1
0
mirror of https://github.com/Tha14/toxic.git synced 2024-11-15 07:23:02 +01:00
toxic/src/audio_device.c
2021-12-10 17:52:43 +00:00

789 lines
20 KiB
C

/* audio_device.c
*
*
* Copyright (C) 2014 Toxic All Rights Reserved.
*
* This file is part of Toxic.
*
* Toxic is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Toxic is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Toxic. If not, see <http://www.gnu.org/licenses/>.
*
*/
#include "audio_device.h"
#include "line_info.h"
#include "misc_tools.h"
#include "settings.h"
#include <AL/al.h>
#include <AL/alc.h>
/* compatibility with older versions of OpenAL */
#ifndef ALC_ALL_DEVICES_SPECIFIER
#include <AL/alext.h>
#endif /* ALC_ALL_DEVICES_SPECIFIER */
#include <assert.h>
#include <math.h>
#include <pthread.h>
#include <stdbool.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
extern struct user_settings *user_settings;
extern struct Winthread Winthread;
typedef struct FrameInfo {
uint32_t samples_per_frame;
uint32_t sample_rate;
bool stereo;
} FrameInfo;
/* A virtual input/output device, abstracting the currently selected openal
* device (which may change during the lifetime of the virtual device).
* We refer to a virtual device as a "device", and refer to an underlying
* openal device as an "al_device".
* Multiple virtual devices may be open at once; the callback of each virtual
* input device has data captured from the input al_device passed to it, and
* each virtual output device acts as a source for the output al_device.
*/
typedef struct Device {
bool active;
bool muted;
FrameInfo frame_info;
// used only by input devices:
DataHandleCallback cb;
void *cb_data;
float VAD_threshold;
uint32_t VAD_samples_remaining;
// used only by output devices:
uint32_t source;
uint32_t buffers[OPENAL_BUFS];
bool source_open;
} Device;
typedef struct AudioState {
ALCdevice *al_device[2];
Device devices[2][MAX_DEVICES];
uint32_t num_devices[2];
FrameInfo capture_frame_info;
float input_volume;
// mutexes to prevent changes to input resp. output devices and al_devices
// during poll_input iterations resp. calls to write_out;
// mutex[input] also used to lock input_volume which poll_input writes to.
pthread_mutex_t mutex[2];
// TODO: unused
const char *default_al_device_name[2]; /* Default devices */
const char *al_device_names[2][MAX_OPENAL_DEVICES]; /* Available devices */
uint32_t num_al_devices[2];
char *current_al_device_name[2];
} AudioState;
static AudioState *audio_state;
static void lock(DeviceType type)
{
pthread_mutex_lock(&audio_state->mutex[type]);
}
static void unlock(DeviceType type)
{
pthread_mutex_unlock(&audio_state->mutex[type]);
}
static bool thread_running = true,
thread_paused = true; /* Thread control */
#ifdef AUDIO
static void *poll_input(void *);
#endif
static uint32_t sound_mode(bool stereo)
{
return stereo ? AL_FORMAT_STEREO16 : AL_FORMAT_MONO16;
}
static uint32_t sample_size(bool stereo)
{
return stereo ? 4 : 2;
}
DeviceError init_devices(void)
{
audio_state = calloc(1, sizeof(AudioState));
if (audio_state == NULL) {
return de_InternalError;
}
get_al_device_names();
for (DeviceType type = input; type <= output; ++type) {
audio_state->al_device[type] = NULL;
if (pthread_mutex_init(&audio_state->mutex[type], NULL) != 0) {
return de_InternalError;
}
}
#ifdef AUDIO
// Start poll thread
pthread_t thread_id;
if (pthread_create(&thread_id, NULL, poll_input, NULL) != 0
|| pthread_detach(thread_id) != 0) {
return de_InternalError;
}
#endif
return de_None;
}
DeviceError terminate_devices(void)
{
lock(input);
thread_running = false;
unlock(input);
sleep_thread(20000L);
for (DeviceType type = input; type <= output; ++type) {
if (pthread_mutex_destroy(&audio_state->mutex[type]) != 0) {
return de_InternalError;
}
if (audio_state->current_al_device_name[type] != NULL) {
free(audio_state->current_al_device_name[type]);
}
}
free(audio_state);
return de_None;
}
void get_al_device_names(void)
{
const char *stringed_device_list;
for (DeviceType type = input; type <= output; ++type) {
audio_state->num_al_devices[type] = 0;
if (type == input) {
stringed_device_list = alcGetString(NULL, ALC_CAPTURE_DEVICE_SPECIFIER);
} else {
if (alcIsExtensionPresent(NULL, "ALC_ENUMERATE_ALL_EXT") != AL_FALSE) {
stringed_device_list = alcGetString(NULL, ALC_ALL_DEVICES_SPECIFIER);
} else {
stringed_device_list = alcGetString(NULL, ALC_DEVICE_SPECIFIER);
}
}
if (stringed_device_list != NULL) {
audio_state->default_al_device_name[type] = alcGetString(NULL,
type == input ? ALC_CAPTURE_DEFAULT_DEVICE_SPECIFIER : ALC_DEFAULT_DEVICE_SPECIFIER);
for (; *stringed_device_list != '\0'
&& audio_state->num_al_devices[type] < MAX_OPENAL_DEVICES; ++audio_state->num_al_devices[type]) {
audio_state->al_device_names[type][audio_state->num_al_devices[type]] = stringed_device_list;
stringed_device_list += strlen(stringed_device_list) + 1;
}
}
}
}
DeviceError device_mute(DeviceType type, uint32_t device_idx)
{
if (device_idx >= MAX_DEVICES) {
return de_InvalidSelection;
}
Device *device = &audio_state->devices[type][device_idx];
if (!device->active) {
return de_DeviceNotActive;
}
lock(type);
device->muted = !device->muted;
unlock(type);
return de_None;
}
bool device_is_muted(DeviceType type, uint32_t device_idx)
{
if (device_idx >= MAX_DEVICES) {
return false;
}
Device *device = &audio_state->devices[type][device_idx];
if (!device->active) {
return false;
}
return device->muted;
}
DeviceError device_set_VAD_threshold(uint32_t device_idx, float value)
{
if (device_idx >= MAX_DEVICES) {
return de_InvalidSelection;
}
Device *device = &audio_state->devices[input][device_idx];
if (!device->active) {
return de_DeviceNotActive;
}
if (value <= 0.0f) {
value = 0.0f;
}
lock(input);
device->VAD_threshold = value;
unlock(input);
return de_None;
}
float device_get_VAD_threshold(uint32_t device_idx)
{
if (device_idx >= MAX_DEVICES) {
return 0.0;
}
Device *device = &audio_state->devices[input][device_idx];
if (!device->active) {
return 0.0;
}
return device->VAD_threshold;
}
DeviceError set_source_position(uint32_t device_idx, float x, float y, float z)
{
if (device_idx >= MAX_DEVICES) {
return de_InvalidSelection;
}
Device *device = &audio_state->devices[output][device_idx];
if (!device->active) {
return de_DeviceNotActive;
}
lock(output);
alSource3f(device->source, AL_POSITION, x, y, z);
unlock(output);
if (!audio_state->al_device[output] || alcGetError(audio_state->al_device[output]) != AL_NO_ERROR) {
return de_AlError;
}
return de_None;
}
static DeviceError close_al_device(DeviceType type)
{
if (audio_state->al_device[type] == NULL) {
return de_None;
}
if (type == input) {
if (!alcCaptureCloseDevice(audio_state->al_device[type])) {
return de_AlError;
}
thread_paused = true;
} else {
ALCcontext *context = alcGetCurrentContext();
alcMakeContextCurrent(NULL);
alcDestroyContext(context);
if (!alcCloseDevice(audio_state->al_device[type])) {
return de_AlError;
}
}
audio_state->al_device[type] = NULL;
return de_None;
}
static DeviceError open_al_device(DeviceType type, FrameInfo frame_info)
{
audio_state->al_device[type] = type == input
? alcCaptureOpenDevice(audio_state->current_al_device_name[type],
frame_info.sample_rate, sound_mode(frame_info.stereo), frame_info.samples_per_frame * 2)
: alcOpenDevice(audio_state->current_al_device_name[type]);
if (audio_state->al_device[type] == NULL) {
return de_FailedStart;
}
if (type == input) {
alcCaptureStart(audio_state->al_device[type]);
thread_paused = false;
audio_state->capture_frame_info = frame_info;
} else {
alcMakeContextCurrent(alcCreateContext(audio_state->al_device[type], NULL));
}
if (alcGetError(audio_state->al_device[type]) != AL_NO_ERROR) {
close_al_device(type);
return de_AlError;
}
return de_None;
}
static void close_source(Device *device)
{
if (device->source_open) {
alDeleteSources(1, &device->source);
alDeleteBuffers(OPENAL_BUFS, device->buffers);
device->source_open = false;
}
}
static DeviceError open_source(Device *device)
{
alGenBuffers(OPENAL_BUFS, device->buffers);
if (alcGetError(audio_state->al_device[output]) != AL_NO_ERROR) {
return de_FailedStart;
}
alGenSources((uint32_t)1, &device->source);
if (alcGetError(audio_state->al_device[output]) != AL_NO_ERROR) {
alDeleteBuffers(OPENAL_BUFS, device->buffers);
return de_FailedStart;
}
device->source_open = true;
alSourcei(device->source, AL_LOOPING, AL_FALSE);
const uint32_t frame_size = device->frame_info.samples_per_frame * sample_size(device->frame_info.stereo);
size_t zeros_size = frame_size * sizeof(uint16_t);
uint16_t *zeros = calloc(1, zeros_size);
if (zeros == NULL) {
close_source(device);
return de_FailedStart;
}
for (int i = 0; i < OPENAL_BUFS; ++i) {
alBufferData(device->buffers[i], sound_mode(device->frame_info.stereo), zeros,
zeros_size, device->frame_info.sample_rate);
}
free(zeros);
alSourceQueueBuffers(device->source, OPENAL_BUFS, device->buffers);
alSourcePlay(device->source);
if (alcGetError(audio_state->al_device[output]) != AL_NO_ERROR) {
close_source(device);
return de_FailedStart;
}
return de_None;
}
DeviceError set_al_device(DeviceType type, int32_t selection)
{
if (audio_state->num_al_devices[type] <= selection || selection < 0) {
return de_InvalidSelection;
}
const char *name = audio_state->al_device_names[type][selection];
char **cur_name = &audio_state->current_al_device_name[type];
if (*cur_name != NULL) {
free(*cur_name);
}
*cur_name = malloc(strlen(name) + 1);
if (*cur_name == NULL) {
return de_InternalError;
}
strcpy(*cur_name, name);
if (audio_state->num_devices[type] > 0) {
// close any existing al_device and try to open new one, reopening existing sources
lock(type);
if (type == output) {
for (int i = 0; i < MAX_DEVICES; i++) {
Device *device = &audio_state->devices[type][i];
if (device->active) {
close_source(device);
}
}
}
close_al_device(type);
DeviceError err = open_al_device(type, audio_state->capture_frame_info);
if (err != de_None) {
unlock(type);
return err;
}
if (type == output) {
for (int i = 0; i < MAX_DEVICES; i++) {
Device *device = &audio_state->devices[type][i];
if (device->active) {
open_source(device);
}
}
}
unlock(type);
}
return de_None;
}
static DeviceError open_device(DeviceType type, uint32_t *device_idx, DataHandleCallback cb, void *cb_data,
uint32_t sample_rate, uint32_t frame_duration, uint8_t channels)
{
if (channels != 1 && channels != 2) {
return de_UnsupportedMode;
}
const uint32_t samples_per_frame = (sample_rate * frame_duration / 1000);
FrameInfo frame_info = {samples_per_frame, sample_rate, channels == 2};
uint32_t i;
for (i = 0; i < MAX_DEVICES && audio_state->devices[type][i].active; ++i);
if (i == MAX_DEVICES) {
return de_AllDevicesBusy;
}
*device_idx = i;
lock(type);
if (audio_state->al_device[type] == NULL) {
DeviceError err = open_al_device(type, frame_info);
if (err != de_None) {
unlock(type);
return err;
}
} else if (type == input) {
// Use previously set frame info on existing capture device
frame_info = audio_state->capture_frame_info;
}
Device *device = &audio_state->devices[type][i];
device->active = true;
++audio_state->num_devices[type];
device->muted = false;
device->frame_info = frame_info;
if (type == input) {
device->cb = cb;
device->cb_data = cb_data;
#ifdef AUDIO
if (user_settings->VAD_threshold >= 0.0) {
device->VAD_threshold = user_settings->VAD_threshold;
}
#else
device->VAD_threshold = 0.0f;
#endif
} else {
if (open_source(device) != de_None) {
device->active = false;
--audio_state->num_devices[type];
unlock(type);
return de_FailedStart;
}
}
unlock(type);
return de_None;
}
DeviceError open_input_device(uint32_t *device_idx, DataHandleCallback cb, void *cb_data, uint32_t sample_rate,
uint32_t frame_duration, uint8_t channels)
{
return open_device(input, device_idx, cb, cb_data, sample_rate, frame_duration, channels);
}
DeviceError open_output_device(uint32_t *device_idx, uint32_t sample_rate, uint32_t frame_duration, uint8_t channels)
{
return open_device(output, device_idx, 0, 0, sample_rate, frame_duration, channels);
}
DeviceError close_device(DeviceType type, uint32_t device_idx)
{
if (device_idx >= MAX_DEVICES) {
return de_InvalidSelection;
}
lock(type);
Device *device = &audio_state->devices[type][device_idx];
if (!device->active) {
unlock(type);
return de_DeviceNotActive;
}
if (type == output) {
close_source(device);
}
device->active = false;
--audio_state->num_devices[type];
DeviceError err = de_None;
if (audio_state->num_devices[type] == 0) {
err = close_al_device(type);
}
unlock(type);
return err;
}
DeviceError write_out(uint32_t device_idx, const int16_t *data, uint32_t sample_count, uint8_t channels,
uint32_t sample_rate)
{
if (device_idx >= MAX_DEVICES) {
return de_InvalidSelection;
}
lock(output);
Device *device = &audio_state->devices[output][device_idx];
if (!device->active || device->muted) {
unlock(output);
return de_DeviceNotActive;
}
ALuint bufid;
ALint processed, queued;
alGetSourcei(device->source, AL_BUFFERS_PROCESSED, &processed);
alGetSourcei(device->source, AL_BUFFERS_QUEUED, &queued);
if (audio_state->al_device[output] == NULL || alcGetError(audio_state->al_device[output]) != AL_NO_ERROR) {
unlock(output);
return de_AlError;
}
if (processed) {
ALuint *bufids = malloc(processed * sizeof(ALuint));
if (bufids == NULL) {
unlock(output);
return de_InternalError;
}
alSourceUnqueueBuffers(device->source, processed, bufids);
alDeleteBuffers(processed - 1, bufids + 1);
bufid = bufids[0];
free(bufids);
} else if (queued < 16) {
alGenBuffers(1, &bufid);
} else {
unlock(output);
return de_Busy;
}
const bool stereo = channels == 2;
alBufferData(bufid, sound_mode(stereo), data,
sample_count * sample_size(stereo),
sample_rate);
alSourceQueueBuffers(device->source, 1, &bufid);
ALint state;
alGetSourcei(device->source, AL_SOURCE_STATE, &state);
if (state != AL_PLAYING) {
alSourcePlay(device->source);
}
unlock(output);
return de_None;
}
#ifdef AUDIO
/* Adapted from qtox,
* Copyright © 2014-2019 by The qTox Project Contributors
*
* return normalized volume of buffer in range 0.0-100.0
*/
float volume(int16_t *frame, uint32_t samples)
{
float sum_of_squares = 0;
for (uint32_t i = 0; i < samples; i++) {
const float sample = (float)(frame[i]) / INT16_MAX;
sum_of_squares += powf(sample, 2);
}
const float root_mean_square = sqrtf(sum_of_squares / samples);
const float root_two = 1.414213562;
// normalizedVolume == 1.0 corresponds to a sine wave of maximal amplitude
const float normalized_volume = root_mean_square * root_two;
return 100.0f * fminf(1.0f, normalized_volume);
}
// Time in ms for which we continue to capture audio after VAD is triggered:
#define VAD_TIME 250
#define FRAME_BUF_SIZE 16000
static void *poll_input(void *arg)
{
UNUSED_VAR(arg);
int16_t *frame_buf = malloc(FRAME_BUF_SIZE * sizeof(int16_t));
if (frame_buf == NULL) {
exit_toxic_err("failed in thread_poll", FATALERR_MEMORY);
}
while (1) {
lock(input);
if (!thread_running) {
free(frame_buf);
unlock(input);
break;
}
if (thread_paused) {
unlock(input);
sleep_thread(10000L);
continue;
}
if (audio_state->al_device[input] != NULL) {
int32_t available_samples;
alcGetIntegerv(audio_state->al_device[input], ALC_CAPTURE_SAMPLES, sizeof(int32_t), &available_samples);
const uint32_t f_size = audio_state->capture_frame_info.samples_per_frame;
if (available_samples >= f_size && f_size <= FRAME_BUF_SIZE) {
alcCaptureSamples(audio_state->al_device[input], frame_buf, f_size);
unlock(input);
pthread_mutex_lock(&Winthread.lock);
lock(input);
float frame_volume = volume(frame_buf, f_size);
audio_state->input_volume = frame_volume;
for (int i = 0; i < MAX_DEVICES; i++) {
Device *device = &audio_state->devices[input][i];
if (device->VAD_threshold != 0.0f) {
if (frame_volume >= device->VAD_threshold) {
device->VAD_samples_remaining = VAD_TIME * (audio_state->capture_frame_info.sample_rate / 1000);
} else if (device->VAD_samples_remaining < f_size) {
continue;
} else {
device->VAD_samples_remaining -= f_size;
}
}
if (device->active && !device->muted && device->cb) {
device->cb(frame_buf, f_size, device->cb_data);
}
}
pthread_mutex_unlock(&Winthread.lock);
}
}
unlock(input);
sleep_thread(5000L);
}
pthread_exit(NULL);
}
#endif
float get_input_volume(void)
{
float ret = 0.0f;
if (audio_state->al_device[input] != NULL) {
lock(input);
ret = audio_state->input_volume;
unlock(input);
}
return ret;
}
void print_al_devices(ToxWindow *self, DeviceType type)
{
for (int i = 0; i < audio_state->num_al_devices[type]; ++i) {
line_info_add(self, false, NULL, NULL, SYS_MSG,
audio_state->current_al_device_name[type]
&& strcmp(audio_state->current_al_device_name[type], audio_state->al_device_names[type][i]) == 0 ? 1 : 0,
0, "%d: %s", i, audio_state->al_device_names[type][i]);
}
return;
}
DeviceError selection_valid(DeviceType type, int32_t selection)
{
return (audio_state->num_al_devices[type] <= selection || selection < 0) ? de_InvalidSelection : de_None;
}