type>>;
};
/*! @brief Removes duplicates types from a type list. */
template<>
struct type_list_unique<type_list<>> {
/*! @brief A type list without duplicate types. */
using type = type_list<>;
};
/**
* @brief Helper type.
* @tparam Type A type list.
*/
template<typename Type>
using type_list_unique_t = typename type_list_unique<Type>::type;
/**
* @brief Provides the member constant `value` to true if a type list contains a
* given type, false otherwise.
* @tparam List Type list.
* @tparam Type Type to look for.
*/
template<typename List, typename Type>
struct type_list_contains;
/**
* @copybrief type_list_contains
* @tparam Type Types provided by the type list.
* @tparam Other Type to look for.
*/
template<typename... Type, typename Other>
struct type_list_contains<type_list<Type...>, Other>: std::disjunction<std::is_same<Type, Other>...> {};
/**
* @brief Helper variable template.
* @tparam List Type list.
* @tparam Type Type to look for.
*/
template<typename List, typename Type>
inline constexpr bool type_list_contains_v = type_list_contains<List, Type>::value;
/*! @brief Primary template isn't defined on purpose. */
template<typename...>
struct type_list_diff;
/**
* @brief Computes the difference between two type lists.
* @tparam Type Types provided by the first type list.
* @tparam Other Types provided by the second type list.
*/
template<typename... Type, typename... Other>
struct type_list_diff<type_list<Type...>, type_list<Other...>> {
/*! @brief A type list that is the difference between the two type lists. */
using type = type_list_cat_t<std::conditional_t<type_list_contains_v<type_list<Other...>, Type>, type_list<>, type_list<Type>>...>;
};
/**
* @brief Helper type.
* @tparam List Type lists between which to compute the difference.
*/
template<typename... List>
using type_list_diff_t = typename type_list_diff<List...>::type;
/*! @brief Primary template isn't defined on purpose. */
template<typename, template<typename...> class>
struct type_list_transform;
/**
* @brief Applies a given _function_ to a type list and generate a new list.
* @tparam Type Types provided by the type list.
* @tparam Op Unary operation as template class with a type member named `type`.
*/
template<typename... Type, template<typename...> class Op>
struct type_list_transform<type_list<Type...>, Op> {
/*! @brief Resulting type list after applying the transform function. */
using type = type_list<typename Op<Type>::type...>;
};
/**
* @brief Helper type.
* @tparam List Type list.
* @tparam Op Unary operation as template class with a type member named `type`.
*/
template<typename List, template<typename...> class Op>
using type_list_transform_t = typename type_list_transform<List, Op>::type;
/**
* @brief A class to use to push around lists of constant values, nothing more.
* @tparam Value Values provided by the value list.
*/
template<auto... Value>
struct value_list {
/*! @brief Value list type. */
using type = value_list;
/*! @brief Compile-time number of elements in the value list. */
static constexpr auto size = sizeof...(Value);
};
/*! @brief Primary template isn't defined on purpose. */
template<std::size_t, typename>
struct value_list_element;
/**
* @brief Provides compile-time indexed access to the values of a value list.
* @tparam Index Index of the value to return.
* @tparam Value First value provided by the value list.
* @tparam Other Other values provided by the value list.
*/
template<std::size_t Index, auto Value, auto... Other>
struct value_list_element<Index, value_list<Value, Other...>>
: value_list_element<Index - 1u, value_list<Other...>> {};
/**
* @brief Provides compile-time indexed access to the types of a type list.
* @tparam Value First value provided by the value list.
* @tparam Other Other values provided by the value list.
*/
template<auto Value, auto... Other>
struct value_list_element<0u, value_list<Value, Other...>> {
/*! @brief Searched value. */
static constexpr auto value = Value;
};
/**
* @brief Helper type.
* @tparam Index Index of the value to return.
* @tparam List Value list to search into.
*/
template<std::size_t Index, typename List>
inline constexpr auto value_list_element_v = value_list_element<Index, List>::value;
/**
* @brief Concatenates multiple value lists.
* @tparam Value Values provided by the first value list.
* @tparam Other Values provided by the second value list.
* @return A value list composed by the values of both the value lists.
*/
template<auto... Value, auto... Other>
constexpr value_list<Value..., Other...> operator+(value_list<Value...>, value_list<Other...>) {
return {};
}
/*! @brief Primary template isn't defined on purpose. */
template<typename...>
struct value_list_cat;
/*! @brief Concatenates multiple value lists. */
template<>
struct value_list_cat<> {
/*! @brief A value list composed by the values of all the value lists. */
using type = value_list<>;
};
/**
* @brief Concatenates multiple value lists.
* @tparam Value Values provided by the first value list.
* @tparam Other Values provided by the second value list.
* @tparam List Other value lists, if any.
*/
template<auto... Value, auto... Other, typename... List>
struct value_list_cat<value_list<Value...>, value_list<Other...>, List...> {
/*! @brief A value list composed by the values of all the value lists. */
using type = typename value_list_cat<value_list<Value..., Other...>, List...>::type;
};
/**
* @brief Concatenates multiple value lists.
* @tparam Value Values provided by the value list.
*/
template<auto... Value>
struct value_list_cat<value_list<Value...>> {
/*! @brief A value list composed by the values of all the value lists. */
using type = value_list<Value...>;
};
/**
* @brief Helper type.
* @tparam List Value lists to concatenate.
*/
template<typename... List>
using value_list_cat_t = typename value_list_cat<List...>::type;
/*! @brief Same as std::is_invocable, but with tuples. */
template<typename, typename>
struct is_applicable: std::false_type {};
/**
* @copybrief is_applicable
* @tparam Func A valid function type.
* @tparam Tuple Tuple-like type.
* @tparam Args The list of arguments to use to probe the function type.
*/
template<typename Func, template<typename...> class Tuple, typename... Args>
struct is_applicable<Func, Tuple<Args...>>: std::is_invocable<Func, Args...> {};
/**
* @copybrief is_applicable
* @tparam Func A valid function type.
* @tparam Tuple Tuple-like type.
* @tparam Args The list of arguments to use to probe the function type.
*/
template<typename Func, template<typename...> class Tuple, typename... Args>
struct is_applicable<Func, const Tuple<Args...>>: std::is_invocable<Func, Args...> {};
/**
* @brief Helper variable template.
* @tparam Func A valid function type.
* @tparam Args The list of arguments to use to probe the function type.
*/
template<typename Func, typename Args>
inline constexpr bool is_applicable_v = is_applicable<Func, Args>::value;
/*! @brief Same as std::is_invocable_r, but with tuples for arguments. */
template<typename, typename, typename>
struct is_applicable_r: std::false_type {};
/**
* @copybrief is_applicable_r
* @tparam Ret The type to which the return type of the function should be
* convertible.
* @tparam Func A valid function type.
* @tparam Args The list of arguments to use to probe the function type.
*/
template<typename Ret, typename Func, typename... Args>
struct is_applicable_r<Ret, Func, std::tuple<Args...>>: std::is_invocable_r<Ret, Func, Args...> {};
/**
* @brief Helper variable template.
* @tparam Ret The type to which the return type of the function should be
* convertible.
* @tparam Func A valid function type.
* @tparam Args The list of arguments to use to probe the function type.
*/
template<typename Ret, typename Func, typename Args>
inline constexpr bool is_applicable_r_v = is_applicable_r<Ret, Func, Args>::value;
/**
* @brief Provides the member constant `value` to true if a given type is
* complete, false otherwise.
* @tparam Type The type to test.
*/
template<typename Type, typename = void>
struct is_complete: std::false_type {};
/*! @copydoc is_complete */
template<typename Type>
struct is_complete<Type, std::void_t<decltype(sizeof(Type))>>: std::true_type {};
/**
* @brief Helper variable template.
* @tparam Type The type to test.
*/
template<typename Type>
inline constexpr bool is_complete_v = is_complete<Type>::value;
/**
* @brief Provides the member constant `value` to true if a given type is an
* iterator, false otherwise.
* @tparam Type The type to test.
*/
template<typename Type, typename = void>
struct is_iterator: std::false_type {};
/**
* @cond TURN_OFF_DOXYGEN
* Internal details not to be documented.
*/
namespace internal {
template<typename, typename = void>
struct has_iterator_category: std::false_type {};
template<typename Type>
struct has_iterator_category<Type, std::void_t<typename std::iterator_traits<Type>::iterator_category>>: std::true_type {};
} // namespace internal
/**
* Internal details not to be documented.
* @endcond
*/
/*! @copydoc is_iterator */
template<typename Type>
struct is_iterator<Type, std::enable_if_t<!std::is_same_v<std::remove_cv_t<std::remove_pointer_t<Type>>, void>>>
: internal::has_iterator_category<Type> {};
/**
* @brief Helper variable template.
* @tparam Type The type to test.
*/
template<typename Type>
inline constexpr bool is_iterator_v = is_iterator<Type>::value;
/**
* @brief Provides the member constant `value` to true if a given type is both
* an empty and non-final class, false otherwise.
* @tparam Type The type to test
*/
template<typename Type>
struct is_ebco_eligible
: std::conjunction<std::is_empty<Type>, std::negation<std::is_final<Type>>> {};
/**
* @brief Helper variable template.
* @tparam Type The type to test.
*/
template<typename Type>
inline constexpr bool is_ebco_eligible_v = is_ebco_eligible<Type>::value;
/**
* @brief Provides the member constant `value` to true if `Type::is_transparent`
* is valid and denotes a type, false otherwise.
* @tparam Type The type to test.
*/
template<typename Type, typename = void>
struct is_transparent: std::false_type {};
/*! @copydoc is_transparent */
template<typename Type>
struct is_transparent<Type, std::void_t<typename Type::is_transparent>>: std::true_type {};
/**
* @brief Helper variable template.
* @tparam Type The type to test.
*/
template<typename Type>
inline constexpr bool is_transparent_v = is_transparent<Type>::value;
/**
* @brief Provides the member constant `value` to true if a given type is
* equality comparable, false otherwise.
* @tparam Type The type to test.
*/
template<typename Type, typename = void>
struct is_equality_comparable: std::false_type {};
/**
* @cond TURN_OFF_DOXYGEN
* Internal details not to be documented.
*/
namespace internal {
template<typename, typename = void>
struct has_tuple_size_value: std::false_type {};
template<typename Type>
struct has_tuple_size_value<Type, std::void_t<decltype(std::tuple_size<const Type>::value)>>: std::true_type {};
template<typename Type, std::size_t... Index>
[[nodiscard]] constexpr bool unpack_maybe_equality_comparable(std::index_sequence<Index...>) {
return (is_equality_comparable<std::tuple_element_t<Index, Type>>::value && ...);
}
template<typename>
[[nodiscard]] constexpr bool maybe_equality_comparable(choice_t<0>) {
return true;
}
template<typename Type>
[[nodiscard]] constexpr auto maybe_equality_comparable(choice_t<1>) -> decltype(std::declval<typename Type::value_type>(), bool{}) {
if constexpr(is_iterator_v<Type>) {
return true;
} else if constexpr(std::is_same_v<typename Type::value_type, Type>) {
return maybe_equality_comparable<Type>(choice<0>);
} else {
return is_equality_comparable<typename Type::value_type>::value;
}
}
template<typename Type>
[[nodiscard]] constexpr std::enable_if_t<is_complete_v<std::tuple_size<std::remove_cv_t<Type>>>, bool> maybe_equality_comparable(choice_t<2>) {
if constexpr(has_tuple_size_value<Type>::value) {
return unpack_maybe_equality_comparable<Type>(std::make_index_sequence<std::tuple_size<Type>::value>{});
} else {
return maybe_equality_comparable<Type>(choice<1>);
}
}
} // namespace internal
/**
* Internal details not to be documented.
* @endcond
*/
/*! @copydoc is_equality_comparable */
template<typename Type>
struct is_equality_comparable<Type, std::void_t<decltype(std::declval<Type>() == std::declval<Type>())>>
: std::bool_constant<internal::maybe_equality_comparable<Type>(choice<2>)> {};
/**
* @brief Helper variable template.
* @tparam Type The type to test.
*/
template<typename Type>
inline constexpr bool is_equality_comparable_v = is_equality_comparable<Type>::value;
/**
* @brief Transcribes the constness of a type to another type.
* @tparam To The type to which to transcribe the constness.
* @tparam From The type from which to transcribe the constness.
*/
template<typename To, typename From>
struct constness_as {
/*! @brief The type resulting from the transcription of the constness. */
using type = std::remove_const_t<To>;
};
/*! @copydoc constness_as */
template<typename To, typename From>
struct constness_as<To, const From> {
/*! @brief The type resulting from the transcription of the constness. */
using type = const To;
};
/**
* @brief Alias template to facilitate the transcription of the constness.
* @tparam To The type to which to transcribe the constness.
* @tparam From The type from which to transcribe the constness.
*/
template<typename To, typename From>
using constness_as_t = typename constness_as<To, From>::type;
/**
* @brief Extracts the class of a non-static member object or function.
* @tparam Member A pointer to a non-static member object or function.
*/
template<typename Member>
class member_class {
static_assert(std::is_member_pointer_v<Member>, "Invalid pointer type to non-static member object or function");
template<typename Class, typename Ret, typename... Args>
static Class *clazz(Ret (Class::*)(Args...));
template<typename Class, typename Ret, typename... Args>
static Class *clazz(Ret (Class::*)(Args...) const);
template<typename Class, typename Type>
static Class *clazz(Type Class::*);
public:
/*! @brief The class of the given non-static member object or function. */
using type = std::remove_pointer_t<decltype(clazz(std::declval<Member>()))>;
};
/**
* @brief Helper type.
* @tparam Member A pointer to a non-static member object or function.
*/
template<typename Member>
using member_class_t = typename member_class<Member>::type;
/**
* @brief Extracts the n-th argument of a given function or member function.
* @tparam Index The index of the argument to extract.
* @tparam Candidate A valid function, member function or data member.
*/
template<std::size_t Index, auto Candidate>
class nth_argument {
template<typename Ret, typename... Args>
static constexpr type_list<Args...> pick_up(Ret (*)(Args...));
template<typename Ret, typename Class, typename... Args>
static constexpr type_list<Args...> pick_up(Ret (Class ::*)(Args...));
template<typename Ret, typename Class, typename... Args>
static constexpr type_list<Args...> pick_up(Ret (Class ::*)(Args...) const);
template<typename Type, typename Class>
static constexpr type_list<Type> pick_up(Type Class ::*);
public:
/*! @brief N-th argument of the given function or member function. */
using type = type_list_element_t<Index, decltype(pick_up(Candidate))>;
};
/**
* @brief Helper type.
* @tparam Index The index of the argument to extract.
* @tparam Candidate A valid function, member function or data member.
*/
template<std::size_t Index, auto Candidate>
using nth_argument_t = typename nth_argument<Index, Candidate>::type;
} // namespace entt
#endif
namespace entt {
/**
* @cond TURN_OFF_DOXYGEN
* Internal details not to be documented.
*/
namespace internal {
template<typename Type, std::size_t, typename = void>
struct compressed_pair_element {
using reference = Type &;
using const_reference = const Type &;
template<bool Dummy = true, typename = std::enable_if_t<Dummy && std::is_default_constructible_v<Type>>>
constexpr compressed_pair_element() noexcept(std::is_nothrow_default_constructible_v<Type>)
: value{} {}
template<typename Arg, typename = std::enable_if_t<!std::is_same_v<std::remove_cv_t<std::remove_reference_t<Arg>>, compressed_pair_element>>>
constexpr compressed_pair_element(Arg &&arg) noexcept(std::is_nothrow_constructible_v<Type, Arg>)
: value{std::forward<Arg>(arg)} {}
template<typename... Args, std::size_t... Index>
constexpr compressed_pair_element(std::tuple<Args...> args, std::index_sequence<Index...>) noexcept(std::is_nothrow_constructible_v<Type, Args...>)
: value{std::forward<Args>(std::get<Index>(args))...} {}
[[nodiscard]] constexpr reference get() noexcept {
return value;
}
[[nodiscard]] constexpr const_reference get() const noexcept {
return value;
}
private:
Type value;
};
template<typename Type, std::size_t Tag>
struct compressed_pair_element<Type, Tag, std::enable_if_t<is_ebco_eligible_v<Type>>>: Type {
using reference = Type &;
using const_reference = const Type &;
using base_type = Type;
template<bool Dummy = true, typename = std::enable_if_t<Dummy && std::is_default_constructible_v<base_type>>>
constexpr compressed_pair_element() noexcept(std::is_nothrow_default_constructible_v<base_type>)
: base_type{} {}
template<typename Arg, typename = std::enable_if_t<!std::is_same_v<std::remove_cv_t<std::remove_reference_t<Arg>>, compressed_pair_element>>>
constexpr compressed_pair_element(Arg &&arg) noexcept(std::is_nothrow_constructible_v<base_type, Arg>)
: base_type{std::forward<Arg>(arg)} {}
template<typename... Args, std::size_t... Index>
constexpr compressed_pair_element(std::tuple<Args...> args, std::index_sequence<Index...>) noexcept(std::is_nothrow_constructible_v<base_type, Args...>)
: base_type{std::forward<Args>(std::get<Index>(args))...} {}
[[nodiscard]] constexpr reference get() noexcept {
return *this;
}
[[nodiscard]] constexpr const_reference get() const noexcept {
return *this;
}
};
} // namespace internal
/**
* Internal details not to be documented.
* @endcond
*/
/**
* @brief A compressed pair.
*
* A pair that exploits the _Empty Base Class Optimization_ (or _EBCO_) to
* reduce its final size to a minimum.
*
* @tparam First The type of the first element that the pair stores.
* @tparam Second The type of the second element that the pair stores.
*/
template<typename First, typename Second>
class compressed_pair final
: internal::compressed_pair_element<First, 0u>,
internal::compressed_pair_element<Second, 1u> {
using first_base = internal::compressed_pair_element<First, 0u>;
using second_base = internal::compressed_pair_element<Second, 1u>;
public:
/*! @brief The type of the first element that the pair stores. */
using first_type = First;
/*! @brief The type of the second element that the pair stores. */
using second_type = Second;
/**
* @brief Default constructor, conditionally enabled.
*
* This constructor is only available when the types that the pair stores
* are both at least default constructible.
*
* @tparam Dummy Dummy template parameter used for internal purposes.
*/
template<bool Dummy = true, typename = std::enable_if_t<Dummy && std::is_default_constructible_v<first_type> && std::is_default_constructible_v<second_type>>>
constexpr compressed_pair() noexcept(std::is_nothrow_default_constructible_v<first_base> &&std::is_nothrow_default_constructible_v<second_base>)
: first_base{},
second_base{} {}
/**
* @brief Copy constructor.
* @param other The instance to copy from.
*/
constexpr compressed_pair(const compressed_pair &other) noexcept(std::is_nothrow_copy_constructible_v<first_base> &&std::is_nothrow_copy_constructible_v<second_base>) = default;
/**
* @brief Move constructor.
* @param other The instance to move from.
*/
constexpr compressed_pair(compressed_pair &&other) noexcept(std::is_nothrow_move_constructible_v<first_base> &&std::is_nothrow_move_constructible_v<second_base>) = default;
/**
* @brief Constructs a pair from its values.
* @tparam Arg Type of value to use to initialize the first element.
* @tparam Other Type of value to use to initialize the second element.
* @param arg Value to use to initialize the first element.
* @param other Value to use to initialize the second element.
*/
template<typename Arg, typename Other>
constexpr compressed_pair(Arg &&arg, Other &&other) noexcept(std::is_nothrow_constructible_v<first_base, Arg> &&std::is_nothrow_constructible_v<second_base, Other>)
: first_base{std::forward<Arg>(arg)},
second_base{std::forward<Other>(other)} {}
/**
* @brief Constructs a pair by forwarding the arguments to its parts.
* @tparam Args Types of arguments to use to initialize the first element.
* @tparam Other Types of arguments to use to initialize the second element.
* @param args Arguments to use to initialize the first element.
* @param other Arguments to use to initialize the second element.
*/
template<typename... Args, typename... Other>
constexpr compressed_pair(std::piecewise_construct_t, std::tuple<Args...> args, std::tuple<Other...> other) noexcept(std::is_nothrow_constructible_v<first_base, Args...> &&std::is_nothrow_constructible_v<second_base, Other...>)
: first_base{std::move(args), std::index_sequence_for<Args...>{}},
second_base{std::move(other), std::index_sequence_for<Other...>{}} {}
/**
* @brief Copy assignment operator.
* @param other The instance to copy from.
* @return This compressed pair object.
*/
constexpr compressed_pair &operator=(const compressed_pair &other) noexcept(std::is_nothrow_copy_assignable_v<first_base> &&std::is_nothrow_copy_assignable_v<second_base>) = default;
/**
* @brief Move assignment operator.
* @param other The instance to move from.
* @return This compressed pair object.
*/
constexpr compressed_pair &operator=(compressed_pair &&other) noexcept(std::is_nothrow_move_assignable_v<first_base> &&std::is_nothrow_move_assignable_v<second_base>) = default;
/**
* @brief Returns the first element that a pair stores.
* @return The first element that a pair stores.
*/
[[nodiscard]] constexpr first_type &first() noexcept {
return static_cast<first_base &>(*this).get();
}
/*! @copydoc first */
[[nodiscard]] constexpr const first_type &first() const noexcept {
return static_cast<const first_base &>(*this).get();
}
/**
* @brief Returns the second element that a pair stores.
* @return The second element that a pair stores.
*/
[[nodiscard]] constexpr second_type &second() noexcept {
return static_cast<second_base &>(*this).get();
}
/*! @copydoc second */
[[nodiscard]] constexpr const second_type &second() const noexcept {
return static_cast<const second_base &>(*this).get();
}
/**
* @brief Swaps two compressed pair objects.
* @param other The compressed pair to swap with.
*/
constexpr void swap(compressed_pair &other) noexcept(std::is_nothrow_swappable_v<first_type> &&std::is_nothrow_swappable_v<second_type>) {
using std::swap;
swap(first(), other.first());
swap(second(), other.second());
}
/**
* @brief Extracts an element from the compressed pair.
* @tparam Index An integer value that is either 0 or 1.
* @return Returns a reference to the first element if `Index` is 0 and a
* reference to the second element if `Index` is 1.
*/
template<std::size_t Index>
constexpr decltype(auto) get() noexcept {
if constexpr(Index == 0u) {
return first();
} else {
static_assert(Index == 1u, "Index out of bounds");
return second();
}
}
/*! @copydoc get */
template<std::size_t Index>
constexpr decltype(auto) get() const noexcept {
if constexpr(Index == 0u) {
return first();
} else {
static_assert(Index == 1u, "Index out of bounds");
return second();
}
}
};
/**
* @brief Deduction guide.
* @tparam Type Type of value to use to initialize the first element.
* @tparam Other Type of value to use to initialize the second element.
*/
template<typename Type, typename Other>
compressed_pair(Type &&, Other &&) -> compressed_pair<std::decay_t<Type>, std::decay_t<Other>>;
/**
* @brief Swaps two compressed pair objects.
* @tparam First The type of the first element that the pairs store.
* @tparam Second The type of the second element that the pairs store.
* @param lhs A valid compressed pair object.
* @param rhs A valid compressed pair object.
*/
template<typename First, typename Second>
inline constexpr void swap(compressed_pair<First, Second> &lhs, compressed_pair<First, Second> &rhs) {
lhs.swap(rhs);
}
} // namespace entt
// disable structured binding support for clang 6, it messes when specializing tuple_size
#if !defined __clang_major__ || __clang_major__ > 6
namespace std {
/**
* @brief `std::tuple_size` specialization for `compressed_pair`s.
* @tparam First The type of the first element that the pair stores.
* @tparam Second The type of the second element that the pair stores.
*/
template<typename First, typename Second>
struct tuple_size<entt::compressed_pair<First, Second>>: integral_constant<size_t, 2u> {};
/**
* @brief `std::tuple_element` specialization for `compressed_pair`s.
* @tparam Index The index of the type to return.
* @tparam First The type of the first element that the pair stores.
* @tparam Second The type of the second element that the pair stores.
*/
template<size_t Index, typename First, typename Second>
struct tuple_element<Index, entt::compressed_pair<First, Second>>: conditional<Index == 0u, First, Second> {
static_assert(Index < 2u, "Index out of bounds");
};
} // namespace std
#endif
#endif
// #include "../core/fwd.hpp"
#ifndef ENTT_CORE_FWD_HPP
#define ENTT_CORE_FWD_HPP
#include <cstddef>
// #include "../config/config.h"
namespace entt {
template<std::size_t Len = sizeof(double[2]), std::size_t = alignof(double[2])>
class basic_any;
/*! @brief Alias declaration for type identifiers. */
using id_type = ENTT_ID_TYPE;
/*! @brief Alias declaration for the most common use case. */
using any = basic_any<>;
} // namespace entt
#endif
// #include "../core/iterator.hpp"
#ifndef ENTT_CORE_ITERATOR_HPP
#define ENTT_CORE_ITERATOR_HPP
#include <iterator>
#include <memory>
#include <type_traits>
#include <utility>
namespace entt {
/**
* @brief Helper type to use as pointer with input iterators.
* @tparam Type of wrapped value.
*/
template<typename Type>
struct input_iterator_pointer final {
/*! @brief Value type. */
using value_type = Type;
/*! @brief Pointer type. */
using pointer = Type *;
/*! @brief Reference type. */
using reference = Type &;
/**
* @brief Constructs a proxy object by move.
* @param val Value to use to initialize the proxy object.
*/
constexpr input_iterator_pointer(value_type &&val) noexcept(std::is_nothrow_move_constructible_v<value_type>)
: value{std::move(val)} {}
/**
* @brief Access operator for accessing wrapped values.
* @return A pointer to the wrapped value.
*/
[[nodiscard]] constexpr pointer operator->() noexcept {
return std::addressof(value);
}
/**
* @brief Dereference operator for accessing wrapped values.
* @return A reference to the wrapped value.
*/
[[nodiscard]] constexpr reference operator*() noexcept {
return value;
}
private:
Type value;
};
/**
* @brief Plain iota iterator (waiting for C++20).
* @tparam Type Value type.
*/
template<typename Type>
class iota_iterator final {
static_assert(std::is_integral_v<Type>, "Not an integral type");
public:
/*! @brief Value type, likely an integral one. */
using value_type = Type;
/*! @brief Invalid pointer type. */
using pointer = void;
/*! @brief Non-reference type, same as value type. */
using reference = value_type;
/*! @brief Difference type. */
using difference_type = std::ptrdiff_t;
/*! @brief Iterator category. */
using iterator_category = std::input_iterator_tag;
/*! @brief Default constructor. */
constexpr iota_iterator() noexcept
: current{} {}
/**
* @brief Constructs an iota iterator from a given value.
* @param init The initial value assigned to the iota iterator.
*/
constexpr iota_iterator(const value_type init) noexcept
: current{init} {}
/**
* @brief Pre-increment operator.
* @return This iota iterator.
*/
constexpr iota_iterator &operator++() noexcept {
return ++current, *this;
}
/**
* @brief Post-increment operator.
* @return This iota iterator.
*/
constexpr iota_iterator operator++(int) noexcept {
iota_iterator orig = *this;
return ++(*this), orig;
}
/**
* @brief Dereference operator.
* @return The underlying value.
*/
[[nodiscard]] constexpr reference operator*() const noexcept {
return current;
}
private:
value_type current;
};
/**
* @brief Comparison operator.
* @tparam Type Value type of the iota iterator.
* @param lhs A properly initialized iota iterator.
* @param rhs A properly initialized iota iterator.
* @return True if the two iterators are identical, false otherwise.
*/
template<typename Type>
[[nodiscard]] constexpr bool operator==(const iota_iterator<Type> &lhs, const iota_iterator<Type> &rhs) noexcept {
return *lhs == *rhs;
}
/**
* @brief Comparison operator.
* @tparam Type Value type of the iota iterator.
* @param lhs A properly initialized iota iterator.
* @param rhs A properly initialized iota iterator.
* @return True if the two iterators differ, false otherwise.
*/
template<typename Type>
[[nodiscard]] constexpr bool operator!=(const iota_iterator<Type> &lhs, const iota_iterator<Type> &rhs) noexcept {
return !(lhs == rhs);
}
/**
* @brief Utility class to create an iterable object from a pair of iterators.
* @tparam It Type of iterator.
* @tparam Sentinel Type of sentinel.
*/
template<typename It, typename Sentinel = It>
struct iterable_adaptor final {
/*! @brief Value type. */
using value_type = typename std::iterator_traits<It>::value_type;
/*! @brief Iterator type. */
using iterator = It;
/*! @brief Sentinel type. */
using sentinel = Sentinel;
/*! @brief Default constructor. */
constexpr iterable_adaptor() noexcept(std::is_nothrow_default_constructible_v<iterator> &&std::is_nothrow_default_constructible_v<sentinel>)
: first{},
last{} {}
/**
* @brief Creates an iterable object from a pair of iterators.
* @param from Begin iterator.
* @param to End iterator.
*/
constexpr iterable_adaptor(iterator from, sentinel to) noexcept(std::is_nothrow_move_constructible_v<iterator> &&std::is_nothrow_move_constructible_v<sentinel>)
: first{std::move(from)},
last{std::move(to)} {}
/**
* @brief Returns an iterator to the beginning.
* @return An iterator to the first element of the range.
*/
[[nodiscard]] constexpr iterator begin() const noexcept {
return first;
}
/**
* @brief Returns an iterator to the end.
* @return An iterator to the element following the last element of the
* range.
*/
[[nodiscard]] constexpr sentinel end() const noexcept {
return last;
}
/*! @copydoc begin */
[[nodiscard]] constexpr iterator cbegin() const noexcept {
return begin();
}
/*! @copydoc end */
[[nodiscard]] constexpr sentinel cend() const noexcept {
return end();
}
private:
It first;
Sentinel last;
};
} // namespace entt
#endif
// #include "../core/utility.hpp"
#ifndef ENTT_CORE_UTILITY_HPP
#define ENTT_CORE_UTILITY_HPP
#include <type_traits>
#include <utility>
namespace entt {
/*! @brief Identity function object (waiting for C++20). */
struct identity {
/*! @brief Indicates that this is a transparent function object. */
using is_transparent = void;
/**
* @brief Returns its argument unchanged.
* @tparam Type Type of the argument.
* @param value The actual argument.
* @return The submitted value as-is.
*/
template<class Type>
[[nodiscard]] constexpr Type &&operator()(Type &&value) const noexcept {
return std::forward<Type>(value);
}
};
/**
* @brief Constant utility to disambiguate overloaded members of a class.
* @tparam Type Type of the desired overload.
* @tparam Class Type of class to which the member belongs.
* @param member A valid pointer to a member.
* @return Pointer to the member.
*/
template<typename Type, typename Class>
[[nodiscard]] constexpr auto overload(Type Class::*member) noexcept {
return member;
}
/**
* @brief Constant utility to disambiguate overloaded functions.
* @tparam Func Function type of the desired overload.
* @param func A valid pointer to a function.
* @return Pointer to the function.
*/
template<typename Func>
[[nodiscard]] constexpr auto overload(Func *func) noexcept {
return func;
}
/**
* @brief Helper type for visitors.
* @tparam Func Types of function objects.
*/
template<class... Func>
struct overloaded: Func... {
using Func::operator()...;
};
/**
* @brief Deduction guide.
* @tparam Func Types of function objects.
*/
template<class... Func>
overloaded(Func...) -> overloaded<Func...>;
/**
* @brief Basic implementation of a y-combinator.
* @tparam Func Type of a potentially recursive function.
*/
template<class Func>
struct y_combinator {
/**
* @brief Constructs a y-combinator from a given function.
* @param recursive A potentially recursive function.
*/
constexpr y_combinator(Func recursive) noexcept(std::is_nothrow_move_constructible_v<Func>)
: func{std::move(recursive)} {}
/**
* @brief Invokes a y-combinator and therefore its underlying function.
* @tparam Args Types of arguments to use to invoke the underlying function.
* @param args Parameters to use to invoke the underlying function.
* @return Return value of the underlying function, if any.
*/
template<class... Args>
constexpr decltype(auto) operator()(Args &&...args) const noexcept(std::is_nothrow_invocable_v<Func, const y_combinator &, Args...>) {
return func(*this, std::forward<Args>(args)...);
}
/*! @copydoc operator()() */
template<class... Args>
constexpr decltype(auto) operator()(Args &&...args) noexcept(std::is_nothrow_invocable_v<Func, y_combinator &, Args...>) {
return func(*this, std::forward<Args>(args)...);
}
private:
Func func;
};
} // namespace entt
#endif
// #include "fwd.hpp"
#ifndef ENTT_RESOURCE_FWD_HPP
#define ENTT_RESOURCE_FWD_HPP
#include <memory>
namespace entt {
template<typename>
struct resource_loader;
template<typename Type, typename = resource_loader<Type>, typename = std::allocator<Type>>
class resource_cache;
template<typename>
class resource;
} // namespace entt
#endif
// #include "loader.hpp"
#ifndef ENTT_RESOURCE_LOADER_HPP
#define ENTT_RESOURCE_LOADER_HPP
#include <memory>
#include <utility>
// #include "fwd.hpp"
namespace entt {
/**
* @brief Transparent loader for shared resources.
* @tparam Type Type of resources created by the loader.
*/
template<typename Type>
struct resource_loader {
/*! @brief Result type. */
using result_type = std::shared_ptr<Type>;
/**
* @brief Constructs a shared pointer to a resource from its arguments.
* @tparam Args Types of arguments to use to construct the resource.
* @param args Parameters to use to construct the resource.
* @return A shared pointer to a resource of the given type.
*/
template<typename... Args>
result_type operator()(Args &&...args) const {
return std::make_shared<Type>(std::forward<Args>(args)...);
}
};
} // namespace entt
#endif
// #include "resource.hpp"
#ifndef ENTT_RESOURCE_RESOURCE_HPP
#define ENTT_RESOURCE_RESOURCE_HPP
#include <memory>
#include <type_traits>
#include <utility>
// #include "fwd.hpp"
namespace entt {
/**
* @brief Basic resource handle.
*
* A handle wraps a resource and extends its lifetime. It also shares the same
* resource with all other handles constructed from the same element.<br/>
* As a rule of thumb, resources should never be copied nor moved. Handles are
* the way to go to push references around.
*
* @tparam Type Type of resource managed by a handle.
*/
template<typename Type>
class resource {
/*! @brief Resource handles are friends with each other. */
template<typename>
friend class resource;
template<typename Other>
static constexpr bool is_acceptable_v = !std::is_same_v<Type, Other> && std::is_constructible_v<Type &, Other &>;
public:
/*! @brief Resource type. */
using element_type = Type;
/*! @brief Handle type. */
using handle_type = std::shared_ptr<element_type>;
/*! @brief Default constructor. */
resource() noexcept
: value{} {}
/**
* @brief Creates a handle from a weak pointer, namely a resource.
* @param res A weak pointer to a resource.
*/
explicit resource(handle_type res) noexcept
: value{std::move(res)} {}
/*! @brief Default copy constructor. */
resource(const resource &) noexcept = default;
/*! @brief Default move constructor. */
resource(resource &&) noexcept = default;
/**
* @brief Aliasing constructor.
* @tparam Other Type of resource managed by the received handle.
* @param other The handle with which to share ownership information.
* @param res Unrelated and unmanaged resources.
*/
template<typename Other>
resource(const resource<Other> &other, element_type &res) noexcept
: value{other.value, std::addressof(res)} {}
/**
* @brief Copy constructs a handle which shares ownership of the resource.
* @tparam Other Type of resource managed by the received handle.
* @param other The handle to copy from.
*/
template<typename Other, typename = std::enable_if_t<is_acceptable_v<Other>>>
resource(const resource<Other> &other) noexcept
: value{other.value} {}
/**
* @brief Move constructs a handle which takes ownership of the resource.
* @tparam Other Type of resource managed by the received handle.
* @param other The handle to move from.
*/
template<typename Other, typename = std::enable_if_t<is_acceptable_v<Other>>>
resource(resource<Other> &&other) noexcept
: value{std::move(other.value)} {}
/**
* @brief Default copy assignment operator.
* @return This resource handle.
*/
resource &operator=(const resource &) noexcept = default;
/**
* @brief Default move assignment operator.
* @return This resource handle.
*/
resource &operator=(resource &&) noexcept = default;
/**
* @brief Copy assignment operator from foreign handle.
* @tparam Other Type of resource managed by the received handle.
* @param other The handle to copy from.
* @return This resource handle.
*/
template<typename Other>
std::enable_if_t<is_acceptable_v<Other>, resource &>
operator=(const resource<Other> &other) noexcept {
value = other.value;
return *this;
}
/**
* @brief Move assignment operator from foreign handle.
* @tparam Other Type of resource managed by the received handle.
* @param other The handle to move from.
* @return This resource handle.
*/
template<typename Other>
std::enable_if_t<is_acceptable_v<Other>, resource &>
operator=(resource<Other> &&other) noexcept {
value = std::move(other.value);
return *this;
}
/**
* @brief Returns a reference to the managed resource.
*
* @warning
* The behavior is undefined if the handle doesn't contain a resource.
*
* @return A reference to the managed resource.
*/
[[nodiscard]] element_type &operator*() const noexcept {
return *value;
}
/*! @copydoc operator* */
[[nodiscard]] operator element_type &() const noexcept {
return *value;
}
/**
* @brief Returns a pointer to the managed resource.
* @return A pointer to the managed resource.
*/
[[nodiscard]] element_type *operator->() const noexcept {
return value.get();
}
/**
* @brief Returns true if a handle contains a resource, false otherwise.
* @return True if the handle contains a resource, false otherwise.
*/
[[nodiscard]] explicit operator bool() const noexcept {
return static_cast<bool>(value);
}
/**
* @brief Returns the underlying resource handle.
* @return The underlying resource handle.
*/
[[nodiscard]] const handle_type &handle() const noexcept {
return value;
}
private:
handle_type value;
};
/**
* @brief Compares two handles.
* @tparam Res Type of resource managed by the first handle.
* @tparam Other Type of resource managed by the second handle.
* @param lhs A valid handle.
* @param rhs A valid handle.
* @return True if both handles refer to the same resource, false otherwise.
*/
template<typename Res, typename Other>
[[nodiscard]] bool operator==(const resource<Res> &lhs, const resource<Other> &rhs) noexcept {
return (std::addressof(*lhs) == std::addressof(*rhs));
}
/**
* @brief Compares two handles.
* @tparam Res Type of resource managed by the first handle.
* @tparam Other Type of resource managed by the second handle.
* @param lhs A valid handle.
* @param rhs A valid handle.
* @return False if both handles refer to the same registry, true otherwise.
*/
template<typename Res, typename Other>
[[nodiscard]] bool operator!=(const resource<Res> &lhs, const resource<Other> &rhs) noexcept {
return !(lhs == rhs);
}
/**
* @brief Compares two handles.
* @tparam Res Type of resource managed by the first handle.
* @tparam Other Type of resource managed by the second handle.
* @param lhs A valid handle.
* @param rhs A valid handle.
* @return True if the first handle is less than the second, false otherwise.
*/
template<typename Res, typename Other>
[[nodiscard]] bool operator<(const resource<Res> &lhs, const resource<Other> &rhs) noexcept {
return (std::addressof(*lhs) < std::addressof(*rhs));
}
/**
* @brief Compares two handles.
* @tparam Res Type of resource managed by the first handle.
* @tparam Other Type of resource managed by the second handle.
* @param lhs A valid handle.
* @param rhs A valid handle.
* @return True if the first handle is greater than the second, false otherwise.
*/
template<typename Res, typename Other>
[[nodiscard]] bool operator>(const resource<Res> &lhs, const resource<Other> &rhs) noexcept {
return (std::addressof(*lhs) > std::addressof(*rhs));
}
/**
* @brief Compares two handles.
* @tparam Res Type of resource managed by the first handle.
* @tparam Other Type of resource managed by the second handle.
* @param lhs A valid handle.
* @param rhs A valid handle.
* @return True if the first handle is less than or equal to the second, false
* otherwise.
*/
template<typename Res, typename Other>
[[nodiscard]] bool operator<=(const resource<Res> &lhs, const resource<Other> &rhs) noexcept {
return !(lhs > rhs);
}
/**
* @brief Compares two handles.
* @tparam Res Type of resource managed by the first handle.
* @tparam Other Type of resource managed by the second handle.
* @param lhs A valid handle.
* @param rhs A valid handle.
* @return True if the first handle is greater than or equal to the second,
* false otherwise.
*/
template<typename Res, typename Other>
[[nodiscard]] bool operator>=(const resource<Res> &lhs, const resource<Other> &rhs) noexcept {
return !(lhs < rhs);
}
} // namespace entt
#endif
namespace entt {
/**
* @cond TURN_OFF_DOXYGEN
* Internal details not to be documented.
*/
namespace internal {
template<typename Type, typename It>
class resource_cache_iterator final {
template<typename, typename>
friend class resource_cache_iterator;
public:
using value_type = std::pair<id_type, resource<Type>>;
using pointer = input_iterator_pointer<value_type>;
using reference = value_type;
using difference_type = std::ptrdiff_t;
using iterator_category = std::input_iterator_tag;
constexpr resource_cache_iterator() noexcept = default;
constexpr resource_cache_iterator(const It iter) noexcept
: it{iter} {}
template<typename Other, typename = std::enable_if_t<!std::is_same_v<It, Other> && std::is_constructible_v<It, Other>>>
constexpr resource_cache_iterator(const resource_cache_iterator<std::remove_const_t<Type>, Other> &other) noexcept
: it{other.it} {}
constexpr resource_cache_iterator &operator++() noexcept {
return ++it, *this;
}
constexpr resource_cache_iterator operator++(int) noexcept {
resource_cache_iterator orig = *this;
return ++(*this), orig;
}
constexpr resource_cache_iterator &operator--() noexcept {
return --it, *this;
}
constexpr resource_cache_iterator operator--(int) noexcept {
resource_cache_iterator orig = *this;
return operator--(), orig;
}
constexpr resource_cache_iterator &operator+=(const difference_type value) noexcept {
it += value;
return *this;
}
constexpr resource_cache_iterator operator+(const difference_type value) const noexcept {
resource_cache_iterator copy = *this;
return (copy += value);
}
constexpr resource_cache_iterator &operator-=(const difference_type value) noexcept {
return (*this += -value);
}
constexpr resource_cache_iterator operator-(const difference_type value) const noexcept {
return (*this + -value);
}
[[nodiscard]] constexpr reference operator[](const difference_type value) const noexcept {
return {it[value].first, resource<Type>{it[value].second}};
}
[[nodiscard]] constexpr reference operator*() const noexcept {
return (*this)[0];
}
[[nodiscard]] constexpr pointer operator->() const noexcept {
return operator*();
}
template<typename TLhs, typename ILhs, typename TRhs, typename IRhs>
friend constexpr std::ptrdiff_t operator-(const resource_cache_iterator<TLhs, ILhs> &, const resource_cache_iterator<TRhs, IRhs> &) noexcept;
template<typename TLhs, typename ILhs, typename TRhs, typename IRhs>
friend constexpr bool operator==(const resource_cache_iterator<TLhs, ILhs> &, const resource_cache_iterator<TRhs, IRhs> &) noexcept;
template<typename TLhs, typename ILhs, typename TRhs, typename IRhs>
friend constexpr bool operator<(const resource_cache_iterator<TLhs, ILhs> &, const resource_cache_iterator<TRhs, IRhs> &) noexcept;
private:
It it;
};
template<typename TLhs, typename ILhs, typename TRhs, typename IRhs>
[[nodiscard]] constexpr std::ptrdiff_t operator-(const resource_cache_iterator<TLhs, ILhs> &lhs, const resource_cache_iterator<TRhs, IRhs> &rhs) noexcept {
return lhs.it - rhs.it;
}
template<typename TLhs, typename ILhs, typename TRhs, typename IRhs>
[[nodiscard]] constexpr bool operator==(const resource_cache_iterator<TLhs, ILhs> &lhs, const resource_cache_iterator<TRhs, IRhs> &rhs) noexcept {
return lhs.it == rhs.it;
}
template<typename TLhs, typename ILhs, typename TRhs, typename IRhs>
[[nodiscard]] constexpr bool operator!=(const resource_cache_iterator<TLhs, ILhs> &lhs, const resource_cache_iterator<TRhs, IRhs> &rhs) noexcept {
return !(lhs == rhs);
}
template<typename TLhs, typename ILhs, typename TRhs, typename IRhs>
[[nodiscard]] constexpr bool operator<(const resource_cache_iterator<TLhs, ILhs> &lhs, const resource_cache_iterator<TRhs, IRhs> &rhs) noexcept {
return lhs.it < rhs.it;
}
template<typename TLhs, typename ILhs, typename TRhs, typename IRhs>
[[nodiscard]] constexpr bool operator>(const resource_cache_iterator<TLhs, ILhs> &lhs, const resource_cache_iterator<TRhs, IRhs> &rhs) noexcept {
return rhs < lhs;
}
template<typename TLhs, typename ILhs, typename TRhs, typename IRhs>
[[nodiscard]] constexpr bool operator<=(const resource_cache_iterator<TLhs, ILhs> &lhs, const resource_cache_iterator<TRhs, IRhs> &rhs) noexcept {
return !(lhs > rhs);
}
template<typename TLhs, typename ILhs, typename TRhs, typename IRhs>
[[nodiscard]] constexpr bool operator>=(const resource_cache_iterator<TLhs, ILhs> &lhs, const resource_cache_iterator<TRhs, IRhs> &rhs) noexcept {
return !(lhs < rhs);
}
} // namespace internal
/**
* Internal details not to be documented.
* @endcond
*/
/**
* @brief Basic cache for resources of any type.
* @tparam Type Type of resources managed by a cache.
* @tparam Loader Type of loader used to create the resources.
* @tparam Allocator Type of allocator used to manage memory and elements.
*/
template<typename Type, typename Loader, typename Allocator>
class resource_cache {
using alloc_traits = typename std::allocator_traits<Allocator>;
static_assert(std::is_same_v<typename alloc_traits::value_type, Type>, "Invalid value type");
using container_allocator = typename alloc_traits::template rebind_alloc<std::pair<const id_type, typename Loader::result_type>>;
using container_type = dense_map<id_type, typename Loader::result_type, identity, std::equal_to<id_type>, container_allocator>;
public:
/*! @brief Resource type. */
using value_type = Type;
/*! @brief Unsigned integer type. */
using size_type = std::size_t;
/*! @brief Loader type. */
using loader_type = Loader;
/*! @brief Allocator type. */
using allocator_type = Allocator;
/*! @brief Input iterator type. */
using iterator = internal::resource_cache_iterator<Type, typename container_type::iterator>;
/*! @brief Constant input iterator type. */
using const_iterator = internal::resource_cache_iterator<const Type, typename container_type::const_iterator>;
/*! @brief Default constructor. */
resource_cache()
: resource_cache{loader_type{}} {}
/**
* @brief Constructs an empty cache with a given allocator.
* @param allocator The allocator to use.
*/
explicit resource_cache(const allocator_type &allocator)
: resource_cache{loader_type{}, allocator} {}
/**
* @brief Constructs an empty cache with a given allocator and loader.
* @param callable The loader to use.
* @param allocator The allocator to use.
*/
explicit resource_cache(const loader_type &callable, const allocator_type &allocator = allocator_type{})
: pool{container_type{allocator}, callable} {}
/*! @brief Default copy constructor. */
resource_cache(const resource_cache &) = default;
/**
* @brief Allocator-extended copy constructor.
* @param other The instance to copy from.
* @param allocator The allocator to use.
*/
resource_cache(const resource_cache &other, const allocator_type &allocator)
: pool{std::piecewise_construct, std::forward_as_tuple(other.pool.first(), allocator), std::forward_as_tuple(other.pool.second())} {}
/*! @brief Default move constructor. */
resource_cache(resource_cache &&) = default;
/**
* @brief Allocator-extended move constructor.
* @param other The instance to move from.
* @param allocator The allocator to use.
*/
resource_cache(resource_cache &&other, const allocator_type &allocator)
: pool{std::piecewise_construct, std::forward_as_tuple(std::move(other.pool.first()), allocator), std::forward_as_tuple(std::move(other.pool.second()))} {}
/**
* @brief Default copy assignment operator.
* @return This cache.
*/
resource_cache &operator=(const resource_cache &) = default;
/**
* @brief Default move assignment operator.
* @return This cache.
*/
resource_cache &operator=(resource_cache &&) = default;
/**
* @brief Returns the associated allocator.
* @return The associated allocator.
*/
[[nodiscard]] constexpr allocator_type get_allocator() const noexcept {
return pool.first().get_allocator();
}
/**
* @brief Returns an iterator to the beginning.
*
* The returned iterator points to the first instance of the cache. If the
* cache is empty, the returned iterator will be equal to `end()`.
*
* @return An iterator to the first instance of the internal cache.
*/
[[nodiscard]] const_iterator cbegin() const noexcept {
return pool.first().begin();
}
/*! @copydoc cbegin */
[[nodiscard]] const_iterator begin() const noexcept {
return cbegin();
}
/*! @copydoc begin */
[[nodiscard]] iterator begin() noexcept {
return pool.first().begin();
}
/**
* @brief Returns an iterator to the end.
*
* The returned iterator points to the element following the last instance
* of the cache. Attempting to dereference the returned iterator results in
* undefined behavior.
*
* @return An iterator to the element following the last instance of the
* internal cache.
*/
[[nodiscard]] const_iterator cend() const noexcept {
return pool.first().end();
}
/*! @copydoc cend */
[[nodiscard]] const_iterator end() const noexcept {
return cend();
}
/*! @copydoc end */
[[nodiscard]] iterator end() noexcept {
return pool.first().end();
}
/**
* @brief Returns true if a cache contains no resources, false otherwise.
* @return True if the cache contains no resources, false otherwise.
*/
[[nodiscard]] bool empty() const noexcept {
return pool.first().empty();
}
/**
* @brief Number of resources managed by a cache.
* @return Number of resources currently stored.
*/
[[nodiscard]] size_type size() const noexcept {
return pool.first().size();
}
/*! @brief Clears a cache. */
void clear() noexcept {
pool.first().clear();
}
/**
* @brief Loads a resource, if its identifier does not exist.
*
* Arguments are forwarded directly to the loader and _consumed_ only if the
* resource doesn't already exist.
*
* @warning
* If the resource isn't loaded correctly, the returned handle could be
* invalid and any use of it will result in undefined behavior.
*
* @tparam Args Types of arguments to use to load the resource if required.
* @param id Unique resource identifier.
* @param args Arguments to use to load the resource if required.
* @return A pair consisting of an iterator to the inserted element (or to
* the element that prevented the insertion) and a bool denoting whether the
* insertion took place.
*/
template<typename... Args>
std::pair<iterator, bool> load(const id_type id, Args &&...args) {
if(auto it = pool.first().find(id); it != pool.first().end()) {
return {it, false};
}
return pool.first().emplace(id, pool.second()(std::forward<Args>(args)...));
}
/**
* @brief Force loads a resource, if its identifier does not exist.
* @copydetails load
*/
template<typename... Args>
std::pair<iterator, bool> force_load(const id_type id, Args &&...args) {
return {pool.first().insert_or_assign(id, pool.second()(std::forward<Args>(args)...)).first, true};
}
/**
* @brief Returns a handle for a given resource identifier.
*
* @warning
* There is no guarantee that the returned handle is valid.<br/>
* If it is not, any use will result in indefinite behavior.
*
* @param id Unique resource identifier.
* @return A handle for the given resource.
*/
[[nodiscard]] resource<const value_type> operator[](const id_type id) const {
if(auto it = pool.first().find(id); it != pool.first().cend()) {
return resource<const value_type>{it->second};
}
return {};
}
/*! @copydoc operator[] */
[[nodiscard]] resource<value_type> operator[](const id_type id) {
if(auto it = pool.first().find(id); it != pool.first().end()) {
return resource<value_type>{it->second};
}
return {};
}
/**
* @brief Checks if a cache contains a given identifier.
* @param id Unique resource identifier.
* @return True if the cache contains the resource, false otherwise.
*/
[[nodiscard]] bool contains(const id_type id) const {
return pool.first().contains(id);
}
/**
* @brief Removes an element from a given position.
* @param pos An iterator to the element to remove.
* @return An iterator following the removed element.
*/
iterator erase(const_iterator pos) {
const auto it = pool.first().begin();
return pool.first().erase(it + (pos - const_iterator{it}));
}
/**
* @brief Removes the given elements from a cache.
* @param first An iterator to the first element of the range of elements.
* @param last An iterator past the last element of the range of elements.
* @return An iterator following the last removed element.
*/
iterator erase(const_iterator first, const_iterator last) {
const auto it = pool.first().begin();
return pool.first().erase(it + (first - const_iterator{it}), it + (last - const_iterator{it}));
}
/**
* @brief Removes the given elements from a cache.
* @param id Unique resource identifier.
* @return Number of resources erased (either 0 or 1).
*/
size_type erase(const id_type id) {
return pool.first().erase(id);
}
/**
* @brief Returns the loader used to create resources.
* @return The loader used to create resources.
*/
[[nodiscard]] loader_type loader() const {
return pool.second();
}
private:
compressed_pair<container_type, loader_type> pool;
};
} // namespace entt
#endif
// #include "resource/loader.hpp"
#ifndef ENTT_RESOURCE_LOADER_HPP
#define ENTT_RESOURCE_LOADER_HPP
#include <memory>
#include <utility>
// #include "fwd.hpp"
namespace entt {
/**
* @brief Transparent loader for shared resources.
* @tparam Type Type of resources created by the loader.
*/
template<typename Type>
struct resource_loader {
/*! @brief Result type. */
using result_type = std::shared_ptr<Type>;
/**
* @brief Constructs a shared pointer to a resource from its arguments.
* @tparam Args Types of arguments to use to construct the resource.
* @param args Parameters to use to construct the resource.
* @return A shared pointer to a resource of the given type.
*/
template<typename... Args>
result_type operator()(Args &&...args) const {
return std::make_shared<Type>(std::forward<Args>(args)...);
}
};
} // namespace entt
#endif
// #include "resource/resource.hpp"
#ifndef ENTT_RESOURCE_RESOURCE_HPP
#define ENTT_RESOURCE_RESOURCE_HPP
#include <memory>
#include <type_traits>
#include <utility>
// #include "fwd.hpp"
namespace entt {
/**
* @brief Basic resource handle.
*
* A handle wraps a resource and extends its lifetime. It also shares the same
* resource with all other handles constructed from the same element.<br/>
* As a rule of thumb, resources should never be copied nor moved. Handles are
* the way to go to push references around.
*
* @tparam Type Type of resource managed by a handle.
*/
template<typename Type>
class resource {
/*! @brief Resource handles are friends with each other. */
template<typename>
friend class resource;
template<typename Other>
static constexpr bool is_acceptable_v = !std::is_same_v<Type, Other> && std::is_constructible_v<Type &, Other &>;
public:
/*! @brief Resource type. */
using element_type = Type;
/*! @brief Handle type. */
using handle_type = std::shared_ptr<element_type>;
/*! @brief Default constructor. */
resource() noexcept
: value{} {}
/**
* @brief Creates a handle from a weak pointer, namely a resource.
* @param res A weak pointer to a resource.
*/
explicit resource(handle_type res) noexcept
: value{std::move(res)} {}
/*! @brief Default copy constructor. */
resource(const resource &) noexcept = default;
/*! @brief Default move constructor. */
resource(resource &&) noexcept = default;
/**
* @brief Aliasing constructor.
* @tparam Other Type of resource managed by the received handle.
* @param other The handle with which to share ownership information.
* @param res Unrelated and unmanaged resources.
*/
template<typename Other>
resource(const resource<Other> &other, element_type &res) noexcept
: value{other.value, std::addressof(res)} {}
/**
* @brief Copy constructs a handle which shares ownership of the resource.
* @tparam Other Type of resource managed by the received handle.
* @param other The handle to copy from.
*/
template<typename Other, typename = std::enable_if_t<is_acceptable_v<Other>>>
resource(const resource<Other> &other) noexcept
: value{other.value} {}
/**
* @brief Move constructs a handle which takes ownership of the resource.
* @tparam Other Type of resource managed by the received handle.
* @param other The handle to move from.
*/
template<typename Other, typename = std::enable_if_t<is_acceptable_v<Other>>>
resource(resource<Other> &&other) noexcept
: value{std::move(other.value)} {}
/**
* @brief Default copy assignment operator.
* @return This resource handle.
*/
resource &operator=(const resource &) noexcept = default;
/**
* @brief Default move assignment operator.
* @return This resource handle.
*/
resource &operator=(resource &&) noexcept = default;
/**
* @brief Copy assignment operator from foreign handle.
* @tparam Other Type of resource managed by the received handle.
* @param other The handle to copy from.
* @return This resource handle.
*/
template<typename Other>
std::enable_if_t<is_acceptable_v<Other>, resource &>
operator=(const resource<Other> &other) noexcept {
value = other.value;
return *this;
}
/**
* @brief Move assignment operator from foreign handle.
* @tparam Other Type of resource managed by the received handle.
* @param other The handle to move from.
* @return This resource handle.
*/
template<typename Other>
std::enable_if_t<is_acceptable_v<Other>, resource &>
operator=(resource<Other> &&other) noexcept {
value = std::move(other.value);
return *this;
}
/**
* @brief Returns a reference to the managed resource.
*
* @warning
* The behavior is undefined if the handle doesn't contain a resource.
*
* @return A reference to the managed resource.
*/
[[nodiscard]] element_type &operator*() const noexcept {
return *value;
}
/*! @copydoc operator* */
[[nodiscard]] operator element_type &() const noexcept {
return *value;
}
/**
* @brief Returns a pointer to the managed resource.
* @return A pointer to the managed resource.
*/
[[nodiscard]] element_type *operator->() const noexcept {
return value.get();
}
/**
* @brief Returns true if a handle contains a resource, false otherwise.
* @return True if the handle contains a resource, false otherwise.
*/
[[nodiscard]] explicit operator bool() const noexcept {
return static_cast<bool>(value);
}
/**
* @brief Returns the underlying resource handle.
* @return The underlying resource handle.
*/
[[nodiscard]] const handle_type &handle() const noexcept {
return value;
}
private:
handle_type value;
};
/**
* @brief Compares two handles.
* @tparam Res Type of resource managed by the first handle.
* @tparam Other Type of resource managed by the second handle.
* @param lhs A valid handle.
* @param rhs A valid handle.
* @return True if both handles refer to the same resource, false otherwise.
*/
template<typename Res, typename Other>
[[nodiscard]] bool operator==(const resource<Res> &lhs, const resource<Other> &rhs) noexcept {
return (std::addressof(*lhs) == std::addressof(*rhs));
}
/**
* @brief Compares two handles.
* @tparam Res Type of resource managed by the first handle.
* @tparam Other Type of resource managed by the second handle.
* @param lhs A valid handle.
* @param rhs A valid handle.
* @return False if both handles refer to the same registry, true otherwise.
*/
template<typename Res, typename Other>
[[nodiscard]] bool operator!=(const resource<Res> &lhs, const resource<Other> &rhs) noexcept {
return !(lhs == rhs);
}
/**
* @brief Compares two handles.
* @tparam Res Type of resource managed by the first handle.
* @tparam Other Type of resource managed by the second handle.
* @param lhs A valid handle.
* @param rhs A valid handle.
* @return True if the first handle is less than the second, false otherwise.
*/
template<typename Res, typename Other>
[[nodiscard]] bool operator<(const resource<Res> &lhs, const resource<Other> &rhs) noexcept {
return (std::addressof(*lhs) < std::addressof(*rhs));
}
/**
* @brief Compares two handles.
* @tparam Res Type of resource managed by the first handle.
* @tparam Other Type of resource managed by the second handle.
* @param lhs A valid handle.
* @param rhs A valid handle.
* @return True if the first handle is greater than the second, false otherwise.
*/
template<typename Res, typename Other>
[[nodiscard]] bool operator>(const resource<Res> &lhs, const resource<Other> &rhs) noexcept {
return (std::addressof(*lhs) > std::addressof(*rhs));
}
/**
* @brief Compares two handles.
* @tparam Res Type of resource managed by the first handle.
* @tparam Other Type of resource managed by the second handle.
* @param lhs A valid handle.
* @param rhs A valid handle.
* @return True if the first handle is less than or equal to the second, false
* otherwise.
*/
template<typename Res, typename Other>
[[nodiscard]] bool operator<=(const resource<Res> &lhs, const resource<Other> &rhs) noexcept {
return !(lhs > rhs);
}
/**
* @brief Compares two handles.
* @tparam Res Type of resource managed by the first handle.
* @tparam Other Type of resource managed by the second handle.
* @param lhs A valid handle.
* @param rhs A valid handle.
* @return True if the first handle is greater than or equal to the second,
* false otherwise.
*/
template<typename Res, typename Other>
[[nodiscard]] bool operator>=(const resource<Res> &lhs, const resource<Other> &rhs) noexcept {
return !(lhs < rhs);
}
} // namespace entt
#endif
// #include "signal/delegate.hpp"
#ifndef ENTT_SIGNAL_DELEGATE_HPP
#define ENTT_SIGNAL_DELEGATE_HPP
#include <cstddef>
#include <functional>
#include <tuple>
#include <type_traits>
#include <utility>
// #include "../config/config.h"
#ifndef ENTT_CONFIG_CONFIG_H
#define ENTT_CONFIG_CONFIG_H
// #include "version.h"
#ifndef ENTT_CONFIG_VERSION_H
#define ENTT_CONFIG_VERSION_H
// #include "macro.h"
#ifndef ENTT_CONFIG_MACRO_H
#define ENTT_CONFIG_MACRO_H
#define ENTT_STR(arg) #arg
#define ENTT_XSTR(arg) ENTT_STR(arg)
#endif
#define ENTT_VERSION_MAJOR 3
#define ENTT_VERSION_MINOR 11
#define ENTT_VERSION_PATCH 1
#define ENTT_VERSION \
ENTT_XSTR(ENTT_VERSION_MAJOR) \
"." ENTT_XSTR(ENTT_VERSION_MINOR) "." ENTT_XSTR(ENTT_VERSION_PATCH)
#endif
#if defined(__cpp_exceptions) && !defined(ENTT_NOEXCEPTION)
# define ENTT_CONSTEXPR
# define ENTT_THROW throw
# define ENTT_TRY try
# define ENTT_CATCH catch(...)
#else
# define ENTT_CONSTEXPR constexpr // use only with throwing functions (waiting for C++20)
# define ENTT_THROW
# define ENTT_TRY if(true)
# define ENTT_CATCH if(false)
#endif
#ifdef ENTT_USE_ATOMIC
# include <atomic>
# define ENTT_MAYBE_ATOMIC(Type) std::atomic<Type>
#else
# define ENTT_MAYBE_ATOMIC(Type) Type
#endif
#ifndef ENTT_ID_TYPE
# include <cstdint>
# define ENTT_ID_TYPE std::uint32_t
#endif
#ifndef ENTT_SPARSE_PAGE
# define ENTT_SPARSE_PAGE 4096
#endif
#ifndef ENTT_PACKED_PAGE
# define ENTT_PACKED_PAGE 1024
#endif
#ifdef ENTT_DISABLE_ASSERT
# undef ENTT_ASSERT
# define ENTT_ASSERT(condition, msg) (void(0))
#elif !defined ENTT_ASSERT
# include <cassert>
# define ENTT_ASSERT(condition, msg) assert(condition)
#endif
#ifdef ENTT_DISABLE_ASSERT
# undef ENTT_ASSERT_CONSTEXPR
# define ENTT_ASSERT_CONSTEXPR(condition, msg) (void(0))
#elif !defined ENTT_ASSERT_CONSTEXPR
# define ENTT_ASSERT_CONSTEXPR(condition, msg) ENTT_ASSERT(condition, msg)
#endif
#ifdef ENTT_NO_ETO
# define ENTT_ETO_TYPE(Type) void
#else
# define ENTT_ETO_TYPE(Type) Type
#endif
#ifdef ENTT_STANDARD_CPP
# define ENTT_NONSTD false
#else
# define ENTT_NONSTD true
# if defined __clang__ || defined __GNUC__
# define ENTT_PRETTY_FUNCTION __PRETTY_FUNCTION__
# define ENTT_PRETTY_FUNCTION_PREFIX '='
# define ENTT_PRETTY_FUNCTION_SUFFIX ']'
# elif defined _MSC_VER
# define ENTT_PRETTY_FUNCTION __FUNCSIG__
# define ENTT_PRETTY_FUNCTION_PREFIX '<'
# define ENTT_PRETTY_FUNCTION_SUFFIX '>'
# endif
#endif
#if defined _MSC_VER
# pragma detect_mismatch("entt.version", ENTT_VERSION)
# pragma detect_mismatch("entt.noexcept", ENTT_XSTR(ENTT_TRY))
# pragma detect_mismatch("entt.id", ENTT_XSTR(ENTT_ID_TYPE))
# pragma detect_mismatch("entt.nonstd", ENTT_XSTR(ENTT_NONSTD))
#endif
#endif
// #include "../core/type_traits.hpp"
#ifndef ENTT_CORE_TYPE_TRAITS_HPP
#define ENTT_CORE_TYPE_TRAITS_HPP
#include <cstddef>
#include <iterator>
#include <type_traits>
#include <utility>
// #include "../config/config.h"
#ifndef ENTT_CONFIG_CONFIG_H
#define ENTT_CONFIG_CONFIG_H
// #include "version.h"
#ifndef ENTT_CONFIG_VERSION_H
#define ENTT_CONFIG_VERSION_H
// #include "macro.h"
#ifndef ENTT_CONFIG_MACRO_H
#define ENTT_CONFIG_MACRO_H
#define ENTT_STR(arg) #arg
#define ENTT_XSTR(arg) ENTT_STR(arg)
#endif
#define ENTT_VERSION_MAJOR 3
#define ENTT_VERSION_MINOR 11
#define ENTT_VERSION_PATCH 1
#define ENTT_VERSION \
ENTT_XSTR(ENTT_VERSION_MAJOR) \
"." ENTT_XSTR(ENTT_VERSION_MINOR) "." ENTT_XSTR(ENTT_VERSION_PATCH)
#endif
#if defined(__cpp_exceptions) && !defined(ENTT_NOEXCEPTION)
# define ENTT_CONSTEXPR
# define ENTT_THROW throw
# define ENTT_TRY try
# define ENTT_CATCH catch(...)
#else
# define ENTT_CONSTEXPR constexpr // use only with throwing functions (waiting for C++20)
# define ENTT_THROW
# define ENTT_TRY if(true)
# define ENTT_CATCH if(false)
#endif
#ifdef ENTT_USE_ATOMIC
# include <atomic>
# define ENTT_MAYBE_ATOMIC(Type) std::atomic<Type>
#else
# define ENTT_MAYBE_ATOMIC(Type) Type
#endif
#ifndef ENTT_ID_TYPE
# include <cstdint>
# define ENTT_ID_TYPE std::uint32_t
#endif
#ifndef ENTT_SPARSE_PAGE
# define ENTT_SPARSE_PAGE 4096
#endif
#ifndef ENTT_PACKED_PAGE
# define ENTT_PACKED_PAGE 1024
#endif
#ifdef ENTT_DISABLE_ASSERT
# undef ENTT_ASSERT
# define ENTT_ASSERT(condition, msg) (void(0))
#elif !defined ENTT_ASSERT
# include <cassert>
# define ENTT_ASSERT(condition, msg) assert(condition)
#endif
#ifdef ENTT_DISABLE_ASSERT
# undef ENTT_ASSERT_CONSTEXPR
# define ENTT_ASSERT_CONSTEXPR(condition, msg) (void(0))
#elif !defined ENTT_ASSERT_CONSTEXPR
# define ENTT_ASSERT_CONSTEXPR(condition, msg) ENTT_ASSERT(condition, msg)
#endif
#ifdef ENTT_NO_ETO
# define ENTT_ETO_TYPE(Type) void
#else
# define ENTT_ETO_TYPE(Type) Type
#endif
#ifdef ENTT_STANDARD_CPP
# define ENTT_NONSTD false
#else
# define ENTT_NONSTD true
# if defined __clang__ || defined __GNUC__
# define ENTT_PRETTY_FUNCTION __PRETTY_FUNCTION__
# define ENTT_PRETTY_FUNCTION_PREFIX '='
# define ENTT_PRETTY_FUNCTION_SUFFIX ']'
# elif defined _MSC_VER
# define ENTT_PRETTY_FUNCTION __FUNCSIG__
# define ENTT_PRETTY_FUNCTION_PREFIX '<'
# define ENTT_PRETTY_FUNCTION_SUFFIX '>'
# endif
#endif
#if defined _MSC_VER
# pragma detect_mismatch("entt.version", ENTT_VERSION)
# pragma detect_mismatch("entt.noexcept", ENTT_XSTR(ENTT_TRY))
# pragma detect_mismatch("entt.id", ENTT_XSTR(ENTT_ID_TYPE))
# pragma detect_mismatch("entt.nonstd", ENTT_XSTR(ENTT_NONSTD))
#endif
#endif
// #include "fwd.hpp"
#ifndef ENTT_CORE_FWD_HPP
#define ENTT_CORE_FWD_HPP
#include <cstddef>
// #include "../config/config.h"
namespace entt {
template<std::size_t Len = sizeof(double[2]), std::size_t = alignof(double[2])>
class basic_any;
/*! @brief Alias declaration for type identifiers. */
using id_type = ENTT_ID_TYPE;
/*! @brief Alias declaration for the most common use case. */
using any = basic_any<>;
} // namespace entt
#endif
namespace entt {
/**
* @brief Utility class to disambiguate overloaded functions.
* @tparam N Number of choices available.
*/
template<std::size_t N>
struct choice_t
// Unfortunately, doxygen cannot parse such a construct.
: /*! @cond TURN_OFF_DOXYGEN */ choice_t<N - 1> /*! @endcond */
{};
/*! @copybrief choice_t */
template<>
struct choice_t<0> {};
/**
* @brief Variable template for the choice trick.
* @tparam N Number of choices available.
*/
template<std::size_t N>
inline constexpr choice_t<N> choice{};
/**
* @brief Identity type trait.
*
* Useful to establish non-deduced contexts in template argument deduction
* (waiting for C++20) or to provide types through function arguments.
*
* @tparam Type A type.
*/
template<typename Type>
struct type_identity {
/*! @brief Identity type. */
using type = Type;
};
/**
* @brief Helper type.
* @tparam Type A type.
*/
template<typename Type>
using type_identity_t = typename type_identity<Type>::type;
/**
* @brief A type-only `sizeof` wrapper that returns 0 where `sizeof` complains.
* @tparam Type The type of which to return the size.
* @tparam The size of the type if `sizeof` accepts it, 0 otherwise.
*/
template<typename Type, typename = void>
struct size_of: std::integral_constant<std::size_t, 0u> {};
/*! @copydoc size_of */
template<typename Type>
struct size_of<Type, std::void_t<decltype(sizeof(Type))>>
: std::integral_constant<std::size_t, sizeof(Type)> {};
/**
* @brief Helper variable template.
* @tparam Type The type of which to return the size.
*/
template<typename Type>
inline constexpr std::size_t size_of_v = size_of<Type>::value;
/**
* @brief Using declaration to be used to _repeat_ the same type a number of
* times equal to the size of a given parameter pack.
* @tparam Type A type to repeat.
*/
template<typename Type, typename>
using unpack_as_type = Type;
/**
* @brief Helper variable template to be used to _repeat_ the same value a
* number of times equal to the size of a given parameter pack.
* @tparam Value A value to repeat.
*/
template<auto Value, typename>
inline constexpr auto unpack_as_value = Value;
/**
* @brief Wraps a static constant.
* @tparam Value A static constant.
*/
template<auto Value>
using integral_constant = std::integral_constant<decltype(Value), Value>;
/**
* @brief Alias template to facilitate the creation of named values.
* @tparam Value A constant value at least convertible to `id_type`.
*/
template<id_type Value>
using tag = integral_constant<Value>;
/**
* @brief A class to use to push around lists of types, nothing more.
* @tparam Type Types provided by the type list.
*/
template<typename... Type>
struct type_list {
/*! @brief Type list type. */
using type = type_list;
/*! @brief Compile-time number of elements in the type list. */
static constexpr auto size = sizeof...(Type);
};
/*! @brief Primary template isn't defined on purpose. */
template<std::size_t, typename>
struct type_list_element;
/**
* @brief Provides compile-time indexed access to the types of a type list.
* @tparam Index Index of the type to return.
* @tparam First First type provided by the type list.
* @tparam Other Other types provided by the type list.
*/
template<std::size_t Index, typename First, typename... Other>
struct type_list_element<Index, type_list<First, Other...>>
: type_list_element<Index - 1u, type_list<Other...>> {};
/**
* @brief Provides compile-time indexed access to the types of a type list.
* @tparam First First type provided by the type list.
* @tparam Other Other types provided by the type list.
*/
template<typename First, typename... Other>
struct type_list_element<0u, type_list<First, Other...>> {
/*! @brief Searched type. */
using type = First;
};
/**
* @brief Helper type.
* @tparam Index Index of the type to return.
* @tparam List Type list to search into.
*/
template<std::size_t Index, typename List>
using type_list_element_t = typename type_list_element<Index, List>::type;
/*! @brief Primary template isn't defined on purpose. */
template<typename, typename>
struct type_list_index;
/**
* @brief Provides compile-time type access to the types of a type list.
* @tparam Type Type to look for and for which to return the index.
* @tparam First First type provided by the type list.
* @tparam Other Other types provided by the type list.
*/
template<typename Type, typename First, typename... Other>
struct type_list_index<Type, type_list<First, Other...>> {
/*! @brief Unsigned integer type. */
using value_type = std::size_t;
/*! @brief Compile-time position of the given type in the sublist. */
static constexpr value_type value = 1u + type_list_index<Type, type_list<Other...>>::value;
};
/**
* @brief Provides compile-time type access to the types of a type list.
* @tparam Type Type to look for and for which to return the index.
* @tparam Other Other types provided by the type list.
*/
template<typename Type, typename... Other>
struct type_list_index<Type, type_list<Type, Other...>> {
static_assert(type_list_index<Type, type_list<Other...>>::value == sizeof...(Other), "Non-unique type");
/*! @brief Unsigned integer type. */
using value_type = std::size_t;
/*! @brief Compile-time position of the given type in the sublist. */
static constexpr value_type value = 0u;
};
/**
* @brief Provides compile-time type access to the types of a type list.
* @tparam Type Type to look for and for which to return the index.
*/
template<typename Type>
struct type_list_index<Type, type_list<>> {
/*! @brief Unsigned integer type. */
using value_type = std::size_t;
/*! @brief Compile-time position of the given type in the sublist. */
static constexpr value_type value = 0u;
};
/**
* @brief Helper variable template.
* @tparam List Type list.
* @tparam Type Type to look for and for which to return the index.
*/
template<typename Type, typename List>
inline constexpr std::size_t type_list_index_v = type_list_index<Type, List>::value;
/**
* @brief Concatenates multiple type lists.
* @tparam Type Types provided by the first type list.
* @tparam Other Types provided by the second type list.
* @return A type list composed by the types of both the type lists.
*/
template<typename... Type, typename... Other>
constexpr type_list<Type..., Other...> operator+(type_list<Type...>, type_list<Other...>) {
return {};
}
/*! @brief Primary template isn't defined on purpose. */
template<typename...>
struct type_list_cat;
/*! @brief Concatenates multiple type lists. */
template<>
struct type_list_cat<> {
/*! @brief A type list composed by the types of all the type lists. */
using type = type_list<>;
};
/**
* @brief Concatenates multiple type lists.
* @tparam Type Types provided by the first type list.
* @tparam Other Types provided by the second type list.
* @tparam List Other type lists, if any.
*/
template<typename... Type, typename... Other, typename... List>
struct type_list_cat<type_list<Type...>, type_list<Other...>, List...> {
/*! @brief A type list composed by the types of all the type lists. */
using type = typename type_list_cat<type_list<Type..., Other...>, List...>::type;
};
/**
* @brief Concatenates multiple type lists.
* @tparam Type Types provided by the type list.
*/
template<typename... Type>
struct type_list_cat<type_list<Type...>> {
/*! @brief A type list composed by the types of all the type lists. */
using type = type_list<Type...>;
};
/**
* @brief Helper type.
* @tparam List Type lists to concatenate.
*/
template<typename... List>
using type_list_cat_t = typename type_list_cat<List...>::type;
/*! @brief Primary template isn't defined on purpose. */
template<typename>
struct type_list_unique;
/**
* @brief Removes duplicates types from a type list.
* @tparam Type One of the types provided by the given type list.
* @tparam Other The other types provided by the given type list.
*/
template<typename Type, typename... Other>
struct type_list_unique<type_list<Type, Other...>> {
/*! @brief A type list without duplicate types. */
using type = std::conditional_t<
(std::is_same_v<Type, Other> || ...),
typename type_list_unique<type_list<Other...>>::type,
type_list_cat_t<type_list<Type>, typename type_list_unique<type_list<Other...>>::type>>;
};
/*! @brief Removes duplicates types from a type list. */
template<>
struct type_list_unique<type_list<>> {
/*! @brief A type list without duplicate types. */
using type = type_list<>;
};
/**
* @brief Helper type.
* @tparam Type A type list.
*/
template<typename Type>
using type_list_unique_t = typename type_list_unique<Type>::type;
/**
* @brief Provides the member constant `value` to true if a type list contains a
* given type, false otherwise.
* @tparam List Type list.
* @tparam Type Type to look for.
*/
template<typename List, typename Type>
struct type_list_contains;
/**
* @copybrief type_list_contains
* @tparam Type Types provided by the type list.
* @tparam Other Type to look for.
*/
template<typename... Type, typename Other>
struct type_list_contains<type_list<Type...>, Other>: std::disjunction<std::is_same<Type, Other>...> {};
/**
* @brief Helper variable template.
* @tparam List Type list.
* @tparam Type Type to look for.
*/
template<typename List, typename Type>
inline constexpr bool type_list_contains_v = type_list_contains<List, Type>::value;
/*! @brief Primary template isn't defined on purpose. */
template<typename...>
struct type_list_diff;
/**
* @brief Computes the difference between two type lists.
* @tparam Type Types provided by the first type list.
* @tparam Other Types provided by the second type list.
*/
template<typename... Type, typename... Other>
struct type_list_diff<type_list<Type...>, type_list<Other...>> {
/*! @brief A type list that is the difference between the two type lists. */
using type = type_list_cat_t<std::conditional_t<type_list_contains_v<type_list<Other...>, Type>, type_list<>, type_list<Type>>...>;
};
/**
* @brief Helper type.
* @tparam List Type lists between which to compute the difference.
*/
template<typename... List>
using type_list_diff_t = typename type_list_diff<List...>::type;
/*! @brief Primary template isn't defined on purpose. */
template<typename, template<typename...> class>
struct type_list_transform;
/**
* @brief Applies a given _function_ to a type list and generate a new list.
* @tparam Type Types provided by the type list.
* @tparam Op Unary operation as template class with a type member named `type`.
*/
template<typename... Type, template<typename...> class Op>
struct type_list_transform<type_list<Type...>, Op> {
/*! @brief Resulting type list after applying the transform function. */
using type = type_list<typename Op<Type>::type...>;
};
/**
* @brief Helper type.
* @tparam List Type list.
* @tparam Op Unary operation as template class with a type member named `type`.
*/
template<typename List, template<typename...> class Op>
using type_list_transform_t = typename type_list_transform<List, Op>::type;
/**
* @brief A class to use to push around lists of constant values, nothing more.
* @tparam Value Values provided by the value list.
*/
template<auto... Value>
struct value_list {
/*! @brief Value list type. */
using type = value_list;
/*! @brief Compile-time number of elements in the value list. */
static constexpr auto size = sizeof...(Value);
};
/*! @brief Primary template isn't defined on purpose. */
template<std::size_t, typename>
struct value_list_element;
/**
* @brief Provides compile-time indexed access to the values of a value list.
* @tparam Index Index of the value to return.
* @tparam Value First value provided by the value list.
* @tparam Other Other values provided by the value list.
*/
template<std::size_t Index, auto Value, auto... Other>
struct value_list_element<Index, value_list<Value, Other...>>
: value_list_element<Index - 1u, value_list<Other...>> {};
/**
* @brief Provides compile-time indexed access to the types of a type list.
* @tparam Value First value provided by the value list.
* @tparam Other Other values provided by the value list.
*/
template<auto Value, auto... Other>
struct value_list_element<0u, value_list<Value, Other...>> {
/*! @brief Searched value. */
static constexpr auto value = Value;
};
/**
* @brief Helper type.
* @tparam Index Index of the value to return.
* @tparam List Value list to search into.
*/
template<std::size_t Index, typename List>
inline constexpr auto value_list_element_v = value_list_element<Index, List>::value;
/**
* @brief Concatenates multiple value lists.
* @tparam Value Values provided by the first value list.
* @tparam Other Values provided by the second value list.
* @return A value list composed by the values of both the value lists.
*/
template<auto... Value, auto... Other>
constexpr value_list<Value..., Other...> operator+(value_list<Value...>, value_list<Other...>) {
return {};
}
/*! @brief Primary template isn't defined on purpose. */
template<typename...>
struct value_list_cat;
/*! @brief Concatenates multiple value lists. */
template<>
struct value_list_cat<> {
/*! @brief A value list composed by the values of all the value lists. */
using type = value_list<>;
};
/**
* @brief Concatenates multiple value lists.
* @tparam Value Values provided by the first value list.
* @tparam Other Values provided by the second value list.
* @tparam List Other value lists, if any.
*/
template<auto... Value, auto... Other, typename... List>
struct value_list_cat<value_list<Value...>, value_list<Other...>, List...> {
/*! @brief A value list composed by the values of all the value lists. */
using type = typename value_list_cat<value_list<Value..., Other...>, List...>::type;
};
/**
* @brief Concatenates multiple value lists.
* @tparam Value Values provided by the value list.
*/
template<auto... Value>
struct value_list_cat<value_list<Value...>> {
/*! @brief A value list composed by the values of all the value lists. */
using type = value_list<Value...>;
};
/**
* @brief Helper type.
* @tparam List Value lists to concatenate.
*/
template<typename... List>
using value_list_cat_t = typename value_list_cat<List...>::type;
/*! @brief Same as std::is_invocable, but with tuples. */
template<typename, typename>
struct is_applicable: std::false_type {};
/**
* @copybrief is_applicable
* @tparam Func A valid function type.
* @tparam Tuple Tuple-like type.
* @tparam Args The list of arguments to use to probe the function type.
*/
template<typename Func, template<typename...> class Tuple, typename... Args>
struct is_applicable<Func, Tuple<Args...>>: std::is_invocable<Func, Args...> {};
/**
* @copybrief is_applicable
* @tparam Func A valid function type.
* @tparam Tuple Tuple-like type.
* @tparam Args The list of arguments to use to probe the function type.
*/
template<typename Func, template<typename...> class Tuple, typename... Args>
struct is_applicable<Func, const Tuple<Args...>>: std::is_invocable<Func, Args...> {};
/**
* @brief Helper variable template.
* @tparam Func A valid function type.
* @tparam Args The list of arguments to use to probe the function type.
*/
template<typename Func, typename Args>
inline constexpr bool is_applicable_v = is_applicable<Func, Args>::value;
/*! @brief Same as std::is_invocable_r, but with tuples for arguments. */
template<typename, typename, typename>
struct is_applicable_r: std::false_type {};
/**
* @copybrief is_applicable_r
* @tparam Ret The type to which the return type of the function should be
* convertible.
* @tparam Func A valid function type.
* @tparam Args The list of arguments to use to probe the function type.
*/
template<typename Ret, typename Func, typename... Args>
struct is_applicable_r<Ret, Func, std::tuple<Args...>>: std::is_invocable_r<Ret, Func, Args...> {};
/**
* @brief Helper variable template.
* @tparam Ret The type to which the return type of the function should be
* convertible.
* @tparam Func A valid function type.
* @tparam Args The list of arguments to use to probe the function type.
*/
template<typename Ret, typename Func, typename Args>
inline constexpr bool is_applicable_r_v = is_applicable_r<Ret, Func, Args>::value;
/**
* @brief Provides the member constant `value` to true if a given type is
* complete, false otherwise.
* @tparam Type The type to test.
*/
template<typename Type, typename = void>
struct is_complete: std::false_type {};
/*! @copydoc is_complete */
template<typename Type>
struct is_complete<Type, std::void_t<decltype(sizeof(Type))>>: std::true_type {};
/**
* @brief Helper variable template.
* @tparam Type The type to test.
*/
template<typename Type>
inline constexpr bool is_complete_v = is_complete<Type>::value;
/**
* @brief Provides the member constant `value` to true if a given type is an
* iterator, false otherwise.
* @tparam Type The type to test.
*/
template<typename Type, typename = void>
struct is_iterator: std::false_type {};
/**
* @cond TURN_OFF_DOXYGEN
* Internal details not to be documented.
*/
namespace internal {
template<typename, typename = void>
struct has_iterator_category: std::false_type {};
template<typename Type>
struct has_iterator_category<Type, std::void_t<typename std::iterator_traits<Type>::iterator_category>>: std::true_type {};
} // namespace internal
/**
* Internal details not to be documented.
* @endcond
*/
/*! @copydoc is_iterator */
template<typename Type>
struct is_iterator<Type, std::enable_if_t<!std::is_same_v<std::remove_cv_t<std::remove_pointer_t<Type>>, void>>>
: internal::has_iterator_category<Type> {};
/**
* @brief Helper variable template.
* @tparam Type The type to test.
*/
template<typename Type>
inline constexpr bool is_iterator_v = is_iterator<Type>::value;
/**
* @brief Provides the member constant `value` to true if a given type is both
* an empty and non-final class, false otherwise.
* @tparam Type The type to test
*/
template<typename Type>
struct is_ebco_eligible
: std::conjunction<std::is_empty<Type>, std::negation<std::is_final<Type>>> {};
/**
* @brief Helper variable template.
* @tparam Type The type to test.
*/
template<typename Type>
inline constexpr bool is_ebco_eligible_v = is_ebco_eligible<Type>::value;
/**
* @brief Provides the member constant `value` to true if `Type::is_transparent`
* is valid and denotes a type, false otherwise.
* @tparam Type The type to test.
*/
template<typename Type, typename = void>
struct is_transparent: std::false_type {};
/*! @copydoc is_transparent */
template<typename Type>
struct is_transparent<Type, std::void_t<typename Type::is_transparent>>: std::true_type {};
/**
* @brief Helper variable template.
* @tparam Type The type to test.
*/
template<typename Type>
inline constexpr bool is_transparent_v = is_transparent<Type>::value;
/**
* @brief Provides the member constant `value` to true if a given type is
* equality comparable, false otherwise.
* @tparam Type The type to test.
*/
template<typename Type, typename = void>
struct is_equality_comparable: std::false_type {};
/**
* @cond TURN_OFF_DOXYGEN
* Internal details not to be documented.
*/
namespace internal {
template<typename, typename = void>
struct has_tuple_size_value: std::false_type {};
template<typename Type>
struct has_tuple_size_value<Type, std::void_t<decltype(std::tuple_size<const Type>::value)>>: std::true_type {};
template<typename Type, std::size_t... Index>
[[nodiscard]] constexpr bool unpack_maybe_equality_comparable(std::index_sequence<Index...>) {
return (is_equality_comparable<std::tuple_element_t<Index, Type>>::value && ...);
}
template<typename>
[[nodiscard]] constexpr bool maybe_equality_comparable(choice_t<0>) {
return true;
}
template<typename Type>
[[nodiscard]] constexpr auto maybe_equality_comparable(choice_t<1>) -> decltype(std::declval<typename Type::value_type>(), bool{}) {
if constexpr(is_iterator_v<Type>) {
return true;
} else if constexpr(std::is_same_v<typename Type::value_type, Type>) {
return maybe_equality_comparable<Type>(choice<0>);
} else {
return is_equality_comparable<typename Type::value_type>::value;
}
}
template<typename Type>
[[nodiscard]] constexpr std::enable_if_t<is_complete_v<std::tuple_size<std::remove_cv_t<Type>>>, bool> maybe_equality_comparable(choice_t<2>) {
if constexpr(has_tuple_size_value<Type>::value) {
return unpack_maybe_equality_comparable<Type>(std::make_index_sequence<std::tuple_size<Type>::value>{});
} else {
return maybe_equality_comparable<Type>(choice<1>);
}
}
} // namespace internal
/**
* Internal details not to be documented.
* @endcond
*/
/*! @copydoc is_equality_comparable */
template<typename Type>
struct is_equality_comparable<Type, std::void_t<decltype(std::declval<Type>() == std::declval<Type>())>>
: std::bool_constant<internal::maybe_equality_comparable<Type>(choice<2>)> {};
/**
* @brief Helper variable template.
* @tparam Type The type to test.
*/
template<typename Type>
inline constexpr bool is_equality_comparable_v = is_equality_comparable<Type>::value;
/**
* @brief Transcribes the constness of a type to another type.
* @tparam To The type to which to transcribe the constness.
* @tparam From The type from which to transcribe the constness.
*/
template<typename To, typename From>
struct constness_as {
/*! @brief The type resulting from the transcription of the constness. */
using type = std::remove_const_t<To>;
};
/*! @copydoc constness_as */
template<typename To, typename From>
struct constness_as<To, const From> {
/*! @brief The type resulting from the transcription of the constness. */
using type = const To;
};
/**
* @brief Alias template to facilitate the transcription of the constness.
* @tparam To The type to which to transcribe the constness.
* @tparam From The type from which to transcribe the constness.
*/
template<typename To, typename From>
using constness_as_t = typename constness_as<To, From>::type;
/**
* @brief Extracts the class of a non-static member object or function.
* @tparam Member A pointer to a non-static member object or function.
*/
template<typename Member>
class member_class {
static_assert(std::is_member_pointer_v<Member>, "Invalid pointer type to non-static member object or function");
template<typename Class, typename Ret, typename... Args>
static Class *clazz(Ret (Class::*)(Args...));
template<typename Class, typename Ret, typename... Args>
static Class *clazz(Ret (Class::*)(Args...) const);
template<typename Class, typename Type>
static Class *clazz(Type Class::*);
public:
/*! @brief The class of the given non-static member object or function. */
using type = std::remove_pointer_t<decltype(clazz(std::declval<Member>()))>;
};
/**
* @brief Helper type.
* @tparam Member A pointer to a non-static member object or function.
*/
template<typename Member>
using member_class_t = typename member_class<Member>::type;
/**
* @brief Extracts the n-th argument of a given function or member function.
* @tparam Index The index of the argument to extract.
* @tparam Candidate A valid function, member function or data member.
*/
template<std::size_t Index, auto Candidate>
class nth_argument {
template<typename Ret, typename... Args>
static constexpr type_list<Args...> pick_up(Ret (*)(Args...));
template<typename Ret, typename Class, typename... Args>
static constexpr type_list<Args...> pick_up(Ret (Class ::*)(Args...));
template<typename Ret, typename Class, typename... Args>
static constexpr type_list<Args...> pick_up(Ret (Class ::*)(Args...) const);
template<typename Type, typename Class>
static constexpr type_list<Type> pick_up(Type Class ::*);
public:
/*! @brief N-th argument of the given function or member function. */
using type = type_list_element_t<Index, decltype(pick_up(Candidate))>;
};
/**
* @brief Helper type.
* @tparam Index The index of the argument to extract.
* @tparam Candidate A valid function, member function or data member.
*/
template<std::size_t Index, auto Candidate>
using nth_argument_t = typename nth_argument<Index, Candidate>::type;
} // namespace entt
#endif
// #include "fwd.hpp"
#ifndef ENTT_SIGNAL_FWD_HPP
#define ENTT_SIGNAL_FWD_HPP
#include <memory>
namespace entt {
template<typename>
class delegate;
template<typename = std::allocator<void>>
class basic_dispatcher;
template<typename, typename = std::allocator<void>>
class emitter;
class connection;
struct scoped_connection;
template<typename>
class sink;
template<typename Type, typename = std::allocator<void>>
class sigh;
/*! @brief Alias declaration for the most common use case. */
using dispatcher = basic_dispatcher<>;
/*! @brief Disambiguation tag for constructors and the like. */
template<auto>
struct connect_arg_t {
/*! @brief Default constructor. */
explicit connect_arg_t() = default;
};
/**
* @brief Constant of type connect_arg_t used to disambiguate calls.
* @tparam Candidate Element to connect (likely a free or member function).
*/
template<auto Candidate>
inline constexpr connect_arg_t<Candidate> connect_arg{};
} // namespace entt
#endif
namespace entt {
/**
* @cond TURN_OFF_DOXYGEN
* Internal details not to be documented.
*/
namespace internal {
template<typename Ret, typename... Args>
constexpr auto function_pointer(Ret (*)(Args...)) -> Ret (*)(Args...);
template<typename Ret, typename Type, typename... Args, typename Other>
constexpr auto function_pointer(Ret (*)(Type, Args...), Other &&) -> Ret (*)(Args...);
template<typename Class, typename Ret, typename... Args, typename... Other>
constexpr auto function_pointer(Ret (Class::*)(Args...), Other &&...) -> Ret (*)(Args...);
template<typename Class, typename Ret, typename... Args, typename... Other>
constexpr auto function_pointer(Ret (Class::*)(Args...) const, Other &&...) -> Ret (*)(Args...);
template<typename Class, typename Type, typename... Other>
constexpr auto function_pointer(Type Class::*, Other &&...) -> Type (*)();
template<typename... Type>
using function_pointer_t = decltype(function_pointer(std::declval<Type>()...));
template<typename... Class, typename Ret, typename... Args>
[[nodiscard]] constexpr auto index_sequence_for(Ret (*)(Args...)) {
return std::index_sequence_for<Class..., Args...>{};
}
} // namespace internal
/**
* Internal details not to be documented.
* @endcond
*/
/**
* @brief Basic delegate implementation.
*
* Primary template isn't defined on purpose. All the specializations give a
* compile-time error unless the template parameter is a function type.
*/
template<typename>
class delegate;
/**
* @brief Utility class to use to send around functions and members.
*
* Unmanaged delegate for function pointers and members. Users of this class are
* in charge of disconnecting instances before deleting them.
*
* A delegate can be used as a general purpose invoker without memory overhead
* for free functions possibly with payloads and bound or unbound members.
*
* @tparam Ret Return type of a function type.
* @tparam Args Types of arguments of a function type.
*/
template<typename Ret, typename... Args>
class delegate<Ret(Args...)> {
template<auto Candidate, std::size_t... Index>
[[nodiscard]] auto wrap(std::index_sequence<Index...>) noexcept {
return [](const void *, Args... args) -> Ret {
[[maybe_unused]] const auto arguments = std::forward_as_tuple(std::forward<Args>(args)...);
return static_cast<Ret>(std::invoke(Candidate, std::forward<type_list_element_t<Index, type_list<Args...>>>(std::get<Index>(arguments))...));
};
}
template<auto Candidate, typename Type, std::size_t... Index>
[[nodiscard]] auto wrap(Type &, std::index_sequence<Index...>) noexcept {
return [](const void *payload, Args... args) -> Ret {
[[maybe_unused]] const auto arguments = std::forward_as_tuple(std::forward<Args>(args)...);
Type *curr = static_cast<Type *>(const_cast<constness_as_t<void, Type> *>(payload));
return static_cast<Ret>(std::invoke(Candidate, *curr, std::forward<type_list_element_t<Index, type_list<Args...>>>(std::get<Index>(arguments))...));
};
}
template<auto Candidate, typename Type, std::size_t... Index>
[[nodiscard]] auto wrap(Type *, std::index_sequence<Index...>) noexcept {
return [](const void *payload, Args... args) -> Ret {
[[maybe_unused]] const auto arguments = std::forward_as_tuple(std::forward<Args>(args)...);
Type *curr = static_cast<Type *>(const_cast<constness_as_t<void, Type> *>(payload));
return static_cast<Ret>(std::invoke(Candidate, curr, std::forward<type_list_element_t<Index, type_list<Args...>>>(std::get<Index>(arguments))...));
};
}
public:
/*! @brief Function type of the contained target. */
using function_type = Ret(const void *, Args...);
/*! @brief Function type of the delegate. */
using type = Ret(Args...);
/*! @brief Return type of the delegate. */
using result_type = Ret;
/*! @brief Default constructor. */
delegate() noexcept
: instance{nullptr},
fn{nullptr} {}
/**
* @brief Constructs a delegate with a given object or payload, if any.
* @tparam Candidate Function or member to connect to the delegate.
* @tparam Type Type of class or type of payload, if any.
* @param value_or_instance Optional valid object that fits the purpose.
*/
template<auto Candidate, typename... Type>
delegate(connect_arg_t<Candidate>, Type &&...value_or_instance) noexcept {
connect<Candidate>(std::forward<Type>(value_or_instance)...);
}
/**
* @brief Constructs a delegate and connects an user defined function with
* optional payload.
* @param function Function to connect to the delegate.
* @param payload User defined arbitrary data.
*/
delegate(function_type *function, const void *payload = nullptr) noexcept {
connect(function, payload);
}
/**
* @brief Connects a free function or an unbound member to a delegate.
* @tparam Candidate Function or member to connect to the delegate.
*/
template<auto Candidate>
void connect() noexcept {
instance = nullptr;
if constexpr(std::is_invocable_r_v<Ret, decltype(Candidate), Args...>) {
fn = [](const void *, Args... args) -> Ret {
return Ret(std::invoke(Candidate, std::forward<Args>(args)...));
};
} else if constexpr(std::is_member_pointer_v<decltype(Candidate)>) {
fn = wrap<Candidate>(internal::index_sequence_for<type_list_element_t<0, type_list<Args...>>>(internal::function_pointer_t<decltype(Candidate)>{}));
} else {
fn = wrap<Candidate>(internal::index_sequence_for(internal::function_pointer_t<decltype(Candidate)>{}));
}
}
/**
* @brief Connects a free function with payload or a bound member to a
* delegate.
*
* The delegate isn't responsible for the connected object or the payload.
* Users must always guarantee that the lifetime of the instance overcomes
* the one of the delegate.<br/>
* When used to connect a free function with payload, its signature must be
* such that the instance is the first argument before the ones used to
* define the delegate itself.
*
* @tparam Candidate Function or member to connect to the delegate.
* @tparam Type Type of class or type of payload.
* @param value_or_instance A valid reference that fits the purpose.
*/
template<auto Candidate, typename Type>
void connect(Type &value_or_instance) noexcept {
instance = &value_or_instance;
if constexpr(std::is_invocable_r_v<Ret, decltype(Candidate), Type &, Args...>) {
fn = [](const void *payload, Args... args) -> Ret {
Type *curr = static_cast<Type *>(const_cast<constness_as_t<void, Type> *>(payload));
return Ret(std::invoke(Candidate, *curr, std::forward<Args>(args)...));
};
} else {
fn = wrap<Candidate>(value_or_instance, internal::index_sequence_for(internal::function_pointer_t<decltype(Candidate), Type>{}));
}
}
/**
* @brief Connects a free function with payload or a bound member to a
* delegate.
*
* @sa connect(Type &)
*
* @tparam Candidate Function or member to connect to the delegate.
* @tparam Type Type of class or type of payload.
* @param value_or_instance A valid pointer that fits the purpose.
*/
template<auto Candidate, typename Type>
void connect(Type *value_or_instance) noexcept {
instance = value_or_instance;
if constexpr(std::is_invocable_r_v<Ret, decltype(Candidate), Type *, Args...>) {
fn = [](const void *payload, Args... args) -> Ret {
Type *curr = static_cast<Type *>(const_cast<constness_as_t<void, Type> *>(payload));
return Ret(std::invoke(Candidate, curr, std::forward<Args>(args)...));
};
} else {
fn = wrap<Candidate>(value_or_instance, internal::index_sequence_for(internal::function_pointer_t<decltype(Candidate), Type>{}));
}
}
/**
* @brief Connects an user defined function with optional payload to a
* delegate.
*
* The delegate isn't responsible for the connected object or the payload.
* Users must always guarantee that the lifetime of an instance overcomes
* the one of the delegate.<br/>
* The payload is returned as the first argument to the target function in
* all cases.
*
* @param function Function to connect to the delegate.
* @param payload User defined arbitrary data.
*/
void connect(function_type *function, const void *payload = nullptr) noexcept {
ENTT_ASSERT(function != nullptr, "Uninitialized function pointer");
instance = payload;
fn = function;
}
/**
* @brief Resets a delegate.
*
* After a reset, a delegate cannot be invoked anymore.
*/
void reset() noexcept {
instance = nullptr;
fn = nullptr;
}
/**
* @brief Returns the instance or the payload linked to a delegate, if any.
* @return An opaque pointer to the underlying data.
*/
[[nodiscard]] const void *data() const noexcept {
return instance;
}
/**
* @brief Triggers a delegate.
*
* The delegate invokes the underlying function and returns the result.
*
* @warning
* Attempting to trigger an invalid delegate results in undefined
* behavior.
*
* @param args Arguments to use to invoke the underlying function.
* @return The value returned by the underlying function.
*/
Ret operator()(Args... args) const {
ENTT_ASSERT(static_cast<bool>(*this), "Uninitialized delegate");
return fn(instance, std::forward<Args>(args)...);
}
/**
* @brief Checks whether a delegate actually stores a listener.
* @return False if the delegate is empty, true otherwise.
*/
[[nodiscard]] explicit operator bool() const noexcept {
// no need to also test instance
return !(fn == nullptr);
}
/**
* @brief Compares the contents of two delegates.
* @param other Delegate with which to compare.
* @return False if the two contents differ, true otherwise.
*/
[[nodiscard]] bool operator==(const delegate<Ret(Args...)> &other) const noexcept {
return fn == other.fn && instance == other.instance;
}
private:
const void *instance;
function_type *fn;
};
/**
* @brief Compares the contents of two delegates.
* @tparam Ret Return type of a function type.
* @tparam Args Types of arguments of a function type.
* @param lhs A valid delegate object.
* @param rhs A valid delegate object.
* @return True if the two contents differ, false otherwise.
*/
template<typename Ret, typename... Args>
[[nodiscard]] bool operator!=(const delegate<Ret(Args...)> &lhs, const delegate<Ret(Args...)> &rhs) noexcept {
return !(lhs == rhs);
}
/**
* @brief Deduction guide.
* @tparam Candidate Function or member to connect to the delegate.
*/
template<auto Candidate>
delegate(connect_arg_t<Candidate>) -> delegate<std::remove_pointer_t<internal::function_pointer_t<decltype(Candidate)>>>;
/**
* @brief Deduction guide.
* @tparam Candidate Function or member to connect to the delegate.
* @tparam Type Type of class or type of payload.
*/
template<auto Candidate, typename Type>
delegate(connect_arg_t<Candidate>, Type &&) -> delegate<std::remove_pointer_t<internal::function_pointer_t<decltype(Candidate), Type>>>;
/**
* @brief Deduction guide.
* @tparam Ret Return type of a function type.
* @tparam Args Types of arguments of a function type.
*/
template<typename Ret, typename... Args>
delegate(Ret (*)(const void *, Args...), const void * = nullptr) -> delegate<Ret(Args...)>;
} // namespace entt
#endif
// #include "signal/dispatcher.hpp"
#ifndef ENTT_SIGNAL_DISPATCHER_HPP
#define ENTT_SIGNAL_DISPATCHER_HPP
#include <cstddef>
#include <functional>
#include <memory>
#include <type_traits>
#include <utility>
#include <vector>
// #include "../container/dense_map.hpp"
#ifndef ENTT_CONTAINER_DENSE_MAP_HPP
#define ENTT_CONTAINER_DENSE_MAP_HPP
#include <cmath>
#include <cstddef>
#include <functional>
#include <iterator>
#include <limits>
#include <memory>
#include <tuple>
#include <type_traits>
#include <utility>
#include <vector>
// #include "../config/config.h"
#ifndef ENTT_CONFIG_CONFIG_H
#define ENTT_CONFIG_CONFIG_H
// #include "version.h"
#ifndef ENTT_CONFIG_VERSION_H
#define ENTT_CONFIG_VERSION_H
// #include "macro.h"
#ifndef ENTT_CONFIG_MACRO_H
#define ENTT_CONFIG_MACRO_H
#define ENTT_STR(arg) #arg
#define ENTT_XSTR(arg) ENTT_STR(arg)
#endif
#define ENTT_VERSION_MAJOR 3
#define ENTT_VERSION_MINOR 11
#define ENTT_VERSION_PATCH 1
#define ENTT_VERSION \
ENTT_XSTR(ENTT_VERSION_MAJOR) \
"." ENTT_XSTR(ENTT_VERSION_MINOR) "." ENTT_XSTR(ENTT_VERSION_PATCH)
#endif
#if defined(__cpp_exceptions) && !defined(ENTT_NOEXCEPTION)
# define ENTT_CONSTEXPR
# define ENTT_THROW throw
# define ENTT_TRY try
# define ENTT_CATCH catch(...)
#else
# define ENTT_CONSTEXPR constexpr // use only with throwing functions (waiting for C++20)
# define ENTT_THROW
# define ENTT_TRY if(true)
# define ENTT_CATCH if(false)
#endif
#ifdef ENTT_USE_ATOMIC
# include <atomic>
# define ENTT_MAYBE_ATOMIC(Type) std::atomic<Type>
#else
# define ENTT_MAYBE_ATOMIC(Type) Type
#endif
#ifndef ENTT_ID_TYPE
# include <cstdint>
# define ENTT_ID_TYPE std::uint32_t
#endif
#ifndef ENTT_SPARSE_PAGE
# define ENTT_SPARSE_PAGE 4096
#endif
#ifndef ENTT_PACKED_PAGE
# define ENTT_PACKED_PAGE 1024
#endif
#ifdef ENTT_DISABLE_ASSERT
# undef ENTT_ASSERT
# define ENTT_ASSERT(condition, msg) (void(0))
#elif !defined ENTT_ASSERT
# include <cassert>
# define ENTT_ASSERT(condition, msg) assert(condition)
#endif
#ifdef ENTT_DISABLE_ASSERT
# undef ENTT_ASSERT_CONSTEXPR
# define ENTT_ASSERT_CONSTEXPR(condition, msg) (void(0))
#elif !defined ENTT_ASSERT_CONSTEXPR
# define ENTT_ASSERT_CONSTEXPR(condition, msg) ENTT_ASSERT(condition, msg)
#endif
#ifdef ENTT_NO_ETO
# define ENTT_ETO_TYPE(Type) void
#else
# define ENTT_ETO_TYPE(Type) Type
#endif
#ifdef ENTT_STANDARD_CPP
# define ENTT_NONSTD false
#else
# define ENTT_NONSTD true
# if defined __clang__ || defined __GNUC__
# define ENTT_PRETTY_FUNCTION __PRETTY_FUNCTION__
# define ENTT_PRETTY_FUNCTION_PREFIX '='
# define ENTT_PRETTY_FUNCTION_SUFFIX ']'
# elif defined _MSC_VER
# define ENTT_PRETTY_FUNCTION __FUNCSIG__
# define ENTT_PRETTY_FUNCTION_PREFIX '<'
# define ENTT_PRETTY_FUNCTION_SUFFIX '>'
# endif
#endif
#if defined _MSC_VER
# pragma detect_mismatch("entt.version", ENTT_VERSION)
# pragma detect_mismatch("entt.noexcept", ENTT_XSTR(ENTT_TRY))
# pragma detect_mismatch("entt.id", ENTT_XSTR(ENTT_ID_TYPE))
# pragma detect_mismatch("entt.nonstd", ENTT_XSTR(ENTT_NONSTD))
#endif
#endif
// #include "../core/compressed_pair.hpp"
#ifndef ENTT_CORE_COMPRESSED_PAIR_HPP
#define ENTT_CORE_COMPRESSED_PAIR_HPP
#include <cstddef>
#include <tuple>
#include <type_traits>
#include <utility>
// #include "type_traits.hpp"
#ifndef ENTT_CORE_TYPE_TRAITS_HPP
#define ENTT_CORE_TYPE_TRAITS_HPP
#include <cstddef>
#include <iterator>
#include <type_traits>
#include <utility>
// #include "../config/config.h"
#ifndef ENTT_CONFIG_CONFIG_H
#define ENTT_CONFIG_CONFIG_H
// #include "version.h"
#ifndef ENTT_CONFIG_VERSION_H
#define ENTT_CONFIG_VERSION_H
// #include "macro.h"
#ifndef ENTT_CONFIG_MACRO_H
#define ENTT_CONFIG_MACRO_H
#define ENTT_STR(arg) #arg
#define ENTT_XSTR(arg) ENTT_STR(arg)
#endif
#define ENTT_VERSION_MAJOR 3
#define ENTT_VERSION_MINOR 11
#define ENTT_VERSION_PATCH 1
#define ENTT_VERSION \
ENTT_XSTR(ENTT_VERSION_MAJOR) \
"." ENTT_XSTR(ENTT_VERSION_MINOR) "." ENTT_XSTR(ENTT_VERSION_PATCH)
#endif
#if defined(__cpp_exceptions) && !defined(ENTT_NOEXCEPTION)
# define ENTT_CONSTEXPR
# define ENTT_THROW throw
# define ENTT_TRY try
# define ENTT_CATCH catch(...)
#else
# define ENTT_CONSTEXPR constexpr // use only with throwing functions (waiting for C++20)
# define ENTT_THROW
# define ENTT_TRY if(true)
# define ENTT_CATCH if(false)
#endif
#ifdef ENTT_USE_ATOMIC
# include <atomic>
# define ENTT_MAYBE_ATOMIC(Type) std::atomic<Type>
#else
# define ENTT_MAYBE_ATOMIC(Type) Type
#endif
#ifndef ENTT_ID_TYPE
# include <cstdint>
# define ENTT_ID_TYPE std::uint32_t
#endif
#ifndef ENTT_SPARSE_PAGE
# define ENTT_SPARSE_PAGE 4096
#endif
#ifndef ENTT_PACKED_PAGE
# define ENTT_PACKED_PAGE 1024
#endif
#ifdef ENTT_DISABLE_ASSERT
# undef ENTT_ASSERT
# define ENTT_ASSERT(condition, msg) (void(0))
#elif !defined ENTT_ASSERT
# include <cassert>
# define ENTT_ASSERT(condition, msg) assert(condition)
#endif
#ifdef ENTT_DISABLE_ASSERT
# undef ENTT_ASSERT_CONSTEXPR
# define ENTT_ASSERT_CONSTEXPR(condition, msg) (void(0))
#elif !defined ENTT_ASSERT_CONSTEXPR
# define ENTT_ASSERT_CONSTEXPR(condition, msg) ENTT_ASSERT(condition, msg)
#endif
#ifdef ENTT_NO_ETO
# define ENTT_ETO_TYPE(Type) void
#else
# define ENTT_ETO_TYPE(Type) Type
#endif
#ifdef ENTT_STANDARD_CPP
# define ENTT_NONSTD false
#else
# define ENTT_NONSTD true
# if defined __clang__ || defined __GNUC__
# define ENTT_PRETTY_FUNCTION __PRETTY_FUNCTION__
# define ENTT_PRETTY_FUNCTION_PREFIX '='
# define ENTT_PRETTY_FUNCTION_SUFFIX ']'
# elif defined _MSC_VER
# define ENTT_PRETTY_FUNCTION __FUNCSIG__
# define ENTT_PRETTY_FUNCTION_PREFIX '<'
# define ENTT_PRETTY_FUNCTION_SUFFIX '>'
# endif
#endif
#if defined _MSC_VER
# pragma detect_mismatch("entt.version", ENTT_VERSION)
# pragma detect_mismatch("entt.noexcept", ENTT_XSTR(ENTT_TRY))
# pragma detect_mismatch("entt.id", ENTT_XSTR(ENTT_ID_TYPE))
# pragma detect_mismatch("entt.nonstd", ENTT_XSTR(ENTT_NONSTD))
#endif
#endif
// #include "fwd.hpp"
#ifndef ENTT_CORE_FWD_HPP
#define ENTT_CORE_FWD_HPP
#include <cstddef>
// #include "../config/config.h"
namespace entt {
template<std::size_t Len = sizeof(double[2]), std::size_t = alignof(double[2])>
class basic_any;
/*! @brief Alias declaration for type identifiers. */
using id_type = ENTT_ID_TYPE;
/*! @brief Alias declaration for the most common use case. */
using any = basic_any<>;
} // namespace entt
#endif
namespace entt {
/**
* @brief Utility class to disambiguate overloaded functions.
* @tparam N Number of choices available.
*/
template<std::size_t N>
struct choice_t
// Unfortunately, doxygen cannot parse such a construct.
: /*! @cond TURN_OFF_DOXYGEN */ choice_t<N - 1> /*! @endcond */
{};
/*! @copybrief choice_t */
template<>
struct choice_t<0> {};
/**
* @brief Variable template for the choice trick.
* @tparam N Number of choices available.
*/
template<std::size_t N>
inline constexpr choice_t<N> choice{};
/**
* @brief Identity type trait.
*
* Useful to establish non-deduced contexts in template argument deduction
* (waiting for C++20) or to provide types through function arguments.
*
* @tparam Type A type.
*/
template<typename Type>
struct type_identity {
/*! @brief Identity type. */
using type = Type;
};
/**
* @brief Helper type.
* @tparam Type A type.
*/
template<typename Type>
using type_identity_t = typename type_identity<Type>::type;
/**
* @brief A type-only `sizeof` wrapper that returns 0 where `sizeof` complains.
* @tparam Type The type of which to return the size.
* @tparam The size of the type if `sizeof` accepts it, 0 otherwise.
*/
template<typename Type, typename = void>
struct size_of: std::integral_constant<std::size_t, 0u> {};
/*! @copydoc size_of */
template<typename Type>
struct size_of<Type, std::void_t<decltype(sizeof(Type))>>
: std::integral_constant<std::size_t, sizeof(Type)> {};
/**
* @brief Helper variable template.
* @tparam Type The type of which to return the size.
*/
template<typename Type>
inline constexpr std::size_t size_of_v = size_of<Type>::value;
/**
* @brief Using declaration to be used to _repeat_ the same type a number of
* times equal to the size of a given parameter pack.
* @tparam Type A type to repeat.
*/
template<typename Type, typename>
using unpack_as_type = Type;
/**
* @brief Helper variable template to be used to _repeat_ the same value a
* number of times equal to the size of a given parameter pack.
* @tparam Value A value to repeat.
*/
template<auto Value, typename>
inline constexpr auto unpack_as_value = Value;
/**
* @brief Wraps a static constant.
* @tparam Value A static constant.
*/
template<auto Value>
using integral_constant = std::integral_constant<decltype(Value), Value>;
/**
* @brief Alias template to facilitate the creation of named values.
* @tparam Value A constant value at least convertible to `id_type`.
*/
template<id_type Value>
using tag = integral_constant<Value>;
/**
* @brief A class to use to push around lists of types, nothing more.
* @tparam Type Types provided by the type list.
*/
template<typename... Type>
struct type_list {
/*! @brief Type list type. */
using type = type_list;
/*! @brief Compile-time number of elements in the type list. */
static constexpr auto size = sizeof...(Type);
};
/*! @brief Primary template isn't defined on purpose. */
template<std::size_t, typename>
struct type_list_element;
/**
* @brief Provides compile-time indexed access to the types of a type list.
* @tparam Index Index of the type to return.
* @tparam First First type provided by the type list.
* @tparam Other Other types provided by the type list.
*/
template<std::size_t Index, typename First, typename... Other>
struct type_list_element<Index, type_list<First, Other...>>
: type_list_element<Index - 1u, type_list<Other...>> {};
/**
* @brief Provides compile-time indexed access to the types of a type list.
* @tparam First First type provided by the type list.
* @tparam Other Other types provided by the type list.
*/
template<typename First, typename... Other>
struct type_list_element<0u, type_list<First, Other...>> {
/*! @brief Searched type. */
using type = First;
};
/**
* @brief Helper type.
* @tparam Index Index of the type to return.
* @tparam List Type list to search into.
*/
template<std::size_t Index, typename List>
using type_list_element_t = typename type_list_element<Index, List>::type;
/*! @brief Primary template isn't defined on purpose. */
template<typename, typename>
struct type_list_index;
/**
* @brief Provides compile-time type access to the types of a type list.
* @tparam Type Type to look for and for which to return the index.
* @tparam First First type provided by the type list.
* @tparam Other Other types provided by the type list.
*/
template<typename Type, typename First, typename... Other>
struct type_list_index<Type, type_list<First, Other...>> {
/*! @brief Unsigned integer type. */
using value_type = std::size_t;
/*! @brief Compile-time position of the given type in the sublist. */
static constexpr value_type value = 1u + type_list_index<Type, type_list<Other...>>::value;
};
/**
* @brief Provides compile-time type access to the types of a type list.
* @tparam Type Type to look for and for which to return the index.
* @tparam Other Other types provided by the type list.
*/
template<typename Type, typename... Other>
struct type_list_index<Type, type_list<Type, Other...>> {
static_assert(type_list_index<Type, type_list<Other...>>::value == sizeof...(Other), "Non-unique type");
/*! @brief Unsigned integer type. */
using value_type = std::size_t;
/*! @brief Compile-time position of the given type in the sublist. */
static constexpr value_type value = 0u;
};
/**
* @brief Provides compile-time type access to the types of a type list.
* @tparam Type Type to look for and for which to return the index.
*/
template<typename Type>
struct type_list_index<Type, type_list<>> {
/*! @brief Unsigned integer type. */
using value_type = std::size_t;
/*! @brief Compile-time position of the given type in the sublist. */
static constexpr value_type value = 0u;
};
/**
* @brief Helper variable template.
* @tparam List Type list.
* @tparam Type Type to look for and for which to return the index.
*/
template<typename Type, typename List>
inline constexpr std::size_t type_list_index_v = type_list_index<Type, List>::value;
/**
* @brief Concatenates multiple type lists.
* @tparam Type Types provided by the first type list.
* @tparam Other Types provided by the second type list.
* @return A type list composed by the types of both the type lists.
*/
template<typename... Type, typename... Other>
constexpr type_list<Type..., Other...> operator+(type_list<Type...>, type_list<Other...>) {
return {};
}
/*! @brief Primary template isn't defined on purpose. */
template<typename...>
struct type_list_cat;
/*! @brief Concatenates multiple type lists. */
template<>
struct type_list_cat<> {
/*! @brief A type list composed by the types of all the type lists. */
using type = type_list<>;
};
/**
* @brief Concatenates multiple type lists.
* @tparam Type Types provided by the first type list.
* @tparam Other Types provided by the second type list.
* @tparam List Other type lists, if any.
*/
template<typename... Type, typename... Other, typename... List>
struct type_list_cat<type_list<Type...>, type_list<Other...>, List...> {
/*! @brief A type list composed by the types of all the type lists. */
using type = typename type_list_cat<type_list<Type..., Other...>, List...>::type;
};
/**
* @brief Concatenates multiple type lists.
* @tparam Type Types provided by the type list.
*/
template<typename... Type>
struct type_list_cat<type_list<Type...>> {
/*! @brief A type list composed by the types of all the type lists. */
using type = type_list<Type...>;
};
/**
* @brief Helper type.
* @tparam List Type lists to concatenate.
*/
template<typename... List>
using type_list_cat_t = typename type_list_cat<List...>::type;
/*! @brief Primary template isn't defined on purpose. */
template<typename>
struct type_list_unique;
/**
* @brief Removes duplicates types from a type list.
* @tparam Type One of the types provided by the given type list.
* @tparam Other The other types provided by the given type list.
*/
template<typename Type, typename... Other>
struct type_list_unique<type_list<Type, Other...>> {
/*! @brief A type list without duplicate types. */
using type = std::conditional_t<
(std::is_same_v<Type, Other> || ...),
typename type_list_unique<type_list<Other...>>::type,
type_list_cat_t<type_list<Type>, typename type_list_unique<type_list<Other...>>::type>>;
};
/*! @brief Removes duplicates types from a type list. */
template<>
struct type_list_unique<type_list<>> {
/*! @brief A type list without duplicate types. */
using type = type_list<>;
};
/**
* @brief Helper type.
* @tparam Type A type list.
*/
template<typename Type>
using type_list_unique_t = typename type_list_unique<Type>::type;
/**
* @brief Provides the member constant `value` to true if a type list contains a
* given type, false otherwise.
* @tparam List Type list.
* @tparam Type Type to look for.
*/
template<typename List, typename Type>
struct type_list_contains;
/**
* @copybrief type_list_contains
* @tparam Type Types provided by the type list.
* @tparam Other Type to look for.
*/
template<typename... Type, typename Other>
struct type_list_contains<type_list<Type...>, Other>: std::disjunction<std::is_same<Type, Other>...> {};
/**
* @brief Helper variable template.
* @tparam List Type list.
* @tparam Type Type to look for.
*/
template<typename List, typename Type>
inline constexpr bool type_list_contains_v = type_list_contains<List, Type>::value;
/*! @brief Primary template isn't defined on purpose. */
template<typename...>
struct type_list_diff;
/**
* @brief Computes the difference between two type lists.
* @tparam Type Types provided by the first type list.
* @tparam Other Types provided by the second type list.
*/
template<typename... Type, typename... Other>
struct type_list_diff<type_list<Type...>, type_list<Other...>> {
/*! @brief A type list that is the difference between the two type lists. */
using type = type_list_cat_t<std::conditional_t<type_list_contains_v<type_list<Other...>, Type>, type_list<>, type_list<Type>>...>;
};
/**
* @brief Helper type.
* @tparam List Type lists between which to compute the difference.
*/
template<typename... List>
using type_list_diff_t = typename type_list_diff<List...>::type;
/*! @brief Primary template isn't defined on purpose. */
template<typename, template<typename...> class>
struct type_list_transform;
/**
* @brief Applies a given _function_ to a type list and generate a new list.
* @tparam Type Types provided by the type list.
* @tparam Op Unary operation as template class with a type member named `type`.
*/
template<typename... Type, template<typename...> class Op>
struct type_list_transform<type_list<Type...>, Op> {
/*! @brief Resulting type list after applying the transform function. */
using type = type_list<typename Op<Type>::type...>;
};
/**
* @brief Helper type.
* @tparam List Type list.
* @tparam Op Unary operation as template class with a type member named `type`.
*/
template<typename List, template<typename...> class Op>
using type_list_transform_t = typename type_list_transform<List, Op>::type;
/**
* @brief A class to use to push around lists of constant values, nothing more.
* @tparam Value Values provided by the value list.
*/
template<auto... Value>
struct value_list {
/*! @brief Value list type. */
using type = value_list;
/*! @brief Compile-time number of elements in the value list. */
static constexpr auto size = sizeof...(Value);
};
/*! @brief Primary template isn't defined on purpose. */
template<std::size_t, typename>
struct value_list_element;
/**
* @brief Provides compile-time indexed access to the values of a value list.
* @tparam Index Index of the value to return.
* @tparam Value First value provided by the value list.
* @tparam Other Other values provided by the value list.
*/
template<std::size_t Index, auto Value, auto... Other>
struct value_list_element<Index, value_list<Value, Other...>>
: value_list_element<Index - 1u, value_list<Other...>> {};
/**
* @brief Provides compile-time indexed access to the types of a type list.
* @tparam Value First value provided by the value list.
* @tparam Other Other values provided by the value list.
*/
template<auto Value, auto... Other>
struct value_list_element<0u, value_list<Value, Other...>> {
/*! @brief Searched value. */
static constexpr auto value = Value;
};
/**
* @brief Helper type.
* @tparam Index Index of the value to return.
* @tparam List Value list to search into.
*/
template<std::size_t Index, typename List>
inline constexpr auto value_list_element_v = value_list_element<Index, List>::value;
/**
* @brief Concatenates multiple value lists.
* @tparam Value Values provided by the first value list.
* @tparam Other Values provided by the second value list.
* @return A value list composed by the values of both the value lists.
*/
template<auto... Value, auto... Other>
constexpr value_list<Value..., Other...> operator+(value_list<Value...>, value_list<Other...>) {
return {};
}
/*! @brief Primary template isn't defined on purpose. */
template<typename...>
struct value_list_cat;
/*! @brief Concatenates multiple value lists. */
template<>
struct value_list_cat<> {
/*! @brief A value list composed by the values of all the value lists. */
using type = value_list<>;
};
/**
* @brief Concatenates multiple value lists.
* @tparam Value Values provided by the first value list.
* @tparam Other Values provided by the second value list.
* @tparam List Other value lists, if any.
*/
template<auto... Value, auto... Other, typename... List>
struct value_list_cat<value_list<Value...>, value_list<Other...>, List...> {
/*! @brief A value list composed by the values of all the value lists. */
using type = typename value_list_cat<value_list<Value..., Other...>, List...>::type;
};
/**
* @brief Concatenates multiple value lists.
* @tparam Value Values provided by the value list.
*/
template<auto... Value>
struct value_list_cat<value_list<Value...>> {
/*! @brief A value list composed by the values of all the value lists. */
using type = value_list<Value...>;
};
/**
* @brief Helper type.
* @tparam List Value lists to concatenate.
*/
template<typename... List>
using value_list_cat_t = typename value_list_cat<List...>::type;
/*! @brief Same as std::is_invocable, but with tuples. */
template<typename, typename>
struct is_applicable: std::false_type {};
/**
* @copybrief is_applicable
* @tparam Func A valid function type.
* @tparam Tuple Tuple-like type.
* @tparam Args The list of arguments to use to probe the function type.
*/
template<typename Func, template<typename...> class Tuple, typename... Args>
struct is_applicable<Func, Tuple<Args...>>: std::is_invocable<Func, Args...> {};
/**
* @copybrief is_applicable
* @tparam Func A valid function type.
* @tparam Tuple Tuple-like type.
* @tparam Args The list of arguments to use to probe the function type.
*/
template<typename Func, template<typename...> class Tuple, typename... Args>
struct is_applicable<Func, const Tuple<Args...>>: std::is_invocable<Func, Args...> {};
/**
* @brief Helper variable template.
* @tparam Func A valid function type.
* @tparam Args The list of arguments to use to probe the function type.
*/
template<typename Func, typename Args>
inline constexpr bool is_applicable_v = is_applicable<Func, Args>::value;
/*! @brief Same as std::is_invocable_r, but with tuples for arguments. */
template<typename, typename, typename>
struct is_applicable_r: std::false_type {};
/**
* @copybrief is_applicable_r
* @tparam Ret The type to which the return type of the function should be
* convertible.
* @tparam Func A valid function type.
* @tparam Args The list of arguments to use to probe the function type.
*/
template<typename Ret, typename Func, typename... Args>
struct is_applicable_r<Ret, Func, std::tuple<Args...>>: std::is_invocable_r<Ret, Func, Args...> {};
/**
* @brief Helper variable template.
* @tparam Ret The type to which the return type of the function should be
* convertible.
* @tparam Func A valid function type.
* @tparam Args The list of arguments to use to probe the function type.
*/
template<typename Ret, typename Func, typename Args>
inline constexpr bool is_applicable_r_v = is_applicable_r<Ret, Func, Args>::value;
/**
* @brief Provides the member constant `value` to true if a given type is
* complete, false otherwise.
* @tparam Type The type to test.
*/
template<typename Type, typename = void>
struct is_complete: std::false_type {};
/*! @copydoc is_complete */
template<typename Type>
struct is_complete<Type, std::void_t<decltype(sizeof(Type))>>: std::true_type {};
/**
* @brief Helper variable template.
* @tparam Type The type to test.
*/
template<typename Type>
inline constexpr bool is_complete_v = is_complete<Type>::value;
/**
* @brief Provides the member constant `value` to true if a given type is an
* iterator, false otherwise.
* @tparam Type The type to test.
*/
template<typename Type, typename = void>
struct is_iterator: std::false_type {};
/**
* @cond TURN_OFF_DOXYGEN
* Internal details not to be documented.
*/
namespace internal {
template<typename, typename = void>
struct has_iterator_category: std::false_type {};
template<typename Type>
struct has_iterator_category<Type, std::void_t<typename std::iterator_traits<Type>::iterator_category>>: std::true_type {};
} // namespace internal
/**
* Internal details not to be documented.
* @endcond
*/
/*! @copydoc is_iterator */
template<typename Type>
struct is_iterator<Type, std::enable_if_t<!std::is_same_v<std::remove_cv_t<std::remove_pointer_t<Type>>, void>>>
: internal::has_iterator_category<Type> {};
/**
* @brief Helper variable template.
* @tparam Type The type to test.
*/
template<typename Type>
inline constexpr bool is_iterator_v = is_iterator<Type>::value;
/**
* @brief Provides the member constant `value` to true if a given type is both
* an empty and non-final class, false otherwise.
* @tparam Type The type to test
*/
template<typename Type>
struct is_ebco_eligible
: std::conjunction<std::is_empty<Type>, std::negation<std::is_final<Type>>> {};
/**
* @brief Helper variable template.
* @tparam Type The type to test.
*/
template<typename Type>
inline constexpr bool is_ebco_eligible_v = is_ebco_eligible<Type>::value;
/**
* @brief Provides the member constant `value` to true if `Type::is_transparent`
* is valid and denotes a type, false otherwise.
* @tparam Type The type to test.
*/
template<typename Type, typename = void>
struct is_transparent: std::false_type {};
/*! @copydoc is_transparent */
template<typename Type>
struct is_transparent<Type, std::void_t<typename Type::is_transparent>>: std::true_type {};
/**
* @brief Helper variable template.
* @tparam Type The type to test.
*/
template<typename Type>
inline constexpr bool is_transparent_v = is_transparent<Type>::value;
/**
* @brief Provides the member constant `value` to true if a given type is
* equality comparable, false otherwise.
* @tparam Type The type to test.
*/
template<typename Type, typename = void>
struct is_equality_comparable: std::false_type {};
/**
* @cond TURN_OFF_DOXYGEN
* Internal details not to be documented.
*/
namespace internal {
template<typename, typename = void>
struct has_tuple_size_value: std::false_type {};
template<typename Type>
struct has_tuple_size_value<Type, std::void_t<decltype(std::tuple_size<const Type>::value)>>: std::true_type {};
template<typename Type, std::size_t... Index>
[[nodiscard]] constexpr bool unpack_maybe_equality_comparable(std::index_sequence<Index...>) {
return (is_equality_comparable<std::tuple_element_t<Index, Type>>::value && ...);
}
template<typename>
[[nodiscard]] constexpr bool maybe_equality_comparable(choice_t<0>) {
return true;
}
template<typename Type>
[[nodiscard]] constexpr auto maybe_equality_comparable(choice_t<1>) -> decltype(std::declval<typename Type::value_type>(), bool{}) {
if constexpr(is_iterator_v<Type>) {
return true;
} else if constexpr(std::is_same_v<typename Type::value_type, Type>) {
return maybe_equality_comparable<Type>(choice<0>);
} else {
return is_equality_comparable<typename Type::value_type>::value;
}
}
template<typename Type>
[[nodiscard]] constexpr std::enable_if_t<is_complete_v<std::tuple_size<std::remove_cv_t<Type>>>, bool> maybe_equality_comparable(choice_t<2>) {
if constexpr(has_tuple_size_value<Type>::value) {
return unpack_maybe_equality_comparable<Type>(std::make_index_sequence<std::tuple_size<Type>::value>{});
} else {
return maybe_equality_comparable<Type>(choice<1>);
}
}
} // namespace internal
/**
* Internal details not to be documented.
* @endcond
*/
/*! @copydoc is_equality_comparable */
template<typename Type>
struct is_equality_comparable<Type, std::void_t<decltype(std::declval<Type>() == std::declval<Type>())>>
: std::bool_constant<internal::maybe_equality_comparable<Type>(choice<2>)> {};
/**
* @brief Helper variable template.
* @tparam Type The type to test.
*/
template<typename Type>
inline constexpr bool is_equality_comparable_v = is_equality_comparable<Type>::value;
/**
* @brief Transcribes the constness of a type to another type.
* @tparam To The type to which to transcribe the constness.
* @tparam From The type from which to transcribe the constness.
*/
template<typename To, typename From>
struct constness_as {
/*! @brief The type resulting from the transcription of the constness. */
using type = std::remove_const_t<To>;
};
/*! @copydoc constness_as */
template<typename To, typename From>
struct constness_as<To, const From> {
/*! @brief The type resulting from the transcription of the constness. */
using type = const To;
};
/**
* @brief Alias template to facilitate the transcription of the constness.
* @tparam To The type to which to transcribe the constness.
* @tparam From The type from which to transcribe the constness.
*/
template<typename To, typename From>
using constness_as_t = typename constness_as<To, From>::type;
/**
* @brief Extracts the class of a non-static member object or function.
* @tparam Member A pointer to a non-static member object or function.
*/
template<typename Member>
class member_class {
static_assert(std::is_member_pointer_v<Member>, "Invalid pointer type to non-static member object or function");
template<typename Class, typename Ret, typename... Args>
static Class *clazz(Ret (Class::*)(Args...));
template<typename Class, typename Ret, typename... Args>
static Class *clazz(Ret (Class::*)(Args...) const);
template<typename Class, typename Type>
static Class *clazz(Type Class::*);
public:
/*! @brief The class of the given non-static member object or function. */
using type = std::remove_pointer_t<decltype(clazz(std::declval<Member>()))>;
};
/**
* @brief Helper type.
* @tparam Member A pointer to a non-static member object or function.
*/
template<typename Member>
using member_class_t = typename member_class<Member>::type;
/**
* @brief Extracts the n-th argument of a given function or member function.
* @tparam Index The index of the argument to extract.
* @tparam Candidate A valid function, member function or data member.
*/
template<std::size_t Index, auto Candidate>
class nth_argument {
template<typename Ret, typename... Args>
static constexpr type_list<Args...> pick_up(Ret (*)(Args...));
template<typename Ret, typename Class, typename... Args>
static constexpr type_list<Args...> pick_up(Ret (Class ::*)(Args...));
template<typename Ret, typename Class, typename... Args>
static constexpr type_list<Args...> pick_up(Ret (Class ::*)(Args...) const);
template<typename Type, typename Class>
static constexpr type_list<Type> pick_up(Type Class ::*);
public:
/*! @brief N-th argument of the given function or member function. */
using type = type_list_element_t<Index, decltype(pick_up(Candidate))>;
};
/**
* @brief Helper type.
* @tparam Index The index of the argument to extract.
* @tparam Candidate A valid function, member function or data member.
*/
template<std::size_t Index, auto Candidate>
using nth_argument_t = typename nth_argument<Index, Candidate>::type;
} // namespace entt
#endif
namespace entt {
/**
* @cond TURN_OFF_DOXYGEN
* Internal details not to be documented.
*/
namespace internal {
template<typename Type, std::size_t, typename = void>
struct compressed_pair_element {
using reference = Type &;
using const_reference = const Type &;
template<bool Dummy = true, typename = std::enable_if_t<Dummy && std::is_default_constructible_v<Type>>>
constexpr compressed_pair_element() noexcept(std::is_nothrow_default_constructible_v<Type>)
: value{} {}
template<typename Arg, typename = std::enable_if_t<!std::is_same_v<std::remove_cv_t<std::remove_reference_t<Arg>>, compressed_pair_element>>>
constexpr compressed_pair_element(Arg &&arg) noexcept(std::is_nothrow_constructible_v<Type, Arg>)
: value{std::forward<Arg>(arg)} {}
template<typename... Args, std::size_t... Index>
constexpr compressed_pair_element(std::tuple<Args...> args, std::index_sequence<Index...>) noexcept(std::is_nothrow_constructible_v<Type, Args...>)
: value{std::forward<Args>(std::get<Index>(args))...} {}
[[nodiscard]] constexpr reference get() noexcept {
return value;
}
[[nodiscard]] constexpr const_reference get() const noexcept {
return value;
}
private:
Type value;
};
template<typename Type, std::size_t Tag>
struct compressed_pair_element<Type, Tag, std::enable_if_t<is_ebco_eligible_v<Type>>>: Type {
using reference = Type &;
using const_reference = const Type &;
using base_type = Type;
template<bool Dummy = true, typename = std::enable_if_t<Dummy && std::is_default_constructible_v<base_type>>>
constexpr compressed_pair_element() noexcept(std::is_nothrow_default_constructible_v<base_type>)
: base_type{} {}
template<typename Arg, typename = std::enable_if_t<!std::is_same_v<std::remove_cv_t<std::remove_reference_t<Arg>>, compressed_pair_element>>>
constexpr compressed_pair_element(Arg &&arg) noexcept(std::is_nothrow_constructible_v<base_type, Arg>)
: base_type{std::forward<Arg>(arg)} {}
template<typename... Args, std::size_t... Index>
constexpr compressed_pair_element(std::tuple<Args...> args, std::index_sequence<Index...>) noexcept(std::is_nothrow_constructible_v<base_type, Args...>)
: base_type{std::forward<Args>(std::get<Index>(args))...} {}
[[nodiscard]] constexpr reference get() noexcept {
return *this;
}
[[nodiscard]] constexpr const_reference get() const noexcept {
return *this;
}
};
} // namespace internal
/**
* Internal details not to be documented.
* @endcond
*/
/**
* @brief A compressed pair.
*
* A pair that exploits the _Empty Base Class Optimization_ (or _EBCO_) to
* reduce its final size to a minimum.
*
* @tparam First The type of the first element that the pair stores.
* @tparam Second The type of the second element that the pair stores.
*/
template<typename First, typename Second>
class compressed_pair final
: internal::compressed_pair_element<First, 0u>,
internal::compressed_pair_element<Second, 1u> {
using first_base = internal::compressed_pair_element<First, 0u>;
using second_base = internal::compressed_pair_element<Second, 1u>;
public:
/*! @brief The type of the first element that the pair stores. */
using first_type = First;
/*! @brief The type of the second element that the pair stores. */
using second_type = Second;
/**
* @brief Default constructor, conditionally enabled.
*
* This constructor is only available when the types that the pair stores
* are both at least default constructible.
*
* @tparam Dummy Dummy template parameter used for internal purposes.
*/
template<bool Dummy = true, typename = std::enable_if_t<Dummy && std::is_default_constructible_v<first_type> && std::is_default_constructible_v<second_type>>>
constexpr compressed_pair() noexcept(std::is_nothrow_default_constructible_v<first_base> &&std::is_nothrow_default_constructible_v<second_base>)
: first_base{},
second_base{} {}
/**
* @brief Copy constructor.
* @param other The instance to copy from.
*/
constexpr compressed_pair(const compressed_pair &other) noexcept(std::is_nothrow_copy_constructible_v<first_base> &&std::is_nothrow_copy_constructible_v<second_base>) = default;
/**
* @brief Move constructor.
* @param other The instance to move from.
*/
constexpr compressed_pair(compressed_pair &&other) noexcept(std::is_nothrow_move_constructible_v<first_base> &&std::is_nothrow_move_constructible_v<second_base>) = default;
/**
* @brief Constructs a pair from its values.
* @tparam Arg Type of value to use to initialize the first element.
* @tparam Other Type of value to use to initialize the second element.
* @param arg Value to use to initialize the first element.
* @param other Value to use to initialize the second element.
*/
template<typename Arg, typename Other>
constexpr compressed_pair(Arg &&arg, Other &&other) noexcept(std::is_nothrow_constructible_v<first_base, Arg> &&std::is_nothrow_constructible_v<second_base, Other>)
: first_base{std::forward<Arg>(arg)},
second_base{std::forward<Other>(other)} {}
/**
* @brief Constructs a pair by forwarding the arguments to its parts.
* @tparam Args Types of arguments to use to initialize the first element.
* @tparam Other Types of arguments to use to initialize the second element.
* @param args Arguments to use to initialize the first element.
* @param other Arguments to use to initialize the second element.
*/
template<typename... Args, typename... Other>
constexpr compressed_pair(std::piecewise_construct_t, std::tuple<Args...> args, std::tuple<Other...> other) noexcept(std::is_nothrow_constructible_v<first_base, Args...> &&std::is_nothrow_constructible_v<second_base, Other...>)
: first_base{std::move(args), std::index_sequence_for<Args...>{}},
second_base{std::move(other), std::index_sequence_for<Other...>{}} {}
/**
* @brief Copy assignment operator.
* @param other The instance to copy from.
* @return This compressed pair object.
*/
constexpr compressed_pair &operator=(const compressed_pair &other) noexcept(std::is_nothrow_copy_assignable_v<first_base> &&std::is_nothrow_copy_assignable_v<second_base>) = default;
/**
* @brief Move assignment operator.
* @param other The instance to move from.
* @return This compressed pair object.
*/
constexpr compressed_pair &operator=(compressed_pair &&other) noexcept(std::is_nothrow_move_assignable_v<first_base> &&std::is_nothrow_move_assignable_v<second_base>) = default;
/**
* @brief Returns the first element that a pair stores.
* @return The first element that a pair stores.
*/
[[nodiscard]] constexpr first_type &first() noexcept {
return static_cast<first_base &>(*this).get();
}
/*! @copydoc first */
[[nodiscard]] constexpr const first_type &first() const noexcept {
return static_cast<const first_base &>(*this).get();
}
/**
* @brief Returns the second element that a pair stores.
* @return The second element that a pair stores.
*/
[[nodiscard]] constexpr second_type &second() noexcept {
return static_cast<second_base &>(*this).get();
}
/*! @copydoc second */
[[nodiscard]] constexpr const second_type &second() const noexcept {
return static_cast<const second_base &>(*this).get();
}
/**
* @brief Swaps two compressed pair objects.
* @param other The compressed pair to swap with.
*/
constexpr void swap(compressed_pair &other) noexcept(std::is_nothrow_swappable_v<first_type> &&std::is_nothrow_swappable_v<second_type>) {
using std::swap;
swap(first(), other.first());
swap(second(), other.second());
}
/**
* @brief Extracts an element from the compressed pair.
* @tparam Index An integer value that is either 0 or 1.
* @return Returns a reference to the first element if `Index` is 0 and a
* reference to the second element if `Index` is 1.
*/
template<std::size_t Index>
constexpr decltype(auto) get() noexcept {
if constexpr(Index == 0u) {
return first();
} else {
static_assert(Index == 1u, "Index out of bounds");
return second();
}
}
/*! @copydoc get */
template<std::size_t Index>
constexpr decltype(auto) get() const noexcept {
if constexpr(Index == 0u) {
return first();
} else {
static_assert(Index == 1u, "Index out of bounds");
return second();
}
}
};
/**
* @brief Deduction guide.
* @tparam Type Type of value to use to initialize the first element.
* @tparam Other Type of value to use to initialize the second element.
*/
template<typename Type, typename Other>
compressed_pair(Type &&, Other &&) -> compressed_pair<std::decay_t<Type>, std::decay_t<Other>>;
/**
* @brief Swaps two compressed pair objects.
* @tparam First The type of the first element that the pairs store.
* @tparam Second The type of the second element that the pairs store.
* @param lhs A valid compressed pair object.
* @param rhs A valid compressed pair object.
*/
template<typename First, typename Second>
inline constexpr void swap(compressed_pair<First, Second> &lhs, compressed_pair<First, Second> &rhs) {
lhs.swap(rhs);
}
} // namespace entt
// disable structured binding support for clang 6, it messes when specializing tuple_size
#if !defined __clang_major__ || __clang_major__ > 6
namespace std {
/**
* @brief `std::tuple_size` specialization for `compressed_pair`s.
* @tparam First The type of the first element that the pair stores.
* @tparam Second The type of the second element that the pair stores.
*/
template<typename First, typename Second>
struct tuple_size<entt::compressed_pair<First, Second>>: integral_constant<size_t, 2u> {};
/**
* @brief `std::tuple_element` specialization for `compressed_pair`s.
* @tparam Index The index of the type to return.
* @tparam First The type of the first element that the pair stores.
* @tparam Second The type of the second element that the pair stores.
*/
template<size_t Index, typename First, typename Second>
struct tuple_element<Index, entt::compressed_pair<First, Second>>: conditional<Index == 0u, First, Second> {
static_assert(Index < 2u, "Index out of bounds");
};
} // namespace std
#endif
#endif
// #include "../core/iterator.hpp"
#ifndef ENTT_CORE_ITERATOR_HPP
#define ENTT_CORE_ITERATOR_HPP
#include <iterator>
#include <memory>
#include <type_traits>
#include <utility>
namespace entt {
/**
* @brief Helper type to use as pointer with input iterators.
* @tparam Type of wrapped value.
*/
template<typename Type>
struct input_iterator_pointer final {
/*! @brief Value type. */
using value_type = Type;
/*! @brief Pointer type. */
using pointer = Type *;
/*! @brief Reference type. */
using reference = Type &;
/**
* @brief Constructs a proxy object by move.
* @param val Value to use to initialize the proxy object.
*/
constexpr input_iterator_pointer(value_type &&val) noexcept(std::is_nothrow_move_constructible_v<value_type>)
: value{std::move(val)} {}
/**
* @brief Access operator for accessing wrapped values.
* @return A pointer to the wrapped value.
*/
[[nodiscard]] constexpr pointer operator->() noexcept {
return std::addressof(value);
}
/**
* @brief Dereference operator for accessing wrapped values.
* @return A reference to the wrapped value.
*/
[[nodiscard]] constexpr reference operator*() noexcept {
return value;
}
private:
Type value;
};
/**
* @brief Plain iota iterator (waiting for C++20).
* @tparam Type Value type.
*/
template<typename Type>
class iota_iterator final {
static_assert(std::is_integral_v<Type>, "Not an integral type");
public:
/*! @brief Value type, likely an integral one. */
using value_type = Type;
/*! @brief Invalid pointer type. */
using pointer = void;
/*! @brief Non-reference type, same as value type. */
using reference = value_type;
/*! @brief Difference type. */
using difference_type = std::ptrdiff_t;
/*! @brief Iterator category. */
using iterator_category = std::input_iterator_tag;
/*! @brief Default constructor. */
constexpr iota_iterator() noexcept
: current{} {}
/**
* @brief Constructs an iota iterator from a given value.
* @param init The initial value assigned to the iota iterator.
*/
constexpr iota_iterator(const value_type init) noexcept
: current{init} {}
/**
* @brief Pre-increment operator.
* @return This iota iterator.
*/
constexpr iota_iterator &operator++() noexcept {
return ++current, *this;
}
/**
* @brief Post-increment operator.
* @return This iota iterator.
*/
constexpr iota_iterator operator++(int) noexcept {
iota_iterator orig = *this;
return ++(*this), orig;
}
/**
* @brief Dereference operator.
* @return The underlying value.
*/
[[nodiscard]] constexpr reference operator*() const noexcept {
return current;
}
private:
value_type current;
};
/**
* @brief Comparison operator.
* @tparam Type Value type of the iota iterator.
* @param lhs A properly initialized iota iterator.
* @param rhs A properly initialized iota iterator.
* @return True if the two iterators are identical, false otherwise.
*/
template<typename Type>
[[nodiscard]] constexpr bool operator==(const iota_iterator<Type> &lhs, const iota_iterator<Type> &rhs) noexcept {
return *lhs == *rhs;
}
/**
* @brief Comparison operator.
* @tparam Type Value type of the iota iterator.
* @param lhs A properly initialized iota iterator.
* @param rhs A properly initialized iota iterator.
* @return True if the two iterators differ, false otherwise.
*/
template<typename Type>
[[nodiscard]] constexpr bool operator!=(const iota_iterator<Type> &lhs, const iota_iterator<Type> &rhs) noexcept {
return !(lhs == rhs);
}
/**
* @brief Utility class to create an iterable object from a pair of iterators.
* @tparam It Type of iterator.
* @tparam Sentinel Type of sentinel.
*/
template<typename It, typename Sentinel = It>
struct iterable_adaptor final {
/*! @brief Value type. */
using value_type = typename std::iterator_traits<It>::value_type;
/*! @brief Iterator type. */
using iterator = It;
/*! @brief Sentinel type. */
using sentinel = Sentinel;
/*! @brief Default constructor. */
constexpr iterable_adaptor() noexcept(std::is_nothrow_default_constructible_v<iterator> &&std::is_nothrow_default_constructible_v<sentinel>)
: first{},
last{} {}
/**
* @brief Creates an iterable object from a pair of iterators.
* @param from Begin iterator.
* @param to End iterator.
*/
constexpr iterable_adaptor(iterator from, sentinel to) noexcept(std::is_nothrow_move_constructible_v<iterator> &&std::is_nothrow_move_constructible_v<sentinel>)
: first{std::move(from)},
last{std::move(to)} {}
/**
* @brief Returns an iterator to the beginning.
* @return An iterator to the first element of the range.
*/
[[nodiscard]] constexpr iterator begin() const noexcept {
return first;
}
/**
* @brief Returns an iterator to the end.
* @return An iterator to the element following the last element of the
* range.
*/
[[nodiscard]] constexpr sentinel end() const noexcept {
return last;
}
/*! @copydoc begin */
[[nodiscard]] constexpr iterator cbegin() const noexcept {
return begin();
}
/*! @copydoc end */
[[nodiscard]] constexpr sentinel cend() const noexcept {
return end();
}
private:
It first;
Sentinel last;
};
} // namespace entt
#endif
// #include "../core/memory.hpp"
#ifndef ENTT_CORE_MEMORY_HPP
#define ENTT_CORE_MEMORY_HPP
#include <cstddef>
#include <limits>
#include <memory>
#include <tuple>
#include <type_traits>
#include <utility>
// #include "../config/config.h"
namespace entt {
/**
* @brief Checks whether a value is a power of two or not.
* @param value A value that may or may not be a power of two.
* @return True if the value is a power of two, false otherwise.
*/
[[nodiscard]] inline constexpr bool is_power_of_two(const std::size_t value) noexcept {
return value && ((value & (value - 1)) == 0);
}
/**
* @brief Computes the smallest power of two greater than or equal to a value.
* @param value The value to use.
* @return The smallest power of two greater than or equal to the given value.
*/
[[nodiscard]] inline constexpr std::size_t next_power_of_two(const std::size_t value) noexcept {
ENTT_ASSERT_CONSTEXPR(value < (std::size_t{1u} << (std::numeric_limits<std::size_t>::digits - 1)), "Numeric limits exceeded");
std::size_t curr = value - (value != 0u);
for(int next = 1; next < std::numeric_limits<std::size_t>::digits; next = next * 2) {
curr |= curr >> next;
}
return ++curr;
}
/**
* @brief Fast module utility function (powers of two only).
* @param value A value for which to calculate the modulus.
* @param mod _Modulus_, it must be a power of two.
* @return The common remainder.
*/
[[nodiscard]] inline constexpr std::size_t fast_mod(const std::size_t value, const std::size_t mod) noexcept {
ENTT_ASSERT_CONSTEXPR(is_power_of_two(mod), "Value must be a power of two");
return value & (mod - 1u);
}
/**
* @brief Unwraps fancy pointers, does nothing otherwise (waiting for C++20).
* @tparam Type Pointer type.
* @param ptr Fancy or raw pointer.
* @return A raw pointer that represents the address of the original pointer.
*/
template<typename Type>
[[nodiscard]] constexpr auto to_address(Type &&ptr) noexcept {
if constexpr(std::is_pointer_v<std::decay_t<Type>>) {
return ptr;
} else {
return to_address(std::forward<Type>(ptr).operator->());
}
}
/**
* @brief Utility function to design allocation-aware containers.
* @tparam Allocator Type of allocator.
* @param lhs A valid allocator.
* @param rhs Another valid allocator.
*/
template<typename Allocator>
constexpr void propagate_on_container_copy_assignment([[maybe_unused]] Allocator &lhs, [[maybe_unused]] Allocator &rhs) noexcept {
if constexpr(std::allocator_traits<Allocator>::propagate_on_container_copy_assignment::value) {
lhs = rhs;
}
}
/**
* @brief Utility function to design allocation-aware containers.
* @tparam Allocator Type of allocator.
* @param lhs A valid allocator.
* @param rhs Another valid allocator.
*/
template<typename Allocator>
constexpr void propagate_on_container_move_assignment([[maybe_unused]] Allocator &lhs, [[maybe_unused]] Allocator &rhs) noexcept {
if constexpr(std::allocator_traits<Allocator>::propagate_on_container_move_assignment::value) {
lhs = std::move(rhs);
}
}
/**
* @brief Utility function to design allocation-aware containers.
* @tparam Allocator Type of allocator.
* @param lhs A valid allocator.
* @param rhs Another valid allocator.
*/
template<typename Allocator>
constexpr void propagate_on_container_swap([[maybe_unused]] Allocator &lhs, [[maybe_unused]] Allocator &rhs) noexcept {
if constexpr(std::allocator_traits<Allocator>::propagate_on_container_swap::value) {
using std::swap;
swap(lhs, rhs);
} else {
ENTT_ASSERT_CONSTEXPR(lhs == rhs, "Cannot swap the containers");
}
}
/**
* @brief Deleter for allocator-aware unique pointers (waiting for C++20).
* @tparam Args Types of arguments to use to construct the object.
*/
template<typename Allocator>
struct allocation_deleter: private Allocator {
/*! @brief Allocator type. */
using allocator_type = Allocator;
/*! @brief Pointer type. */
using pointer = typename std::allocator_traits<Allocator>::pointer;
/**
* @brief Inherited constructors.
* @param alloc The allocator to use.
*/
constexpr allocation_deleter(const allocator_type &alloc) noexcept(std::is_nothrow_copy_constructible_v<allocator_type>)
: Allocator{alloc} {}
/**
* @brief Destroys the pointed object and deallocates its memory.
* @param ptr A valid pointer to an object of the given type.
*/
constexpr void operator()(pointer ptr) noexcept(std::is_nothrow_destructible_v<typename allocator_type::value_type>) {
using alloc_traits = typename std::allocator_traits<Allocator>;
alloc_traits::destroy(*this, to_address(ptr));
alloc_traits::deallocate(*this, ptr, 1u);
}
};
/**
* @brief Allows `std::unique_ptr` to use allocators (waiting for C++20).
* @tparam Type Type of object to allocate for and to construct.
* @tparam Allocator Type of allocator used to manage memory and elements.
* @tparam Args Types of arguments to use to construct the object.
* @param allocator The allocator to use.
* @param args Parameters to use to construct the object.
* @return A properly initialized unique pointer with a custom deleter.
*/
template<typename Type, typename Allocator, typename... Args>
ENTT_CONSTEXPR auto allocate_unique(Allocator &allocator, Args &&...args) {
static_assert(!std::is_array_v<Type>, "Array types are not supported");
using alloc_traits = typename std::allocator_traits<Allocator>::template rebind_traits<Type>;
using allocator_type = typename alloc_traits::allocator_type;
allocator_type alloc{allocator};
auto ptr = alloc_traits::allocate(alloc, 1u);
ENTT_TRY {
alloc_traits::construct(alloc, to_address(ptr), std::forward<Args>(args)...);
}
ENTT_CATCH {
alloc_traits::deallocate(alloc, ptr, 1u);
ENTT_THROW;
}
return std::unique_ptr<Type, allocation_deleter<allocator_type>>{ptr, alloc};
}
/**
* @cond TURN_OFF_DOXYGEN
* Internal details not to be documented.
*/
namespace internal {
template<typename Type>
struct uses_allocator_construction {
template<typename Allocator, typename... Params>
static constexpr auto args([[maybe_unused]] const Allocator &allocator, Params &&...params) noexcept {
if constexpr(!std::uses_allocator_v<Type, Allocator> && std::is_constructible_v<Type, Params...>) {
return std::forward_as_tuple(std::forward<Params>(params)...);
} else {
static_assert(std::uses_allocator_v<Type, Allocator>, "Ill-formed request");
if constexpr(std::is_constructible_v<Type, std::allocator_arg_t, const Allocator &, Params...>) {
return std::tuple<std::allocator_arg_t, const Allocator &, Params &&...>{std::allocator_arg, allocator, std::forward<Params>(params)...};
} else {
static_assert(std::is_constructible_v<Type, Params..., const Allocator &>, "Ill-formed request");
return std::forward_as_tuple(std::forward<Params>(params)..., allocator);
}
}
}
};
template<typename Type, typename Other>
struct uses_allocator_construction<std::pair<Type, Other>> {
using type = std::pair<Type, Other>;
template<typename Allocator, typename First, typename Second>
static constexpr auto args(const Allocator &allocator, std::piecewise_construct_t, First &&first, Second &&second) noexcept {
return std::make_tuple(
std::piecewise_construct,
std::apply([&allocator](auto &&...curr) { return uses_allocator_construction<Type>::args(allocator, std::forward<decltype(curr)>(curr)...); }, std::forward<First>(first)),
std::apply([&allocator](auto &&...curr) { return uses_allocator_construction<Other>::args(allocator, std::forward<decltype(curr)>(curr)...); }, std::forward<Second>(second)));
}
template<typename Allocator>
static constexpr auto args(const Allocator &allocator) noexcept {
return uses_allocator_construction<type>::args(allocator, std::piecewise_construct, std::tuple<>{}, std::tuple<>{});
}
template<typename Allocator, typename First, typename Second>
static constexpr auto args(const Allocator &allocator, First &&first, Second &&second) noexcept {
return uses_allocator_construction<type>::args(allocator, std::piecewise_construct, std::forward_as_tuple(std::forward<First>(first)), std::forward_as_tuple(std::forward<Second>(second)));
}
template<typename Allocator, typename First, typename Second>
static constexpr auto args(const Allocator &allocator, const std::pair<First, Second> &value) noexcept {
return uses_allocator_construction<type>::args(allocator, std::piecewise_construct, std::forward_as_tuple(value.first), std::forward_as_tuple(value.second));
}
template<typename Allocator, typename First, typename Second>
static constexpr auto args(const Allocator &allocator, std::pair<First, Second> &&value) noexcept {
return uses_allocator_construction<type>::args(allocator, std::piecewise_construct, std::forward_as_tuple(std::move(value.first)), std::forward_as_tuple(std::move(value.second)));
}
};
} // namespace internal
/**
* Internal details not to be documented.
* @endcond
*/
/**
* @brief Uses-allocator construction utility (waiting for C++20).
*
* Primarily intended for internal use. Prepares the argument list needed to
* create an object of a given type by means of uses-allocator construction.
*
* @tparam Type Type to return arguments for.
* @tparam Allocator Type of allocator used to manage memory and elements.
* @tparam Args Types of arguments to use to construct the object.
* @param allocator The allocator to use.
* @param args Parameters to use to construct the object.
* @return The arguments needed to create an object of the given type.
*/
template<typename Type, typename Allocator, typename... Args>
constexpr auto uses_allocator_construction_args(const Allocator &allocator, Args &&...args) noexcept {
return internal::uses_allocator_construction<Type>::args(allocator, std::forward<Args>(args)...);
}
/**
* @brief Uses-allocator construction utility (waiting for C++20).
*
* Primarily intended for internal use. Creates an object of a given type by
* means of uses-allocator construction.
*
* @tparam Type Type of object to create.
* @tparam Allocator Type of allocator used to manage memory and elements.
* @tparam Args Types of arguments to use to construct the object.
* @param allocator The allocator to use.
* @param args Parameters to use to construct the object.
* @return A newly created object of the given type.
*/
template<typename Type, typename Allocator, typename... Args>
constexpr Type make_obj_using_allocator(const Allocator &allocator, Args &&...args) {
return std::make_from_tuple<Type>(internal::uses_allocator_construction<Type>::args(allocator, std::forward<Args>(args)...));
}
/**
* @brief Uses-allocator construction utility (waiting for C++20).
*
* Primarily intended for internal use. Creates an object of a given type by
* means of uses-allocator construction at an uninitialized memory location.
*
* @tparam Type Type of object to create.
* @tparam Allocator Type of allocator used to manage memory and elements.
* @tparam Args Types of arguments to use to construct the object.
* @param value Memory location in which to place the object.
* @param allocator The allocator to use.
* @param args Parameters to use to construct the object.
* @return A pointer to the newly created object of the given type.
*/
template<typename Type, typename Allocator, typename... Args>
constexpr Type *uninitialized_construct_using_allocator(Type *value, const Allocator &allocator, Args &&...args) {
return std::apply([value](auto &&...curr) { return new(value) Type(std::forward<decltype(curr)>(curr)...); }, internal::uses_allocator_construction<Type>::args(allocator, std::forward<Args>(args)...));
}
} // namespace entt
#endif
// #include "../core/type_traits.hpp"
#ifndef ENTT_CORE_TYPE_TRAITS_HPP
#define ENTT_CORE_TYPE_TRAITS_HPP
#include <cstddef>
#include <iterator>
#include <type_traits>
#include <utility>
// #include "../config/config.h"
// #include "fwd.hpp"
namespace entt {
/**
* @brief Utility class to disambiguate overloaded functions.
* @tparam N Number of choices available.
*/
template<std::size_t N>
struct choice_t
// Unfortunately, doxygen cannot parse such a construct.
: /*! @cond TURN_OFF_DOXYGEN */ choice_t<N - 1> /*! @endcond */
{};
/*! @copybrief choice_t */
template<>
struct choice_t<0> {};
/**
* @brief Variable template for the choice trick.
* @tparam N Number of choices available.
*/
template<std::size_t N>
inline constexpr choice_t<N> choice{};
/**
* @brief Identity type trait.
*
* Useful to establish non-deduced contexts in template argument deduction
* (waiting for C++20) or to provide types through function arguments.
*
* @tparam Type A type.
*/
template<typename Type>
struct type_identity {
/*! @brief Identity type. */
using type = Type;
};
/**
* @brief Helper type.
* @tparam Type A type.
*/
template<typename Type>
using type_identity_t = typename type_identity<Type>::type;
/**
* @brief A type-only `sizeof` wrapper that returns 0 where `sizeof` complains.
* @tparam Type The type of which to return the size.
* @tparam The size of the type if `sizeof` accepts it, 0 otherwise.
*/
template<typename Type, typename = void>
struct size_of: std::integral_constant<std::size_t, 0u> {};
/*! @copydoc size_of */
template<typename Type>
struct size_of<Type, std::void_t<decltype(sizeof(Type))>>
: std::integral_constant<std::size_t, sizeof(Type)> {};
/**
* @brief Helper variable template.
* @tparam Type The type of which to return the size.
*/
template<typename Type>
inline constexpr std::size_t size_of_v = size_of<Type>::value;
/**
* @brief Using declaration to be used to _repeat_ the same type a number of
* times equal to the size of a given parameter pack.
* @tparam Type A type to repeat.
*/
template<typename Type, typename>
using unpack_as_type = Type;
/**
* @brief Helper variable template to be used to _repeat_ the same value a
* number of times equal to the size of a given parameter pack.
* @tparam Value A value to repeat.
*/
template<auto Value, typename>
inline constexpr auto unpack_as_value = Value;
/**
* @brief Wraps a static constant.
* @tparam Value A static constant.
*/
template<auto Value>
using integral_constant = std::integral_constant<decltype(Value), Value>;
/**
* @brief Alias template to facilitate the creation of named values.
* @tparam Value A constant value at least convertible to `id_type`.
*/
template<id_type Value>
using tag = integral_constant<Value>;
/**
* @brief A class to use to push around lists of types, nothing more.
* @tparam Type Types provided by the type list.
*/
template<typename... Type>
struct type_list {
/*! @brief Type list type. */
using type = type_list;
/*! @brief Compile-time number of elements in the type list. */
static constexpr auto size = sizeof...(Type);
};
/*! @brief Primary template isn't defined on purpose. */
template<std::size_t, typename>
struct type_list_element;
/**
* @brief Provides compile-time indexed access to the types of a type list.
* @tparam Index Index of the type to return.
* @tparam First First type provided by the type list.
* @tparam Other Other types provided by the type list.
*/
template<std::size_t Index, typename First, typename... Other>
struct type_list_element<Index, type_list<First, Other...>>
: type_list_element<Index - 1u, type_list<Other...>> {};
/**
* @brief Provides compile-time indexed access to the types of a type list.
* @tparam First First type provided by the type list.
* @tparam Other Other types provided by the type list.
*/
template<typename First, typename... Other>
struct type_list_element<0u, type_list<First, Other...>> {
/*! @brief Searched type. */
using type = First;
};
/**
* @brief Helper type.
* @tparam Index Index of the type to return.
* @tparam List Type list to search into.
*/
template<std::size_t Index, typename List>
using type_list_element_t = typename type_list_element<Index, List>::type;
/*! @brief Primary template isn't defined on purpose. */
template<typename, typename>
struct type_list_index;
/**
* @brief Provides compile-time type access to the types of a type list.
* @tparam Type Type to look for and for which to return the index.
* @tparam First First type provided by the type list.
* @tparam Other Other types provided by the type list.
*/
template<typename Type, typename First, typename... Other>
struct type_list_index<Type, type_list<First, Other...>> {
/*! @brief Unsigned integer type. */
using value_type = std::size_t;
/*! @brief Compile-time position of the given type in the sublist. */
static constexpr value_type value = 1u + type_list_index<Type, type_list<Other...>>::value;
};
/**
* @brief Provides compile-time type access to the types of a type list.
* @tparam Type Type to look for and for which to return the index.
* @tparam Other Other types provided by the type list.
*/
template<typename Type, typename... Other>
struct type_list_index<Type, type_list<Type, Other...>> {
static_assert(type_list_index<Type, type_list<Other...>>::value == sizeof...(Other), "Non-unique type");
/*! @brief Unsigned integer type. */
using value_type = std::size_t;
/*! @brief Compile-time position of the given type in the sublist. */
static constexpr value_type value = 0u;
};
/**
* @brief Provides compile-time type access to the types of a type list.
* @tparam Type Type to look for and for which to return the index.
*/
template<typename Type>
struct type_list_index<Type, type_list<>> {
/*! @brief Unsigned integer type. */
using value_type = std::size_t;
/*! @brief Compile-time position of the given type in the sublist. */
static constexpr value_type value = 0u;
};
/**
* @brief Helper variable template.
* @tparam List Type list.
* @tparam Type Type to look for and for which to return the index.
*/
template<typename Type, typename List>
inline constexpr std::size_t type_list_index_v = type_list_index<Type, List>::value;
/**
* @brief Concatenates multiple type lists.
* @tparam Type Types provided by the first type list.
* @tparam Other Types provided by the second type list.
* @return A type list composed by the types of both the type lists.
*/
template<typename... Type, typename... Other>
constexpr type_list<Type..., Other...> operator+(type_list<Type...>, type_list<Other...>) {
return {};
}
/*! @brief Primary template isn't defined on purpose. */
template<typename...>
struct type_list_cat;
/*! @brief Concatenates multiple type lists. */
template<>
struct type_list_cat<> {
/*! @brief A type list composed by the types of all the type lists. */
using type = type_list<>;
};
/**
* @brief Concatenates multiple type lists.
* @tparam Type Types provided by the first type list.
* @tparam Other Types provided by the second type list.
* @tparam List Other type lists, if any.
*/
template<typename... Type, typename... Other, typename... List>
struct type_list_cat<type_list<Type...>, type_list<Other...>, List...> {
/*! @brief A type list composed by the types of all the type lists. */
using type = typename type_list_cat<type_list<Type..., Other...>, List...>::type;
};
/**
* @brief Concatenates multiple type lists.
* @tparam Type Types provided by the type list.
*/
template<typename... Type>
struct type_list_cat<type_list<Type...>> {
/*! @brief A type list composed by the types of all the type lists. */
using type = type_list<Type...>;
};
/**
* @brief Helper type.
* @tparam List Type lists to concatenate.
*/
template<typename... List>
using type_list_cat_t = typename type_list_cat<List...>::type;
/*! @brief Primary template isn't defined on purpose. */
template<typename>
struct type_list_unique;
/**
* @brief Removes duplicates types from a type list.
* @tparam Type One of the types provided by the given type list.
* @tparam Other The other types provided by the given type list.
*/
template<typename Type, typename... Other>
struct type_list_unique<type_list<Type, Other...>> {
/*! @brief A type list without duplicate types. */
using type = std::conditional_t<
(std::is_same_v<Type, Other> || ...),
typename type_list_unique<type_list<Other...>>::type,
type_list_cat_t<type_list<Type>, typename type_list_unique<type_list<Other...>>::type>>;
};
/*! @brief Removes duplicates types from a type list. */
template<>
struct type_list_unique<type_list<>> {
/*! @brief A type list without duplicate types. */
using type = type_list<>;
};
/**
* @brief Helper type.
* @tparam Type A type list.
*/
template<typename Type>
using type_list_unique_t = typename type_list_unique<Type>::type;
/**
* @brief Provides the member constant `value` to true if a type list contains a
* given type, false otherwise.
* @tparam List Type list.
* @tparam Type Type to look for.
*/
template<typename List, typename Type>
struct type_list_contains;
/**
* @copybrief type_list_contains
* @tparam Type Types provided by the type list.
* @tparam Other Type to look for.
*/
template<typename... Type, typename Other>
struct type_list_contains<type_list<Type...>, Other>: std::disjunction<std::is_same<Type, Other>...> {};
/**
* @brief Helper variable template.
* @tparam List Type list.
* @tparam Type Type to look for.
*/
template<typename List, typename Type>
inline constexpr bool type_list_contains_v = type_list_contains<List, Type>::value;
/*! @brief Primary template isn't defined on purpose. */
template<typename...>
struct type_list_diff;
/**
* @brief Computes the difference between two type lists.
* @tparam Type Types provided by the first type list.
* @tparam Other Types provided by the second type list.
*/
template<typename... Type, typename... Other>
struct type_list_diff<type_list<Type...>, type_list<Other...>> {
/*! @brief A type list that is the difference between the two type lists. */
using type = type_list_cat_t<std::conditional_t<type_list_contains_v<type_list<Other...>, Type>, type_list<>, type_list<Type>>...>;
};
/**
* @brief Helper type.
* @tparam List Type lists between which to compute the difference.
*/
template<typename... List>
using type_list_diff_t = typename type_list_diff<List...>::type;
/*! @brief Primary template isn't defined on purpose. */
template<typename, template<typename...> class>
struct type_list_transform;
/**
* @brief Applies a given _function_ to a type list and generate a new list.
* @tparam Type Types provided by the type list.
* @tparam Op Unary operation as template class with a type member named `type`.
*/
template<typename... Type, template<typename...> class Op>
struct type_list_transform<type_list<Type...>, Op> {
/*! @brief Resulting type list after applying the transform function. */
using type = type_list<typename Op<Type>::type...>;
};
/**
* @brief Helper type.
* @tparam List Type list.
* @tparam Op Unary operation as template class with a type member named `type`.
*/
template<typename List, template<typename...> class Op>
using type_list_transform_t = typename type_list_transform<List, Op>::type;
/**
* @brief A class to use to push around lists of constant values, nothing more.
* @tparam Value Values provided by the value list.
*/
template<auto... Value>
struct value_list {
/*! @brief Value list type. */
using type = value_list;
/*! @brief Compile-time number of elements in the value list. */
static constexpr auto size = sizeof...(Value);
};
/*! @brief Primary template isn't defined on purpose. */
template<std::size_t, typename>
struct value_list_element;
/**
* @brief Provides compile-time indexed access to the values of a value list.
* @tparam Index Index of the value to return.
* @tparam Value First value provided by the value list.
* @tparam Other Other values provided by the value list.
*/
template<std::size_t Index, auto Value, auto... Other>
struct value_list_element<Index, value_list<Value, Other...>>
: value_list_element<Index - 1u, value_list<Other...>> {};
/**
* @brief Provides compile-time indexed access to the types of a type list.
* @tparam Value First value provided by the value list.
* @tparam Other Other values provided by the value list.
*/
template<auto Value, auto... Other>
struct value_list_element<0u, value_list<Value, Other...>> {
/*! @brief Searched value. */
static constexpr auto value = Value;
};
/**
* @brief Helper type.
* @tparam Index Index of the value to return.
* @tparam List Value list to search into.
*/
template<std::size_t Index, typename List>
inline constexpr auto value_list_element_v = value_list_element<Index, List>::value;
/**
* @brief Concatenates multiple value lists.
* @tparam Value Values provided by the first value list.
* @tparam Other Values provided by the second value list.
* @return A value list composed by the values of both the value lists.
*/
template<auto... Value, auto... Other>
constexpr value_list<Value..., Other...> operator+(value_list<Value...>, value_list<Other...>) {
return {};
}
/*! @brief Primary template isn't defined on purpose. */
template<typename...>
struct value_list_cat;
/*! @brief Concatenates multiple value lists. */
template<>
struct value_list_cat<> {
/*! @brief A value list composed by the values of all the value lists. */
using type = value_list<>;
};
/**
* @brief Concatenates multiple value lists.
* @tparam Value Values provided by the first value list.
* @tparam Other Values provided by the second value list.
* @tparam List Other value lists, if any.
*/
template<auto... Value, auto... Other, typename... List>
struct value_list_cat<value_list<Value...>, value_list<Other...>, List...> {
/*! @brief A value list composed by the values of all the value lists. */
using type = typename value_list_cat<value_list<Value..., Other...>, List...>::type;
};
/**
* @brief Concatenates multiple value lists.
* @tparam Value Values provided by the value list.
*/
template<auto... Value>
struct value_list_cat<value_list<Value...>> {
/*! @brief A value list composed by the values of all the value lists. */
using type = value_list<Value...>;
};
/**
* @brief Helper type.
* @tparam List Value lists to concatenate.
*/
template<typename... List>
using value_list_cat_t = typename value_list_cat<List...>::type;
/*! @brief Same as std::is_invocable, but with tuples. */
template<typename, typename>
struct is_applicable: std::false_type {};
/**
* @copybrief is_applicable
* @tparam Func A valid function type.
* @tparam Tuple Tuple-like type.
* @tparam Args The list of arguments to use to probe the function type.
*/
template<typename Func, template<typename...> class Tuple, typename... Args>
struct is_applicable<Func, Tuple<Args...>>: std::is_invocable<Func, Args...> {};
/**
* @copybrief is_applicable
* @tparam Func A valid function type.
* @tparam Tuple Tuple-like type.
* @tparam Args The list of arguments to use to probe the function type.
*/
template<typename Func, template<typename...> class Tuple, typename... Args>
struct is_applicable<Func, const Tuple<Args...>>: std::is_invocable<Func, Args...> {};
/**
* @brief Helper variable template.
* @tparam Func A valid function type.
* @tparam Args The list of arguments to use to probe the function type.
*/
template<typename Func, typename Args>
inline constexpr bool is_applicable_v = is_applicable<Func, Args>::value;
/*! @brief Same as std::is_invocable_r, but with tuples for arguments. */
template<typename, typename, typename>
struct is_applicable_r: std::false_type {};
/**
* @copybrief is_applicable_r
* @tparam Ret The type to which the return type of the function should be
* convertible.
* @tparam Func A valid function type.
* @tparam Args The list of arguments to use to probe the function type.
*/
template<typename Ret, typename Func, typename... Args>
struct is_applicable_r<Ret, Func, std::tuple<Args...>>: std::is_invocable_r<Ret, Func, Args...> {};
/**
* @brief Helper variable template.
* @tparam Ret The type to which the return type of the function should be
* convertible.
* @tparam Func A valid function type.
* @tparam Args The list of arguments to use to probe the function type.
*/
template<typename Ret, typename Func, typename Args>
inline constexpr bool is_applicable_r_v = is_applicable_r<Ret, Func, Args>::value;
/**
* @brief Provides the member constant `value` to true if a given type is
* complete, false otherwise.
* @tparam Type The type to test.
*/
template<typename Type, typename = void>
struct is_complete: std::false_type {};
/*! @copydoc is_complete */
template<typename Type>
struct is_complete<Type, std::void_t<decltype(sizeof(Type))>>: std::true_type {};
/**
* @brief Helper variable template.
* @tparam Type The type to test.
*/
template<typename Type>
inline constexpr bool is_complete_v = is_complete<Type>::value;
/**
* @brief Provides the member constant `value` to true if a given type is an
* iterator, false otherwise.
* @tparam Type The type to test.
*/
template<typename Type, typename = void>
struct is_iterator: std::false_type {};
/**
* @cond TURN_OFF_DOXYGEN
* Internal details not to be documented.
*/
namespace internal {
template<typename, typename = void>
struct has_iterator_category: std::false_type {};
template<typename Type>
struct has_iterator_category<Type, std::void_t<typename std::iterator_traits<Type>::iterator_category>>: std::true_type {};
} // namespace internal
/**
* Internal details not to be documented.
* @endcond
*/
/*! @copydoc is_iterator */
template<typename Type>
struct is_iterator<Type, std::enable_if_t<!std::is_same_v<std::remove_cv_t<std::remove_pointer_t<Type>>, void>>>
: internal::has_iterator_category<Type> {};
/**
* @brief Helper variable template.
* @tparam Type The type to test.
*/
template<typename Type>
inline constexpr bool is_iterator_v = is_iterator<Type>::value;
/**
* @brief Provides the member constant `value` to true if a given type is both
* an empty and non-final class, false otherwise.
* @tparam Type The type to test
*/
template<typename Type>
struct is_ebco_eligible
: std::conjunction<std::is_empty<Type>, std::negation<std::is_final<Type>>> {};
/**
* @brief Helper variable template.
* @tparam Type The type to test.
*/
template<typename Type>
inline constexpr bool is_ebco_eligible_v = is_ebco_eligible<Type>::value;
/**
* @brief Provides the member constant `value` to true if `Type::is_transparent`
* is valid and denotes a type, false otherwise.
* @tparam Type The type to test.
*/
template<typename Type, typename = void>
struct is_transparent: std::false_type {};
/*! @copydoc is_transparent */
template<typename Type>
struct is_transparent<Type, std::void_t<typename Type::is_transparent>>: std::true_type {};
/**
* @brief Helper variable template.
* @tparam Type The type to test.
*/
template<typename Type>
inline constexpr bool is_transparent_v = is_transparent<Type>::value;
/**
* @brief Provides the member constant `value` to true if a given type is
* equality comparable, false otherwise.
* @tparam Type The type to test.
*/
template<typename Type, typename = void>
struct is_equality_comparable: std::false_type {};
/**
* @cond TURN_OFF_DOXYGEN
* Internal details not to be documented.
*/
namespace internal {
template<typename, typename = void>
struct has_tuple_size_value: std::false_type {};
template<typename Type>
struct has_tuple_size_value<Type, std::void_t<decltype(std::tuple_size<const Type>::value)>>: std::true_type {};
template<typename Type, std::size_t... Index>
[[nodiscard]] constexpr bool unpack_maybe_equality_comparable(std::index_sequence<Index...>) {
return (is_equality_comparable<std::tuple_element_t<Index, Type>>::value && ...);
}
template<typename>
[[nodiscard]] constexpr bool maybe_equality_comparable(choice_t<0>) {
return true;
}
template<typename Type>
[[nodiscard]] constexpr auto maybe_equality_comparable(choice_t<1>) -> decltype(std::declval<typename Type::value_type>(), bool{}) {
if constexpr(is_iterator_v<Type>) {
return true;
} else if constexpr(std::is_same_v<typename Type::value_type, Type>) {
return maybe_equality_comparable<Type>(choice<0>);
} else {
return is_equality_comparable<typename Type::value_type>::value;
}
}
template<typename Type>
[[nodiscard]] constexpr std::enable_if_t<is_complete_v<std::tuple_size<std::remove_cv_t<Type>>>, bool> maybe_equality_comparable(choice_t<2>) {
if constexpr(has_tuple_size_value<Type>::value) {
return unpack_maybe_equality_comparable<Type>(std::make_index_sequence<std::tuple_size<Type>::value>{});
} else {
return maybe_equality_comparable<Type>(choice<1>);
}
}
} // namespace internal
/**
* Internal details not to be documented.
* @endcond
*/
/*! @copydoc is_equality_comparable */
template<typename Type>
struct is_equality_comparable<Type, std::void_t<decltype(std::declval<Type>() == std::declval<Type>())>>
: std::bool_constant<internal::maybe_equality_comparable<Type>(choice<2>)> {};
/**
* @brief Helper variable template.
* @tparam Type The type to test.
*/
template<typename Type>
inline constexpr bool is_equality_comparable_v = is_equality_comparable<Type>::value;
/**
* @brief Transcribes the constness of a type to another type.
* @tparam To The type to which to transcribe the constness.
* @tparam From The type from which to transcribe the constness.
*/
template<typename To, typename From>
struct constness_as {
/*! @brief The type resulting from the transcription of the constness. */
using type = std::remove_const_t<To>;
};
/*! @copydoc constness_as */
template<typename To, typename From>
struct constness_as<To, const From> {
/*! @brief The type resulting from the transcription of the constness. */
using type = const To;
};
/**
* @brief Alias template to facilitate the transcription of the constness.
* @tparam To The type to which to transcribe the constness.
* @tparam From The type from which to transcribe the constness.
*/
template<typename To, typename From>
using constness_as_t = typename constness_as<To, From>::type;
/**
* @brief Extracts the class of a non-static member object or function.
* @tparam Member A pointer to a non-static member object or function.
*/
template<typename Member>
class member_class {
static_assert(std::is_member_pointer_v<Member>, "Invalid pointer type to non-static member object or function");
template<typename Class, typename Ret, typename... Args>
static Class *clazz(Ret (Class::*)(Args...));
template<typename Class, typename Ret, typename... Args>
static Class *clazz(Ret (Class::*)(Args...) const);
template<typename Class, typename Type>
static Class *clazz(Type Class::*);
public:
/*! @brief The class of the given non-static member object or function. */
using type = std::remove_pointer_t<decltype(clazz(std::declval<Member>()))>;
};
/**
* @brief Helper type.
* @tparam Member A pointer to a non-static member object or function.
*/
template<typename Member>
using member_class_t = typename member_class<Member>::type;
/**
* @brief Extracts the n-th argument of a given function or member function.
* @tparam Index The index of the argument to extract.
* @tparam Candidate A valid function, member function or data member.
*/
template<std::size_t Index, auto Candidate>
class nth_argument {
template<typename Ret, typename... Args>
static constexpr type_list<Args...> pick_up(Ret (*)(Args...));
template<typename Ret, typename Class, typename... Args>
static constexpr type_list<Args...> pick_up(Ret (Class ::*)(Args...));
template<typename Ret, typename Class, typename... Args>
static constexpr type_list<Args...> pick_up(Ret (Class ::*)(Args...) const);
template<typename Type, typename Class>
static constexpr type_list<Type> pick_up(Type Class ::*);
public:
/*! @brief N-th argument of the given function or member function. */
using type = type_list_element_t<Index, decltype(pick_up(Candidate))>;
};
/**
* @brief Helper type.
* @tparam Index The index of the argument to extract.
* @tparam Candidate A valid function, member function or data member.
*/
template<std::size_t Index, auto Candidate>
using nth_argument_t = typename nth_argument<Index, Candidate>::type;
} // namespace entt
#endif
// #include "fwd.hpp"
#ifndef ENTT_CONTAINER_FWD_HPP
#define ENTT_CONTAINER_FWD_HPP
#include <functional>
#include <memory>
namespace entt {
template<
typename Key,
typename Type,
typename = std::hash<Key>,
typename = std::equal_to<Key>,
typename = std::allocator<std::pair<const Key, Type>>>
class dense_map;
template<
typename Type,
typename = std::hash<Type>,
typename = std::equal_to<Type>,
typename = std::allocator<Type>>
class dense_set;
} // namespace entt
#endif
namespace entt {
/**
* @cond TURN_OFF_DOXYGEN
* Internal details not to be documented.
*/
namespace internal {
template<typename Key, typename Type>
struct dense_map_node final {
using value_type = std::pair<Key, Type>;
template<typename... Args>
dense_map_node(const std::size_t pos, Args &&...args)
: next{pos},
element{std::forward<Args>(args)...} {}
template<typename Allocator, typename... Args>
dense_map_node(std::allocator_arg_t, const Allocator &allocator, const std::size_t pos, Args &&...args)
: next{pos},
element{entt::make_obj_using_allocator<value_type>(allocator, std::forward<Args>(args)...)} {}
template<typename Allocator>
dense_map_node(std::allocator_arg_t, const Allocator &allocator, const dense_map_node &other)
: next{other.next},
element{entt::make_obj_using_allocator<value_type>(allocator, other.element)} {}
template<typename Allocator>
dense_map_node(std::allocator_arg_t, const Allocator &allocator, dense_map_node &&other)
: next{other.next},
element{entt::make_obj_using_allocator<value_type>(allocator, std::move(other.element))} {}
std::size_t next;
value_type element;
};
template<typename It>
class dense_map_iterator final {
template<typename>
friend class dense_map_iterator;
using first_type = decltype(std::as_const(std::declval<It>()->element.first));
using second_type = decltype((std::declval<It>()->element.second));
public:
using value_type = std::pair<first_type, second_type>;
using pointer = input_iterator_pointer<value_type>;
using reference = value_type;
using difference_type = std::ptrdiff_t;
using iterator_category = std::input_iterator_tag;
constexpr dense_map_iterator() noexcept
: it{} {}
constexpr dense_map_iterator(const It iter) noexcept
: it{iter} {}
template<typename Other, typename = std::enable_if_t<!std::is_same_v<It, Other> && std::is_constructible_v<It, Other>>>
constexpr dense_map_iterator(const dense_map_iterator<Other> &other) noexcept
: it{other.it} {}
constexpr dense_map_iterator &operator++() noexcept {
return ++it, *this;
}
constexpr dense_map_iterator operator++(int) noexcept {
dense_map_iterator orig = *this;
return ++(*this), orig;
}
constexpr dense_map_iterator &operator--() noexcept {
return --it, *this;
}
constexpr dense_map_iterator operator--(int) noexcept {
dense_map_iterator orig = *this;
return operator--(), orig;
}
constexpr dense_map_iterator &operator+=(const difference_type value) noexcept {
it += value;
return *this;
}
constexpr dense_map_iterator operator+(const difference_type value) const noexcept {
dense_map_iterator copy = *this;
return (copy += value);
}
constexpr dense_map_iterator &operator-=(const difference_type value) noexcept {
return (*this += -value);
}
constexpr dense_map_iterator operator-(const difference_type value) const noexcept {
return (*this + -value);
}
[[nodiscard]] constexpr reference operator[](const difference_type value) const noexcept {
return {it[value].element.first, it[value].element.second};
}
[[nodiscard]] constexpr pointer operator->() const noexcept {
return operator*();
}
[[nodiscard]] constexpr reference operator*() const noexcept {
return {it->element.first, it->element.second};
}
template<typename ILhs, typename IRhs>
friend constexpr std::ptrdiff_t operator-(const dense_map_iterator<ILhs> &, const dense_map_iterator<IRhs> &) noexcept;
template<typename ILhs, typename IRhs>
friend constexpr bool operator==(const dense_map_iterator<ILhs> &, const dense_map_iterator<IRhs> &) noexcept;
template<typename ILhs, typename IRhs>
friend constexpr bool operator<(const dense_map_iterator<ILhs> &, const dense_map_iterator<IRhs> &) noexcept;
private:
It it;
};
template<typename ILhs, typename IRhs>
[[nodiscard]] constexpr std::ptrdiff_t operator-(const dense_map_iterator<ILhs> &lhs, const dense_map_iterator<IRhs> &rhs) noexcept {
return lhs.it - rhs.it;
}
template<typename ILhs, typename IRhs>
[[nodiscard]] constexpr bool operator==(const dense_map_iterator<ILhs> &lhs, const dense_map_iterator<IRhs> &rhs) noexcept {
return lhs.it == rhs.it;
}
template<typename ILhs, typename IRhs>
[[nodiscard]] constexpr bool operator!=(const dense_map_iterator<ILhs> &lhs, const dense_map_iterator<IRhs> &rhs) noexcept {
return !(lhs == rhs);
}
template<typename ILhs, typename IRhs>
[[nodiscard]] constexpr bool operator<(const dense_map_iterator<ILhs> &lhs, const dense_map_iterator<IRhs> &rhs) noexcept {
return lhs.it < rhs.it;
}
template<typename ILhs, typename IRhs>
[[nodiscard]] constexpr bool operator>(const dense_map_iterator<ILhs> &lhs, const dense_map_iterator<IRhs> &rhs) noexcept {
return rhs < lhs;
}
template<typename ILhs, typename IRhs>
[[nodiscard]] constexpr bool operator<=(const dense_map_iterator<ILhs> &lhs, const dense_map_iterator<IRhs> &rhs) noexcept {
return !(lhs > rhs);
}
template<typename ILhs, typename IRhs>
[[nodiscard]] constexpr bool operator>=(const dense_map_iterator<ILhs> &lhs, const dense_map_iterator<IRhs> &rhs) noexcept {
return !(lhs < rhs);
}
template<typename It>
class dense_map_local_iterator final {
template<typename>
friend class dense_map_local_iterator;
using first_type = decltype(std::as_const(std::declval<It>()->element.first));
using second_type = decltype((std::declval<It>()->element.second));
public:
using value_type = std::pair<first_type, second_type>;
using pointer = input_iterator_pointer<value_type>;
using reference = value_type;
using difference_type = std::ptrdiff_t;
using iterator_category = std::input_iterator_tag;
constexpr dense_map_local_iterator() noexcept
: it{},
offset{} {}
constexpr dense_map_local_iterator(It iter, const std::size_t pos) noexcept
: it{iter},
offset{pos} {}
template<typename Other, typename = std::enable_if_t<!std::is_same_v<It, Other> && std::is_constructible_v<It, Other>>>
constexpr dense_map_local_iterator(const dense_map_local_iterator<Other> &other) noexcept
: it{other.it},
offset{other.offset} {}
constexpr dense_map_local_iterator &operator++() noexcept {
return offset = it[offset].next, *this;
}
constexpr dense_map_local_iterator operator++(int) noexcept {
dense_map_local_iterator orig = *this;
return ++(*this), orig;
}
[[nodiscard]] constexpr pointer operator->() const noexcept {
return operator*();
}
[[nodiscard]] constexpr reference operator*() const noexcept {
return {it[offset].element.first, it[offset].element.second};
}
[[nodiscard]] constexpr std::size_t index() const noexcept {
return offset;
}
private:
It it;
std::size_t offset;
};
template<typename ILhs, typename IRhs>
[[nodiscard]] constexpr bool operator==(const dense_map_local_iterator<ILhs> &lhs, const dense_map_local_iterator<IRhs> &rhs) noexcept {
return lhs.index() == rhs.index();
}
template<typename ILhs, typename IRhs>
[[nodiscard]] constexpr bool operator!=(const dense_map_local_iterator<ILhs> &lhs, const dense_map_local_iterator<IRhs> &rhs) noexcept {
return !(lhs == rhs);
}
} // namespace internal
/**
* Internal details not to be documented.
* @endcond
*/
/**
* @brief Associative container for key-value pairs with unique keys.
*
* Internally, elements are organized into buckets. Which bucket an element is
* placed into depends entirely on the hash of its key. Keys with the same hash
* code appear in the same bucket.
*
* @tparam Key Key type of the associative container.
* @tparam Type Mapped type of the associative container.
* @tparam Hash Type of function to use to hash the keys.
* @tparam KeyEqual Type of function to use to compare the keys for equality.
* @tparam Allocator Type of allocator used to manage memory and elements.
*/
template<typename Key, typename Type, typename Hash, typename KeyEqual, typename Allocator>
class dense_map {
static constexpr float default_threshold = 0.875f;
static constexpr std::size_t minimum_capacity = 8u;
using node_type = internal::dense_map_node<Key, Type>;
using alloc_traits = typename std::allocator_traits<Allocator>;
static_assert(std::is_same_v<typename alloc_traits::value_type, std::pair<const Key, Type>>, "Invalid value type");
using sparse_container_type = std::vector<std::size_t, typename alloc_traits::template rebind_alloc<std::size_t>>;
using packed_container_type = std::vector<node_type, typename alloc_traits::template rebind_alloc<node_type>>;
template<typename Other>
[[nodiscard]] std::size_t key_to_bucket(const Other &key) const noexcept {
return fast_mod(static_cast<size_type>(sparse.second()(key)), bucket_count());
}
template<typename Other>
[[nodiscard]] auto constrained_find(const Other &key, std::size_t bucket) {
for(auto it = begin(bucket), last = end(bucket); it != last; ++it) {
if(packed.second()(it->first, key)) {
return begin() + static_cast<typename iterator::difference_type>(it.index());
}
}
return end();
}
template<typename Other>
[[nodiscard]] auto constrained_find(const Other &key, std::size_t bucket) const {
for(auto it = cbegin(bucket), last = cend(bucket); it != last; ++it) {
if(packed.second()(it->first, key)) {
return cbegin() + static_cast<typename iterator::difference_type>(it.index());
}
}
return cend();
}
template<typename Other, typename... Args>
[[nodiscard]] auto insert_or_do_nothing(Other &&key, Args &&...args) {
const auto index = key_to_bucket(key);
if(auto it = constrained_find(key, index); it != end()) {
return std::make_pair(it, false);
}
packed.first().emplace_back(sparse.first()[index], std::piecewise_construct, std::forward_as_tuple(std::forward<Other>(key)), std::forward_as_tuple(std::forward<Args>(args)...));
sparse.first()[index] = packed.first().size() - 1u;
rehash_if_required();
return std::make_pair(--end(), true);
}
template<typename Other, typename Arg>
[[nodiscard]] auto insert_or_overwrite(Other &&key, Arg &&value) {
const auto index = key_to_bucket(key);
if(auto it = constrained_find(key, index); it != end()) {
it->second = std::forward<Arg>(value);
return std::make_pair(it, false);
}
packed.first().emplace_back(sparse.first()[index], std::forward<Other>(key), std::forward<Arg>(value));
sparse.first()[index] = packed.first().size() - 1u;
rehash_if_required();
return std::make_pair(--end(), true);
}
void move_and_pop(const std::size_t pos) {
if(const auto last = size() - 1u; pos != last) {
size_type *curr = sparse.first().data() + key_to_bucket(packed.first().back().element.first);
packed.first()[pos] = std::move(packed.first().back());
for(; *curr != last; curr = &packed.first()[*curr].next) {}
*curr = pos;
}
packed.first().pop_back();
}
void rehash_if_required() {
if(size() > (bucket_count() * max_load_factor())) {
rehash(bucket_count() * 2u);
}
}
public:
/*! @brief Key type of the container. */
using key_type = Key;
/*! @brief Mapped type of the container. */
using mapped_type = Type;
/*! @brief Key-value type of the container. */
using value_type = std::pair<const Key, Type>;
/*! @brief Unsigned integer type. */
using size_type = std::size_t;
/*! @brief Type of function to use to hash the keys. */
using hasher = Hash;
/*! @brief Type of function to use to compare the keys for equality. */
using key_equal = KeyEqual;
/*! @brief Allocator type. */
using allocator_type = Allocator;
/*! @brief Input iterator type. */
using iterator = internal::dense_map_iterator<typename packed_container_type::iterator>;
/*! @brief Constant input iterator type. */
using const_iterator = internal::dense_map_iterator<typename packed_container_type::const_iterator>;
/*! @brief Input iterator type. */
using local_iterator = internal::dense_map_local_iterator<typename packed_container_type::iterator>;
/*! @brief Constant input iterator type. */
using const_local_iterator = internal::dense_map_local_iterator<typename packed_container_type::const_iterator>;
/*! @brief Default constructor. */
dense_map()
: dense_map{minimum_capacity} {}
/**
* @brief Constructs an empty container with a given allocator.
* @param allocator The allocator to use.
*/
explicit dense_map(const allocator_type &allocator)
: dense_map{minimum_capacity, hasher{}, key_equal{}, allocator} {}
/**
* @brief Constructs an empty container with a given allocator and user
* supplied minimal number of buckets.
* @param cnt Minimal number of buckets.
* @param allocator The allocator to use.
*/
dense_map(const size_type cnt, const allocator_type &allocator)
: dense_map{cnt, hasher{}, key_equal{}, allocator} {}
/**
* @brief Constructs an empty container with a given allocator, hash
* function and user supplied minimal number of buckets.
* @param cnt Minimal number of buckets.
* @param hash Hash function to use.
* @param allocator The allocator to use.
*/
dense_map(const size_type cnt, const hasher &hash, const allocator_type &allocator)
: dense_map{cnt, hash, key_equal{}, allocator} {}
/**
* @brief Constructs an empty container with a given allocator, hash
* function, compare function and user supplied minimal number of buckets.
* @param cnt Minimal number of buckets.
* @param hash Hash function to use.
* @param equal Compare function to use.
* @param allocator The allocator to use.
*/
explicit dense_map(const size_type cnt, const hasher &hash = hasher{}, const key_equal &equal = key_equal{}, const allocator_type &allocator = allocator_type{})
: sparse{allocator, hash},
packed{allocator, equal},
threshold{default_threshold} {
rehash(cnt);
}
/*! @brief Default copy constructor. */
dense_map(const dense_map &) = default;
/**
* @brief Allocator-extended copy constructor.
* @param other The instance to copy from.
* @param allocator The allocator to use.
*/
dense_map(const dense_map &other, const allocator_type &allocator)
: sparse{std::piecewise_construct, std::forward_as_tuple(other.sparse.first(), allocator), std::forward_as_tuple(other.sparse.second())},
packed{std::piecewise_construct, std::forward_as_tuple(other.packed.first(), allocator), std::forward_as_tuple(other.packed.second())},
threshold{other.threshold} {}
/*! @brief Default move constructor. */
dense_map(dense_map &&) noexcept(std::is_nothrow_move_constructible_v<compressed_pair<sparse_container_type, hasher>> &&std::is_nothrow_move_constructible_v<compressed_pair<packed_container_type, key_equal>>) = default;
/**
* @brief Allocator-extended move constructor.
* @param other The instance to move from.
* @param allocator The allocator to use.
*/
dense_map(dense_map &&other, const allocator_type &allocator)
: sparse{std::piecewise_construct, std::forward_as_tuple(std::move(other.sparse.first()), allocator), std::forward_as_tuple(std::move(other.sparse.second()))},
packed{std::piecewise_construct, std::forward_as_tuple(std::move(other.packed.first()), allocator), std::forward_as_tuple(std::move(other.packed.second()))},
threshold{other.threshold} {}
/**
* @brief Default copy assignment operator.
* @return This container.
*/
dense_map &operator=(const dense_map &) = default;
/**
* @brief Default move assignment operator.
* @return This container.
*/
dense_map &operator=(dense_map &&) noexcept(std::is_nothrow_move_assignable_v<compressed_pair<sparse_container_type, hasher>> &&std::is_nothrow_move_assignable_v<compressed_pair<packed_container_type, key_equal>>) = default;
/**
* @brief Returns the associated allocator.
* @return The associated allocator.
*/
[[nodiscard]] constexpr allocator_type get_allocator() const noexcept {
return sparse.first().get_allocator();
}
/**
* @brief Returns an iterator to the beginning.
*
* The returned iterator points to the first instance of the internal array.
* If the array is empty, the returned iterator will be equal to `end()`.
*
* @return An iterator to the first instance of the internal array.
*/
[[nodiscard]] const_iterator cbegin() const noexcept {
return packed.first().begin();
}
/*! @copydoc cbegin */
[[nodiscard]] const_iterator begin() const noexcept {
return cbegin();
}
/*! @copydoc begin */
[[nodiscard]] iterator begin() noexcept {
return packed.first().begin();
}
/**
* @brief Returns an iterator to the end.
*
* The returned iterator points to the element following the last instance
* of the internal array. Attempting to dereference the returned iterator
* results in undefined behavior.
*
* @return An iterator to the element following the last instance of the
* internal array.
*/
[[nodiscard]] const_iterator cend() const noexcept {
return packed.first().end();
}
/*! @copydoc cend */
[[nodiscard]] const_iterator end() const noexcept {
return cend();
}
/*! @copydoc end */
[[nodiscard]] iterator end() noexcept {
return packed.first().end();
}
/**
* @brief Checks whether a container is empty.
* @return True if the container is empty, false otherwise.
*/
[[nodiscard]] bool empty() const noexcept {
return packed.first().empty();
}
/**
* @brief Returns the number of elements in a container.
* @return Number of elements in a container.
*/
[[nodiscard]] size_type size() const noexcept {
return packed.first().size();
}
/**
* @brief Returns the maximum possible number of elements.
* @return Maximum possible number of elements.
*/
[[nodiscard]] size_type max_size() const noexcept {
return packed.first().max_size();
}
/*! @brief Clears the container. */
void clear() noexcept {
sparse.first().clear();
packed.first().clear();
rehash(0u);
}
/**
* @brief Inserts an element into the container, if the key does not exist.
* @param value A key-value pair eventually convertible to the value type.
* @return A pair consisting of an iterator to the inserted element (or to
* the element that prevented the insertion) and a bool denoting whether the
* insertion took place.
*/
std::pair<iterator, bool> insert(const value_type &value) {
return insert_or_do_nothing(value.first, value.second);
}
/*! @copydoc insert */
std::pair<iterator, bool> insert(value_type &&value) {
return insert_or_do_nothing(std::move(value.first), std::move(value.second));
}
/**
* @copydoc insert
* @tparam Arg Type of the key-value pair to insert into the container.
*/
template<typename Arg>
std::enable_if_t<std::is_constructible_v<value_type, Arg &&>, std::pair<iterator, bool>>
insert(Arg &&value) {
return insert_or_do_nothing(std::forward<Arg>(value).first, std::forward<Arg>(value).second);
}
/**
* @brief Inserts elements into the container, if their keys do not exist.
* @tparam It Type of input iterator.
* @param first An iterator to the first element of the range of elements.
* @param last An iterator past the last element of the range of elements.
*/
template<typename It>
void insert(It first, It last) {
for(; first != last; ++first) {
insert(*first);
}
}
/**
* @brief Inserts an element into the container or assigns to the current
* element if the key already exists.
* @tparam Arg Type of the value to insert or assign.
* @param key A key used both to look up and to insert if not found.
* @param value A value to insert or assign.
* @return A pair consisting of an iterator to the element and a bool
* denoting whether the insertion took place.
*/
template<typename Arg>
std::pair<iterator, bool> insert_or_assign(const key_type &key, Arg &&value) {
return insert_or_overwrite(key, std::forward<Arg>(value));
}
/*! @copydoc insert_or_assign */
template<typename Arg>
std::pair<iterator, bool> insert_or_assign(key_type &&key, Arg &&value) {
return insert_or_overwrite(std::move(key), std::forward<Arg>(value));
}
/**
* @brief Constructs an element in-place, if the key does not exist.
*
* The element is also constructed when the container already has the key,
* in which case the newly constructed object is destroyed immediately.
*
* @tparam Args Types of arguments to forward to the constructor of the
* element.
* @param args Arguments to forward to the constructor of the element.
* @return A pair consisting of an iterator to the inserted element (or to
* the element that prevented the insertion) and a bool denoting whether the
* insertion took place.
*/
template<typename... Args>
std::pair<iterator, bool> emplace([[maybe_unused]] Args &&...args) {
if constexpr(sizeof...(Args) == 0u) {
return insert_or_do_nothing(key_type{});
} else if constexpr(sizeof...(Args) == 1u) {
return insert_or_do_nothing(std::forward<Args>(args).first..., std::forward<Args>(args).second...);
} else if constexpr(sizeof...(Args) == 2u) {
return insert_or_do_nothing(std::forward<Args>(args)...);
} else {
auto &node = packed.first().emplace_back(packed.first().size(), std::forward<Args>(args)...);
const auto index = key_to_bucket(node.element.first);
if(auto it = constrained_find(node.element.first, index); it != end()) {
packed.first().pop_back();
return std::make_pair(it, false);
}
std::swap(node.next, sparse.first()[index]);
rehash_if_required();
return std::make_pair(--end(), true);
}
}
/**
* @brief Inserts in-place if the key does not exist, does nothing if the
* key exists.
* @tparam Args Types of arguments to forward to the constructor of the
* element.
* @param key A key used both to look up and to insert if not found.
* @param args Arguments to forward to the constructor of the element.
* @return A pair consisting of an iterator to the inserted element (or to
* the element that prevented the insertion) and a bool denoting whether the
* insertion took place.
*/
template<typename... Args>
std::pair<iterator, bool> try_emplace(const key_type &key, Args &&...args) {
return insert_or_do_nothing(key, std::forward<Args>(args)...);
}
/*! @copydoc try_emplace */
template<typename... Args>
std::pair<iterator, bool> try_emplace(key_type &&key, Args &&...args) {
return insert_or_do_nothing(std::move(key), std::forward<Args>(args)...);
}
/**
* @brief Removes an element from a given position.
* @param pos An iterator to the element to remove.
* @return An iterator following the removed element.
*/
iterator erase(const_iterator pos) {
const auto diff = pos - cbegin();
erase(pos->first);
return begin() + diff;
}
/**
* @brief Removes the given elements from a container.
* @param first An iterator to the first element of the range of elements.
* @param last An iterator past the last element of the range of elements.
* @return An iterator following the last removed element.
*/
iterator erase(const_iterator first, const_iterator last) {
const auto dist = first - cbegin();
for(auto from = last - cbegin(); from != dist; --from) {
erase(packed.first()[from - 1u].element.first);
}
return (begin() + dist);
}
/**
* @brief Removes the element associated with a given key.
* @param key A key value of an element to remove.
* @return Number of elements removed (either 0 or 1).
*/
size_type erase(const key_type &key) {
for(size_type *curr = sparse.first().data() + key_to_bucket(key); *curr != (std::numeric_limits<size_type>::max)(); curr = &packed.first()[*curr].next) {
if(packed.second()(packed.first()[*curr].element.first, key)) {
const auto index = *curr;
*curr = packed.first()[*curr].next;
move_and_pop(index);
return 1u;
}
}
return 0u;
}
/**
* @brief Exchanges the contents with those of a given container.
* @param other Container to exchange the content with.
*/
void swap(dense_map &other) {
using std::swap;
swap(sparse, other.sparse);
swap(packed, other.packed);
swap(threshold, other.threshold);
}
/**
* @brief Accesses a given element with bounds checking.
* @param key A key of an element to find.
* @return A reference to the mapped value of the requested element.
*/
[[nodiscard]] mapped_type &at(const key_type &key) {
auto it = find(key);
ENTT_ASSERT(it != end(), "Invalid key");
return it->second;
}
/*! @copydoc at */
[[nodiscard]] const mapped_type &at(const key_type &key) const {
auto it = find(key);
ENTT_ASSERT(it != cend(), "Invalid key");
return it->second;
}
/**
* @brief Accesses or inserts a given element.
* @param key A key of an element to find or insert.
* @return A reference to the mapped value of the requested element.
*/
[[nodiscard]] mapped_type &operator[](const key_type &key) {
return insert_or_do_nothing(key).first->second;
}
/**
* @brief Accesses or inserts a given element.
* @param key A key of an element to find or insert.
* @return A reference to the mapped value of the requested element.
*/
[[nodiscard]] mapped_type &operator[](key_type &&key) {
return insert_or_do_nothing(std::move(key)).first->second;
}
/**
* @brief Returns the number of elements matching a key (either 1 or 0).
* @param key Key value of an element to search for.
* @return Number of elements matching the key (either 1 or 0).
*/
[[nodiscard]] size_type count(const key_type &key) const {
return find(key) != end();
}
/**
* @brief Returns the number of elements matching a key (either 1 or 0).
* @tparam Other Type of the key value of an element to search for.
* @param key Key value of an element to search for.
* @return Number of elements matching the key (either 1 or 0).
*/
template<typename Other>
[[nodiscard]] std::enable_if_t<is_transparent_v<hasher> && is_transparent_v<key_equal>, std::conditional_t<false, Other, size_type>>
count(const Other &key) const {
return find(key) != end();
}
/**
* @brief Finds an element with a given key.
* @param key Key value of an element to search for.
* @return An iterator to an element with the given key. If no such element
* is found, a past-the-end iterator is returned.
*/
[[nodiscard]] iterator find(const key_type &key) {
return constrained_find(key, key_to_bucket(key));
}
/*! @copydoc find */
[[nodiscard]] const_iterator find(const key_type &key) const {
return constrained_find(key, key_to_bucket(key));
}
/**
* @brief Finds an element with a key that compares _equivalent_ to a given
* key.
* @tparam Other Type of the key value of an element to search for.
* @param key Key value of an element to search for.
* @return An iterator to an element with the given key. If no such element
* is found, a past-the-end iterator is returned.
*/
template<typename Other>
[[nodiscard]] std::enable_if_t<is_transparent_v<hasher> && is_transparent_v<key_equal>, std::conditional_t<false, Other, iterator>>
find(const Other &key) {
return constrained_find(key, key_to_bucket(key));
}
/*! @copydoc find */
template<typename Other>
[[nodiscard]] std::enable_if_t<is_transparent_v<hasher> && is_transparent_v<key_equal>, std::conditional_t<false, Other, const_iterator>>
find(const Other &key) const {
return constrained_find(key, key_to_bucket(key));
}
/**
* @brief Returns a range containing all elements with a given key.
* @param key Key value of an element to search for.
* @return A pair of iterators pointing to the first element and past the
* last element of the range.
*/
[[nodiscard]] std::pair<iterator, iterator> equal_range(const key_type &key) {
const auto it = find(key);
return {it, it + !(it == end())};
}
/*! @copydoc equal_range */
[[nodiscard]] std::pair<const_iterator, const_iterator> equal_range(const key_type &key) const {
const auto it = find(key);
return {it, it + !(it == cend())};
}
/**
* @brief Returns a range containing all elements that compare _equivalent_
* to a given key.
* @tparam Other Type of an element to search for.
* @param key Key value of an element to search for.
* @return A pair of iterators pointing to the first element and past the
* last element of the range.
*/
template<typename Other>
[[nodiscard]] std::enable_if_t<is_transparent_v<hasher> && is_transparent_v<key_equal>, std::conditional_t<false, Other, std::pair<iterator, iterator>>>
equal_range(const Other &key) {
const auto it = find(key);
return {it, it + !(it == end())};
}
/*! @copydoc equal_range */
template<class Other>
[[nodiscard]] std::enable_if_t<is_transparent_v<hasher> && is_transparent_v<key_equal>, std::conditional_t<false, Other, std::pair<const_iterator, const_iterator>>>
equal_range(const Other &key) const {
const auto it = find(key);
return {it, it + !(it == cend())};
}
/**
* @brief Checks if the container contains an element with a given key.
* @param key Key value of an element to search for.
* @return True if there is such an element, false otherwise.
*/
[[nodiscard]] bool contains(const key_type &key) const {
return (find(key) != cend());
}
/**
* @brief Checks if the container contains an element with a key that
* compares _equivalent_ to a given value.
* @tparam Other Type of the key value of an element to search for.
* @param key Key value of an element to search for.
* @return True if there is such an element, false otherwise.
*/
template<typename Other>
[[nodiscard]] std::enable_if_t<is_transparent_v<hasher> && is_transparent_v<key_equal>, std::conditional_t<false, Other, bool>>
contains(const Other &key) const {
return (find(key) != cend());
}
/**
* @brief Returns an iterator to the beginning of a given bucket.
* @param index An index of a bucket to access.
* @return An iterator to the beginning of the given bucket.
*/
[[nodiscard]] const_local_iterator cbegin(const size_type index) const {
return {packed.first().begin(), sparse.first()[index]};
}
/**
* @brief Returns an iterator to the beginning of a given bucket.
* @param index An index of a bucket to access.
* @return An iterator to the beginning of the given bucket.
*/
[[nodiscard]] const_local_iterator begin(const size_type index) const {
return cbegin(index);
}
/**
* @brief Returns an iterator to the beginning of a given bucket.
* @param index An index of a bucket to access.
* @return An iterator to the beginning of the given bucket.
*/
[[nodiscard]] local_iterator begin(const size_type index) {
return {packed.first().begin(), sparse.first()[index]};
}
/**
* @brief Returns an iterator to the end of a given bucket.
* @param index An index of a bucket to access.
* @return An iterator to the end of the given bucket.
*/
[[nodiscard]] const_local_iterator cend([[maybe_unused]] const size_type index) const {
return {packed.first().begin(), (std::numeric_limits<size_type>::max)()};
}
/**
* @brief Returns an iterator to the end of a given bucket.
* @param index An index of a bucket to access.
* @return An iterator to the end of the given bucket.
*/
[[nodiscard]] const_local_iterator end(const size_type index) const {
return cend(index);
}
/**
* @brief Returns an iterator to the end of a given bucket.
* @param index An index of a bucket to access.
* @return An iterator to the end of the given bucket.
*/
[[nodiscard]] local_iterator end([[maybe_unused]] const size_type index) {
return {packed.first().begin(), (std::numeric_limits<size_type>::max)()};
}
/**
* @brief Returns the number of buckets.
* @return The number of buckets.
*/
[[nodiscard]] size_type bucket_count() const {
return sparse.first().size();
}
/**
* @brief Returns the maximum number of buckets.
* @return The maximum number of buckets.
*/
[[nodiscard]] size_type max_bucket_count() const {
return sparse.first().max_size();
}
/**
* @brief Returns the number of elements in a given bucket.
* @param index The index of the bucket to examine.
* @return The number of elements in the given bucket.
*/
[[nodiscard]] size_type bucket_size(const size_type index) const {
return static_cast<size_type>(std::distance(begin(index), end(index)));
}
/**
* @brief Returns the bucket for a given key.
* @param key The value of the key to examine.
* @return The bucket for the given key.
*/
[[nodiscard]] size_type bucket(const key_type &key) const {
return key_to_bucket(key);
}
/**
* @brief Returns the average number of elements per bucket.
* @return The average number of elements per bucket.
*/
[[nodiscard]] float load_factor() const {
return size() / static_cast<float>(bucket_count());
}
/**
* @brief Returns the maximum average number of elements per bucket.
* @return The maximum average number of elements per bucket.
*/
[[nodiscard]] float max_load_factor() const {
return threshold;
}
/**
* @brief Sets the desired maximum average number of elements per bucket.
* @param value A desired maximum average number of elements per bucket.
*/
void max_load_factor(const float value) {
ENTT_ASSERT(value > 0.f, "Invalid load factor");
threshold = value;
rehash(0u);
}
/**
* @brief Reserves at least the specified number of buckets and regenerates
* the hash table.
* @param cnt New number of buckets.
*/
void rehash(const size_type cnt) {
auto value = cnt > minimum_capacity ? cnt : minimum_capacity;
const auto cap = static_cast<size_type>(size() / max_load_factor());
value = value > cap ? value : cap;
if(const auto sz = next_power_of_two(value); sz != bucket_count()) {
sparse.first().resize(sz);
for(auto &&elem: sparse.first()) {
elem = std::numeric_limits<size_type>::max();
}
for(size_type pos{}, last = size(); pos < last; ++pos) {
const auto index = key_to_bucket(packed.first()[pos].element.first);
packed.first()[pos].next = std::exchange(sparse.first()[index], pos);
}
}
}
/**
* @brief Reserves space for at least the specified number of elements and
* regenerates the hash table.
* @param cnt New number of elements.
*/
void reserve(const size_type cnt) {
packed.first().reserve(cnt);
rehash(static_cast<size_type>(std::ceil(cnt / max_load_factor())));
}
/**
* @brief Returns the function used to hash the keys.
* @return The function used to hash the keys.
*/
[[nodiscard]] hasher hash_function() const {
return sparse.second();
}
/**
* @brief Returns the function used to compare keys for equality.
* @return The function used to compare keys for equality.
*/
[[nodiscard]] key_equal key_eq() const {
return packed.second();
}
private:
compressed_pair<sparse_container_type, hasher> sparse;
compressed_pair<packed_container_type, key_equal> packed;
float threshold;
};
} // namespace entt
/**
* @cond TURN_OFF_DOXYGEN
* Internal details not to be documented.
*/
namespace std {
template<typename Key, typename Value, typename Allocator>
struct uses_allocator<entt::internal::dense_map_node<Key, Value>, Allocator>
: std::true_type {};
} // namespace std
/**
* Internal details not to be documented.
* @endcond
*/
#endif
// #include "../core/compressed_pair.hpp"
#ifndef ENTT_CORE_COMPRESSED_PAIR_HPP
#define ENTT_CORE_COMPRESSED_PAIR_HPP
#include <cstddef>
#include <tuple>
#include <type_traits>
#include <utility>
// #include "type_traits.hpp"
#ifndef ENTT_CORE_TYPE_TRAITS_HPP
#define ENTT_CORE_TYPE_TRAITS_HPP
#include <cstddef>
#include <iterator>
#include <type_traits>
#include <utility>
// #include "../config/config.h"
// #include "fwd.hpp"
namespace entt {
/**
* @brief Utility class to disambiguate overloaded functions.
* @tparam N Number of choices available.
*/
template<std::size_t N>
struct choice_t
// Unfortunately, doxygen cannot parse such a construct.
: /*! @cond TURN_OFF_DOXYGEN */ choice_t<N - 1> /*! @endcond */
{};
/*! @copybrief choice_t */
template<>
struct choice_t<0> {};
/**
* @brief Variable template for the choice trick.
* @tparam N Number of choices available.
*/
template<std::size_t N>
inline constexpr choice_t<N> choice{};
/**
* @brief Identity type trait.
*
* Useful to establish non-deduced contexts in template argument deduction
* (waiting for C++20) or to provide types through function arguments.
*
* @tparam Type A type.
*/
template<typename Type>
struct type_identity {
/*! @brief Identity type. */
using type = Type;
};
/**
* @brief Helper type.
* @tparam Type A type.
*/
template<typename Type>
using type_identity_t = typename type_identity<Type>::type;
/**
* @brief A type-only `sizeof` wrapper that returns 0 where `sizeof` complains.
* @tparam Type The type of which to return the size.
* @tparam The size of the type if `sizeof` accepts it, 0 otherwise.
*/
template<typename Type, typename = void>
struct size_of: std::integral_constant<std::size_t, 0u> {};
/*! @copydoc size_of */
template<typename Type>
struct size_of<Type, std::void_t<decltype(sizeof(Type))>>
: std::integral_constant<std::size_t, sizeof(Type)> {};
/**
* @brief Helper variable template.
* @tparam Type The type of which to return the size.
*/
template<typename Type>
inline constexpr std::size_t size_of_v = size_of<Type>::value;
/**
* @brief Using declaration to be used to _repeat_ the same type a number of
* times equal to the size of a given parameter pack.
* @tparam Type A type to repeat.
*/
template<typename Type, typename>
using unpack_as_type = Type;
/**
* @brief Helper variable template to be used to _repeat_ the same value a
* number of times equal to the size of a given parameter pack.
* @tparam Value A value to repeat.
*/
template<auto Value, typename>
inline constexpr auto unpack_as_value = Value;
/**
* @brief Wraps a static constant.
* @tparam Value A static constant.
*/
template<auto Value>
using integral_constant = std::integral_constant<decltype(Value), Value>;
/**
* @brief Alias template to facilitate the creation of named values.
* @tparam Value A constant value at least convertible to `id_type`.
*/
template<id_type Value>
using tag = integral_constant<Value>;
/**
* @brief A class to use to push around lists of types, nothing more.
* @tparam Type Types provided by the type list.
*/
template<typename... Type>
struct type_list {
/*! @brief Type list type. */
using type = type_list;
/*! @brief Compile-time number of elements in the type list. */
static constexpr auto size = sizeof...(Type);
};
/*! @brief Primary template isn't defined on purpose. */
template<std::size_t, typename>
struct type_list_element;
/**
* @brief Provides compile-time indexed access to the types of a type list.
* @tparam Index Index of the type to return.
* @tparam First First type provided by the type list.
* @tparam Other Other types provided by the type list.
*/
template<std::size_t Index, typename First, typename... Other>
struct type_list_element<Index, type_list<First, Other...>>
: type_list_element<Index - 1u, type_list<Other...>> {};
/**
* @brief Provides compile-time indexed access to the types of a type list.
* @tparam First First type provided by the type list.
* @tparam Other Other types provided by the type list.
*/
template<typename First, typename... Other>
struct type_list_element<0u, type_list<First, Other...>> {
/*! @brief Searched type. */
using type = First;
};
/**
* @brief Helper type.
* @tparam Index Index of the type to return.
* @tparam List Type list to search into.
*/
template<std::size_t Index, typename List>
using type_list_element_t = typename type_list_element<Index, List>::type;
/*! @brief Primary template isn't defined on purpose. */
template<typename, typename>
struct type_list_index;
/**
* @brief Provides compile-time type access to the types of a type list.
* @tparam Type Type to look for and for which to return the index.
* @tparam First First type provided by the type list.
* @tparam Other Other types provided by the type list.
*/
template<typename Type, typename First, typename... Other>
struct type_list_index<Type, type_list<First, Other...>> {
/*! @brief Unsigned integer type. */
using value_type = std::size_t;
/*! @brief Compile-time position of the given type in the sublist. */
static constexpr value_type value = 1u + type_list_index<Type, type_list<Other...>>::value;
};
/**
* @brief Provides compile-time type access to the types of a type list.
* @tparam Type Type to look for and for which to return the index.
* @tparam Other Other types provided by the type list.
*/
template<typename Type, typename... Other>
struct type_list_index<Type, type_list<Type, Other...>> {
static_assert(type_list_index<Type, type_list<Other...>>::value == sizeof...(Other), "Non-unique type");
/*! @brief Unsigned integer type. */
using value_type = std::size_t;
/*! @brief Compile-time position of the given type in the sublist. */
static constexpr value_type value = 0u;
};
/**
* @brief Provides compile-time type access to the types of a type list.
* @tparam Type Type to look for and for which to return the index.
*/
template<typename Type>
struct type_list_index<Type, type_list<>> {
/*! @brief Unsigned integer type. */
using value_type = std::size_t;
/*! @brief Compile-time position of the given type in the sublist. */
static constexpr value_type value = 0u;
};
/**
* @brief Helper variable template.
* @tparam List Type list.
* @tparam Type Type to look for and for which to return the index.
*/
template<typename Type, typename List>
inline constexpr std::size_t type_list_index_v = type_list_index<Type, List>::value;
/**
* @brief Concatenates multiple type lists.
* @tparam Type Types provided by the first type list.
* @tparam Other Types provided by the second type list.
* @return A type list composed by the types of both the type lists.
*/
template<typename... Type, typename... Other>
constexpr type_list<Type..., Other...> operator+(type_list<Type...>, type_list<Other...>) {
return {};
}
/*! @brief Primary template isn't defined on purpose. */
template<typename...>
struct type_list_cat;
/*! @brief Concatenates multiple type lists. */
template<>
struct type_list_cat<> {
/*! @brief A type list composed by the types of all the type lists. */
using type = type_list<>;
};
/**
* @brief Concatenates multiple type lists.
* @tparam Type Types provided by the first type list.
* @tparam Other Types provided by the second type list.
* @tparam List Other type lists, if any.
*/
template<typename... Type, typename... Other, typename... List>
struct type_list_cat<type_list<Type...>, type_list<Other...>, List...> {
/*! @brief A type list composed by the types of all the type lists. */
using type = typename type_list_cat<type_list<Type..., Other...>, List...>::type;
};
/**
* @brief Concatenates multiple type lists.
* @tparam Type Types provided by the type list.
*/
template<typename... Type>
struct type_list_cat<type_list<Type...>> {
/*! @brief A type list composed by the types of all the type lists. */
using type = type_list<Type...>;
};
/**
* @brief Helper type.
* @tparam List Type lists to concatenate.
*/
template<typename... List>
using type_list_cat_t = typename type_list_cat<List...>::type;
/*! @brief Primary template isn't defined on purpose. */
template<typename>
struct type_list_unique;
/**
* @brief Removes duplicates types from a type list.
* @tparam Type One of the types provided by the given type list.
* @tparam Other The other types provided by the given type list.
*/
template<typename Type, typename... Other>
struct type_list_unique<type_list<Type, Other...>> {
/*! @brief A type list without duplicate types. */
using type = std::conditional_t<
(std::is_same_v<Type, Other> || ...),
typename type_list_unique<type_list<Other...>>::type,
type_list_cat_t<type_list<Type>, typename type_list_unique<type_list<Other...>>::type>>;
};
/*! @brief Removes duplicates types from a type list. */
template<>
struct type_list_unique<type_list<>> {
/*! @brief A type list without duplicate types. */
using type = type_list<>;
};
/**
* @brief Helper type.
* @tparam Type A type list.
*/
template<typename Type>
using type_list_unique_t = typename type_list_unique<Type>::type;
/**
* @brief Provides the member constant `value` to true if a type list contains a
* given type, false otherwise.
* @tparam List Type list.
* @tparam Type Type to look for.
*/
template<typename List, typename Type>
struct type_list_contains;
/**
* @copybrief type_list_contains
* @tparam Type Types provided by the type list.
* @tparam Other Type to look for.
*/
template<typename... Type, typename Other>
struct type_list_contains<type_list<Type...>, Other>: std::disjunction<std::is_same<Type, Other>...> {};
/**
* @brief Helper variable template.
* @tparam List Type list.
* @tparam Type Type to look for.
*/
template<typename List, typename Type>
inline constexpr bool type_list_contains_v = type_list_contains<List, Type>::value;
/*! @brief Primary template isn't defined on purpose. */
template<typename...>
struct type_list_diff;
/**
* @brief Computes the difference between two type lists.
* @tparam Type Types provided by the first type list.
* @tparam Other Types provided by the second type list.
*/
template<typename... Type, typename... Other>
struct type_list_diff<type_list<Type...>, type_list<Other...>> {
/*! @brief A type list that is the difference between the two type lists. */
using type = type_list_cat_t<std::conditional_t<type_list_contains_v<type_list<Other...>, Type>, type_list<>, type_list<Type>>...>;
};
/**
* @brief Helper type.
* @tparam List Type lists between which to compute the difference.
*/
template<typename... List>
using type_list_diff_t = typename type_list_diff<List...>::type;
/*! @brief Primary template isn't defined on purpose. */
template<typename, template<typename...> class>
struct type_list_transform;
/**
* @brief Applies a given _function_ to a type list and generate a new list.
* @tparam Type Types provided by the type list.
* @tparam Op Unary operation as template class with a type member named `type`.
*/
template<typename... Type, template<typename...> class Op>
struct type_list_transform<type_list<Type...>, Op> {
/*! @brief Resulting type list after applying the transform function. */
using type = type_list<typename Op<Type>::type...>;
};
/**
* @brief Helper type.
* @tparam List Type list.
* @tparam Op Unary operation as template class with a type member named `type`.
*/
template<typename List, template<typename...> class Op>
using type_list_transform_t = typename type_list_transform<List, Op>::type;
/**
* @brief A class to use to push around lists of constant values, nothing more.
* @tparam Value Values provided by the value list.
*/
template<auto... Value>
struct value_list {
/*! @brief Value list type. */
using type = value_list;
/*! @brief Compile-time number of elements in the value list. */
static constexpr auto size = sizeof...(Value);
};
/*! @brief Primary template isn't defined on purpose. */
template<std::size_t, typename>
struct value_list_element;
/**
* @brief Provides compile-time indexed access to the values of a value list.
* @tparam Index Index of the value to return.
* @tparam Value First value provided by the value list.
* @tparam Other Other values provided by the value list.
*/
template<std::size_t Index, auto Value, auto... Other>
struct value_list_element<Index, value_list<Value, Other...>>
: value_list_element<Index - 1u, value_list<Other...>> {};
/**
* @brief Provides compile-time indexed access to the types of a type list.
* @tparam Value First value provided by the value list.
* @tparam Other Other values provided by the value list.
*/
template<auto Value, auto... Other>
struct value_list_element<0u, value_list<Value, Other...>> {
/*! @brief Searched value. */
static constexpr auto value = Value;
};
/**
* @brief Helper type.
* @tparam Index Index of the value to return.
* @tparam List Value list to search into.
*/
template<std::size_t Index, typename List>
inline constexpr auto value_list_element_v = value_list_element<Index, List>::value;
/**
* @brief Concatenates multiple value lists.
* @tparam Value Values provided by the first value list.
* @tparam Other Values provided by the second value list.
* @return A value list composed by the values of both the value lists.
*/
template<auto... Value, auto... Other>
constexpr value_list<Value..., Other...> operator+(value_list<Value...>, value_list<Other...>) {
return {};
}
/*! @brief Primary template isn't defined on purpose. */
template<typename...>
struct value_list_cat;
/*! @brief Concatenates multiple value lists. */
template<>
struct value_list_cat<> {
/*! @brief A value list composed by the values of all the value lists. */
using type = value_list<>;
};
/**
* @brief Concatenates multiple value lists.
* @tparam Value Values provided by the first value list.
* @tparam Other Values provided by the second value list.
* @tparam List Other value lists, if any.
*/
template<auto... Value, auto... Other, typename... List>
struct value_list_cat<value_list<Value...>, value_list<Other...>, List...> {
/*! @brief A value list composed by the values of all the value lists. */
using type = typename value_list_cat<value_list<Value..., Other...>, List...>::type;
};
/**
* @brief Concatenates multiple value lists.
* @tparam Value Values provided by the value list.
*/
template<auto... Value>
struct value_list_cat<value_list<Value...>> {
/*! @brief A value list composed by the values of all the value lists. */
using type = value_list<Value...>;
};
/**
* @brief Helper type.
* @tparam List Value lists to concatenate.
*/
template<typename... List>
using value_list_cat_t = typename value_list_cat<List...>::type;
/*! @brief Same as std::is_invocable, but with tuples. */
template<typename, typename>
struct is_applicable: std::false_type {};
/**
* @copybrief is_applicable
* @tparam Func A valid function type.
* @tparam Tuple Tuple-like type.
* @tparam Args The list of arguments to use to probe the function type.
*/
template<typename Func, template<typename...> class Tuple, typename... Args>
struct is_applicable<Func, Tuple<Args...>>: std::is_invocable<Func, Args...> {};
/**
* @copybrief is_applicable
* @tparam Func A valid function type.
* @tparam Tuple Tuple-like type.
* @tparam Args The list of arguments to use to probe the function type.
*/
template<typename Func, template<typename...> class Tuple, typename... Args>
struct is_applicable<Func, const Tuple<Args...>>: std::is_invocable<Func, Args...> {};
/**
* @brief Helper variable template.
* @tparam Func A valid function type.
* @tparam Args The list of arguments to use to probe the function type.
*/
template<typename Func, typename Args>
inline constexpr bool is_applicable_v = is_applicable<Func, Args>::value;
/*! @brief Same as std::is_invocable_r, but with tuples for arguments. */
template<typename, typename, typename>
struct is_applicable_r: std::false_type {};
/**
* @copybrief is_applicable_r
* @tparam Ret The type to which the return type of the function should be
* convertible.
* @tparam Func A valid function type.
* @tparam Args The list of arguments to use to probe the function type.
*/
template<typename Ret, typename Func, typename... Args>
struct is_applicable_r<Ret, Func, std::tuple<Args...>>: std::is_invocable_r<Ret, Func, Args...> {};
/**
* @brief Helper variable template.
* @tparam Ret The type to which the return type of the function should be
* convertible.
* @tparam Func A valid function type.
* @tparam Args The list of arguments to use to probe the function type.
*/
template<typename Ret, typename Func, typename Args>
inline constexpr bool is_applicable_r_v = is_applicable_r<Ret, Func, Args>::value;
/**
* @brief Provides the member constant `value` to true if a given type is
* complete, false otherwise.
* @tparam Type The type to test.
*/
template<typename Type, typename = void>
struct is_complete: std::false_type {};
/*! @copydoc is_complete */
template<typename Type>
struct is_complete<Type, std::void_t<decltype(sizeof(Type))>>: std::true_type {};
/**
* @brief Helper variable template.
* @tparam Type The type to test.
*/
template<typename Type>
inline constexpr bool is_complete_v = is_complete<Type>::value;
/**
* @brief Provides the member constant `value` to true if a given type is an
* iterator, false otherwise.
* @tparam Type The type to test.
*/
template<typename Type, typename = void>
struct is_iterator: std::false_type {};
/**
* @cond TURN_OFF_DOXYGEN
* Internal details not to be documented.
*/
namespace internal {
template<typename, typename = void>
struct has_iterator_category: std::false_type {};
template<typename Type>
struct has_iterator_category<Type, std::void_t<typename std::iterator_traits<Type>::iterator_category>>: std::true_type {};
} // namespace internal
/**
* Internal details not to be documented.
* @endcond
*/
/*! @copydoc is_iterator */
template<typename Type>
struct is_iterator<Type, std::enable_if_t<!std::is_same_v<std::remove_cv_t<std::remove_pointer_t<Type>>, void>>>
: internal::has_iterator_category<Type> {};
/**
* @brief Helper variable template.
* @tparam Type The type to test.
*/
template<typename Type>
inline constexpr bool is_iterator_v = is_iterator<Type>::value;
/**
* @brief Provides the member constant `value` to true if a given type is both
* an empty and non-final class, false otherwise.
* @tparam Type The type to test
*/
template<typename Type>
struct is_ebco_eligible
: std::conjunction<std::is_empty<Type>, std::negation<std::is_final<Type>>> {};
/**
* @brief Helper variable template.
* @tparam Type The type to test.
*/
template<typename Type>
inline constexpr bool is_ebco_eligible_v = is_ebco_eligible<Type>::value;
/**
* @brief Provides the member constant `value` to true if `Type::is_transparent`
* is valid and denotes a type, false otherwise.
* @tparam Type The type to test.
*/
template<typename Type, typename = void>
struct is_transparent: std::false_type {};
/*! @copydoc is_transparent */
template<typename Type>
struct is_transparent<Type, std::void_t<typename Type::is_transparent>>: std::true_type {};
/**
* @brief Helper variable template.
* @tparam Type The type to test.
*/
template<typename Type>
inline constexpr bool is_transparent_v = is_transparent<Type>::value;
/**
* @brief Provides the member constant `value` to true if a given type is
* equality comparable, false otherwise.
* @tparam Type The type to test.
*/
template<typename Type, typename = void>
struct is_equality_comparable: std::false_type {};
/**
* @cond TURN_OFF_DOXYGEN
* Internal details not to be documented.
*/
namespace internal {
template<typename, typename = void>
struct has_tuple_size_value: std::false_type {};
template<typename Type>
struct has_tuple_size_value<Type, std::void_t<decltype(std::tuple_size<const Type>::value)>>: std::true_type {};
template<typename Type, std::size_t... Index>
[[nodiscard]] constexpr bool unpack_maybe_equality_comparable(std::index_sequence<Index...>) {
return (is_equality_comparable<std::tuple_element_t<Index, Type>>::value && ...);
}
template<typename>
[[nodiscard]] constexpr bool maybe_equality_comparable(choice_t<0>) {
return true;
}
template<typename Type>
[[nodiscard]] constexpr auto maybe_equality_comparable(choice_t<1>) -> decltype(std::declval<typename Type::value_type>(), bool{}) {
if constexpr(is_iterator_v<Type>) {
return true;
} else if constexpr(std::is_same_v<typename Type::value_type, Type>) {
return maybe_equality_comparable<Type>(choice<0>);
} else {
return is_equality_comparable<typename Type::value_type>::value;
}
}
template<typename Type>
[[nodiscard]] constexpr std::enable_if_t<is_complete_v<std::tuple_size<std::remove_cv_t<Type>>>, bool> maybe_equality_comparable(choice_t<2>) {
if constexpr(has_tuple_size_value<Type>::value) {
return unpack_maybe_equality_comparable<Type>(std::make_index_sequence<std::tuple_size<Type>::value>{});
} else {
return maybe_equality_comparable<Type>(choice<1>);
}
}
} // namespace internal
/**
* Internal details not to be documented.
* @endcond
*/
/*! @copydoc is_equality_comparable */
template<typename Type>
struct is_equality_comparable<Type, std::void_t<decltype(std::declval<Type>() == std::declval<Type>())>>
: std::bool_constant<internal::maybe_equality_comparable<Type>(choice<2>)> {};
/**
* @brief Helper variable template.
* @tparam Type The type to test.
*/
template<typename Type>
inline constexpr bool is_equality_comparable_v = is_equality_comparable<Type>::value;
/**
* @brief Transcribes the constness of a type to another type.
* @tparam To The type to which to transcribe the constness.
* @tparam From The type from which to transcribe the constness.
*/
template<typename To, typename From>
struct constness_as {
/*! @brief The type resulting from the transcription of the constness. */
using type = std::remove_const_t<To>;
};
/*! @copydoc constness_as */
template<typename To, typename From>
struct constness_as<To, const From> {
/*! @brief The type resulting from the transcription of the constness. */
using type = const To;
};
/**
* @brief Alias template to facilitate the transcription of the constness.
* @tparam To The type to which to transcribe the constness.
* @tparam From The type from which to transcribe the constness.
*/
template<typename To, typename From>
using constness_as_t = typename constness_as<To, From>::type;
/**
* @brief Extracts the class of a non-static member object or function.
* @tparam Member A pointer to a non-static member object or function.
*/
template<typename Member>
class member_class {
static_assert(std::is_member_pointer_v<Member>, "Invalid pointer type to non-static member object or function");
template<typename Class, typename Ret, typename... Args>
static Class *clazz(Ret (Class::*)(Args...));
template<typename Class, typename Ret, typename... Args>
static Class *clazz(Ret (Class::*)(Args...) const);
template<typename Class, typename Type>
static Class *clazz(Type Class::*);
public:
/*! @brief The class of the given non-static member object or function. */
using type = std::remove_pointer_t<decltype(clazz(std::declval<Member>()))>;
};
/**
* @brief Helper type.
* @tparam Member A pointer to a non-static member object or function.
*/
template<typename Member>
using member_class_t = typename member_class<Member>::type;
/**
* @brief Extracts the n-th argument of a given function or member function.
* @tparam Index The index of the argument to extract.
* @tparam Candidate A valid function, member function or data member.
*/
template<std::size_t Index, auto Candidate>
class nth_argument {
template<typename Ret, typename... Args>
static constexpr type_list<Args...> pick_up(Ret (*)(Args...));
template<typename Ret, typename Class, typename... Args>
static constexpr type_list<Args...> pick_up(Ret (Class ::*)(Args...));
template<typename Ret, typename Class, typename... Args>
static constexpr type_list<Args...> pick_up(Ret (Class ::*)(Args...) const);
template<typename Type, typename Class>
static constexpr type_list<Type> pick_up(Type Class ::*);
public:
/*! @brief N-th argument of the given function or member function. */
using type = type_list_element_t<Index, decltype(pick_up(Candidate))>;
};
/**
* @brief Helper type.
* @tparam Index The index of the argument to extract.
* @tparam Candidate A valid function, member function or data member.
*/
template<std::size_t Index, auto Candidate>
using nth_argument_t = typename nth_argument<Index, Candidate>::type;
} // namespace entt
#endif
namespace entt {
/**
* @cond TURN_OFF_DOXYGEN
* Internal details not to be documented.
*/
namespace internal {
template<typename Type, std::size_t, typename = void>
struct compressed_pair_element {
using reference = Type &;
using const_reference = const Type &;
template<bool Dummy = true, typename = std::enable_if_t<Dummy && std::is_default_constructible_v<Type>>>
constexpr compressed_pair_element() noexcept(std::is_nothrow_default_constructible_v<Type>)
: value{} {}
template<typename Arg, typename = std::enable_if_t<!std::is_same_v<std::remove_cv_t<std::remove_reference_t<Arg>>, compressed_pair_element>>>
constexpr compressed_pair_element(Arg &&arg) noexcept(std::is_nothrow_constructible_v<Type, Arg>)
: value{std::forward<Arg>(arg)} {}
template<typename... Args, std::size_t... Index>
constexpr compressed_pair_element(std::tuple<Args...> args, std::index_sequence<Index...>) noexcept(std::is_nothrow_constructible_v<Type, Args...>)
: value{std::forward<Args>(std::get<Index>(args))...} {}
[[nodiscard]] constexpr reference get() noexcept {
return value;
}
[[nodiscard]] constexpr const_reference get() const noexcept {
return value;
}
private:
Type value;
};
template<typename Type, std::size_t Tag>
struct compressed_pair_element<Type, Tag, std::enable_if_t<is_ebco_eligible_v<Type>>>: Type {
using reference = Type &;
using const_reference = const Type &;
using base_type = Type;
template<bool Dummy = true, typename = std::enable_if_t<Dummy && std::is_default_constructible_v<base_type>>>
constexpr compressed_pair_element() noexcept(std::is_nothrow_default_constructible_v<base_type>)
: base_type{} {}
template<typename Arg, typename = std::enable_if_t<!std::is_same_v<std::remove_cv_t<std::remove_reference_t<Arg>>, compressed_pair_element>>>
constexpr compressed_pair_element(Arg &&arg) noexcept(std::is_nothrow_constructible_v<base_type, Arg>)
: base_type{std::forward<Arg>(arg)} {}
template<typename... Args, std::size_t... Index>
constexpr compressed_pair_element(std::tuple<Args...> args, std::index_sequence<Index...>) noexcept(std::is_nothrow_constructible_v<base_type, Args...>)
: base_type{std::forward<Args>(std::get<Index>(args))...} {}
[[nodiscard]] constexpr reference get() noexcept {
return *this;
}
[[nodiscard]] constexpr const_reference get() const noexcept {
return *this;
}
};
} // namespace internal
/**
* Internal details not to be documented.
* @endcond
*/
/**
* @brief A compressed pair.
*
* A pair that exploits the _Empty Base Class Optimization_ (or _EBCO_) to
* reduce its final size to a minimum.
*
* @tparam First The type of the first element that the pair stores.
* @tparam Second The type of the second element that the pair stores.
*/
template<typename First, typename Second>
class compressed_pair final
: internal::compressed_pair_element<First, 0u>,
internal::compressed_pair_element<Second, 1u> {
using first_base = internal::compressed_pair_element<First, 0u>;
using second_base = internal::compressed_pair_element<Second, 1u>;
public:
/*! @brief The type of the first element that the pair stores. */
using first_type = First;
/*! @brief The type of the second element that the pair stores. */
using second_type = Second;
/**
* @brief Default constructor, conditionally enabled.
*
* This constructor is only available when the types that the pair stores
* are both at least default constructible.
*
* @tparam Dummy Dummy template parameter used for internal purposes.
*/
template<bool Dummy = true, typename = std::enable_if_t<Dummy && std::is_default_constructible_v<first_type> && std::is_default_constructible_v<second_type>>>
constexpr compressed_pair() noexcept(std::is_nothrow_default_constructible_v<first_base> &&std::is_nothrow_default_constructible_v<second_base>)
: first_base{},
second_base{} {}
/**
* @brief Copy constructor.
* @param other The instance to copy from.
*/
constexpr compressed_pair(const compressed_pair &other) noexcept(std::is_nothrow_copy_constructible_v<first_base> &&std::is_nothrow_copy_constructible_v<second_base>) = default;
/**
* @brief Move constructor.
* @param other The instance to move from.
*/
constexpr compressed_pair(compressed_pair &&other) noexcept(std::is_nothrow_move_constructible_v<first_base> &&std::is_nothrow_move_constructible_v<second_base>) = default;
/**
* @brief Constructs a pair from its values.
* @tparam Arg Type of value to use to initialize the first element.
* @tparam Other Type of value to use to initialize the second element.
* @param arg Value to use to initialize the first element.
* @param other Value to use to initialize the second element.
*/
template<typename Arg, typename Other>
constexpr compressed_pair(Arg &&arg, Other &&other) noexcept(std::is_nothrow_constructible_v<first_base, Arg> &&std::is_nothrow_constructible_v<second_base, Other>)
: first_base{std::forward<Arg>(arg)},
second_base{std::forward<Other>(other)} {}
/**
* @brief Constructs a pair by forwarding the arguments to its parts.
* @tparam Args Types of arguments to use to initialize the first element.
* @tparam Other Types of arguments to use to initialize the second element.
* @param args Arguments to use to initialize the first element.
* @param other Arguments to use to initialize the second element.
*/
template<typename... Args, typename... Other>
constexpr compressed_pair(std::piecewise_construct_t, std::tuple<Args...> args, std::tuple<Other...> other) noexcept(std::is_nothrow_constructible_v<first_base, Args...> &&std::is_nothrow_constructible_v<second_base, Other...>)
: first_base{std::move(args), std::index_sequence_for<Args...>{}},
second_base{std::move(other), std::index_sequence_for<Other...>{}} {}
/**
* @brief Copy assignment operator.
* @param other The instance to copy from.
* @return This compressed pair object.
*/
constexpr compressed_pair &operator=(const compressed_pair &other) noexcept(std::is_nothrow_copy_assignable_v<first_base> &&std::is_nothrow_copy_assignable_v<second_base>) = default;
/**
* @brief Move assignment operator.
* @param other The instance to move from.
* @return This compressed pair object.
*/
constexpr compressed_pair &operator=(compressed_pair &&other) noexcept(std::is_nothrow_move_assignable_v<first_base> &&std::is_nothrow_move_assignable_v<second_base>) = default;
/**
* @brief Returns the first element that a pair stores.
* @return The first element that a pair stores.
*/
[[nodiscard]] constexpr first_type &first() noexcept {
return static_cast<first_base &>(*this).get();
}
/*! @copydoc first */
[[nodiscard]] constexpr const first_type &first() const noexcept {
return static_cast<const first_base &>(*this).get();
}
/**
* @brief Returns the second element that a pair stores.
* @return The second element that a pair stores.
*/
[[nodiscard]] constexpr second_type &second() noexcept {
return static_cast<second_base &>(*this).get();
}
/*! @copydoc second */
[[nodiscard]] constexpr const second_type &second() const noexcept {
return static_cast<const second_base &>(*this).get();
}
/**
* @brief Swaps two compressed pair objects.
* @param other The compressed pair to swap with.
*/
constexpr void swap(compressed_pair &other) noexcept(std::is_nothrow_swappable_v<first_type> &&std::is_nothrow_swappable_v<second_type>) {
using std::swap;
swap(first(), other.first());
swap(second(), other.second());
}
/**
* @brief Extracts an element from the compressed pair.
* @tparam Index An integer value that is either 0 or 1.
* @return Returns a reference to the first element if `Index` is 0 and a
* reference to the second element if `Index` is 1.
*/
template<std::size_t Index>
constexpr decltype(auto) get() noexcept {
if constexpr(Index == 0u) {
return first();
} else {
static_assert(Index == 1u, "Index out of bounds");
return second();
}
}
/*! @copydoc get */
template<std::size_t Index>
constexpr decltype(auto) get() const noexcept {
if constexpr(Index == 0u) {
return first();
} else {
static_assert(Index == 1u, "Index out of bounds");
return second();
}
}
};
/**
* @brief Deduction guide.
* @tparam Type Type of value to use to initialize the first element.
* @tparam Other Type of value to use to initialize the second element.
*/
template<typename Type, typename Other>
compressed_pair(Type &&, Other &&) -> compressed_pair<std::decay_t<Type>, std::decay_t<Other>>;
/**
* @brief Swaps two compressed pair objects.
* @tparam First The type of the first element that the pairs store.
* @tparam Second The type of the second element that the pairs store.
* @param lhs A valid compressed pair object.
* @param rhs A valid compressed pair object.
*/
template<typename First, typename Second>
inline constexpr void swap(compressed_pair<First, Second> &lhs, compressed_pair<First, Second> &rhs) {
lhs.swap(rhs);
}
} // namespace entt
// disable structured binding support for clang 6, it messes when specializing tuple_size
#if !defined __clang_major__ || __clang_major__ > 6
namespace std {
/**
* @brief `std::tuple_size` specialization for `compressed_pair`s.
* @tparam First The type of the first element that the pair stores.
* @tparam Second The type of the second element that the pair stores.
*/
template<typename First, typename Second>
struct tuple_size<entt::compressed_pair<First, Second>>: integral_constant<size_t, 2u> {};
/**
* @brief `std::tuple_element` specialization for `compressed_pair`s.
* @tparam Index The index of the type to return.
* @tparam First The type of the first element that the pair stores.
* @tparam Second The type of the second element that the pair stores.
*/
template<size_t Index, typename First, typename Second>
struct tuple_element<Index, entt::compressed_pair<First, Second>>: conditional<Index == 0u, First, Second> {
static_assert(Index < 2u, "Index out of bounds");
};
} // namespace std
#endif
#endif
// #include "../core/fwd.hpp"
#ifndef ENTT_CORE_FWD_HPP
#define ENTT_CORE_FWD_HPP
#include <cstddef>
// #include "../config/config.h"
namespace entt {
template<std::size_t Len = sizeof(double[2]), std::size_t = alignof(double[2])>
class basic_any;
/*! @brief Alias declaration for type identifiers. */
using id_type = ENTT_ID_TYPE;
/*! @brief Alias declaration for the most common use case. */
using any = basic_any<>;
} // namespace entt
#endif
// #include "../core/type_info.hpp"
#ifndef ENTT_CORE_TYPE_INFO_HPP
#define ENTT_CORE_TYPE_INFO_HPP
#include <string_view>
#include <type_traits>
#include <utility>
// #include "../config/config.h"
// #include "../core/attribute.h"
#ifndef ENTT_CORE_ATTRIBUTE_H
#define ENTT_CORE_ATTRIBUTE_H
#ifndef ENTT_EXPORT
# if defined _WIN32 || defined __CYGWIN__ || defined _MSC_VER
# define ENTT_EXPORT __declspec(dllexport)
# define ENTT_IMPORT __declspec(dllimport)
# define ENTT_HIDDEN
# elif defined __GNUC__ && __GNUC__ >= 4
# define ENTT_EXPORT __attribute__((visibility("default")))
# define ENTT_IMPORT __attribute__((visibility("default")))
# define ENTT_HIDDEN __attribute__((visibility("hidden")))
# else /* Unsupported compiler */
# define ENTT_EXPORT
# define ENTT_IMPORT
# define ENTT_HIDDEN
# endif
#endif
#ifndef ENTT_API
# if defined ENTT_API_EXPORT
# define ENTT_API ENTT_EXPORT
# elif defined ENTT_API_IMPORT
# define ENTT_API ENTT_IMPORT
# else /* No API */
# define ENTT_API
# endif
#endif
#endif
// #include "fwd.hpp"
// #include "hashed_string.hpp"
#ifndef ENTT_CORE_HASHED_STRING_HPP
#define ENTT_CORE_HASHED_STRING_HPP
#include <cstddef>
#include <cstdint>
// #include "fwd.hpp"
namespace entt {
/**
* @cond TURN_OFF_DOXYGEN
* Internal details not to be documented.
*/
namespace internal {
template<typename>
struct fnv1a_traits;
template<>
struct fnv1a_traits<std::uint32_t> {
using type = std::uint32_t;
static constexpr std::uint32_t offset = 2166136261;
static constexpr std::uint32_t prime = 16777619;
};
template<>
struct fnv1a_traits<std::uint64_t> {
using type = std::uint64_t;
static constexpr std::uint64_t offset = 14695981039346656037ull;
static constexpr std::uint64_t prime = 1099511628211ull;
};
template<typename Char>
struct basic_hashed_string {
using value_type = Char;
using size_type = std::size_t;
using hash_type = id_type;
const value_type *repr;
size_type length;
hash_type hash;
};
} // namespace internal
/**
* Internal details not to be documented.
* @endcond
*/
/**
* @brief Zero overhead unique identifier.
*
* A hashed string is a compile-time tool that allows users to use
* human-readable identifiers in the codebase while using their numeric
* counterparts at runtime.<br/>
* Because of that, a hashed string can also be used in constant expressions if
* required.
*
* @warning
* This class doesn't take ownership of user-supplied strings nor does it make a
* copy of them.
*
* @tparam Char Character type.
*/
template<typename Char>
class basic_hashed_string: internal::basic_hashed_string<Char> {
using base_type = internal::basic_hashed_string<Char>;
using hs_traits = internal::fnv1a_traits<id_type>;
struct const_wrapper {
// non-explicit constructor on purpose
constexpr const_wrapper(const Char *str) noexcept
: repr{str} {}
const Char *repr;
};
// FowlerNollVo hash function v. 1a - the good
[[nodiscard]] static constexpr auto helper(const Char *str) noexcept {
base_type base{str, 0u, hs_traits::offset};
for(; str[base.length]; ++base.length) {
base.hash = (base.hash ^ static_cast<hs_traits::type>(str[base.length])) * hs_traits::prime;
}
return base;
}
// FowlerNollVo hash function v. 1a - the good
[[nodiscard]] static constexpr auto helper(const Char *str, const std::size_t len) noexcept {
base_type base{str, len, hs_traits::offset};
for(size_type pos{}; pos < len; ++pos) {
base.hash = (base.hash ^ static_cast<hs_traits::type>(str[pos])) * hs_traits::prime;
}
return base;
}
public:
/*! @brief Character type. */
using value_type = typename base_type::value_type;
/*! @brief Unsigned integer type. */
using size_type = typename base_type::size_type;
/*! @brief Unsigned integer type. */
using hash_type = typename base_type::hash_type;
/**
* @brief Returns directly the numeric representation of a string view.
* @param str Human-readable identifier.
* @param len Length of the string to hash.
* @return The numeric representation of the string.
*/
[[nodiscard]] static constexpr hash_type value(const value_type *str, const size_type len) noexcept {
return basic_hashed_string{str, len};
}
/**
* @brief Returns directly the numeric representation of a string.
* @tparam N Number of characters of the identifier.
* @param str Human-readable identifier.
* @return The numeric representation of the string.
*/
template<std::size_t N>
[[nodiscard]] static constexpr hash_type value(const value_type (&str)[N]) noexcept {
return basic_hashed_string{str};
}
/**
* @brief Returns directly the numeric representation of a string.
* @param wrapper Helps achieving the purpose by relying on overloading.
* @return The numeric representation of the string.
*/
[[nodiscard]] static constexpr hash_type value(const_wrapper wrapper) noexcept {
return basic_hashed_string{wrapper};
}
/*! @brief Constructs an empty hashed string. */
constexpr basic_hashed_string() noexcept
: base_type{} {}
/**
* @brief Constructs a hashed string from a string view.
* @param str Human-readable identifier.
* @param len Length of the string to hash.
*/
constexpr basic_hashed_string(const value_type *str, const size_type len) noexcept
: base_type{helper(str, len)} {}
/**
* @brief Constructs a hashed string from an array of const characters.
* @tparam N Number of characters of the identifier.
* @param str Human-readable identifier.
*/
template<std::size_t N>
constexpr basic_hashed_string(const value_type (&str)[N]) noexcept
: base_type{helper(str)} {}
/**
* @brief Explicit constructor on purpose to avoid constructing a hashed
* string directly from a `const value_type *`.
*
* @warning
* The lifetime of the string is not extended nor is it copied.
*
* @param wrapper Helps achieving the purpose by relying on overloading.
*/
explicit constexpr basic_hashed_string(const_wrapper wrapper) noexcept
: base_type{helper(wrapper.repr)} {}
/**
* @brief Returns the size a hashed string.
* @return The size of the hashed string.
*/
[[nodiscard]] constexpr size_type size() const noexcept {
return base_type::length;
}
/**
* @brief Returns the human-readable representation of a hashed string.
* @return The string used to initialize the hashed string.
*/
[[nodiscard]] constexpr const value_type *data() const noexcept {
return base_type::repr;
}
/**
* @brief Returns the numeric representation of a hashed string.
* @return The numeric representation of the hashed string.
*/
[[nodiscard]] constexpr hash_type value() const noexcept {
return base_type::hash;
}
/*! @copydoc data */
[[nodiscard]] constexpr operator const value_type *() const noexcept {
return data();
}
/**
* @brief Returns the numeric representation of a hashed string.
* @return The numeric representation of the hashed string.
*/
[[nodiscard]] constexpr operator hash_type() const noexcept {
return value();
}
};
/**
* @brief Deduction guide.
* @tparam Char Character type.
* @param str Human-readable identifier.
* @param len Length of the string to hash.
*/
template<typename Char>
basic_hashed_string(const Char *str, const std::size_t len) -> basic_hashed_string<Char>;
/**
* @brief Deduction guide.
* @tparam Char Character type.
* @tparam N Number of characters of the identifier.
* @param str Human-readable identifier.
*/
template<typename Char, std::size_t N>
basic_hashed_string(const Char (&str)[N]) -> basic_hashed_string<Char>;
/**
* @brief Compares two hashed strings.
* @tparam Char Character type.
* @param lhs A valid hashed string.
* @param rhs A valid hashed string.
* @return True if the two hashed strings are identical, false otherwise.
*/
template<typename Char>
[[nodiscard]] constexpr bool operator==(const basic_hashed_string<Char> &lhs, const basic_hashed_string<Char> &rhs) noexcept {
return lhs.value() == rhs.value();
}
/**
* @brief Compares two hashed strings.
* @tparam Char Character type.
* @param lhs A valid hashed string.
* @param rhs A valid hashed string.
* @return True if the two hashed strings differ, false otherwise.
*/
template<typename Char>
[[nodiscard]] constexpr bool operator!=(const basic_hashed_string<Char> &lhs, const basic_hashed_string<Char> &rhs) noexcept {
return !(lhs == rhs);
}
/**
* @brief Compares two hashed strings.
* @tparam Char Character type.
* @param lhs A valid hashed string.
* @param rhs A valid hashed string.
* @return True if the first element is less than the second, false otherwise.
*/
template<typename Char>
[[nodiscard]] constexpr bool operator<(const basic_hashed_string<Char> &lhs, const basic_hashed_string<Char> &rhs) noexcept {
return lhs.value() < rhs.value();
}
/**
* @brief Compares two hashed strings.
* @tparam Char Character type.
* @param lhs A valid hashed string.
* @param rhs A valid hashed string.
* @return True if the first element is less than or equal to the second, false
* otherwise.
*/
template<typename Char>
[[nodiscard]] constexpr bool operator<=(const basic_hashed_string<Char> &lhs, const basic_hashed_string<Char> &rhs) noexcept {
return !(rhs < lhs);
}
/**
* @brief Compares two hashed strings.
* @tparam Char Character type.
* @param lhs A valid hashed string.
* @param rhs A valid hashed string.
* @return True if the first element is greater than the second, false
* otherwise.
*/
template<typename Char>
[[nodiscard]] constexpr bool operator>(const basic_hashed_string<Char> &lhs, const basic_hashed_string<Char> &rhs) noexcept {
return rhs < lhs;
}
/**
* @brief Compares two hashed strings.
* @tparam Char Character type.
* @param lhs A valid hashed string.
* @param rhs A valid hashed string.
* @return True if the first element is greater than or equal to the second,
* false otherwise.
*/
template<typename Char>
[[nodiscard]] constexpr bool operator>=(const basic_hashed_string<Char> &lhs, const basic_hashed_string<Char> &rhs) noexcept {
return !(lhs < rhs);
}
/*! @brief Aliases for common character types. */
using hashed_string = basic_hashed_string<char>;
/*! @brief Aliases for common character types. */
using hashed_wstring = basic_hashed_string<wchar_t>;
inline namespace literals {
/**
* @brief User defined literal for hashed strings.
* @param str The literal without its suffix.
* @return A properly initialized hashed string.
*/
[[nodiscard]] constexpr hashed_string operator"" _hs(const char *str, std::size_t) noexcept {
return hashed_string{str};
}
/**
* @brief User defined literal for hashed wstrings.
* @param str The literal without its suffix.
* @return A properly initialized hashed wstring.
*/
[[nodiscard]] constexpr hashed_wstring operator"" _hws(const wchar_t *str, std::size_t) noexcept {
return hashed_wstring{str};
}
} // namespace literals
} // namespace entt
#endif
namespace entt {
/**
* @cond TURN_OFF_DOXYGEN
* Internal details not to be documented.
*/
namespace internal {
struct ENTT_API type_index final {
[[nodiscard]] static id_type next() noexcept {
static ENTT_MAYBE_ATOMIC(id_type) value{};
return value++;
}
};
template<typename Type>
[[nodiscard]] constexpr auto stripped_type_name() noexcept {
#if defined ENTT_PRETTY_FUNCTION
std::string_view pretty_function{ENTT_PRETTY_FUNCTION};
auto first = pretty_function.find_first_not_of(' ', pretty_function.find_first_of(ENTT_PRETTY_FUNCTION_PREFIX) + 1);
auto value = pretty_function.substr(first, pretty_function.find_last_of(ENTT_PRETTY_FUNCTION_SUFFIX) - first);
return value;
#else
return std::string_view{""};
#endif
}
template<typename Type, auto = stripped_type_name<Type>().find_first_of('.')>
[[nodiscard]] static constexpr std::string_view type_name(int) noexcept {
constexpr auto value = stripped_type_name<Type>();
return value;
}
template<typename Type>
[[nodiscard]] static std::string_view type_name(char) noexcept {
static const auto value = stripped_type_name<Type>();
return value;
}
template<typename Type, auto = stripped_type_name<Type>().find_first_of('.')>
[[nodiscard]] static constexpr id_type type_hash(int) noexcept {
constexpr auto stripped = stripped_type_name<Type>();
constexpr auto value = hashed_string::value(stripped.data(), stripped.size());
return value;
}
template<typename Type>
[[nodiscard]] static id_type type_hash(char) noexcept {
static const auto value = [](const auto stripped) {
return hashed_string::value(stripped.data(), stripped.size());
}(stripped_type_name<Type>());
return value;
}
} // namespace internal
/**
* Internal details not to be documented.
* @endcond
*/
/**
* @brief Type sequential identifier.
* @tparam Type Type for which to generate a sequential identifier.
*/
template<typename Type, typename = void>
struct ENTT_API type_index final {
/**
* @brief Returns the sequential identifier of a given type.
* @return The sequential identifier of a given type.
*/
[[nodiscard]] static id_type value() noexcept {
static const id_type value = internal::type_index::next();
return value;
}
/*! @copydoc value */
[[nodiscard]] constexpr operator id_type() const noexcept {
return value();
}
};
/**
* @brief Type hash.
* @tparam Type Type for which to generate a hash value.
*/
template<typename Type, typename = void>
struct type_hash final {
/**
* @brief Returns the numeric representation of a given type.
* @return The numeric representation of the given type.
*/
#if defined ENTT_PRETTY_FUNCTION
[[nodiscard]] static constexpr id_type value() noexcept {
return internal::type_hash<Type>(0);
#else
[[nodiscard]] static constexpr id_type value() noexcept {
return type_index<Type>::value();
#endif
}
/*! @copydoc value */
[[nodiscard]] constexpr operator id_type() const noexcept {
return value();
}
};
/**
* @brief Type name.
* @tparam Type Type for which to generate a name.
*/
template<typename Type, typename = void>
struct type_name final {
/**
* @brief Returns the name of a given type.
* @return The name of the given type.
*/
[[nodiscard]] static constexpr std::string_view value() noexcept {
return internal::type_name<Type>(0);
}
/*! @copydoc value */
[[nodiscard]] constexpr operator std::string_view() const noexcept {
return value();
}
};
/*! @brief Implementation specific information about a type. */
struct type_info final {
/**
* @brief Constructs a type info object for a given type.
* @tparam Type Type for which to construct a type info object.
*/
template<typename Type>
constexpr type_info(std::in_place_type_t<Type>) noexcept
: seq{type_index<std::remove_cv_t<std::remove_reference_t<Type>>>::value()},
identifier{type_hash<std::remove_cv_t<std::remove_reference_t<Type>>>::value()},
alias{type_name<std::remove_cv_t<std::remove_reference_t<Type>>>::value()} {}
/**
* @brief Type index.
* @return Type index.
*/
[[nodiscard]] constexpr id_type index() const noexcept {
return seq;
}
/**
* @brief Type hash.
* @return Type hash.
*/
[[nodiscard]] constexpr id_type hash() const noexcept {
return identifier;
}
/**
* @brief Type name.
* @return Type name.
*/
[[nodiscard]] constexpr std::string_view name() const noexcept {
return alias;
}
private:
id_type seq;
id_type identifier;
std::string_view alias;
};
/**
* @brief Compares the contents of two type info objects.
* @param lhs A type info object.
* @param rhs A type info object.
* @return True if the two type info objects are identical, false otherwise.
*/
[[nodiscard]] inline constexpr bool operator==(const type_info &lhs, const type_info &rhs) noexcept {
return lhs.hash() == rhs.hash();
}
/**
* @brief Compares the contents of two type info objects.
* @param lhs A type info object.
* @param rhs A type info object.
* @return True if the two type info objects differ, false otherwise.
*/
[[nodiscard]] inline constexpr bool operator!=(const type_info &lhs, const type_info &rhs) noexcept {
return !(lhs == rhs);
}
/**
* @brief Compares two type info objects.
* @param lhs A valid type info object.
* @param rhs A valid type info object.
* @return True if the first element is less than the second, false otherwise.
*/
[[nodiscard]] constexpr bool operator<(const type_info &lhs, const type_info &rhs) noexcept {
return lhs.index() < rhs.index();
}
/**
* @brief Compares two type info objects.
* @param lhs A valid type info object.
* @param rhs A valid type info object.
* @return True if the first element is less than or equal to the second, false
* otherwise.
*/
[[nodiscard]] constexpr bool operator<=(const type_info &lhs, const type_info &rhs) noexcept {
return !(rhs < lhs);
}
/**
* @brief Compares two type info objects.
* @param lhs A valid type info object.
* @param rhs A valid type info object.
* @return True if the first element is greater than the second, false
* otherwise.
*/
[[nodiscard]] constexpr bool operator>(const type_info &lhs, const type_info &rhs) noexcept {
return rhs < lhs;
}
/**
* @brief Compares two type info objects.
* @param lhs A valid type info object.
* @param rhs A valid type info object.
* @return True if the first element is greater than or equal to the second,
* false otherwise.
*/
[[nodiscard]] constexpr bool operator>=(const type_info &lhs, const type_info &rhs) noexcept {
return !(lhs < rhs);
}
/**
* @brief Returns the type info object associated to a given type.
*
* The returned element refers to an object with static storage duration.<br/>
* The type doesn't need to be a complete type. If the type is a reference, the
* result refers to the referenced type. In all cases, top-level cv-qualifiers
* are ignored.
*
* @tparam Type Type for which to generate a type info object.
* @return A reference to a properly initialized type info object.
*/
template<typename Type>
[[nodiscard]] const type_info &type_id() noexcept {
if constexpr(std::is_same_v<Type, std::remove_cv_t<std::remove_reference_t<Type>>>) {
static type_info instance{std::in_place_type<Type>};
return instance;
} else {
return type_id<std::remove_cv_t<std::remove_reference_t<Type>>>();
}
}
/*! @copydoc type_id */
template<typename Type>
[[nodiscard]] const type_info &type_id(Type &&) noexcept {
return type_id<std::remove_cv_t<std::remove_reference_t<Type>>>();
}
} // namespace entt
#endif
// #include "../core/utility.hpp"
#ifndef ENTT_CORE_UTILITY_HPP
#define ENTT_CORE_UTILITY_HPP
#include <type_traits>
#include <utility>
namespace entt {
/*! @brief Identity function object (waiting for C++20). */
struct identity {
/*! @brief Indicates that this is a transparent function object. */
using is_transparent = void;
/**
* @brief Returns its argument unchanged.
* @tparam Type Type of the argument.
* @param value The actual argument.
* @return The submitted value as-is.
*/
template<class Type>
[[nodiscard]] constexpr Type &&operator()(Type &&value) const noexcept {
return std::forward<Type>(value);
}
};
/**
* @brief Constant utility to disambiguate overloaded members of a class.
* @tparam Type Type of the desired overload.
* @tparam Class Type of class to which the member belongs.
* @param member A valid pointer to a member.
* @return Pointer to the member.
*/
template<typename Type, typename Class>
[[nodiscard]] constexpr auto overload(Type Class::*member) noexcept {
return member;
}
/**
* @brief Constant utility to disambiguate overloaded functions.
* @tparam Func Function type of the desired overload.
* @param func A valid pointer to a function.
* @return Pointer to the function.
*/
template<typename Func>
[[nodiscard]] constexpr auto overload(Func *func) noexcept {
return func;
}
/**
* @brief Helper type for visitors.
* @tparam Func Types of function objects.
*/
template<class... Func>
struct overloaded: Func... {
using Func::operator()...;
};
/**
* @brief Deduction guide.
* @tparam Func Types of function objects.
*/
template<class... Func>
overloaded(Func...) -> overloaded<Func...>;
/**
* @brief Basic implementation of a y-combinator.
* @tparam Func Type of a potentially recursive function.
*/
template<class Func>
struct y_combinator {
/**
* @brief Constructs a y-combinator from a given function.
* @param recursive A potentially recursive function.
*/
constexpr y_combinator(Func recursive) noexcept(std::is_nothrow_move_constructible_v<Func>)
: func{std::move(recursive)} {}
/**
* @brief Invokes a y-combinator and therefore its underlying function.
* @tparam Args Types of arguments to use to invoke the underlying function.
* @param args Parameters to use to invoke the underlying function.
* @return Return value of the underlying function, if any.
*/
template<class... Args>
constexpr decltype(auto) operator()(Args &&...args) const noexcept(std::is_nothrow_invocable_v<Func, const y_combinator &, Args...>) {
return func(*this, std::forward<Args>(args)...);
}
/*! @copydoc operator()() */
template<class... Args>
constexpr decltype(auto) operator()(Args &&...args) noexcept(std::is_nothrow_invocable_v<Func, y_combinator &, Args...>) {
return func(*this, std::forward<Args>(args)...);
}
private:
Func func;
};
} // namespace entt
#endif
// #include "fwd.hpp"
// #include "sigh.hpp"
#ifndef ENTT_SIGNAL_SIGH_HPP
#define ENTT_SIGNAL_SIGH_HPP
#include <algorithm>
#include <functional>
#include <type_traits>
#include <utility>
#include <vector>
// #include "delegate.hpp"
#ifndef ENTT_SIGNAL_DELEGATE_HPP
#define ENTT_SIGNAL_DELEGATE_HPP
#include <cstddef>
#include <functional>
#include <tuple>
#include <type_traits>
#include <utility>
// #include "../config/config.h"
// #include "../core/type_traits.hpp"
// #include "fwd.hpp"
namespace entt {
/**
* @cond TURN_OFF_DOXYGEN
* Internal details not to be documented.
*/
namespace internal {
template<typename Ret, typename... Args>
constexpr auto function_pointer(Ret (*)(Args...)) -> Ret (*)(Args...);
template<typename Ret, typename Type, typename... Args, typename Other>
constexpr auto function_pointer(Ret (*)(Type, Args...), Other &&) -> Ret (*)(Args...);
template<typename Class, typename Ret, typename... Args, typename... Other>
constexpr auto function_pointer(Ret (Class::*)(Args...), Other &&...) -> Ret (*)(Args...);
template<typename Class, typename Ret, typename... Args, typename... Other>
constexpr auto function_pointer(Ret (Class::*)(Args...) const, Other &&...) -> Ret (*)(Args...);
template<typename Class, typename Type, typename... Other>
constexpr auto function_pointer(Type Class::*, Other &&...) -> Type (*)();
template<typename... Type>
using function_pointer_t = decltype(function_pointer(std::declval<Type>()...));
template<typename... Class, typename Ret, typename... Args>
[[nodiscard]] constexpr auto index_sequence_for(Ret (*)(Args...)) {
return std::index_sequence_for<Class..., Args...>{};
}
} // namespace internal
/**
* Internal details not to be documented.
* @endcond
*/
/**
* @brief Basic delegate implementation.
*
* Primary template isn't defined on purpose. All the specializations give a
* compile-time error unless the template parameter is a function type.
*/
template<typename>
class delegate;
/**
* @brief Utility class to use to send around functions and members.
*
* Unmanaged delegate for function pointers and members. Users of this class are
* in charge of disconnecting instances before deleting them.
*
* A delegate can be used as a general purpose invoker without memory overhead
* for free functions possibly with payloads and bound or unbound members.
*
* @tparam Ret Return type of a function type.
* @tparam Args Types of arguments of a function type.
*/
template<typename Ret, typename... Args>
class delegate<Ret(Args...)> {
template<auto Candidate, std::size_t... Index>
[[nodiscard]] auto wrap(std::index_sequence<Index...>) noexcept {
return [](const void *, Args... args) -> Ret {
[[maybe_unused]] const auto arguments = std::forward_as_tuple(std::forward<Args>(args)...);
return static_cast<Ret>(std::invoke(Candidate, std::forward<type_list_element_t<Index, type_list<Args...>>>(std::get<Index>(arguments))...));
};
}
template<auto Candidate, typename Type, std::size_t... Index>
[[nodiscard]] auto wrap(Type &, std::index_sequence<Index...>) noexcept {
return [](const void *payload, Args... args) -> Ret {
[[maybe_unused]] const auto arguments = std::forward_as_tuple(std::forward<Args>(args)...);
Type *curr = static_cast<Type *>(const_cast<constness_as_t<void, Type> *>(payload));
return static_cast<Ret>(std::invoke(Candidate, *curr, std::forward<type_list_element_t<Index, type_list<Args...>>>(std::get<Index>(arguments))...));
};
}
template<auto Candidate, typename Type, std::size_t... Index>
[[nodiscard]] auto wrap(Type *, std::index_sequence<Index...>) noexcept {
return [](const void *payload, Args... args) -> Ret {
[[maybe_unused]] const auto arguments = std::forward_as_tuple(std::forward<Args>(args)...);
Type *curr = static_cast<Type *>(const_cast<constness_as_t<void, Type> *>(payload));
return static_cast<Ret>(std::invoke(Candidate, curr, std::forward<type_list_element_t<Index, type_list<Args...>>>(std::get<Index>(arguments))...));
};
}
public:
/*! @brief Function type of the contained target. */
using function_type = Ret(const void *, Args...);
/*! @brief Function type of the delegate. */
using type = Ret(Args...);
/*! @brief Return type of the delegate. */
using result_type = Ret;
/*! @brief Default constructor. */
delegate() noexcept
: instance{nullptr},
fn{nullptr} {}
/**
* @brief Constructs a delegate with a given object or payload, if any.
* @tparam Candidate Function or member to connect to the delegate.
* @tparam Type Type of class or type of payload, if any.
* @param value_or_instance Optional valid object that fits the purpose.
*/
template<auto Candidate, typename... Type>
delegate(connect_arg_t<Candidate>, Type &&...value_or_instance) noexcept {
connect<Candidate>(std::forward<Type>(value_or_instance)...);
}
/**
* @brief Constructs a delegate and connects an user defined function with
* optional payload.
* @param function Function to connect to the delegate.
* @param payload User defined arbitrary data.
*/
delegate(function_type *function, const void *payload = nullptr) noexcept {
connect(function, payload);
}
/**
* @brief Connects a free function or an unbound member to a delegate.
* @tparam Candidate Function or member to connect to the delegate.
*/
template<auto Candidate>
void connect() noexcept {
instance = nullptr;
if constexpr(std::is_invocable_r_v<Ret, decltype(Candidate), Args...>) {
fn = [](const void *, Args... args) -> Ret {
return Ret(std::invoke(Candidate, std::forward<Args>(args)...));
};
} else if constexpr(std::is_member_pointer_v<decltype(Candidate)>) {
fn = wrap<Candidate>(internal::index_sequence_for<type_list_element_t<0, type_list<Args...>>>(internal::function_pointer_t<decltype(Candidate)>{}));
} else {
fn = wrap<Candidate>(internal::index_sequence_for(internal::function_pointer_t<decltype(Candidate)>{}));
}
}
/**
* @brief Connects a free function with payload or a bound member to a
* delegate.
*
* The delegate isn't responsible for the connected object or the payload.
* Users must always guarantee that the lifetime of the instance overcomes
* the one of the delegate.<br/>
* When used to connect a free function with payload, its signature must be
* such that the instance is the first argument before the ones used to
* define the delegate itself.
*
* @tparam Candidate Function or member to connect to the delegate.
* @tparam Type Type of class or type of payload.
* @param value_or_instance A valid reference that fits the purpose.
*/
template<auto Candidate, typename Type>
void connect(Type &value_or_instance) noexcept {
instance = &value_or_instance;
if constexpr(std::is_invocable_r_v<Ret, decltype(Candidate), Type &, Args...>) {
fn = [](const void *payload, Args... args) -> Ret {
Type *curr = static_cast<Type *>(const_cast<constness_as_t<void, Type> *>(payload));
return Ret(std::invoke(Candidate, *curr, std::forward<Args>(args)...));
};
} else {
fn = wrap<Candidate>(value_or_instance, internal::index_sequence_for(internal::function_pointer_t<decltype(Candidate), Type>{}));
}
}
/**
* @brief Connects a free function with payload or a bound member to a
* delegate.
*
* @sa connect(Type &)
*
* @tparam Candidate Function or member to connect to the delegate.
* @tparam Type Type of class or type of payload.
* @param value_or_instance A valid pointer that fits the purpose.
*/
template<auto Candidate, typename Type>
void connect(Type *value_or_instance) noexcept {
instance = value_or_instance;
if constexpr(std::is_invocable_r_v<Ret, decltype(Candidate), Type *, Args...>) {
fn = [](const void *payload, Args... args) -> Ret {
Type *curr = static_cast<Type *>(const_cast<constness_as_t<void, Type> *>(payload));
return Ret(std::invoke(Candidate, curr, std::forward<Args>(args)...));
};
} else {
fn = wrap<Candidate>(value_or_instance, internal::index_sequence_for(internal::function_pointer_t<decltype(Candidate), Type>{}));
}
}
/**
* @brief Connects an user defined function with optional payload to a
* delegate.
*
* The delegate isn't responsible for the connected object or the payload.
* Users must always guarantee that the lifetime of an instance overcomes
* the one of the delegate.<br/>
* The payload is returned as the first argument to the target function in
* all cases.
*
* @param function Function to connect to the delegate.
* @param payload User defined arbitrary data.
*/
void connect(function_type *function, const void *payload = nullptr) noexcept {
ENTT_ASSERT(function != nullptr, "Uninitialized function pointer");
instance = payload;
fn = function;
}
/**
* @brief Resets a delegate.
*
* After a reset, a delegate cannot be invoked anymore.
*/
void reset() noexcept {
instance = nullptr;
fn = nullptr;
}
/**
* @brief Returns the instance or the payload linked to a delegate, if any.
* @return An opaque pointer to the underlying data.
*/
[[nodiscard]] const void *data() const noexcept {
return instance;
}
/**
* @brief Triggers a delegate.
*
* The delegate invokes the underlying function and returns the result.
*
* @warning
* Attempting to trigger an invalid delegate results in undefined
* behavior.
*
* @param args Arguments to use to invoke the underlying function.
* @return The value returned by the underlying function.
*/
Ret operator()(Args... args) const {
ENTT_ASSERT(static_cast<bool>(*this), "Uninitialized delegate");
return fn(instance, std::forward<Args>(args)...);
}
/**
* @brief Checks whether a delegate actually stores a listener.
* @return False if the delegate is empty, true otherwise.
*/
[[nodiscard]] explicit operator bool() const noexcept {
// no need to also test instance
return !(fn == nullptr);
}
/**
* @brief Compares the contents of two delegates.
* @param other Delegate with which to compare.
* @return False if the two contents differ, true otherwise.
*/
[[nodiscard]] bool operator==(const delegate<Ret(Args...)> &other) const noexcept {
return fn == other.fn && instance == other.instance;
}
private:
const void *instance;
function_type *fn;
};
/**
* @brief Compares the contents of two delegates.
* @tparam Ret Return type of a function type.
* @tparam Args Types of arguments of a function type.
* @param lhs A valid delegate object.
* @param rhs A valid delegate object.
* @return True if the two contents differ, false otherwise.
*/
template<typename Ret, typename... Args>
[[nodiscard]] bool operator!=(const delegate<Ret(Args...)> &lhs, const delegate<Ret(Args...)> &rhs) noexcept {
return !(lhs == rhs);
}
/**
* @brief Deduction guide.
* @tparam Candidate Function or member to connect to the delegate.
*/
template<auto Candidate>
delegate(connect_arg_t<Candidate>) -> delegate<std::remove_pointer_t<internal::function_pointer_t<decltype(Candidate)>>>;
/**
* @brief Deduction guide.
* @tparam Candidate Function or member to connect to the delegate.
* @tparam Type Type of class or type of payload.
*/
template<auto Candidate, typename Type>
delegate(connect_arg_t<Candidate>, Type &&) -> delegate<std::remove_pointer_t<internal::function_pointer_t<decltype(Candidate), Type>>>;
/**
* @brief Deduction guide.
* @tparam Ret Return type of a function type.
* @tparam Args Types of arguments of a function type.
*/
template<typename Ret, typename... Args>
delegate(Ret (*)(const void *, Args...), const void * = nullptr) -> delegate<Ret(Args...)>;
} // namespace entt
#endif
// #include "fwd.hpp"
namespace entt {
/**
* @brief Sink class.
*
* Primary template isn't defined on purpose. All the specializations give a
* compile-time error unless the template parameter is a function type.
*
* @tparam Type A valid signal handler type.
*/
template<typename Type>
class sink;
/**
* @brief Unmanaged signal handler.
*
* Primary template isn't defined on purpose. All the specializations give a
* compile-time error unless the template parameter is a function type.
*
* @tparam Type A valid function type.
* @tparam Allocator Type of allocator used to manage memory and elements.
*/
template<typename Type, typename Allocator>
class sigh;
/**
* @brief Unmanaged signal handler.
*
* It works directly with references to classes and pointers to member functions
* as well as pointers to free functions. Users of this class are in charge of
* disconnecting instances before deleting them.
*
* This class serves mainly two purposes:
*
* * Creating signals to use later to notify a bunch of listeners.
* * Collecting results from a set of functions like in a voting system.
*
* @tparam Ret Return type of a function type.
* @tparam Args Types of arguments of a function type.
* @tparam Allocator Type of allocator used to manage memory and elements.
*/
template<typename Ret, typename... Args, typename Allocator>
class sigh<Ret(Args...), Allocator> {
/*! @brief A sink is allowed to modify a signal. */
friend class sink<sigh<Ret(Args...), Allocator>>;
using alloc_traits = std::allocator_traits<Allocator>;
using container_type = std::vector<delegate<Ret(Args...)>, typename alloc_traits::template rebind_alloc<delegate<Ret(Args...)>>>;
public:
/*! @brief Allocator type. */
using allocator_type = Allocator;
/*! @brief Unsigned integer type. */
using size_type = std::size_t;
/*! @brief Sink type. */
using sink_type = sink<sigh<Ret(Args...), Allocator>>;
/*! @brief Default constructor. */
sigh() noexcept(std::is_nothrow_default_constructible_v<allocator_type> &&std::is_nothrow_constructible_v<container_type, const allocator_type &>)
: sigh{allocator_type{}} {}
/**
* @brief Constructs a signal handler with a given allocator.
* @param allocator The allocator to use.
*/
explicit sigh(const allocator_type &allocator) noexcept(std::is_nothrow_constructible_v<container_type, const allocator_type &>)
: calls{allocator} {}
/**
* @brief Copy constructor.
* @param other The instance to copy from.
*/
sigh(const sigh &other) noexcept(std::is_nothrow_copy_constructible_v<container_type>)
: calls{other.calls} {}
/**
* @brief Allocator-extended copy constructor.
* @param other The instance to copy from.
* @param allocator The allocator to use.
*/
sigh(const sigh &other, const allocator_type &allocator) noexcept(std::is_nothrow_constructible_v<container_type, const container_type &, const allocator_type &>)
: calls{other.calls, allocator} {}
/**
* @brief Move constructor.
* @param other The instance to move from.
*/
sigh(sigh &&other) noexcept(std::is_nothrow_move_constructible_v<container_type>)
: calls{std::move(other.calls)} {}
/**
* @brief Allocator-extended move constructor.
* @param other The instance to move from.
* @param allocator The allocator to use.
*/
sigh(sigh &&other, const allocator_type &allocator) noexcept(std::is_nothrow_constructible_v<container_type, container_type &&, const allocator_type &>)
: calls{std::move(other.calls), allocator} {}
/**
* @brief Copy assignment operator.
* @param other The instance to copy from.
* @return This signal handler.
*/
sigh &operator=(const sigh &other) noexcept(std::is_nothrow_copy_assignable_v<container_type>) {
calls = other.calls;
return *this;
}
/**
* @brief Move assignment operator.
* @param other The instance to move from.
* @return This signal handler.
*/
sigh &operator=(sigh &&other) noexcept(std::is_nothrow_move_assignable_v<container_type>) {
calls = std::move(other.calls);
return *this;
}
/**
* @brief Exchanges the contents with those of a given signal handler.
* @param other Signal handler to exchange the content with.
*/
void swap(sigh &other) noexcept(std::is_nothrow_swappable_v<container_type>) {
using std::swap;
swap(calls, other.calls);
}
/**
* @brief Returns the associated allocator.
* @return The associated allocator.
*/
[[nodiscard]] constexpr allocator_type get_allocator() const noexcept {
return calls.get_allocator();
}
/**
* @brief Number of listeners connected to the signal.
* @return Number of listeners currently connected.
*/
[[nodiscard]] size_type size() const noexcept {
return calls.size();
}
/**
* @brief Returns false if at least a listener is connected to the signal.
* @return True if the signal has no listeners connected, false otherwise.
*/
[[nodiscard]] bool empty() const noexcept {
return calls.empty();
}
/**
* @brief Triggers a signal.
*
* All the listeners are notified. Order isn't guaranteed.
*
* @param args Arguments to use to invoke listeners.
*/
void publish(Args... args) const {
for(auto &&call: std::as_const(calls)) {
call(args...);
}
}
/**
* @brief Collects return values from the listeners.
*
* The collector must expose a call operator with the following properties:
*
* * The return type is either `void` or such that it's convertible to
* `bool`. In the second case, a true value will stop the iteration.
* * The list of parameters is empty if `Ret` is `void`, otherwise it
* contains a single element such that `Ret` is convertible to it.
*
* @tparam Func Type of collector to use, if any.
* @param func A valid function object.
* @param args Arguments to use to invoke listeners.
*/
template<typename Func>
void collect(Func func, Args... args) const {
for(auto &&call: calls) {
if constexpr(std::is_void_v<Ret>) {
if constexpr(std::is_invocable_r_v<bool, Func>) {
call(args...);
if(func()) {
break;
}
} else {
call(args...);
func();
}
} else {
if constexpr(std::is_invocable_r_v<bool, Func, Ret>) {
if(func(call(args...))) {
break;
}
} else {
func(call(args...));
}
}
}
}
private:
container_type calls;
};
/**
* @brief Connection class.
*
* Opaque object the aim of which is to allow users to release an already
* estabilished connection without having to keep a reference to the signal or
* the sink that generated it.
*/
class connection {
/*! @brief A sink is allowed to create connection objects. */
template<typename>
friend class sink;
connection(delegate<void(void *)> fn, void *ref)
: disconnect{fn}, signal{ref} {}
public:
/*! @brief Default constructor. */
connection()
: disconnect{},
signal{} {}
/**
* @brief Checks whether a connection is properly initialized.
* @return True if the connection is properly initialized, false otherwise.
*/
[[nodiscard]] explicit operator bool() const noexcept {
return static_cast<bool>(disconnect);
}
/*! @brief Breaks the connection. */
void release() {
if(disconnect) {
disconnect(signal);
disconnect.reset();
}
}
private:
delegate<void(void *)> disconnect;
void *signal;
};
/**
* @brief Scoped connection class.
*
* Opaque object the aim of which is to allow users to release an already
* estabilished connection without having to keep a reference to the signal or
* the sink that generated it.<br/>
* A scoped connection automatically breaks the link between the two objects
* when it goes out of scope.
*/
struct scoped_connection {
/*! @brief Default constructor. */
scoped_connection() = default;
/**
* @brief Constructs a scoped connection from a basic connection.
* @param other A valid connection object.
*/
scoped_connection(const connection &other)
: conn{other} {}
/*! @brief Default copy constructor, deleted on purpose. */
scoped_connection(const scoped_connection &) = delete;
/**
* @brief Move constructor.
* @param other The scoped connection to move from.
*/
scoped_connection(scoped_connection &&other) noexcept
: conn{std::exchange(other.conn, {})} {}
/*! @brief Automatically breaks the link on destruction. */
~scoped_connection() {
conn.release();
}
/**
* @brief Default copy assignment operator, deleted on purpose.
* @return This scoped connection.
*/
scoped_connection &operator=(const scoped_connection &) = delete;
/**
* @brief Move assignment operator.
* @param other The scoped connection to move from.
* @return This scoped connection.
*/
scoped_connection &operator=(scoped_connection &&other) noexcept {
conn = std::exchange(other.conn, {});
return *this;
}
/**
* @brief Acquires a connection.
* @param other The connection object to acquire.
* @return This scoped connection.
*/
scoped_connection &operator=(connection other) {
conn = std::move(other);
return *this;
}
/**
* @brief Checks whether a scoped connection is properly initialized.
* @return True if the connection is properly initialized, false otherwise.
*/
[[nodiscard]] explicit operator bool() const noexcept {
return static_cast<bool>(conn);
}
/*! @brief Breaks the connection. */
void release() {
conn.release();
}
private:
connection conn;
};
/**
* @brief Sink class.
*
* A sink is used to connect listeners to signals and to disconnect them.<br/>
* The function type for a listener is the one of the signal to which it
* belongs.
*
* The clear separation between a signal and a sink permits to store the former
* as private data member without exposing the publish functionality to the
* users of the class.
*
* @warning
* Lifetime of a sink must not overcome that of the signal to which it refers.
* In any other case, attempting to use a sink results in undefined behavior.
*
* @tparam Ret Return type of a function type.
* @tparam Args Types of arguments of a function type.
* @tparam Allocator Type of allocator used to manage memory and elements.
*/
template<typename Ret, typename... Args, typename Allocator>
class sink<sigh<Ret(Args...), Allocator>> {
using signal_type = sigh<Ret(Args...), Allocator>;
using difference_type = typename signal_type::container_type::difference_type;
template<auto Candidate, typename Type>
static void release(Type value_or_instance, void *signal) {
sink{*static_cast<signal_type *>(signal)}.disconnect<Candidate>(value_or_instance);
}
template<auto Candidate>
static void release(void *signal) {
sink{*static_cast<signal_type *>(signal)}.disconnect<Candidate>();
}
auto before(delegate<Ret(Args...)> call) {
const auto &calls = signal->calls;
const auto it = std::find(calls.cbegin(), calls.cend(), std::move(call));
sink other{*this};
other.offset = calls.cend() - it;
return other;
}
public:
/**
* @brief Constructs a sink that is allowed to modify a given signal.
* @param ref A valid reference to a signal object.
*/
sink(sigh<Ret(Args...), Allocator> &ref) noexcept
: offset{},
signal{&ref} {}
/**
* @brief Returns false if at least a listener is connected to the sink.
* @return True if the sink has no listeners connected, false otherwise.
*/
[[nodiscard]] bool empty() const noexcept {
return signal->calls.empty();
}
/**
* @brief Returns a sink that connects before a given free function or an
* unbound member.
* @tparam Function A valid free function pointer.
* @return A properly initialized sink object.
*/
template<auto Function>
[[nodiscard]] sink before() {
delegate<Ret(Args...)> call{};
call.template connect<Function>();
return before(std::move(call));
}
/**
* @brief Returns a sink that connects before a free function with payload
* or a bound member.
* @tparam Candidate Member or free function to look for.
* @tparam Type Type of class or type of payload.
* @param value_or_instance A valid object that fits the purpose.
* @return A properly initialized sink object.
*/
template<auto Candidate, typename Type>
[[nodiscard]] sink before(Type &&value_or_instance) {
delegate<Ret(Args...)> call{};
call.template connect<Candidate>(value_or_instance);
return before(std::move(call));
}
/**
* @brief Returns a sink that connects before a given instance or specific
* payload.
* @tparam Type Type of class or type of payload.
* @param value_or_instance A valid object that fits the purpose.
* @return A properly initialized sink object.
*/
template<typename Type, typename = std::enable_if_t<!std::is_same_v<std::decay_t<std::remove_pointer_t<Type>>, void>, sink>>
[[nodiscard]] sink before(Type &value_or_instance) {
return before(&value_or_instance);
}
/**
* @brief Returns a sink that connects before a given instance or specific
* payload.
* @param value_or_instance A valid pointer that fits the purpose.
* @return A properly initialized sink object.
*/
[[nodiscard]] sink before(const void *value_or_instance) {
sink other{*this};
if(value_or_instance) {
const auto &calls = signal->calls;
const auto it = std::find_if(calls.cbegin(), calls.cend(), [value_or_instance](const auto &delegate) {
return delegate.data() == value_or_instance;
});
other.offset = calls.cend() - it;
}
return other;
}
/**
* @brief Returns a sink that connects before anything else.
* @return A properly initialized sink object.
*/
[[nodiscard]] sink before() {
sink other{*this};
other.offset = signal->calls.size();
return other;
}
/**
* @brief Connects a free function (with or without payload), a bound or an
* unbound member to a signal.
*
* The signal isn't responsible for the connected object or the payload, if
* any. Users must guarantee that the lifetime of the instance overcomes the
* one of the signal. On the other side, the signal handler performs
* checks to avoid multiple connections for the same function.<br/>
* When used to connect a free function with payload, its signature must be
* such that the instance is the first argument before the ones used to
* define the signal itself.
*
* @tparam Candidate Function or member to connect to the signal.
* @tparam Type Type of class or type of payload, if any.
* @param value_or_instance A valid object that fits the purpose, if any.
* @return A properly initialized connection object.
*/
template<auto Candidate, typename... Type>
connection connect(Type &&...value_or_instance) {
disconnect<Candidate>(value_or_instance...);
delegate<Ret(Args...)> call{};
call.template connect<Candidate>(value_or_instance...);
signal->calls.insert(signal->calls.end() - offset, std::move(call));
delegate<void(void *)> conn{};
conn.template connect<&release<Candidate, Type...>>(value_or_instance...);
return {std::move(conn), signal};
}
/**
* @brief Disconnects a free function (with or without payload), a bound or
* an unbound member from a signal.
* @tparam Candidate Function or member to disconnect from the signal.
* @tparam Type Type of class or type of payload, if any.
* @param value_or_instance A valid object that fits the purpose, if any.
*/
template<auto Candidate, typename... Type>
void disconnect(Type &&...value_or_instance) {
auto &calls = signal->calls;
delegate<Ret(Args...)> call{};
call.template connect<Candidate>(value_or_instance...);
calls.erase(std::remove(calls.begin(), calls.end(), std::move(call)), calls.end());
}
/**
* @brief Disconnects free functions with payload or bound members from a
* signal.
* @tparam Type Type of class or type of payload.
* @param value_or_instance A valid object that fits the purpose.
*/
template<typename Type, typename = std::enable_if_t<!std::is_same_v<std::decay_t<std::remove_pointer_t<Type>>, void>>>
void disconnect(Type &value_or_instance) {
disconnect(&value_or_instance);
}
/**
* @brief Disconnects free functions with payload or bound members from a
* signal.
* @param value_or_instance A valid object that fits the purpose.
*/
void disconnect(const void *value_or_instance) {
if(value_or_instance) {
auto &calls = signal->calls;
auto predicate = [value_or_instance](const auto &delegate) { return delegate.data() == value_or_instance; };
calls.erase(std::remove_if(calls.begin(), calls.end(), std::move(predicate)), calls.end());
}
}
/*! @brief Disconnects all the listeners from a signal. */
void disconnect() {
signal->calls.clear();
}
private:
difference_type offset;
signal_type *signal;
};
/**
* @brief Deduction guide.
*
* It allows to deduce the signal handler type of a sink directly from the
* signal it refers to.
*
* @tparam Ret Return type of a function type.
* @tparam Args Types of arguments of a function type.
* @tparam Allocator Type of allocator used to manage memory and elements.
*/
template<typename Ret, typename... Args, typename Allocator>
sink(sigh<Ret(Args...), Allocator> &) -> sink<sigh<Ret(Args...), Allocator>>;
} // namespace entt
#endif
namespace entt {
/**
* @cond TURN_OFF_DOXYGEN
* Internal details not to be documented.
*/
namespace internal {
struct basic_dispatcher_handler {
virtual ~basic_dispatcher_handler() = default;
virtual void publish() = 0;
virtual void disconnect(void *) = 0;
virtual void clear() noexcept = 0;
virtual std::size_t size() const noexcept = 0;
};
template<typename Type, typename Allocator>
class dispatcher_handler final: public basic_dispatcher_handler {
static_assert(std::is_same_v<Type, std::decay_t<Type>>, "Invalid type");
using alloc_traits = std::allocator_traits<Allocator>;
using signal_type = sigh<void(Type &), Allocator>;
using container_type = std::vector<Type, typename alloc_traits::template rebind_alloc<Type>>;
public:
using allocator_type = Allocator;
dispatcher_handler(const allocator_type &allocator)
: signal{allocator},
events{allocator} {}
void publish() override {
const auto length = events.size();
for(std::size_t pos{}; pos < length; ++pos) {
signal.publish(events[pos]);
}
events.erase(events.cbegin(), events.cbegin() + length);
}
void disconnect(void *instance) override {
bucket().disconnect(instance);
}
void clear() noexcept override {
events.clear();
}
[[nodiscard]] auto bucket() noexcept {
return typename signal_type::sink_type{signal};
}
void trigger(Type event) {
signal.publish(event);
}
template<typename... Args>
void enqueue(Args &&...args) {
if constexpr(std::is_aggregate_v<Type>) {
events.push_back(Type{std::forward<Args>(args)...});
} else {
events.emplace_back(std::forward<Args>(args)...);
}
}
std::size_t size() const noexcept override {
return events.size();
}
private:
signal_type signal;
container_type events;
};
} // namespace internal
/**
* Internal details not to be documented.
* @endcond
*/
/**
* @brief Basic dispatcher implementation.
*
* A dispatcher can be used either to trigger an immediate event or to enqueue
* events to be published all together once per tick.<br/>
* Listeners are provided in the form of member functions. For each event of
* type `Type`, listeners are such that they can be invoked with an argument of
* type `Type &`, no matter what the return type is.
*
* The dispatcher creates instances of the `sigh` class internally. Refer to the
* documentation of the latter for more details.
*
* @tparam Allocator Type of allocator used to manage memory and elements.
*/
template<typename Allocator>
class basic_dispatcher {
template<typename Type>
using handler_type = internal::dispatcher_handler<Type, Allocator>;
using key_type = id_type;
// std::shared_ptr because of its type erased allocator which is useful here
using mapped_type = std::shared_ptr<internal::basic_dispatcher_handler>;
using alloc_traits = std::allocator_traits<Allocator>;
using container_allocator = typename alloc_traits::template rebind_alloc<std::pair<const key_type, mapped_type>>;
using container_type = dense_map<key_type, mapped_type, identity, std::equal_to<key_type>, container_allocator>;
template<typename Type>
[[nodiscard]] handler_type<Type> &assure(const id_type id) {
static_assert(std::is_same_v<Type, std::decay_t<Type>>, "Non-decayed types not allowed");
auto &&ptr = pools.first()[id];
if(!ptr) {
const auto &allocator = get_allocator();
ptr = std::allocate_shared<handler_type<Type>>(allocator, allocator);
}
return static_cast<handler_type<Type> &>(*ptr);
}
template<typename Type>
[[nodiscard]] const handler_type<Type> *assure(const id_type id) const {
static_assert(std::is_same_v<Type, std::decay_t<Type>>, "Non-decayed types not allowed");
if(auto it = pools.first().find(id); it != pools.first().cend()) {
return static_cast<const handler_type<Type> *>(it->second.get());
}
return nullptr;
}
public:
/*! @brief Allocator type. */
using allocator_type = Allocator;
/*! @brief Unsigned integer type. */
using size_type = std::size_t;
/*! @brief Default constructor. */
basic_dispatcher()
: basic_dispatcher{allocator_type{}} {}
/**
* @brief Constructs a dispatcher with a given allocator.
* @param allocator The allocator to use.
*/
explicit basic_dispatcher(const allocator_type &allocator)
: pools{allocator, allocator} {}
/**
* @brief Move constructor.
* @param other The instance to move from.
*/
basic_dispatcher(basic_dispatcher &&other) noexcept
: pools{std::move(other.pools)} {}
/**
* @brief Allocator-extended move constructor.
* @param other The instance to move from.
* @param allocator The allocator to use.
*/
basic_dispatcher(basic_dispatcher &&other, const allocator_type &allocator) noexcept
: pools{container_type{std::move(other.pools.first()), allocator}, allocator} {}
/**
* @brief Move assignment operator.
* @param other The instance to move from.
* @return This dispatcher.
*/
basic_dispatcher &operator=(basic_dispatcher &&other) noexcept {
pools = std::move(other.pools);
return *this;
}
/**
* @brief Exchanges the contents with those of a given dispatcher.
* @param other Dispatcher to exchange the content with.
*/
void swap(basic_dispatcher &other) {
using std::swap;
swap(pools, other.pools);
}
/**
* @brief Returns the associated allocator.
* @return The associated allocator.
*/
[[nodiscard]] constexpr allocator_type get_allocator() const noexcept {
return pools.second();
}
/**
* @brief Returns the number of pending events for a given type.
* @tparam Type Type of event for which to return the count.
* @param id Name used to map the event queue within the dispatcher.
* @return The number of pending events for the given type.
*/
template<typename Type>
size_type size(const id_type id = type_hash<Type>::value()) const noexcept {
const auto *cpool = assure<std::decay_t<Type>>(id);
return cpool ? cpool->size() : 0u;
}
/**
* @brief Returns the total number of pending events.
* @return The total number of pending events.
*/
size_type size() const noexcept {
size_type count{};
for(auto &&cpool: pools.first()) {
count += cpool.second->size();
}
return count;
}
/**
* @brief Returns a sink object for the given event and queue.
*
* A sink is an opaque object used to connect listeners to events.
*
* The function type for a listener is _compatible_ with:
*
* @code{.cpp}
* void(Type &);
* @endcode
*
* The order of invocation of the listeners isn't guaranteed.
*
* @sa sink
*
* @tparam Type Type of event of which to get the sink.
* @param id Name used to map the event queue within the dispatcher.
* @return A temporary sink object.
*/
template<typename Type>
[[nodiscard]] auto sink(const id_type id = type_hash<Type>::value()) {
return assure<Type>(id).bucket();
}
/**
* @brief Triggers an immediate event of a given type.
* @tparam Type Type of event to trigger.
* @param value An instance of the given type of event.
*/
template<typename Type>
void trigger(Type &&value = {}) {
trigger(type_hash<std::decay_t<Type>>::value(), std::forward<Type>(value));
}
/**
* @brief Triggers an immediate event on a queue of a given type.
* @tparam Type Type of event to trigger.
* @param value An instance of the given type of event.
* @param id Name used to map the event queue within the dispatcher.
*/
template<typename Type>
void trigger(const id_type id, Type &&value = {}) {
assure<std::decay_t<Type>>(id).trigger(std::forward<Type>(value));
}
/**
* @brief Enqueues an event of the given type.
* @tparam Type Type of event to enqueue.
* @tparam Args Types of arguments to use to construct the event.
* @param args Arguments to use to construct the event.
*/
template<typename Type, typename... Args>
void enqueue(Args &&...args) {
enqueue_hint<Type>(type_hash<Type>::value(), std::forward<Args>(args)...);
}
/**
* @brief Enqueues an event of the given type.
* @tparam Type Type of event to enqueue.
* @param value An instance of the given type of event.
*/
template<typename Type>
void enqueue(Type &&value) {
enqueue_hint(type_hash<std::decay_t<Type>>::value(), std::forward<Type>(value));
}
/**
* @brief Enqueues an event of the given type.
* @tparam Type Type of event to enqueue.
* @tparam Args Types of arguments to use to construct the event.
* @param id Name used to map the event queue within the dispatcher.
* @param args Arguments to use to construct the event.
*/
template<typename Type, typename... Args>
void enqueue_hint(const id_type id, Args &&...args) {
assure<Type>(id).enqueue(std::forward<Args>(args)...);
}
/**
* @brief Enqueues an event of the given type.
* @tparam Type Type of event to enqueue.
* @param id Name used to map the event queue within the dispatcher.
* @param value An instance of the given type of event.
*/
template<typename Type>
void enqueue_hint(const id_type id, Type &&value) {
assure<std::decay_t<Type>>(id).enqueue(std::forward<Type>(value));
}
/**
* @brief Utility function to disconnect everything related to a given value
* or instance from a dispatcher.
* @tparam Type Type of class or type of payload.
* @param value_or_instance A valid object that fits the purpose.
*/
template<typename Type>
void disconnect(Type &value_or_instance) {
disconnect(&value_or_instance);
}
/**
* @brief Utility function to disconnect everything related to a given value
* or instance from a dispatcher.
* @tparam Type Type of class or type of payload.
* @param value_or_instance A valid object that fits the purpose.
*/
template<typename Type>
void disconnect(Type *value_or_instance) {
for(auto &&cpool: pools.first()) {
cpool.second->disconnect(value_or_instance);
}
}
/**
* @brief Discards all the events stored so far in a given queue.
* @tparam Type Type of event to discard.
* @param id Name used to map the event queue within the dispatcher.
*/
template<typename Type>
void clear(const id_type id = type_hash<Type>::value()) {
assure<Type>(id).clear();
}
/*! @brief Discards all the events queued so far. */
void clear() noexcept {
for(auto &&cpool: pools.first()) {
cpool.second->clear();
}
}
/**
* @brief Delivers all the pending events of a given queue.
* @tparam Type Type of event to send.
* @param id Name used to map the event queue within the dispatcher.
*/
template<typename Type>
void update(const id_type id = type_hash<Type>::value()) {
assure<Type>(id).publish();
}
/*! @brief Delivers all the pending events. */
void update() const {
for(auto &&cpool: pools.first()) {
cpool.second->publish();
}
}
private:
compressed_pair<container_type, allocator_type> pools;
};
} // namespace entt
#endif
// #include "signal/emitter.hpp"
#ifndef ENTT_SIGNAL_EMITTER_HPP
#define ENTT_SIGNAL_EMITTER_HPP
#include <functional>
#include <type_traits>
#include <utility>
// #include "../container/dense_map.hpp"
// #include "../core/compressed_pair.hpp"
// #include "../core/fwd.hpp"
// #include "../core/type_info.hpp"
// #include "../core/utility.hpp"
// #include "fwd.hpp"
namespace entt {
/**
* @brief General purpose event emitter.
*
* To create an emitter type, derived classes must inherit from the base as:
*
* @code{.cpp}
* struct my_emitter: emitter<my_emitter> {
* // ...
* }
* @endcode
*
* Handlers for the different events are created internally on the fly. It's not
* required to specify in advance the full list of accepted events.<br/>
* Moreover, whenever an event is published, an emitter also passes a reference
* to itself to its listeners.
*
* @tparam Derived Emitter type.
* @tparam Allocator Type of allocator used to manage memory and elements.
*/
template<typename Derived, typename Allocator>
class emitter {
using key_type = id_type;
using mapped_type = std::function<void(void *)>;
using alloc_traits = std::allocator_traits<Allocator>;
using container_allocator = typename alloc_traits::template rebind_alloc<std::pair<const key_type, mapped_type>>;
using container_type = dense_map<key_type, mapped_type, identity, std::equal_to<key_type>, container_allocator>;
public:
/*! @brief Allocator type. */
using allocator_type = Allocator;
/*! @brief Unsigned integer type. */
using size_type = std::size_t;
/*! @brief Default constructor. */
emitter()
: emitter{allocator_type{}} {}
/**
* @brief Constructs an emitter with a given allocator.
* @param allocator The allocator to use.
*/
explicit emitter(const allocator_type &allocator)
: handlers{allocator, allocator} {}
/*! @brief Default destructor. */
virtual ~emitter() noexcept {
static_assert(std::is_base_of_v<emitter<Derived, Allocator>, Derived>, "Invalid emitter type");
}
/**
* @brief Move constructor.
* @param other The instance to move from.
*/
emitter(emitter &&other) noexcept
: handlers{std::move(other.handlers)} {}
/**
* @brief Allocator-extended move constructor.
* @param other The instance to move from.
* @param allocator The allocator to use.
*/
emitter(emitter &&other, const allocator_type &allocator) noexcept
: handlers{container_type{std::move(other.handlers.first()), allocator}, allocator} {}
/**
* @brief Move assignment operator.
* @param other The instance to move from.
* @return This dispatcher.
*/
emitter &operator=(emitter &&other) noexcept {
handlers = std::move(other.handlers);
return *this;
}
/**
* @brief Exchanges the contents with those of a given emitter.
* @param other Emitter to exchange the content with.
*/
void swap(emitter &other) {
using std::swap;
swap(handlers, other.handlers);
}
/**
* @brief Returns the associated allocator.
* @return The associated allocator.
*/
[[nodiscard]] constexpr allocator_type get_allocator() const noexcept {
return handlers.second();
}
/**
* @brief Publishes a given event.
* @tparam Type Type of event to trigger.
* @param value An instance of the given type of event.
*/
template<typename Type>
void publish(Type &&value) {
if(const auto id = type_id<Type>().hash(); handlers.first().contains(id)) {
handlers.first()[id](&value);
}
}
/**
* @brief Registers a listener with the event emitter.
* @tparam Type Type of event to which to connect the listener.
* @param func The listener to register.
*/
template<typename Type>
void on(std::function<void(Type &, Derived &)> func) {
handlers.first().insert_or_assign(type_id<Type>().hash(), [func = std::move(func), this](void *value) {
func(*static_cast<Type *>(value), static_cast<Derived &>(*this));
});
}
/**
* @brief Disconnects a listener from the event emitter.
* @tparam Type Type of event of the listener.
*/
template<typename Type>
void erase() {
handlers.first().erase(type_hash<std::remove_cv_t<std::remove_reference_t<Type>>>::value());
}
/*! @brief Disconnects all the listeners. */
void clear() noexcept {
handlers.first().clear();
}
/**
* @brief Checks if there are listeners registered for the specific event.
* @tparam Type Type of event to test.
* @return True if there are no listeners registered, false otherwise.
*/
template<typename Type>
[[nodiscard]] bool contains() const {
return handlers.first().contains(type_hash<std::remove_cv_t<std::remove_reference_t<Type>>>::value());
}
/**
* @brief Checks if there are listeners registered with the event emitter.
* @return True if there are no listeners registered, false otherwise.
*/
[[nodiscard]] bool empty() const noexcept {
return handlers.first().empty();
}
private:
compressed_pair<container_type, allocator_type> handlers;
};
} // namespace entt
#endif
// #include "signal/sigh.hpp"
#ifndef ENTT_SIGNAL_SIGH_HPP
#define ENTT_SIGNAL_SIGH_HPP
#include <algorithm>
#include <functional>
#include <type_traits>
#include <utility>
#include <vector>
// #include "delegate.hpp"
// #include "fwd.hpp"
namespace entt {
/**
* @brief Sink class.
*
* Primary template isn't defined on purpose. All the specializations give a
* compile-time error unless the template parameter is a function type.
*
* @tparam Type A valid signal handler type.
*/
template<typename Type>
class sink;
/**
* @brief Unmanaged signal handler.
*
* Primary template isn't defined on purpose. All the specializations give a
* compile-time error unless the template parameter is a function type.
*
* @tparam Type A valid function type.
* @tparam Allocator Type of allocator used to manage memory and elements.
*/
template<typename Type, typename Allocator>
class sigh;
/**
* @brief Unmanaged signal handler.
*
* It works directly with references to classes and pointers to member functions
* as well as pointers to free functions. Users of this class are in charge of
* disconnecting instances before deleting them.
*
* This class serves mainly two purposes:
*
* * Creating signals to use later to notify a bunch of listeners.
* * Collecting results from a set of functions like in a voting system.
*
* @tparam Ret Return type of a function type.
* @tparam Args Types of arguments of a function type.
* @tparam Allocator Type of allocator used to manage memory and elements.
*/
template<typename Ret, typename... Args, typename Allocator>
class sigh<Ret(Args...), Allocator> {
/*! @brief A sink is allowed to modify a signal. */
friend class sink<sigh<Ret(Args...), Allocator>>;
using alloc_traits = std::allocator_traits<Allocator>;
using container_type = std::vector<delegate<Ret(Args...)>, typename alloc_traits::template rebind_alloc<delegate<Ret(Args...)>>>;
public:
/*! @brief Allocator type. */
using allocator_type = Allocator;
/*! @brief Unsigned integer type. */
using size_type = std::size_t;
/*! @brief Sink type. */
using sink_type = sink<sigh<Ret(Args...), Allocator>>;
/*! @brief Default constructor. */
sigh() noexcept(std::is_nothrow_default_constructible_v<allocator_type> &&std::is_nothrow_constructible_v<container_type, const allocator_type &>)
: sigh{allocator_type{}} {}
/**
* @brief Constructs a signal handler with a given allocator.
* @param allocator The allocator to use.
*/
explicit sigh(const allocator_type &allocator) noexcept(std::is_nothrow_constructible_v<container_type, const allocator_type &>)
: calls{allocator} {}
/**
* @brief Copy constructor.
* @param other The instance to copy from.
*/
sigh(const sigh &other) noexcept(std::is_nothrow_copy_constructible_v<container_type>)
: calls{other.calls} {}
/**
* @brief Allocator-extended copy constructor.
* @param other The instance to copy from.
* @param allocator The allocator to use.
*/
sigh(const sigh &other, const allocator_type &allocator) noexcept(std::is_nothrow_constructible_v<container_type, const container_type &, const allocator_type &>)
: calls{other.calls, allocator} {}
/**
* @brief Move constructor.
* @param other The instance to move from.
*/
sigh(sigh &&other) noexcept(std::is_nothrow_move_constructible_v<container_type>)
: calls{std::move(other.calls)} {}
/**
* @brief Allocator-extended move constructor.
* @param other The instance to move from.
* @param allocator The allocator to use.
*/
sigh(sigh &&other, const allocator_type &allocator) noexcept(std::is_nothrow_constructible_v<container_type, container_type &&, const allocator_type &>)
: calls{std::move(other.calls), allocator} {}
/**
* @brief Copy assignment operator.
* @param other The instance to copy from.
* @return This signal handler.
*/
sigh &operator=(const sigh &other) noexcept(std::is_nothrow_copy_assignable_v<container_type>) {
calls = other.calls;
return *this;
}
/**
* @brief Move assignment operator.
* @param other The instance to move from.
* @return This signal handler.
*/
sigh &operator=(sigh &&other) noexcept(std::is_nothrow_move_assignable_v<container_type>) {
calls = std::move(other.calls);
return *this;
}
/**
* @brief Exchanges the contents with those of a given signal handler.
* @param other Signal handler to exchange the content with.
*/
void swap(sigh &other) noexcept(std::is_nothrow_swappable_v<container_type>) {
using std::swap;
swap(calls, other.calls);
}
/**
* @brief Returns the associated allocator.
* @return The associated allocator.
*/
[[nodiscard]] constexpr allocator_type get_allocator() const noexcept {
return calls.get_allocator();
}
/**
* @brief Number of listeners connected to the signal.
* @return Number of listeners currently connected.
*/
[[nodiscard]] size_type size() const noexcept {
return calls.size();
}
/**
* @brief Returns false if at least a listener is connected to the signal.
* @return True if the signal has no listeners connected, false otherwise.
*/
[[nodiscard]] bool empty() const noexcept {
return calls.empty();
}
/**
* @brief Triggers a signal.
*
* All the listeners are notified. Order isn't guaranteed.
*
* @param args Arguments to use to invoke listeners.
*/
void publish(Args... args) const {
for(auto &&call: std::as_const(calls)) {
call(args...);
}
}
/**
* @brief Collects return values from the listeners.
*
* The collector must expose a call operator with the following properties:
*
* * The return type is either `void` or such that it's convertible to
* `bool`. In the second case, a true value will stop the iteration.
* * The list of parameters is empty if `Ret` is `void`, otherwise it
* contains a single element such that `Ret` is convertible to it.
*
* @tparam Func Type of collector to use, if any.
* @param func A valid function object.
* @param args Arguments to use to invoke listeners.
*/
template<typename Func>
void collect(Func func, Args... args) const {
for(auto &&call: calls) {
if constexpr(std::is_void_v<Ret>) {
if constexpr(std::is_invocable_r_v<bool, Func>) {
call(args...);
if(func()) {
break;
}
} else {
call(args...);
func();
}
} else {
if constexpr(std::is_invocable_r_v<bool, Func, Ret>) {
if(func(call(args...))) {
break;
}
} else {
func(call(args...));
}
}
}
}
private:
container_type calls;
};
/**
* @brief Connection class.
*
* Opaque object the aim of which is to allow users to release an already
* estabilished connection without having to keep a reference to the signal or
* the sink that generated it.
*/
class connection {
/*! @brief A sink is allowed to create connection objects. */
template<typename>
friend class sink;
connection(delegate<void(void *)> fn, void *ref)
: disconnect{fn}, signal{ref} {}
public:
/*! @brief Default constructor. */
connection()
: disconnect{},
signal{} {}
/**
* @brief Checks whether a connection is properly initialized.
* @return True if the connection is properly initialized, false otherwise.
*/
[[nodiscard]] explicit operator bool() const noexcept {
return static_cast<bool>(disconnect);
}
/*! @brief Breaks the connection. */
void release() {
if(disconnect) {
disconnect(signal);
disconnect.reset();
}
}
private:
delegate<void(void *)> disconnect;
void *signal;
};
/**
* @brief Scoped connection class.
*
* Opaque object the aim of which is to allow users to release an already
* estabilished connection without having to keep a reference to the signal or
* the sink that generated it.<br/>
* A scoped connection automatically breaks the link between the two objects
* when it goes out of scope.
*/
struct scoped_connection {
/*! @brief Default constructor. */
scoped_connection() = default;
/**
* @brief Constructs a scoped connection from a basic connection.
* @param other A valid connection object.
*/
scoped_connection(const connection &other)
: conn{other} {}
/*! @brief Default copy constructor, deleted on purpose. */
scoped_connection(const scoped_connection &) = delete;
/**
* @brief Move constructor.
* @param other The scoped connection to move from.
*/
scoped_connection(scoped_connection &&other) noexcept
: conn{std::exchange(other.conn, {})} {}
/*! @brief Automatically breaks the link on destruction. */
~scoped_connection() {
conn.release();
}
/**
* @brief Default copy assignment operator, deleted on purpose.
* @return This scoped connection.
*/
scoped_connection &operator=(const scoped_connection &) = delete;
/**
* @brief Move assignment operator.
* @param other The scoped connection to move from.
* @return This scoped connection.
*/
scoped_connection &operator=(scoped_connection &&other) noexcept {
conn = std::exchange(other.conn, {});
return *this;
}
/**
* @brief Acquires a connection.
* @param other The connection object to acquire.
* @return This scoped connection.
*/
scoped_connection &operator=(connection other) {
conn = std::move(other);
return *this;
}
/**
* @brief Checks whether a scoped connection is properly initialized.
* @return True if the connection is properly initialized, false otherwise.
*/
[[nodiscard]] explicit operator bool() const noexcept {
return static_cast<bool>(conn);
}
/*! @brief Breaks the connection. */
void release() {
conn.release();
}
private:
connection conn;
};
/**
* @brief Sink class.
*
* A sink is used to connect listeners to signals and to disconnect them.<br/>
* The function type for a listener is the one of the signal to which it
* belongs.
*
* The clear separation between a signal and a sink permits to store the former
* as private data member without exposing the publish functionality to the
* users of the class.
*
* @warning
* Lifetime of a sink must not overcome that of the signal to which it refers.
* In any other case, attempting to use a sink results in undefined behavior.
*
* @tparam Ret Return type of a function type.
* @tparam Args Types of arguments of a function type.
* @tparam Allocator Type of allocator used to manage memory and elements.
*/
template<typename Ret, typename... Args, typename Allocator>
class sink<sigh<Ret(Args...), Allocator>> {
using signal_type = sigh<Ret(Args...), Allocator>;
using difference_type = typename signal_type::container_type::difference_type;
template<auto Candidate, typename Type>
static void release(Type value_or_instance, void *signal) {
sink{*static_cast<signal_type *>(signal)}.disconnect<Candidate>(value_or_instance);
}
template<auto Candidate>
static void release(void *signal) {
sink{*static_cast<signal_type *>(signal)}.disconnect<Candidate>();
}
auto before(delegate<Ret(Args...)> call) {
const auto &calls = signal->calls;
const auto it = std::find(calls.cbegin(), calls.cend(), std::move(call));
sink other{*this};
other.offset = calls.cend() - it;
return other;
}
public:
/**
* @brief Constructs a sink that is allowed to modify a given signal.
* @param ref A valid reference to a signal object.
*/
sink(sigh<Ret(Args...), Allocator> &ref) noexcept
: offset{},
signal{&ref} {}
/**
* @brief Returns false if at least a listener is connected to the sink.
* @return True if the sink has no listeners connected, false otherwise.
*/
[[nodiscard]] bool empty() const noexcept {
return signal->calls.empty();
}
/**
* @brief Returns a sink that connects before a given free function or an
* unbound member.
* @tparam Function A valid free function pointer.
* @return A properly initialized sink object.
*/
template<auto Function>
[[nodiscard]] sink before() {
delegate<Ret(Args...)> call{};
call.template connect<Function>();
return before(std::move(call));
}
/**
* @brief Returns a sink that connects before a free function with payload
* or a bound member.
* @tparam Candidate Member or free function to look for.
* @tparam Type Type of class or type of payload.
* @param value_or_instance A valid object that fits the purpose.
* @return A properly initialized sink object.
*/
template<auto Candidate, typename Type>
[[nodiscard]] sink before(Type &&value_or_instance) {
delegate<Ret(Args...)> call{};
call.template connect<Candidate>(value_or_instance);
return before(std::move(call));
}
/**
* @brief Returns a sink that connects before a given instance or specific
* payload.
* @tparam Type Type of class or type of payload.
* @param value_or_instance A valid object that fits the purpose.
* @return A properly initialized sink object.
*/
template<typename Type, typename = std::enable_if_t<!std::is_same_v<std::decay_t<std::remove_pointer_t<Type>>, void>, sink>>
[[nodiscard]] sink before(Type &value_or_instance) {
return before(&value_or_instance);
}
/**
* @brief Returns a sink that connects before a given instance or specific
* payload.
* @param value_or_instance A valid pointer that fits the purpose.
* @return A properly initialized sink object.
*/
[[nodiscard]] sink before(const void *value_or_instance) {
sink other{*this};
if(value_or_instance) {
const auto &calls = signal->calls;
const auto it = std::find_if(calls.cbegin(), calls.cend(), [value_or_instance](const auto &delegate) {
return delegate.data() == value_or_instance;
});
other.offset = calls.cend() - it;
}
return other;
}
/**
* @brief Returns a sink that connects before anything else.
* @return A properly initialized sink object.
*/
[[nodiscard]] sink before() {
sink other{*this};
other.offset = signal->calls.size();
return other;
}
/**
* @brief Connects a free function (with or without payload), a bound or an
* unbound member to a signal.
*
* The signal isn't responsible for the connected object or the payload, if
* any. Users must guarantee that the lifetime of the instance overcomes the
* one of the signal. On the other side, the signal handler performs
* checks to avoid multiple connections for the same function.<br/>
* When used to connect a free function with payload, its signature must be
* such that the instance is the first argument before the ones used to
* define the signal itself.
*
* @tparam Candidate Function or member to connect to the signal.
* @tparam Type Type of class or type of payload, if any.
* @param value_or_instance A valid object that fits the purpose, if any.
* @return A properly initialized connection object.
*/
template<auto Candidate, typename... Type>
connection connect(Type &&...value_or_instance) {
disconnect<Candidate>(value_or_instance...);
delegate<Ret(Args...)> call{};
call.template connect<Candidate>(value_or_instance...);
signal->calls.insert(signal->calls.end() - offset, std::move(call));
delegate<void(void *)> conn{};
conn.template connect<&release<Candidate, Type...>>(value_or_instance...);
return {std::move(conn), signal};
}
/**
* @brief Disconnects a free function (with or without payload), a bound or
* an unbound member from a signal.
* @tparam Candidate Function or member to disconnect from the signal.
* @tparam Type Type of class or type of payload, if any.
* @param value_or_instance A valid object that fits the purpose, if any.
*/
template<auto Candidate, typename... Type>
void disconnect(Type &&...value_or_instance) {
auto &calls = signal->calls;
delegate<Ret(Args...)> call{};
call.template connect<Candidate>(value_or_instance...);
calls.erase(std::remove(calls.begin(), calls.end(), std::move(call)), calls.end());
}
/**
* @brief Disconnects free functions with payload or bound members from a
* signal.
* @tparam Type Type of class or type of payload.
* @param value_or_instance A valid object that fits the purpose.
*/
template<typename Type, typename = std::enable_if_t<!std::is_same_v<std::decay_t<std::remove_pointer_t<Type>>, void>>>
void disconnect(Type &value_or_instance) {
disconnect(&value_or_instance);
}
/**
* @brief Disconnects free functions with payload or bound members from a
* signal.
* @param value_or_instance A valid object that fits the purpose.
*/
void disconnect(const void *value_or_instance) {
if(value_or_instance) {
auto &calls = signal->calls;
auto predicate = [value_or_instance](const auto &delegate) { return delegate.data() == value_or_instance; };
calls.erase(std::remove_if(calls.begin(), calls.end(), std::move(predicate)), calls.end());
}
}
/*! @brief Disconnects all the listeners from a signal. */
void disconnect() {
signal->calls.clear();
}
private:
difference_type offset;
signal_type *signal;
};
/**
* @brief Deduction guide.
*
* It allows to deduce the signal handler type of a sink directly from the
* signal it refers to.
*
* @tparam Ret Return type of a function type.
* @tparam Args Types of arguments of a function type.
* @tparam Allocator Type of allocator used to manage memory and elements.
*/
template<typename Ret, typename... Args, typename Allocator>
sink(sigh<Ret(Args...), Allocator> &) -> sink<sigh<Ret(Args...), Allocator>>;
} // namespace entt
#endif
// IWYU pragma: end_exports