tomato/docs/md/meta.md
Green Sky 90ce4bda4e Squashed 'external/entt/entt/' changes from fef921132..344e03ac6
344e03ac6 update single include file to v3.12.2
da56665b0 registry: make ::valid backward compatible
f6f01ef1b snapshot: avoid warnings due to deprecated functions
0ed514628 now working on v3.12.2
a41421d86 update single include file to v3.12.1
c1f6b11f7 snapshot: reintroduce support to storage listeners
b2233064a now working on version v3.12.1
cb974bf56 adjacency_matrix: fix in_edges() is off by 1 in some cases (close #1019)
7b7d82e6f doc: snapshot (close #984)
05c6898fc test: self-fixing archive example for snapshot classes
7ffa459a6 snapshot: drop ::get member template parameter
93e8e94e6 test: basic continuous loader
c4e241662 snapshot: review basic_continuous_loader (and drop shrink)
9c25419b9 test: more on basic_snapshot_loader
1879830df snapshot: drop pointless assert
29298c0eb test: guarantee code coverage, we'll update the test later on
247abef1d test: rollback for code coverage purposes on the snapshot class
6994d98d2 test: typo
9a600ece2 test: snapshot
f91226ef4 snapshot: share ::orphans implementation (to deprecate in future though)
e366ffbd3 doc: snapshot
63b300d39 snapshot: again, dense_map::contains is a thing
afb70d157 test: avoid warnings due to unused variables
49534eec0 snapshot: dense_map::contains is a thing fortunately
3f1277f7b snapshot: use the right allocator for the remote-local mapping
26fad4c38 test: basic snapshot loader
25b3afacf test: basic snapshot
2d25bbb09 snapshot: check registry type
0eb834582 snapshot: small cleanup
124a44052 test: use the new snapshot get functions in the test suite
5c704636e test: use the new snapshot get functions in the test suite
31fd94cc3 snapshot: cleanup to get ready to drop an internal function
573e43272 snapshot: reduce storage lookups
1d8943481 snapshot: drop useless function
e0a1ef7c1 snapshot: check on member type class
48ac0e0eb snapshot: add basic_continuous_loader::get, deprecate ::entities and ::component
bcb6234d9 snapshot: add basic_snapshot_loader::get, deprecate ::entities and ::component
f96796326 snapshot: reject entity type in the range-get (now get instead of get_sparse)
b22c55dd2 doc: typo
4ff5a536c snapshot: add basic_snapshot::get, deprecate ::entities and ::component
fff5f578a test: avoid using deprecated functions in an example
0f44c8c92 doc: reflect recent changes
0b6ad0315 snapshot: * single element only archive functions required * avoid iterating elements more than once
2450b0bc6 test: minor changes (waiting for a rework)
fc8eebf36 snapshot: use component_traits instead of is_empty_v
e4f51f2b7 snapshot: avoid multiple lookups of the same storage
2c2216a89 doc: typo
cafe85180 snapshot: deprecate multi-type component loading function
35e338cc9 snapshot: deprecate multi-type component loading function
8feeaaef7 doc: minor changes
e7a3c4e37 snapshot: add missing [[deprecate(...)]]
ea5c558bd snapshot: cleanup (waiting for further improvements)
94f0ed179 snapshot: deprecate multi-type component loading function
244c35949 snapshot: deprecate multi-type component loading function
1f24fea21 type_traits: formatting
8deaa09b2 test: perform static checks at compile-time
85bffb714 type_traits: std::tuple traits specialization for entt::type_list and entt::value_list (#1011)
325ca310d view: updated ::refresh
d903e268f snapshot: minor changes
f4b26756c snapshot: improved basic_snapshot::component
fb3a34ee9 *: updated TODO
6902bb6c4 doc: typo
379819b2b test: cleanup
59abfbfb5 meta: refine policy check on value types for non-member data
6e2d87184 registry: avoid casting return types directly to better support empty storage
57ec3c85c registry: erase_if (close #977)
4afdf287f doc: minor changes
2810ac7cb registry: suppress a warning on msvc
e0d27f9bf *: updated TODO
de303c999 test: reverse-each for storage entity
1619e780f test: reverse each for plain storage classes
a1e37eca6 storage: reverse-each
c345e7456 doc: note on reverse iterations
d166c026f snapshot: minor changes
5e639996d doc: minor changes
dac2ef5a9 doc: typo
71d7888e8 snapshot: drop redundant check
84a4df9c4 doc: exclude-only views
95bc20319 doc: entity lifecycle
5a9f6d211 doc: cleanup
a29302faa test: more on entity signals
75efa72c6 registry: cleanup ::erase
58a84665b registry: cleanup ::remove
a5263384d doc: drop redundant comments
c0e6759c6 doc: cleanup a little further
d754f7431 doc: cleanup
1df539943 doc: drop pointless tags
c284e6fee doc: minor changes
500239758 test: typo
319ecd808 organizer: fix organizer::vertex::prepare not creating component pools (#1014)
d7891fabc doc: mention named pools support when registering listeners
e287dd041 helper: minor changes
4dee9dde1 registry: named pools support for on_construct/on_update/on_destroy
9bae6e67b doc: update connection helper doc
aa7a7ce25 doc: minor changes
a969468c5 registry: de-deprecate :) on_construct/on_update/on_destroy
a1e76fc63 doc: more about entity storage
d8ed4ca35 registry: refine how entity storage is used internally
3248e3f91 helper: make sigh_helper work with named pools
f00687e6f doc: updated registry documentation
5240c6b60 registry: deprecate on_construct/on_update/on_destroy
67604a88e natvis: update registry snippet
4242dfb8b registry: use entity storage directly as much as possible
f96d8ee83 registry: prepare to split component storage and entity storage
c147ec37c test: try to make gcc happy again
094ddbba3 meta: avoid shadow warnings
634630ca2 test: add missing template keywords (thanks msvc for ignoring them)
d78c26f26 *: updated TODO
fabc6c9bd test: full cross-registry entity-copy example with meta (not strictly required)
b6e8ddd2a meta: fight against the small nuances of the language :)
cf2bbae6e mixin: make it simpler to modify the underlying type
08799616d *: updated TODO
58bebf78d meta: reduce symbols and their sizes if possible
d534fad3e doc: more about views
871dc7a40 doc: drop references to storage placeholders
1fe7c78f7 test: minor changes
22a65f80f test: cleanup
756ea8a38 *: updated TODO
12186cb40 registry: drop internal static storage variables from ::assure
aa9ffb9ee registry: const ::storage<T>(...) returns a pointer to possibly null storage
dcb5aed90 registry: lazily/partially initialize views in the ::view const function
34f6a747a registry: add support for non-existent pools to try_get
912cb2ad5 snapshot: constness review
885488b3d registry: any_of supports non-existing pools now
3d3d3ef2d registry: all_of supports non-existing pools now
a7120b340 registry: coding style
51915205b test: cover stable multi-type model
4a3ee042e view: refine ::storage function
88a1b8d0d view: stable multi-type view ::each(cb) function
7e18a0f96 view: update ::use function
c367082dd view: unchecked_refresh function
9f94b5306 view: double check on none_of
44ed10c50 view: stable multi type view ::find/::back/::front functions
1b2280941 view: stable multi type view ::begin/::end functions
bdabbaa63 view: stable multi type view ::contains function
c79c109b7 view: stable multi type view ::size_hint function
f1a213382 registry: prepare to remove static storage from const assure
17dc06149 view: stable single type view ::each(cb) function
3b8d82330 view: drop unused return
a20829e70 view: ::handle returns a pointer rather than a reference
5be2fdc15 view: stable single type view ::each() function
873b107e6 -: updated TODO
356bbbe53 view: stable single type view ::find function
e3ce4e156 view: stable single type view ::front/::back functions
e02050c51 view: stable single type view ::rbegin/::rend functions
26930633f view: stable single type view ::begin/::end functions
b7a485767 view: stable single type view ::contains function
f54cdccd4 view: stable single type view ::empty function
41c9a32f3 view: stable single type view ::size function
736ef3580 view: make operator bool work properly with partially initialized views
0128cbb4f test: minor changes
ff0a40715 test: prepare test suite for safe invalid views
34f440386 view: avoid using storage, further prepare for empty safe views
b1c78efb6 nativs: updated signal file
28f03ff9c meta: add missing checks on factory<...>::data
a5fe61adb *: minor changes
457f5e59e view: rollback handle() usage and prepare to safe empty views
422fd284e group: refine group ::find function
6f3222573 view: refine single type view ::find function
366bbceb0 doc: use doxygen-awesome-css
7b7f81e08 doc: update reference.md
cfe955f97 doc: update links.md
684ddc9de doc: minor changes
f5d38a9ae doc: drop redundant doxy variable
447e3693f doc: updated doxy file (doxygen 1.9.6)
909490bf6 view: try to make g++ happy again
d90363e4a view: make view pack also work with empty views
ee5de744c view: add missing [[nodiscard]]
d401c88a0 view: assert on null handles
80563b955 view: allow swapping storage elements of a view
c74900057 sigh_mixin: avoid shadow warnings
78867d5c9 group: make msvc happy with constness on virtual functions
d435fc779 basic_entt_traits: suppress a warning by gcc
e6f76e0f9 view: try to make VS happy again :)
1c6b53360 test: minor changes
5c3d8360c view: turn ::use into a self-contained, non-const function
3882c7d9a view: turn ::refresh into a self contained, non-const function
15726218b view: doc
869bfc82c test: minor changes
0eb3d54b2 group: change signature of ::storage to return a (maybe null) pointer rather than a reference
f83290f76 view: change signature of ::storage to return a (maybe null) pointer rather than a reference
686a3b9d7 registry: make storage_for_type available to the final user
4d57d5c32 registry: make ::storage<T> return type explicit
36c21cf7f registry: drop redundant traits usage
7ab10e193 test: minor changes
41467d35a -: updated TODO
d351252a1 doc: entity storage
c6cd4f701 doc: refine storage section
65889cca4 doc: brief mention of void storage
f1914fd94 doc: rearrange a few things
e53af7bef registry: minor changes
b910cd261 *: updated TODO
58d331ca0 registry: minor changes
17f5b0a33 registry: avoid bumping version on destroy if not requested
de386292b registry: deprecate ::each
88bf26a2f registry: deprecate ::assign
3caad4100 mixin: common internal owner_or_assert function
916203a24 test: stress assert on entity limit
62f1971f7 test: minor changes
4fde96357 natvis: updated registry snippet
c3730b65f group: * unified model * drop group handler's size function (no longer required)
1ea072cd3 group: back to the unified model for group handlers
bbe4582ee meta: minor changes
89ab5c328 meta: operator==/!= for meta_func
3a4672793 meta: operator==/!= for meta_prop
0a0446f35 meta: operator==/!= for meta_data (close #1002)
fc58ff74b meta: operator==/!= for meta_handle (see #1002)
fed6831cd locator: support to opaque structures (close #956)
1605c8d9d natvis: updated entity file
d6641c7d8 -: updated TODO file
5079f38e9 storage: allow on_update signals on entity storage
1eab2a4a8 meta: fix constness detection for static functions in meta_type::invoke
c33110765 test: cleanup
117b0bd67 test: more about storage<...>::patch
9b4a6f877 storage: use allocator_traits::destroy rather than destroy_at
f4e6f2b37 group: suppress shadow warning
5971fb7aa -: updated TODO
10dfe7e93 sigh: allow disconnecting listeners during iterations (close #986)
a9208a956 doc: fixed typo
1cc5b32ca test: cleanup
f8a972a3c signal: drop sink::before
5b7cc2002 group: rollback some (no longer required) changes to the owning_group_descriptor
bd34e7f2c group: drop nested groups support, prepare to the large group review and multi storage support
46fe29c3f group: make matching functions virtual for owning groups
c50e2815c group: make owning_group_descriptor depend on the storage base type
fbfee632d group: minor changes
77c59aabf group: group_handler::size function for owning groups
ebb1e8a72 group: single check function for group handlers
1646217f0 group: make types explicit for the next/prev functions
645edfb2b group: decouple constructing and setting prev/next links
61f28298c group/registry: minor changes
d19f97bf2 group: use ::handle() if possible
70c611a84 group: cleanup
286428c19 group: make common_type base of non-owning group handlers
6ec719bcf group: reduce the footprint of non-owning group handlers
11f9bb2d7 registry: use shared_ptr<void> for non-owning groups (prepare to drop the basic handler dependency)
5a1ba5ad7 regisrtry: decouple container types for groups
cf094e7ef registry: finally split owning and non-owning groups as it ought to be
31808bd9a sigh: flip the last commit on its head and drop redundant functions rather than merging them
61a5173a7 sigh: merge a couple of functions
ed6fe9e65 sigh/sink: refine internal definition
e30fa8520 doc: cleanup
ca1069e18 snapshot: avoid allocations if possible
70f73a094 snapshot: drop pointless checks
710fff0e3 entity: make get_t, exclude_t and owned_t constexpr constructible
660bc5843 entity: turn get_t, exclude_t and owned_t into proper classes (close #998)
13295a14e type_traits: v141 toolset workaround for value_list_diff
9ce07ff61 type_traits: value_list_diff[_t]
b272e04ba type_traits: value_list_contains[_v]
28b11912a test: cleanup
b9f096d12 type_traits: value_list_unique[_t]
8c60faa1d type_traits: value_list_index[_v]
1f93ea4ee snapshot: avoid unnecessary lookups
7ca77e53f snapshot: avoid unnecessary lookups
69397f365 snapshot: avoid unnecessary lookups
f907bc066 snapshot: drop redundant checks and avoid unnecessary lookups
bda52701f snapshot: avoid unnecessary lookups
d26f7684c snapshot: minor changes
63d6c2bff snapshot: avoid unnecessary lookups
cc45e7341 snapshot: also avoid using views if not required
5d092bcb1 snapshot: avoid unnecessary lookups
295c68841 snapshot: review ::orphans functions
2664b5255 observer: allocator support
dd3632833 observer: configurable mask type
c8c929e4a group: use type members properly
d1ef7bf15 view: use type members properly
1ab23f17d group: early exit on signal races
a72eb4693 group: minor changes
67579d062 -: updated TODO
766a233f3 view: base_type -> common_type
905671c23 runtime_view: base_type -> common_type
27c1383e4 group: base_type -> common_type
029ccc8f7 registry: base_type -> common_type
cde40d586 group: drop unused using decl
6a16a8a20 group: auto init for owning groups
1a12dede6 group: auto init for non-owning groups
35a78b65e group: cleanup
ada19432f group: support for index based sort
4998e9087 doc: minor changes
471c11c6d sparse_set: respect -> sort_as (naming is hard, you know)
3e13e0b59 group: sort/respect -> sort_as (also decoupled from group types)
53cd105f2 group: reuse pools as much as possible
24b31c379 group: reuse pools as much as possible
def82b534 group: index based get
a424f4ebf view: review get
b8f0a8d8e doc: a couple of interesting articles/series (close #994)
7941226ef group: try to reuse pools when sorting and also please all compilers out there at the same time (aka me figthing ICEs again)
86bbb2f6b group: reuse pools when sorting
3c176f725 test: suppress warnings due to unused variables
3642c8a78 registry: drop [[nodiscard]] from ::group (close #991)
0e80d90a7 group: use storage<idx> as much as possible
4fdf2dccd group: update doc
f8a997e6c group: minor changes
40f676ed1 test: drop unused include
5e346748e test: code coverage for groups and registry
3ef61fe01 meta: support meta member functions on primitive types
3885d280d test: cleanup
f41b91419 meta: allow updating values on meta properties
e0684f634 registry: cleanup/minor changes
fb980a78c registry: further refine the group function(s)
c2430ab48 doc: minor changes
d36d9cb39 registry: further cleanup group functions
0017c08bb group: get pools from handlers
e737ff747 group: get filter from handlers
945dc4093 group: split group handler functions
7ef008511 registry: drop group_data
d2fa68813 registry/group: prepare to get rid of group_data
f22a09a9a group: in-between change to simplify dropping group_data
b0aba79a5 snapshot: minor changes
7c23e4a2f registry: minor changes
7fe035ce4 group: move group size from registry group_data to basic_group_handler
3e7160eda group: minor changes
aaeb686ec group: common base class for group handlers
3fdf4884d group: prepare for group handler common base class
1b23ff4b9 registry: use common group handler types as keys for the group set
88dac318e group: wrap the len of owning groups to avoid changing it by mistake
520c2e660 group: make group handlers work with multiple storage of the same type
f5d0d451b group: split pools and filter in the group handlers
8af6fc0cc group: use ::handle internally if possible
c04b97a31 group: add ::handle function to all group types
1d85414dc doc: drop refs to registry::version (close #992)
c6533827f group: fight with clang format from time to time :)
b5803451b group: make owning groups work with their handlers
3417d66b2 group: make non-owning groups work with their handlers
1e61204e8 registry: deduce group handler type from group type
19c4857ef group: cleanup
66ea94898 registry/group: move group handler to group file as it ought to be
ced6d21c3 registry: break dependency between registry and group handlers
429c7c45c registry: further cleanup things
c03b1111a registry: small cleanup
ebd7d3acd registry: storage based model with pools for groups
5aeec60cf registry: prepare to switch to storage based group handlers
620b4f751 registry: pass handlers to group callbacks
6d58004c1 registry: minor changes to simplify the implementation slightly
df6d926de registry: prepare for a storage based group handler
e63af24cb registry: turn the non-owning group handler in a storage
068d9f8ae registry: discard unused arguments from listeners if possible
c19c848c4 test: suppress warnings due to unused variables
0bf0a0a8f doc: delegate
743e8678e delegate: also support functions that skip first elements (on second attempt only)
a7ad1c06f delegate: prepare to support filtering on both sides
b1af70e70 registry: avoid checking pools in the group handler if possible
c87c3533e registry: avoid checking pools in the group handler if possible
4839a0ee6 registry: cleanup
a0f0c44e6 registry: minor changes
74691dc1d group: just use meaningful names :)
e4957badb registry: split group handler to further refine group management
46791c4c3 registry: turn group handler functions into static ones
56c391784 registry: prepare to rework groups
1fb13d3e9 doc: minor changes
535beb4e2 storage: drop unnecessary use of integral_constant
2d318b88c -: updated TODO
b7f0b76ce entity/mixin: add missing include
d30312f51 entity/helper: add missing include, drop unnecessary traits calls
30772848e meta: avoid unnecessary calls to std::move
eca01a397 doc: add vcpkg badge and vcpkg.link (#985)
35ef0b7ac core: reduces the number of instantiations a bit
19ccba3a6 meta: reduces the number of instantiations a bit
207b7674a doc: fix typo
631c55ba9 storage: minor changes/tests
e7b30fd36 storage: return iterator to elements rather than entities and only if it makes sense
3e959007b storage: ::insert returns an iterator to the range of inserted entities
07ec4ca23 -: updated TODO
6e4946b68 storage: uniform interface to simplify mixin implementation
47ea16f17 test: signals on entity creation/destruction
722857fc0 test: get rid of pointless template parameters
2125b3838 test: minor changes
289de7d57 test: exclude only views
25ecd8e79 test: minor changes
319dfdb07 test: filtered registry view
9dbbcac01 -: updated TODO
f545c8e05 registry: deprecate ::release
c68fa6a65 registry: make ::destroy work without ::release (the latter to be deprecated)
d288ecd70 registry: make ::release use ::bump return value
312d3aba8 sparse_set: bump returns the version in use (for convenience)
4d2b2c6de registry: use traits_type::next if possible
80d55a226 test: increase code coverage
d86a53935 test: suppress warnings due to unused variables
0f7098d0e -: updated TODO
8c96be1e9 registry: deprecate a bunch of functions because of the entity storage
37f396bfe registry: make entity storage storage as any other
75894dc40 storage: update traits_type for entity storage
cdee000ce any: rollback a change that turns vs toolset v141 crazy
54ca62600 dispatcher: refine aggregate check
6f4280ed5 any: refine aggregate check
ddf56b78c storage: backward compatibility on component requirements
53a854f54 any: just cleanup the code to make it easier to work with
4896acac7 storage: typo
e3defeba2 test: suppress warnings due to unused variables
62079908c storage: use proper value type for entity storage
e65a8f2e5 doc: add link to koala engine :)
9f27fb1e5 registry: further prepare to turn the entity storage into a plain pool
04d734e76 registry: prepare to turn the entity pool in a plain storage
df50fa1b5 natvis: cleanup
051872b8c natvis: update registry definition
57ab9e7be registry: avoid using assure if not required
69d95ba75 test: more bench to stress a little an upcoming feature
9caf66d7c test: cleanup
74cb0d40c test: internal rework
deac7f34b dispatcher: refine aggregate support
a9883f27c storage: refine transparent aggregate support
85b1e57d8 sparse_set: drop fast_compact, expect full clear
b7d8e0186 storage: make the entity storage perform a full clear rather than a fake one (still viable via erase)
390a56176 -: updated TODO file
a1b888cce natvis: add optiona storage length item for entity storage
2107dd689 natvis: fix already existing errors due to renaming or design changes
1fca56afe storage: make it easier to refine the natvis file
c0762a6a5 storage: add get/get_as_tuple to entity storage to make it suitable for use with views
f48de1bac test: stress get/get_as_tuple for empty types
c7dfce89e sigh_mixin: refine pop_all
822fafcd4 view: uniform implementation to simplify upcoming changes
1476d4ea9 sparse_set: refine ::respect
c1c63777e -: updated TODO
2fab25ae8 registry: refine internal check
75d449152 -: updated TODO
c7866fb21 storage: use entt traits next function if possible
87987bacd entity: added basic_entt_traits::next (with tests)
bde0219fe snapshot: review basic_continuous_loader::entities
ad64c849b storage: suppress warnings
b808bb83b test: suppress warnings
d0090d35f snapshot: try to make sizes an opaque value to the caller
7a1a06a24 sigh_mixin: avoid shadow warnings
000b17881 -: updated TODO
068b6ed49 registry: first (almost) backward compatible version with opaque hidden entity storage
0187fb48a test: sigh mixin for entity storage types
35a2b3844 sigh_mixin: also support entity storage types
4747c9a4c registry: extended checks to support swap-only entity storage types
7be8d8327 registry: make a couple of conditions opaque
a5d6757d6 registry: prepare to get rid of the vector of entities
3f09d47c8 storage: remove redundant typename keyword
9c06d6ba0 registry: use type member names
b7c819bf4 test: entity storage
9f31803ba storage: swap-only entity storage
1e7deff9c test: drop redundant checks
04ac15d8d test: minor changes
376218991 sigh_mixin: make pop_all use narrow view iterators if any
18d6e466d -: [[nodiscard]]  as appropriate
095ecf314 group: extended_group_iterator::base to return the underlying iterator
433ed863e view: extended_view_iterator::base to return the underlying iterator
0dba68e75 storage: coding style/minor changes
1ab281582 storage: extended_storage_iterator::base to return the underlying iterator
2af5a725e doc: * updated copyright * udpated TODO list
a86bf1332 test: try to make lcov happy
831054bff test: share as much as possible
f94de1c06 test: rework lib stuff to share common files
a3d9503a1 test: try to make lcov happy
3f2b15f9f test: try to make lcov happy
e48817d51 test: try to make lcov happy
d11cebe30 view: uniform design to also help natvis without having to poke into stl internals
77a5efb32 natvis: updated to_entity intrinsic
851006efe -: updated TODO
6fc6b2fb3 sigh_mixin: further improve ::pop_all
ed17a2c48 sparse_set: ::contiguous function
bd00e797a sparse_set: further refine pop_all to make it even faster
e645c4928 -: updated TODO
a425878e8 sparse_set/storage: clear is backward compatible now
f3cd9d374 storage: fixed clear_all counter
b3e93b084 registry: naming convention
314c189c4 test: minor changes
2bb2c5566 build: try to make lcov happy again
d13c126e9 view: avoid name clashes
9b54ee37a flow: propagate allocator to generated graph + internal rework
e1ead9d3e build: update coverage workflow
cf61068dc mixin: suppress a warning with gcc11
82863f829 test: code coverage for range functionalities
e4de59827 test: try to make lcov happy
ccea4c920 memory: code coverage
89166f0e4 build: refine analyzer workflow
7a05a16c5 registry: slightly better destroy (yet not quite there though)
d0854646c test: yet another test to stress the upcoming changes
1e9c9fe5f registry: better, faster range-remove + refine range-erase
80fac8d8e test: minor changes
c774b9838 -: updated TODO
3fd0403cc registry: faster, better range-erase
6eb3347a3 test: a couple of extra functions to stress the upcoming changes
89bceaff7 -: updated TODO
dc25c9c1a sparse_set: invoke release_sparse_pages before clearing the sparse array
e68ba5870 sigh_mixin: add a missing include
c68cb3375 entity: make deletion_policy publicly available via fwd.hpp
59f807fd0 sparse_set: suppress warnings due to unused expressions
232ffebc1 sparse_set: internal clear_all function
3cea845a0 sparse_set: sparse_set_iterator::data function
295f3b32e registry: a couple of extra move calls here and there
254da2c3c sparse_set: better, faster range remove
ecd3b8d93 sparse_set: prevent rework errors as much as possible
c673b9b17 sigh_mixin: slightly improved pop + review insert
cd28de0d6 test: clear-stable bench
672f6a711 test: minor changes
3b50672b7 storage: restore storage_for/storage_type duality, it turned out to be very useful in practice
f0613b1c6 sparse_set/storage: minor changes to reuse type members
2197e160e -: drop file pushed by mistake :)
2dccd9016 handle: discard entity on destruction
2f873f2dd -: storage_mixin.hpp -> mixin.hpp (non-storage mixins are also a thing)
fde1a524e sparse_set: ::get -> ::value (to avoid hiding from derived classes)
055801047 doc: drop references to docsforge + minor changes
79a054a52 sigh_mixin: scope base_type properly
d94e443a1 doc: drop outdated section
3862184e8 sigh_mixin: support self managed storage classes
f40fa3c2f test: * use range destroy * avoid compiler optimizations
01bc93459 test (bench): the new entity storage enables the fast path in all cases
151bd0739 sparse_set: revert optmized range push, it prevents self-managed storage classes
935393aae sparse_set: better, faster range push
fbfde4347 snapshot: avoid unused variable warnings
2ffbe115b component_traits: revert entity customization support
645973eb7 sparse_set: insert -> push
133230797 sparse_set: emplace -> push
b700f5eb5 doc: typo
e60dbdc52 sparse_set/storage: * rename swap_at in swap_or_move to capture the real purpose * define swap_at as a protected function to allow swapping from above
c66623b33 sigh_mixin: avoid hiding basic_iterator type meber
62246d879 storage: avoid hiding basic_iterator type meber
b35f13130 sparse_set: support swap-only mixins
3dd82633a -: drop storage_mixin.cpp, I forgot to do it a couple of commits ago :)
00231bf8a storage: make swap_at non-final to support checks on derived classes
58d392e81 -: minor changes
1d4d99d09 mixin: sigh_storage_mixin -> sigh_mixin
fe3edf2c8 -: minor changes
0864ba042 -: drop useless typename
3a9698001 build: minor changes
423f7a555 is_equality_comparable: detect C-style arrays directly
5db8ad53a build: update gh workflow
c2ab35780 view: make also VS toolset v141 happy
4fb558f14 view: further reduce instantiations
5762a8a08 view: reuse internal functions if possible
ed4c67521 sparse_set/storage: drop move_element
f15789846 config: ENTT_FAIL(msg) -> ENTT_ASSERT(false, msg)
6d20709e0 storage: minor changes
a9a9853c0 sigh_storage_mixin: use entity_type from Type
af14aa4c9 doc: more about signals (sigh_storage_mixin)
24d6b9881 test: minor changes
899f4baa6 storage: * drop storage_for]_t] * make storage_type[_t] deal with constness
c1ab7ba02 sigh_storage_mixin: make all virtual member functions final
9d38f6020 registry: thanks MSVC for accepting invalid C++ code
0efa25cf6 sigh: cool, I keep doing the same error again and again apparently :)
6316b6045 registry: make it work with storage<void> also in C++17
f268fb60a entity: avoid breaking changes due to type members renaming
3520d6915 entity: add base_type
4da7a8451 entity: make checks work with 64b identifiers :)
382dfc3bb entity: strict check on entity/version masks
b6dcdc816 entity: * also expose entity_mask and version mask to the final user * avoid default args with entt_traits::construct for backward compatibility
c9d544089 doc: review/cleanup entity.md a bit (done)
3eb5faeed doc: review/cleanup entity.md a bit (work in progress)
7a328c7ed doc: updated links
6567aa195 doc: a note about listeners disconnection (close #958)
92319f011 entt_traits: split basic impl, simplify def
782d86b6e entt_traits: value_type -> type (cuz it's not a value type after all)
c2cae37c1 entity_traits: make page_size type explicit
1026d26ec entt_traits: drop reserved value
7156803db test: local non-static constexpr variables
f54ed5424 helper: local non-static constexpr variables
f30b50195 algorithm: local non-static constexpr variables
c90ab9aff sparse_set: * break dependency on traits_type::reserved * use a tombstone if all I need is a tombstone
c2f6ca43f doc: graph (close #957)
3e5e41d88 test: cover some corner cases of the flow class
9eafc0431 flow: minor changes
0a82b777b component_traits: support specializations based on entity type
32bcc01a4 component: * make component_traits treat void properly * drop ignore_as_empty_v
9c3fe3546 nativs: entity module
83f8aed58 helper: use traits_type from storage class directly
2fd660274 snapshot: use public registry traits_type member type
a554d406e registry: * public traits_type member type * break dependency on component_traits * use public storage traits_type member type
5f12f872e test: minor changes
be4eb68a3 helper: * break dependency on component_traits * use public storage traits_type member type
df5284d9e view: * break dependency on component_traits * use public storage traits_type member type
0e27d33e7 storage: public traits_type member type
fe6e6ae73 sparse_set: public traits_type member type
9d29713ea entity: naming convention
270d0277d group: cleanup
0bd06c8d5 hashed_string: naming convention
733f215cc storage: break dependency between component_traits and storage_iterator
ad01a69fe *: renaming/coding style
dd9c1dade sparse_set: no need to differentiate template args for sparse_set_iterator
b8f70519f doc: fixed typo
9b9d212dd *: coding style
3fe15969d doc: cleanup
ec4bf222c meta: avoid the +1u trick for 0-sized arrays
1173908ee meta: avoid rebinding when forwarding requests
2595b8a92 doc: sigh_helper
f4e2a8c76 sigh_builder: add all missing .template that msvc kindly accepted anyway
66e1a0565 entity: sigh_helper utility with tests (close #928)
87283dc41 storage: simplified impl in order to introduce multi-type storage more easily
a802ebffe storage: * move storage_type[_t] and storage_for[_t] to fwd.hpp * no need to include storage.hpp when forward defining views
b84b09421 doc: add Arch ECS to references.md (#954)
940fd0939 todo: add a note for a (soon to be released) change
920338be5 doc: add ecsact to links.md (thanks @zaucy for pointing this out)
bcd1155b7 gh: add more gcc and clang versions
1dc88109e gh: update workflows
262c1f53c cmake: only enable -Wdocumentation for clang-cl
4af0a3a0d doc: cleanup
be1641828 doc: cleanup
b54a52fbf doc: fixed typo
ae8815995 doc: fixed typo
62c764f68 doc: fixed typo
2c48cc10a cmake: enable documentation diagnostic for clang
82f286678 sigh: drop redundant function
d56e5a269 registry: propagate allocator to context
1517b2951 doc: document delegate raw access
bea7b43a1 delegate: target member function
2f878f8b5 sigh: refine ::collect
fc68c1b29 view/group: cleanup
9081c185d meta: minor changes
7c4493f23 group: make filter storage available
da4e73ab8 view: make filter storage available
f3e7f98b4 registry: extra check when moving a registry
3925fc612 emitter: extra allocator check when moving
c639130c1 dispatcher: extra allocator check when moving
75c311600 registry: cleanup
e9e14eb49 meta: [[nodiscard]]
d1558304f any: [[nodiscard]]
0531b530b snapshot: minor changes
f9d0178dd workflow: bump iwyu version
b66b8d37e test: suppress warning
05ef4c29d storage: minor changes
9c3d75669 test: cleanup include directives
93651e46f registry: drop [[deprecated]] functions
ea901cbfa test: code coverage
d5dc4f43e doc: meta.md
498e02f15 doc: core.md
d0ea8f4f9 cmake: suppress some warnings for clang-cl, it goes a little wrong otherwise
dec3b7bb3 test: suppress warnings
10bc8b05a test: use /W1 with VS (but for toolset v141, too bugged for that)
ad77b54dc cmake: bump version to get some cool feature/update
b6724b028 group: pass filter storage to groups (in-between change for full storage access)
54270b103 group: make them easily copyable/movable
31dc732a7 doc: graph.md
f0e02d6d3 doc: container.md
156d6e4ea doc: poly.md
4375c1c3d doc: lib.md
24a9cd67e scheduler: forgot to add the fwd file to the previous commit :)
ba8d522c1 doc: add the worst engine (love the name) to the list of links
3ae46214a doc: review process.md
5119fe8d7 scheduler: basic type model with default for common cases
ed0319cdd view: avoid shadow warnings
bc50da6a7 storage: suppress warnings with non copyable nor default constructible types
52b3b4c24 group: suppress warnings for unused variables in case of empty types
74bab529d test: minor changes
b1b143917 meta: [[maybe_unused]] variable to avoid warnings with corner cases
7beb4c85c test: suppress a few warnings (entity)
f3beb5670 test: suppress a few warnings (container)
446c67b69 test: suppress a few warnings (resource)
c4507bd17 test: suppress a few warnings (poly)
61e872bb4 test: suppress a few warnings (meta)
9f22a3e23 test: suppress a few warnings (memory)
653dd5cd4 test: suppress a few warnings (tuple)
bc53ed3be test: suppress a few warnings (flow)
f935bbcce dense_set: suppress warnings due to possible narrowing conversions
c7d505353 dense_map: suppress warnings due to possible narrowing conversions
ea78f1d97 now working on version 3.12
REVERT: fef921132 update single include file
REVERT: e52a93f8a ready to cut v3.11.1
REVERT: cd541f335 storage: * move storage_type[_t] and storage_for[_t] to fwd.hpp * no need to include storage.hpp when forward defining views
REVERT: 255b8be8c view: avoid shadow warnings
REVERT: 8cd7f064a storage: suppress warnings with non copyable nor default constructible types
REVERT: 58ae4117c group: suppress warnings for unused variables in case of empty types
REVERT: cfa1e805b meta: [[maybe_unused]] variable to avoid warnings with corner cases
REVERT: ccedacec8 dense_set: suppress warnings due to possible narrowing conversions
REVERT: 17578dc8c dense_map: suppress warnings due to possible narrowing conversions

git-subtree-dir: external/entt/entt
git-subtree-split: 344e03ac64a1f78424ab1150e2d4778e8df8431d
2023-10-02 15:30:10 +02:00

36 KiB

Crash Course: runtime reflection system

Table of Contents

Introduction

Reflection (or rather, its lack) is a trending topic in the C++ world and a tool that can unlock a lot of interesting features in the specific case of EnTT. I looked for a third-party library that met my needs on the subject, but I always came across some details that I didn't like: macros, being intrusive, too many allocations, and so on.
I finally decided to write a built-in, non-intrusive and macro-free runtime reflection system for EnTT. Maybe I didn't do better than others or maybe yes, time will tell me, but at least I can model this tool around the library to which it belongs and not the opposite.

Names and identifiers

The meta system doesn't force users to rely on the tools provided by the library when it comes to working with names and identifiers. It does this by offering an API that works with opaque identifiers that may or may not be generated by means of a hashed string.
This means that users can assign any type of identifier to the meta objects, as long as they're numeric. It doesn't matter if they're generated at runtime, at compile-time or with custom functions.

That being said, the examples in the following sections are all based on the hashed_string class as provided by this library. Therefore, where an identifier is required, it's likely that a user defined literal is used as follows:

auto factory = entt::meta<my_type>().type("reflected_type"_hs);

For what it's worth, this is completely equivalent to:

auto factory = entt::meta<my_type>().type(42u);

Obviously, human-readable identifiers are more convenient to use and highly recommended.

Reflection in a nutshell

Reflection always starts from actual C++ types. Users cannot reflect imaginary types.
The meta function is where it all starts:

auto factory = entt::meta<my_type>();

The returned value is a factory object to use to continue building the meta type.

By default, a meta type is associated with the identifier returned by the runtime type identification system built-in in EnTT.
However, it's also possible to assign custom identifiers to meta types:

auto factory = entt::meta<my_type>().type("reflected_type"_hs);

Identifiers are used to retrieve meta types at runtime by name other than by type.
However, users can be interested in adding features to a reflected type so that the reflection system can use it correctly under the hood, while they don't want to also make the type searchable. In this case, it's sufficient not to invoke type.

A factory is such that all its member functions return the factory itself. It's generally used to create the following:

  • Constructors. A constructors is assigned to a reflected type by specifying its list of arguments. Free functions are also accepted if the return type is the expected one. From a client perspective, nothing changes between a free function or an actual constructor:

    entt::meta<my_type>().ctor<int, char>().ctor<&factory>();
    

    Meta default constructors are implicitly generated, if possible.

  • Destructors. Both free functions and member functions are valid destructors:

    entt::meta<my_type>().dtor<&destroy>();
    

    The purpose is to offer the possibility to free up resources that require special treatment before an object is actually destroyed.
    A function should neither delete nor explicitly invoke the destructor of a given instance.

  • Data members. Meta data members are actual data members of the underlying type but also static and global variables or constants of any kind. From the point of view of the client, all the variables associated with the reflected type appear as if they were part of the type itself:

    entt::meta<my_type>()
        .data<&my_type::static_variable>("static"_hs)
        .data<&my_type::data_member>("member"_hs)
        .data<&global_variable>("global"_hs);
    

    The data function requires the identifier to use for the meta data member. Users can then access it by name at runtime.
    Data members are also defined by means of a setter and getter pair. These are either free functions, class members or a mix of them. This approach is also convenient to create read-only properties from a non-const data member:

    entt::meta<my_type>().data<nullptr, &my_type::data_member>("member"_hs);
    

    Multiple setters are also supported by means of a value_list object:

    entt::meta<my_type>().data<entt::value_list<&from_int, &from_string>, &my_type::data_member>("member"_hs);
    
  • Member functions. Meta member functions are actual member functions of the underlying type but also plain free functions. From the point of view of the client, all the functions associated with the reflected type appear as if they were part of the type itself:

    entt::meta<my_type>()
        .func<&my_type::static_function>("static"_hs)
        .func<&my_type::member_function>("member"_hs)
        .func<&free_function>("free"_hs);
    

    The func function requires the identifier to use for the meta data function. Users can then access it by name at runtime.
    Overloading of meta functions is supported. Overloaded functions are resolved at runtime by the reflection system according to the types of the arguments.

  • Base classes. A base class is such that the underlying type is actually derived from it:

    entt::meta<derived_type>().base<base_type>();
    

    The reflection system tracks the relationship and allows for implicit casts at runtime when required. In other terms, wherever a base_type is required, an instance of derived_type is also accepted.

  • Conversion functions. Conversion functions allow users to define conversions that are implicitly performed by the reflection system when required:

    entt::meta<double>().conv<int>();
    

This is everything users need to create meta types. Refer to the inline documentation for further details.

Any to the rescue

The reflection system offers a kind of extended version of the entt::any class (see the core module for more details).
The purpose is to add some feature on top of those already present, so as to integrate it with the meta type system without having to duplicate the code.

The API is very similar to that of the any type. The class meta_any wraps many of the feature to infer a meta node, before forwarding some or all of the arguments to the underlying storage.
Among the few relevant differences, meta_any adds support for containers and pointer-like types, while any doesn't.
Similar to any, this class is also used to create aliases for unmanaged objects either with forward_as_meta or using the std::in_place_type<T &> disambiguation tag, as well as from an existing object by means of the as_ref member function.
Unlike any instead, meta_any treats an empty instance and one initialized with void differently:

entt::meta_any empty{};
entt::meta_any other{std::in_place_type<void>};

While any considers both as empty, meta_any treats objects initialized with void as if they were valid ones. This allows to differentiate between failed function calls and function calls that are successful but return nothing.

Finally, the member functions try_cast, cast and allow_cast are used to cast the underlying object to a given type (either a reference or a value type) or to convert a meta_any in such a way that a cast becomes viable for the resulting object.
There is in fact no any_cast equivalent for meta_any.

Enjoy the runtime

Once the web of reflected types is constructed, it's a matter of using it at runtime where required.
There are a few options to search for a reflected type:

// direct access to a reflected type
auto by_type = entt::resolve<my_type>();

// look up a reflected type by identifier
auto by_id = entt::resolve("reflected_type"_hs);

// look up a reflected type by type info
auto by_type_id = entt::resolve(entt::type_id<my_type>());

There exists also an overload of the resolve function to use to iterate all reflected types at once. It returns an iterable object to be used in a range-for loop:

for(auto &&[id, type]: entt::resolve()) {
    // ...
}

In all cases, the returned value is an instance of meta_type (possibly with its id). This kind of objects offer an API to know their runtime identifiers, to iterate all the meta objects associated with them and even to build instances of the underlying type.
Meta data members and functions are accessed by name:

  • Meta data members:

    auto data = entt::resolve<my_type>().data("member"_hs);
    

    The returned type is meta_data and may be invalid if there is no meta data object associated with the given identifier.
    A meta data object offers an API to query the underlying type (for example, to know if it's a const or a static one), to get the meta type of the variable and to set or get the contained value.

  • Meta function members:

    auto func = entt::resolve<my_type>().func("member"_hs);
    

    The returned type is meta_func and may be invalid if there is no meta function object associated with the given identifier.
    A meta function object offers an API to query the underlying type (for example, to know if it's a const or a static function), to know the number of arguments, the meta return type and the meta types of the parameters. In addition, a meta function object is used to invoke the underlying function and then get the return value in the form of a meta_any object.

All the meta objects thus obtained as well as the meta types explicitly convert to a boolean value to check for validity:

if(auto func = entt::resolve<my_type>().func("member"_hs); func) {
    // ...
}

Furthermore, all them (and a few more, like meta basis) are returned by a bunch of overloads that provide the caller with iterable ranges of top-level elements. As an example:

for(auto &&[id, type]: entt::resolve<my_type>().base()) {
    // ...
}

Meta type are also used to construct actual instances of the underlying type.
In particular, the construct member function accepts a variable number of arguments and searches for a match. It then returns a meta_any object that may or may not be initialized, depending on whether a suitable constructor was found or not.

There is no object that wraps the destructor of a meta type nor a destroy member function in its API. Destructors are invoked implicitly by meta_any behind the scenes and users have not to deal with them explicitly. Furthermore, they've no name, cannot be searched and wouldn't have member functions to expose anyway.
Similarly, conversion functions aren't directly accessible. They're used internally by meta_any and the meta objects when needed.

Meta types and meta objects in general contain much more than what was said. Refer to the inline documentation for further details.

Container support

The runtime reflection system also supports containers of all types.
Moreover, containers doesn't necessarily mean those offered by the C++ standard library. In fact, user defined data structures can also work with the meta system in many cases.

To make a container be recognized as such by the meta system, users are required to provide specializations for either the meta_sequence_container_traits class or the meta_associative_container_traits class, according to the actual type of the container.
EnTT already exports the specializations for some common classes. In particular:

  • std::vector, std::array, std::deque and std::list (but not std::forward_list) are supported as sequence containers.

  • std::map, std::set and their unordered counterparts are supported as associative containers.

It's important to include the header file container.hpp to make these specializations available to the compiler when needed.
The same file also contains many examples for the users that are interested in making their own containers available to the meta system.

When a specialization of the meta_sequence_container_traits class exists, the meta system treats the wrapped type as a sequence container. In a similar way, a type is treated as an associative container if a specialization of the meta_associative_container_traits class is found for it.
Proxy objects are returned by dedicated members of the meta_any class. The following is a deliberately verbose example of how users can access a proxy object for a sequence container:

std::vector<int> vec{1, 2, 3};
entt::meta_any any = entt::forward_as_meta(vec);

if(any.type().is_sequence_container()) {
    if(auto view = any.as_sequence_container(); view) {
        // ...
    }
}

The method to use to get a proxy object for associative containers is as_associative_container instead.
It's not necessary to perform a double check actually. Instead, it's enough to query the meta type or verify that the proxy object is valid. In fact, proxies are contextually convertible to bool to check for validity. For example, invalid proxies are returned when the wrapped object isn't a container.
In all cases, users aren't expected to reflect containers explicitly. It's sufficient to assign a container for which a specialization of the traits classes exists to a meta_any object to be able to get its proxy object.

The interface of the meta_sequence_container proxy object is the same for all types of sequence containers, although the available features differ from case to case. In particular:

  • The value_type member function returns the meta type of the elements.

  • The size member function returns the number of elements in the container as an unsigned integer value.

  • The resize member function allows to resize the wrapped container and returns true in case of success.
    For example, it's not possible to resize fixed size containers.

  • The clear member function allows to clear the wrapped container and returns true in case of success.
    For example, it's not possible to clear fixed size containers.

  • The begin and end member functions return opaque iterators that is used to iterate the container directly:

    for(entt::meta_any element: view) {
        // ...
    }
    

    In all cases, given an underlying container of type C, the returned element contains an object of type C::value_type which therefore depends on the actual container.
    All meta iterators are input iterators and don't offer an indirection operator on purpose.

  • The insert member function is used to add elements to the container. It accepts a meta iterator and the element to insert:

    auto last = view.end();
    // appends an integer to the container
    view.insert(last, 42);
    

    This function returns a meta iterator pointing to the inserted element and a boolean value to indicate whether the operation was successful or not. A call to insert may silently fail in case of fixed size containers or whether the arguments aren't at least convertible to the required types.
    Since meta iterators are contextually convertible to bool, users can rely on them to know if the operation failed on the actual container or upstream, for example due to an argument conversion problem.

  • The erase member function is used to remove elements from the container. It accepts a meta iterator to the element to remove:

    auto first = view.begin();
    // removes the first element from the container
    view.erase(first);
    

    This function returns a meta iterator following the last removed element and a boolean value to indicate whether the operation was successful or not. A call to erase may silently fail in case of fixed size containers.

  • The operator[] is used to access container elements. It accepts a single argument, the position of the element to return:

    for(std::size_t pos{}, last = view.size(); pos < last; ++pos) {
        entt::meta_any value = view[pos];
        // ...
    }
    

    The function returns instances of meta_any that directly refer to the actual elements. Modifying the returned object directly modifies the element inside the container.
    Depending on the underlying sequence container, this operation may not be as efficient. For example, in the case of an std::list, a positional access translates to a linear visit of the list itself (probably not what the user expects).

Similarly, also the interface of the meta_associative_container proxy object is the same for all types of associative containers. However, there are some differences in behavior in the case of key-only containers. In particular:

  • The key_only member function returns true if the wrapped container is a key-only one.

  • The key_type member function returns the meta type of the keys.

  • The mapped_type member function returns an invalid meta type for key-only containers and the meta type of the mapped values for all other types of containers.

  • The value_type member function returns the meta type of the elements.
    For example, it returns the meta type of int for std::set<int> while it returns the meta type of std::pair<const int, char> for std::map<int, char>.

  • The size member function returns the number of elements in the container as an unsigned integer value.

  • The clear member function allows to clear the wrapped container and returns true in case of success.

  • The begin and end member functions return opaque iterators that are used to iterate the container directly:

    for(std::pair<entt::meta_any, entt::meta_any> element: view) {
        // ...
    }
    

    In all cases, given an underlying container of type C, the returned element is a key-value pair where the key has type C::key_type and the value has type C::mapped_type. Since key-only containers don't have a mapped type, their value is nothing more than an invalid meta_any object.
    All meta iterators are input iterators and don't offer an indirection operator on purpose.

    While the accessed key is usually constant in the associative containers and is therefore returned by copy, the value (if any) is wrapped by an instance of meta_any that directly refers to the actual element. Modifying it directly modifies the element inside the container.

  • The insert member function is used to add elements to a container. It gets two arguments, respectively the key and the value to insert:

    auto last = view.end();
    // appends an integer to the container
    view.insert(last.handle(), 42, 'c');
    

    This function returns a boolean value to indicate whether the operation was successful or not. A call to insert may fail when the arguments aren't at least convertible to the required types.

  • The erase member function is used to remove elements from a container. It gets a single argument, the key to remove:

    view.erase(42);
    

    This function returns a boolean value to indicate whether the operation was successful or not. A call to erase may fail when the argument isn't at least convertible to the required type.

  • The operator[] is used to access elements in a container. It gets a single argument, the key of the element to return:

    entt::meta_any value = view[42];
    

    The function returns instances of meta_any that directly refer to the actual elements. Modifying the returned object directly modifies the element inside the container.

Container support is minimal but likely sufficient to satisfy all needs.

Pointer-like types

As with containers, it's also possible to tell to the meta system which types are pointers. This makes it possible to dereference instances of meta_any, thus obtaining light references to pointed objects that are also correctly associated with their meta types.
To make the meta system recognize a type as pointer-like, users can specialize the is_meta_pointer_like class. EnTT already exports the specializations for some common classes. In particular:

  • All types of raw pointers.
  • std::unique_ptr and std::shared_ptr.

It's important to include the header file pointer.hpp to make these specializations available to the compiler when needed.
The same file also contains many examples for the users that are interested in making their own pointer-like types available to the meta system.

When a type is recognized as a pointer-like one by the meta system, it's possible to dereference the instances of meta_any that contain these objects. The following is a deliberately verbose example to show how to use this feature:

int value = 42;
// meta type equivalent to that of int *
entt::meta_any any{&value};

if(any.type().is_pointer_like()) {
    // meta type equivalent to that of int
    if(entt::meta_any ref = *any; ref) {
        // ...
    }
}

It's not necessary to perform a double check. Instead, it's enough to query the meta type or verify that the returned object is valid. For example, invalid instances are returned when the wrapped object isn't a pointer-like type.
Dereferencing a pointer-like object returns an instance of meta_any which refers to the pointed object. Modifying it means modifying the pointed object directly (unless the returned element is const).

In general, dereferencing a pointer-like type boils down to a *ptr. However, EnTT also supports classes that don't offer an operator*. In particular:

  • It's possible to exploit a solution based on ADL lookup by offering a function (also a template one) named dereference_meta_pointer_like:

    template<typename Type>
    Type & dereference_meta_pointer_like(const custom_pointer_type<Type> &ptr) {
        return ptr.deref();
    }
    
  • When not in control of the type's namespace, it's possible to inject into the entt namespace a specialization of the adl_meta_pointer_like class template to bypass the adl lookup as a whole:

    template<typename Type>
    struct entt::adl_meta_pointer_like<custom_pointer_type<Type>> {
        static decltype(auto) dereference(const custom_pointer_type<Type> &ptr) {
            return ptr.deref();
        }
    };
    

In all other cases and when dereferencing a pointer works as expected regardless of the pointed type, no user intervention is required.

Template information

Meta types also provide a minimal set of information about the nature of the original type in case it's a class template.
By default, this works out of the box and requires no user action. However, it's important to include the header file template.hpp to make this information available to the compiler when needed.

Meta template information are easily found:

// this method returns true if the type is recognized as a class template specialization
if(auto type = entt::resolve<std::shared_ptr<my_type>>(); type.is_template_specialization()) {
    // meta type of the class template conveniently wrapped by entt::meta_class_template_tag
    auto class_type = type.template_type();

    // number of template arguments
    std::size_t arity = type.template_arity();

    // meta type of the i-th argument
    auto arg_type = type.template_arg(0u);
}

Typically, when template information for a type are required, what the library provides is sufficient. However, there are some cases where a user may want more details or a different set of information.
Consider the case of a class template that is meant to wrap function types:

template<typename>
struct function_type;

template<typename Ret, typename... Args>
struct function_type<Ret(Args...)> {};

In this case, rather than the function type, it might be useful to provide the return type and unpacked arguments as if they were different template parameters for the original class template.
To achieve this, users must enter the library internals and provide their own specialization for the class template entt::meta_template_traits, such as:

template<typename Ret, typename... Args>
struct entt::meta_template_traits<function_type<Ret(Args...)>> {
    using class_type = meta_class_template_tag<function_type>;
    using args_type = type_list<Ret, Args...>;
};

The reflection system doesn't verify the accuracy of the information nor infer a correspondence between real types and meta types.
Therefore, the specialization is used as is and the information it contains is associated with the appropriate type when required.

Automatic conversions

In C++, there are a number of conversions allowed between arithmetic types that make it convenient to work with this kind of data.
If this were to be translated into explicit registrations with the reflection system, it would result in a long series of instructions such as the following:

entt::meta<int>()
    .conv<bool>()
    .conv<char>()
    // ...
    .conv<double>();

Repeated for each type eligible to undergo this type of conversions. This is both error-prone and repetitive.
Similarly, the language allows users to silently convert unscoped enums to their underlying types and offers what it takes to do the same for scoped enums. It would result in the following if it were to be done explicitly:

entt::meta<my_enum>()
    .conv<std::underlying_type_t<my_enum>>();

Fortunately, all of this can also be avoided. EnTT offers implicit support for these types of conversions:

entt::meta_any any{42};
any.allow_cast<double>();
double value = any.cast<double>();

With no need for registration, the conversion takes place automatically under the hood. The same goes for a call to allow_cast involving a meta type:

entt::meta_type type = entt::resolve<int>();
entt::meta_any any{my_enum::a_value};
any.allow_cast(type);
int value = any.cast<int>();

This makes working with arithmetic types and scoped or unscoped enums as easy as it is in C++.
It's still possible to set up conversion functions manually and these are always preferred over the automatic ones.

Implicitly generated default constructor

Creating objects of default constructible types through the reflection system while not having to explicitly register the meta type or its default constructor is also possible.
For example, in the case of primitive types like int or char, but not just them.

For default constructible types only, default constructors are automatically defined and associated with their meta types, whether they are explicitly or implicitly generated.
Therefore, this is all is needed to construct an integer from its meta type:

entt::resolve<int>().construct();

Where the meta type is for example the one returned from a meta container, useful for building keys without knowing or having to register the actual types.

In all cases, when users register default constructors, they are preferred both during searches and when the construct member function is invoked.

From void to any

Sometimes all a user has is an opaque pointer to an object of a known meta type. It would be handy in this case to be able to construct a meta_any element from it.
For this purpose, the meta_type class offers a from_void member function designed to convert an opaque pointer into a meta_any:

entt::meta_any any = entt::resolve(id).from_void(element);

Unfortunately, it's not possible to do a check on the actual type. Therefore, this call can be considered as a static cast with all its problems.
On the other hand, the ability to construct a meta_any from an opaque pointer opens the door to some pretty interesting uses that are worth exploring.

Policies: the more, the less

Policies are a kind of compile-time directives that can be used when registering reflection information.
Their purpose is to require slightly different behavior than the default in some specific cases. For example, when reading a given data member, its value is returned wrapped in a meta_any object which, by default, makes a copy of it. For large objects or if the caller wants to access the original instance, this behavior isn't desirable. Policies are there to offer a solution to this and other problems.

There are a few alternatives available at the moment:

  • The as-is policy, associated with the type entt::as_is_t.
    This is the default policy. In general, it should never be used explicitly, since it's implicitly selected if no other policy is specified.
    In this case, the return values of the functions as well as the properties exposed as data members are always returned by copy in a dedicated wrapper and therefore associated with their original meta types.

  • The as-void policy, associated with the type entt::as_void_t.
    Its purpose is to discard the return value of a meta object, whatever it is, thus making it appear as if its type were void:

    entt::meta<my_type>().func<&my_type::member_function, entt::as_void_t>("member"_hs);
    

    If the use with functions is obvious, perhaps less so is use with constructors and data members. In the first case, the returned wrapper is always empty even though the constructor is still invoked. In the second case, the property isn't accessible for reading instead.

  • The as-ref and as-cref policies, associated with the types entt::as_ref_t and entt::as_cref_t.
    They allow to build wrappers that act as references to unmanaged objects. Accessing the object contained in the wrapper for which the reference was requested makes it possible to directly access the instance used to initialize the wrapper itself:

    entt::meta<my_type>().data<&my_type::data_member, entt::as_ref_t>("member"_hs);
    

    These policies work with constructors (for example, when objects are taken from an external container rather than created on demand), data members and functions in general.
    If on the one hand as_cref_t always forces the return type to be const, as_ref_t adapts to the constness of the passed object and to that of the return type if any.

Some uses are rather trivial, but it's useful to note that there are some less obvious corner cases that can in turn be solved with the use of policies.

Named constants and enums

As mentioned, the data member function is used to reflect constants of any type.
This allows users to create meta types for enums that work exactly like any other meta type built from a class. Similarly, arithmetic types are enriched with constants of special meaning where required.
All values thus exported appear to users as if they were constant data members of the reflected types. This avoids the need to export what is the difference between enums and classes in C++ directly in the space of the reflected types.

Exposing constant values or elements from an enum is quite simple:

entt::meta<my_enum>()
    .data<my_enum::a_value>("a_value"_hs)
    .data<my_enum::another_value>("another_value"_hs);

entt::meta<int>().data<2048>("max_int"_hs);

Accessing them is trivial as well. It's a matter of doing the following, as with any other data member of a meta type:

auto value = entt::resolve<my_enum>().data("a_value"_hs).get({}).cast<my_enum>();
auto max = entt::resolve<int>().data("max_int"_hs).get({}).cast<int>();

All this happens behind the scenes without any allocation because of the small object optimization performed by the meta_any class.

Properties and meta objects

Sometimes (for example, when it comes to creating an editor) it might be useful to attach properties to the meta objects created. Fortunately, this is possible for most of them:

entt::meta<my_type>().type("reflected_type"_hs).prop("tooltip"_hs, "message");

Properties are always in the key/value form. The key is a numeric identifier, mostly similar to the identifier used to register meta objects. There are no restrictions on the type of the value instead, as long as it's movable.
Key only properties are also supported out of the box:

entt::meta<my_type>().type("reflected_type"_hs).prop(my_enum::key_only);

To attach multiple properties to a meta object, just invoke prop more than once.
It's also possible to call prop at different times, as long as the factory is reset to the meta object of interest.

The meta objects for which properties are supported are currently meta types, meta data and meta functions.
These types also offer a couple of member functions named prop to iterate all properties at once or to search a specific property by key:

// iterate all properties of a meta type
for(auto &&[id, prop]: entt::resolve<my_type>().prop()) {
    // ...
}

// search for a given property by name
auto prop = entt::resolve<my_type>().prop("tooltip"_hs);

Meta properties are objects having a fairly poor interface, all in all. They only provide the value member function to retrieve the contained value in the form of a meta_any object.

Unregister types

A type registered with the reflection system can also be unregistered. This means unregistering all its data members, member functions, conversion functions and so on. However, base classes aren't unregistered as well, since they don't necessarily depend on it.
Roughly speaking, unregistering a type means disconnecting all associated meta objects from it and making its identifier no longer available:

entt::meta_reset<my_type>();

It's also possible to reset types by their unique identifiers:

entt::meta_reset("my_type"_hs);

Finally, there exists a non-template overload of the meta_reset function that doesn't accept arguments and resets all meta types at once:

entt::meta_reset();

A type can be re-registered later with a completely different name and form.

Meta context

All meta types and their parts are created at runtime and stored in a default context. This is obtained via a service locator as:

auto &&context = entt::locator<entt::meta_context>::value_or();

By itself, a context is an opaque object that the user cannot do much with. However, users can replace an existing context with another at any time:

entt::meta_context other{};
auto &&context = entt::locator<entt::meta_context>::value_or();
std::swap(context, other);

This is useful for testing purposes or to define multiple context objects with different meta type to use as appropriate.

If replacing the default context isn't enough, EnTT also offers the ability to use multiple and externally managed contexts with the runtime reflection system.
For example, to create new meta types within a context other than the default one, simply pass it as an argument to the meta call:

entt::meta_ctx context{};
auto factory = entt::meta<my_type>(context).type("reflected_type"_hs);

By doing so, the new meta type isn't available in the default context but is usable by passing around the new context when needed, such as when creating a new meta_any object:

entt::meta_any any{context, std::in_place_type<my_type>};

Similarly, to search for meta types in a context other than the default one, it's necessary to pass it to the resolve function:

entt::meta_type type = entt::resolve(context, "reflected_type"_hs)

More generally, when using externally managed contexts, it's always required to provide the system with the context to use, at least at the entry point.
For example, once the meta_type instant is obtained, it's no longer necessary to pass the context around as the meta type takes the information with it and eventually propagates it to all its parts.
On the other hand, it's necessary to instruct the library on where meta types are to be fetched when meta_anys and meta_handles are constructed, a factory created or a meta type resolved.