ff3512a77e
f785959eace chore: add to_string functions for netprof enums a95b7957288 cleanup: Heap allocate network profile objects a3c80149edd feat: Implement Tox network profiler ac812871a2e feat: implement the last 2 missing network struct functions and make use of them 29d1043be0b test: friend request test now tests min/max message sizes 93aafd78c1f fix: friend requests with very long messages are no longer dropped 819aa2b2618 feat: Add option to disable DNS lookups in toxcore. 0ac23cee035 fix: windows use of REUSEADDR 7d2811d302d chore(ci): make bazel server shutdown faster 1dc399ba20d chore: Use vcpkg instead of conan in the MSVC build. 14d823165d9 chore: Migrate to conan 2. bdd17c16787 cleanup: Allocate logger using tox memory allocator. b396c061515 chore(deps): bump third_party/cmp from `2ac6bca` to `52bfcfa` 2e94da60d09 feat(net): add missing connect to network struct 41fb1839c7b chore: Add check to ensure version numbers agree. 934a8301113 chore: Release 0.2.20 3acef4bf044 fix: Add missing free in dht_get_nodes_response event. git-subtree-dir: external/toxcore/c-toxcore git-subtree-split: f785959eacebc59590f756b133b52601c335a1d1
380 lines
13 KiB
C++
380 lines
13 KiB
C++
#include "DHT.h"
|
|
|
|
#include <gmock/gmock.h>
|
|
#include <gtest/gtest.h>
|
|
|
|
#include <algorithm>
|
|
#include <array>
|
|
#include <cstring>
|
|
#include <random>
|
|
|
|
#include "DHT_test_util.hh"
|
|
#include "crypto_core.h"
|
|
#include "crypto_core_test_util.hh"
|
|
#include "logger.h"
|
|
#include "mem_test_util.hh"
|
|
#include "mono_time.h"
|
|
#include "network.h"
|
|
#include "network_test_util.hh"
|
|
#include "test_util.hh"
|
|
|
|
namespace {
|
|
|
|
using ::testing::Each;
|
|
using ::testing::ElementsAre;
|
|
using ::testing::Eq;
|
|
using ::testing::PrintToString;
|
|
using ::testing::UnorderedElementsAre;
|
|
|
|
using SecretKey = std::array<uint8_t, CRYPTO_SECRET_KEY_SIZE>;
|
|
|
|
struct KeyPair {
|
|
PublicKey pk;
|
|
SecretKey sk;
|
|
|
|
explicit KeyPair(const Random *rng) { crypto_new_keypair(rng, pk.data(), sk.data()); }
|
|
};
|
|
|
|
TEST(IdClosest, KeyIsClosestToItself)
|
|
{
|
|
Test_Random rng;
|
|
|
|
PublicKey pk0 = random_pk(rng);
|
|
PublicKey pk1;
|
|
do {
|
|
// Get a random key that's not the same as pk0.
|
|
pk1 = random_pk(rng);
|
|
} while (pk0 == pk1);
|
|
|
|
EXPECT_EQ(id_closest(pk0.data(), pk0.data(), pk1.data()), 1);
|
|
}
|
|
|
|
TEST(IdClosest, IdenticalKeysAreSameDistance)
|
|
{
|
|
Test_Random rng;
|
|
|
|
PublicKey pk0 = random_pk(rng);
|
|
PublicKey pk1 = random_pk(rng);
|
|
|
|
EXPECT_EQ(id_closest(pk0.data(), pk1.data(), pk1.data()), 0);
|
|
}
|
|
|
|
TEST(IdClosest, DistanceIsCommutative)
|
|
{
|
|
Test_Random rng;
|
|
|
|
PublicKey pk0 = random_pk(rng);
|
|
PublicKey pk1 = random_pk(rng);
|
|
PublicKey pk2 = random_pk(rng);
|
|
|
|
ASSERT_NE(pk1, pk2); // RNG can't produce the same random key twice
|
|
|
|
// Two non-equal keys can't have the same distance from any given key.
|
|
EXPECT_NE(id_closest(pk0.data(), pk1.data(), pk2.data()), 0);
|
|
|
|
if (id_closest(pk0.data(), pk1.data(), pk2.data()) == 1) {
|
|
EXPECT_EQ(id_closest(pk0.data(), pk2.data(), pk1.data()), 2);
|
|
}
|
|
|
|
if (id_closest(pk0.data(), pk1.data(), pk2.data()) == 2) {
|
|
EXPECT_EQ(id_closest(pk0.data(), pk2.data(), pk1.data()), 1);
|
|
}
|
|
}
|
|
|
|
TEST(IdClosest, SmallXorDistanceIsCloser)
|
|
{
|
|
PublicKey const pk0 = {0xaa};
|
|
PublicKey const pk1 = {0xa0};
|
|
PublicKey const pk2 = {0x0a};
|
|
|
|
EXPECT_EQ(id_closest(pk0.data(), pk1.data(), pk2.data()), 1);
|
|
}
|
|
|
|
TEST(IdClosest, DistinctKeysCannotHaveTheSameDistance)
|
|
{
|
|
PublicKey const pk0 = {0x06};
|
|
PublicKey const pk1 = {0x00};
|
|
PublicKey pk2 = {0x00};
|
|
|
|
for (uint8_t i = 1; i < 0xff; ++i) {
|
|
pk2[0] = i;
|
|
EXPECT_NE(id_closest(pk0.data(), pk1.data(), pk2.data()), 0);
|
|
}
|
|
}
|
|
|
|
TEST(AddToList, OverridesKeysWithCloserKeys)
|
|
{
|
|
PublicKey const self_pk = {0xaa};
|
|
PublicKey const keys[] = {
|
|
{0xa0}, // closest
|
|
{0x0a}, //
|
|
{0x0b}, //
|
|
{0x0c}, //
|
|
{0x0d}, //
|
|
{0xa1}, // closer than the 4 keys above
|
|
};
|
|
|
|
std::array<Node_format, 4> nodes{};
|
|
|
|
IP_Port ip_port = {0};
|
|
EXPECT_TRUE(add_to_list(nodes.data(), nodes.size(), keys[0].data(), &ip_port, self_pk.data()));
|
|
EXPECT_TRUE(add_to_list(nodes.data(), nodes.size(), keys[1].data(), &ip_port, self_pk.data()));
|
|
EXPECT_TRUE(add_to_list(nodes.data(), nodes.size(), keys[2].data(), &ip_port, self_pk.data()));
|
|
EXPECT_TRUE(add_to_list(nodes.data(), nodes.size(), keys[3].data(), &ip_port, self_pk.data()));
|
|
|
|
EXPECT_EQ(to_array(nodes[0].public_key), keys[0]);
|
|
EXPECT_EQ(to_array(nodes[1].public_key), keys[1]);
|
|
EXPECT_EQ(to_array(nodes[2].public_key), keys[2]);
|
|
EXPECT_EQ(to_array(nodes[3].public_key), keys[3]);
|
|
|
|
// key 4 is less close than keys 0-3
|
|
EXPECT_FALSE(add_to_list(nodes.data(), nodes.size(), keys[4].data(), &ip_port, self_pk.data()));
|
|
// 5 is closer than all except key 0
|
|
EXPECT_TRUE(add_to_list(nodes.data(), nodes.size(), keys[5].data(), &ip_port, self_pk.data()));
|
|
|
|
EXPECT_EQ(to_array(nodes[0].public_key), keys[0]);
|
|
EXPECT_EQ(to_array(nodes[1].public_key), keys[5]);
|
|
EXPECT_EQ(to_array(nodes[2].public_key), keys[1]);
|
|
EXPECT_EQ(to_array(nodes[3].public_key), keys[2]);
|
|
}
|
|
|
|
Node_format fill(Node_format v, PublicKey const &pk, IP_Port const &ip_port)
|
|
{
|
|
std::copy(pk.begin(), pk.end(), v.public_key);
|
|
v.ip_port = ip_port;
|
|
return v;
|
|
}
|
|
|
|
TEST(AddToList, AddsFirstKeysInOrder)
|
|
{
|
|
Test_Random rng;
|
|
|
|
// Make cmp_key the furthest away from 00000... as possible, so all initial inserts succeed.
|
|
PublicKey const cmp_pk{0xff, 0xff, 0xff, 0xff};
|
|
|
|
// Generate a bunch of other keys, sorted by distance from cmp_pk.
|
|
auto const keys
|
|
= sorted(array_of<20>(random_pk, rng), [&cmp_pk](auto const &pk1, auto const &pk2) {
|
|
return id_closest(cmp_pk.data(), pk1.data(), pk2.data()) == 1;
|
|
});
|
|
auto const ips = array_of<20>(increasing_ip_port(0, rng));
|
|
|
|
std::vector<Node_format> nodes(4);
|
|
|
|
// Add a bunch of nodes.
|
|
ASSERT_TRUE(add_to_list(nodes.data(), nodes.size(), keys[2].data(), &ips[2], cmp_pk.data()))
|
|
<< "failed to insert\n"
|
|
<< " cmp_pk = " << cmp_pk << "\n"
|
|
<< " pk = " << keys[2] << "\n"
|
|
<< " nodes_list = " << PrintToString(nodes);
|
|
ASSERT_TRUE(add_to_list(nodes.data(), nodes.size(), keys[5].data(), &ips[5], cmp_pk.data()))
|
|
<< "failed to insert\n"
|
|
<< " cmp_pk = " << cmp_pk << "\n"
|
|
<< " pk = " << keys[5] << "\n"
|
|
<< " nodes_list = " << PrintToString(nodes);
|
|
ASSERT_TRUE(add_to_list(nodes.data(), nodes.size(), keys[7].data(), &ips[7], cmp_pk.data()))
|
|
<< "failed to insert\n"
|
|
<< " cmp_pk = " << cmp_pk << "\n"
|
|
<< " pk = " << keys[7] << "\n"
|
|
<< " nodes_list = " << PrintToString(nodes);
|
|
ASSERT_TRUE(add_to_list(nodes.data(), nodes.size(), keys[9].data(), &ips[9], cmp_pk.data()))
|
|
<< "failed to insert\n"
|
|
<< " cmp_pk = " << cmp_pk << "\n"
|
|
<< " pk = " << keys[9] << "\n"
|
|
<< " nodes_list = " << PrintToString(nodes);
|
|
|
|
// They should all appear in order.
|
|
EXPECT_THAT(nodes,
|
|
ElementsAre( //
|
|
fill(Node_format{}, keys[2], ips[2]), //
|
|
fill(Node_format{}, keys[5], ips[5]), //
|
|
fill(Node_format{}, keys[7], ips[7]), //
|
|
fill(Node_format{}, keys[9], ips[9])));
|
|
|
|
// Adding another node that's further away will not happen.
|
|
ASSERT_FALSE(add_to_list(nodes.data(), nodes.size(), keys[10].data(), &ips[10], cmp_pk.data()))
|
|
<< "incorrectly inserted\n"
|
|
<< " cmp_pk = " << cmp_pk << "\n"
|
|
<< " pk = " << keys[10] << "\n"
|
|
<< " nodes_list = " << PrintToString(nodes);
|
|
|
|
// Now shuffle each time we add a node, which should work fine.
|
|
std::mt19937 mt_rng;
|
|
|
|
// Adding one that's closer will happen.
|
|
std::shuffle(nodes.begin(), nodes.end(), mt_rng);
|
|
ASSERT_TRUE(add_to_list(nodes.data(), nodes.size(), keys[8].data(), &ips[8], cmp_pk.data()))
|
|
<< "failed to insert\n"
|
|
<< " cmp_pk = " << cmp_pk << "\n"
|
|
<< " pk = " << keys[8] << "\n"
|
|
<< " nodes_list = " << PrintToString(nodes);
|
|
|
|
EXPECT_THAT(nodes,
|
|
UnorderedElementsAre( //
|
|
fill(Node_format{}, keys[2], ips[2]), //
|
|
fill(Node_format{}, keys[5], ips[5]), //
|
|
fill(Node_format{}, keys[7], ips[7]), //
|
|
fill(Node_format{}, keys[8], ips[8])));
|
|
|
|
// Adding one that's closer than almost all of them will happen.
|
|
std::shuffle(nodes.begin(), nodes.end(), mt_rng);
|
|
ASSERT_TRUE(add_to_list(nodes.data(), nodes.size(), keys[4].data(), &ips[4], cmp_pk.data()))
|
|
<< "failed to insert\n"
|
|
<< " cmp_pk = " << cmp_pk << "\n"
|
|
<< " pk = " << keys[4] << "\n"
|
|
<< " nodes_list = " << PrintToString(nodes);
|
|
|
|
EXPECT_THAT(nodes,
|
|
UnorderedElementsAre( //
|
|
fill(Node_format{}, keys[2], ips[2]), //
|
|
fill(Node_format{}, keys[4], ips[4]), //
|
|
fill(Node_format{}, keys[5], ips[5]), //
|
|
fill(Node_format{}, keys[7], ips[7])));
|
|
|
|
// Adding one that's closer than all of them will happen.
|
|
std::shuffle(nodes.begin(), nodes.end(), mt_rng);
|
|
ASSERT_TRUE(add_to_list(nodes.data(), nodes.size(), keys[1].data(), &ips[1], cmp_pk.data()))
|
|
<< "failed to insert\n"
|
|
<< " cmp_pk = " << cmp_pk << "\n"
|
|
<< " pk = " << keys[1] << "\n"
|
|
<< " nodes_list = " << PrintToString(nodes);
|
|
|
|
EXPECT_THAT(nodes,
|
|
UnorderedElementsAre( //
|
|
fill(Node_format{}, keys[1], ips[1]), //
|
|
fill(Node_format{}, keys[2], ips[2]), //
|
|
fill(Node_format{}, keys[4], ips[4]), //
|
|
fill(Node_format{}, keys[5], ips[5])));
|
|
}
|
|
|
|
TEST(AddToList, KeepsKeysInOrder)
|
|
{
|
|
Test_Random rng;
|
|
|
|
// Any random cmp_pk should work, as well as the smallest or (approximately) largest pk.
|
|
for (PublicKey const cmp_pk : {random_pk(rng), PublicKey{0x00}, PublicKey{0xff, 0xff}}) {
|
|
auto const by_distance = [&cmp_pk](auto const &node1, auto const &node2) {
|
|
return id_closest(cmp_pk.data(), node1.public_key, node2.public_key) == 1;
|
|
};
|
|
|
|
// Generate a bunch of other keys, not sorted.
|
|
auto const nodes = vector_of(16, random_node_format, rng);
|
|
|
|
std::vector<Node_format> node_list(4);
|
|
|
|
// Add all of them.
|
|
for (Node_format const &node : nodes) {
|
|
add_to_list(
|
|
node_list.data(), node_list.size(), node.public_key, &node.ip_port, cmp_pk.data());
|
|
// Nodes should always be sorted.
|
|
EXPECT_THAT(node_list, Eq(sorted(node_list, by_distance)));
|
|
}
|
|
}
|
|
}
|
|
|
|
TEST(Request, CreateAndParse)
|
|
{
|
|
Test_Random rng;
|
|
|
|
// Peers.
|
|
const KeyPair sender(rng);
|
|
const KeyPair receiver(rng);
|
|
const uint8_t sent_pkt_id = CRYPTO_PACKET_FRIEND_REQ;
|
|
|
|
// Encoded packet.
|
|
std::array<uint8_t, MAX_CRYPTO_REQUEST_SIZE> packet;
|
|
|
|
// Received components.
|
|
PublicKey pk;
|
|
std::array<uint8_t, MAX_CRYPTO_REQUEST_SIZE> incoming;
|
|
uint8_t recvd_pkt_id;
|
|
|
|
// Request data: maximum payload is 918 bytes, so create a payload 1 byte larger than max.
|
|
std::vector<uint8_t> outgoing(919);
|
|
random_bytes(rng, outgoing.data(), outgoing.size());
|
|
|
|
EXPECT_LT(create_request(rng, sender.pk.data(), sender.sk.data(), packet.data(),
|
|
receiver.pk.data(), outgoing.data(), outgoing.size(), sent_pkt_id),
|
|
0);
|
|
|
|
// Pop one element so the payload is 918 bytes. Packing should now succeed.
|
|
outgoing.pop_back();
|
|
|
|
const int max_sent_length = create_request(rng, sender.pk.data(), sender.sk.data(),
|
|
packet.data(), receiver.pk.data(), outgoing.data(), outgoing.size(), sent_pkt_id);
|
|
ASSERT_GT(max_sent_length, 0); // success.
|
|
|
|
// Check that handle_request rejects packets larger than the maximum created packet size.
|
|
EXPECT_LT(handle_request(receiver.pk.data(), receiver.sk.data(), pk.data(), incoming.data(),
|
|
&recvd_pkt_id, packet.data(), max_sent_length + 1),
|
|
0);
|
|
|
|
// Now try all possible packet sizes from max (918) to 0.
|
|
while (!outgoing.empty()) {
|
|
// Pack:
|
|
const int sent_length = create_request(rng, sender.pk.data(), sender.sk.data(),
|
|
packet.data(), receiver.pk.data(), outgoing.data(), outgoing.size(), sent_pkt_id);
|
|
ASSERT_GT(sent_length, 0);
|
|
|
|
// Unpack:
|
|
const int recvd_length = handle_request(receiver.pk.data(), receiver.sk.data(), pk.data(),
|
|
incoming.data(), &recvd_pkt_id, packet.data(), sent_length);
|
|
ASSERT_GE(recvd_length, 0);
|
|
|
|
EXPECT_EQ(
|
|
std::vector<uint8_t>(incoming.begin(), incoming.begin() + recvd_length), outgoing);
|
|
|
|
outgoing.pop_back();
|
|
}
|
|
}
|
|
|
|
TEST(AnnounceNodes, SetAndTest)
|
|
{
|
|
Test_Random rng;
|
|
Test_Memory mem;
|
|
Test_Network ns;
|
|
|
|
Logger *log = logger_new(mem);
|
|
ASSERT_NE(log, nullptr);
|
|
Mono_Time *mono_time = mono_time_new(mem, nullptr, nullptr);
|
|
ASSERT_NE(mono_time, nullptr);
|
|
Ptr<Networking_Core> net(new_networking_no_udp(log, mem, ns));
|
|
ASSERT_NE(net, nullptr);
|
|
Ptr<DHT> dht(new_dht(log, mem, rng, ns, mono_time, net.get(), true, true));
|
|
ASSERT_NE(dht, nullptr);
|
|
|
|
uint8_t pk_data[CRYPTO_PUBLIC_KEY_SIZE];
|
|
memcpy(pk_data, dht_get_self_public_key(dht.get()), sizeof(pk_data));
|
|
PublicKey self_pk(to_array(pk_data));
|
|
|
|
PublicKey pk1 = random_pk(rng);
|
|
ASSERT_NE(pk1, self_pk);
|
|
|
|
// Test with maximally close key to self
|
|
pk_data[CRYPTO_PUBLIC_KEY_SIZE - 1] = ~pk_data[CRYPTO_PUBLIC_KEY_SIZE - 1];
|
|
PublicKey pk2(to_array(pk_data));
|
|
ASSERT_NE(pk2, pk1);
|
|
|
|
IP_Port ip_port = {0};
|
|
ip_port.ip.family = net_family_ipv4();
|
|
|
|
set_announce_node(dht.get(), pk1.data());
|
|
set_announce_node(dht.get(), pk2.data());
|
|
|
|
EXPECT_TRUE(addto_lists(dht.get(), &ip_port, pk1.data()));
|
|
EXPECT_TRUE(addto_lists(dht.get(), &ip_port, pk2.data()));
|
|
|
|
Node_format nodes[MAX_SENT_NODES];
|
|
EXPECT_EQ(
|
|
0, get_close_nodes(dht.get(), self_pk.data(), nodes, net_family_unspec(), true, true));
|
|
set_announce_node(dht.get(), pk1.data());
|
|
set_announce_node(dht.get(), pk2.data());
|
|
EXPECT_EQ(
|
|
2, get_close_nodes(dht.get(), self_pk.data(), nodes, net_family_unspec(), true, true));
|
|
|
|
mono_time_free(mem, mono_time);
|
|
logger_kill(log);
|
|
}
|
|
|
|
} // namespace
|